Optimization of BP neural network model by chaotic krill herd algorithm
Taking kidney bean as the research object, row spacing, fertilizer application and planting density were selected as experimental factors, production for the response indicators, the chaos theory, krill herd algorithm is introduced into the BP neural network, the minimum error in training as a targe...
Saved in:
| Published in | Alexandria engineering journal Vol. 61; no. 12; pp. 9769 - 9777 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.12.2022
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1110-0168 2090-2670 |
| DOI | 10.1016/j.aej.2022.02.033 |
Cover
| Abstract | Taking kidney bean as the research object, row spacing, fertilizer application and planting density were selected as experimental factors, production for the response indicators, the chaos theory, krill herd algorithm is introduced into the BP neural network, the minimum error in training as a target, the model of weight and threshold as variables to optimize the BP neural network and chaotic krill herd algorithm BP neural network prediction model was set up (C-KHA-BP). The RMSE of C-KHA-BP model is 191.93 kg/hm2、MAE is 153.18 kg/hm2, and MAPE is 12.67%, the correlation coefficient R2 is 0.95.By solving the global optimal solution of C-KHA-BP model, the optimal row spacing of kidney bean was 72.63 cm, the fertilizer application rate was 103.91 kg/hm2, and the planting density was 30 × 104 plants /hm2. The next year, the validation test was conducted in the same test area, and the yield of kidney bean under the test scheme was 2843.2 kg /hm2, the relative error between the test result and the simulation optimization result (2949.5 kg /hm2) was only −3.65%, indicating that the fitting function of C-KHA-BP prediction model was precision and the optimization result was accurate. The results of this study can provide a new approach to the prediction and optimization of similar models in the field of grain production. |
|---|---|
| AbstractList | Taking kidney bean as the research object, row spacing, fertilizer application and planting density were selected as experimental factors, production for the response indicators, the chaos theory, krill herd algorithm is introduced into the BP neural network, the minimum error in training as a target, the model of weight and threshold as variables to optimize the BP neural network and chaotic krill herd algorithm BP neural network prediction model was set up (C-KHA-BP). The RMSE of C-KHA-BP model is 191.93 kg/hm2、MAE is 153.18 kg/hm2, and MAPE is 12.67%, the correlation coefficient R2 is 0.95.By solving the global optimal solution of C-KHA-BP model, the optimal row spacing of kidney bean was 72.63 cm, the fertilizer application rate was 103.91 kg/hm2, and the planting density was 30 × 104 plants /hm2. The next year, the validation test was conducted in the same test area, and the yield of kidney bean under the test scheme was 2843.2 kg /hm2, the relative error between the test result and the simulation optimization result (2949.5 kg /hm2) was only −3.65%, indicating that the fitting function of C-KHA-BP prediction model was precision and the optimization result was accurate. The results of this study can provide a new approach to the prediction and optimization of similar models in the field of grain production. |
| Author | Yang, Kejun Guo, Yongxia Yu, Song Liu, Chunmei Yu, Lihong Xie, Linyang |
| Author_xml | – sequence: 1 givenname: Lihong surname: Yu fullname: Yu, Lihong – sequence: 2 givenname: Linyang surname: Xie fullname: Xie, Linyang – sequence: 3 givenname: Chunmei surname: Liu fullname: Liu, Chunmei – sequence: 4 givenname: Song surname: Yu fullname: Yu, Song – sequence: 5 givenname: Yongxia surname: Guo fullname: Guo, Yongxia – sequence: 6 givenname: Kejun surname: Yang fullname: Yang, Kejun email: byndykj@yeah.net |
| BookMark | eNqNkMtKAzEUhrNQsF4ewF1eoDWXmc4MrlS8FAq6cB9OMic203RSMlGpT2_aigsXxXDgQA7fd5L_lBz1oUdCLjmbcManV90EsJsIJsSE5ZLyiIw452ych_UJuRiGjuVTVk3RTEfk8Xmd3Mp9QXKhp8HS2xfa43sEn1v6DHFJV6FFT_WGmgWE5AxdRuc9XWBsKfi3EF1arM7JsQU_4MVPPyOvD_evd0_j-fPj7O5mPjYFm6axACukLBuoQAqhqxpEW_CiKK1oGlZrbtsGa51HjYbS6AbL2pZoQFitNcgzMttr2wCdWke3grhRAZzaXYT4piDmN3pU0HIjoZgKrYsCMl2DzbpWcFmzCjG7xN713q9h8wne_wo5U9swVadymGobpmK5pMxQtYdMDMMQ0Srj0i68FMH5gyT_Q_5n2_WewRzph8OoBuOwN9i6iCblT7sD9DeJI6Or |
| CitedBy_id | crossref_primary_10_3389_fphys_2025_1511716 crossref_primary_10_3233_JCM_230001 crossref_primary_10_5194_ms_14_47_2023 crossref_primary_10_3390_app14051996 crossref_primary_10_1007_s11368_024_03886_8 crossref_primary_10_1002_for_3134 crossref_primary_10_1155_2022_6098797 crossref_primary_10_1016_j_applthermaleng_2024_124509 crossref_primary_10_3390_buildings13061395 crossref_primary_10_3390_app13095575 crossref_primary_10_3390_ma18010139 crossref_primary_10_3390_s23115317 crossref_primary_10_1155_2022_3391881 crossref_primary_10_1016_j_jmrt_2023_07_203 crossref_primary_10_1016_j_coco_2024_102073 crossref_primary_10_1016_j_scienta_2024_113171 crossref_primary_10_1109_TSC_2024_3384094 crossref_primary_10_2478_amns_2023_1_00026 crossref_primary_10_1080_15440478_2024_2389161 crossref_primary_10_1155_2022_3986247 crossref_primary_10_3233_JIFS_233251 crossref_primary_10_1016_j_lwt_2024_116252 |
| Cites_doi | 10.1109/ICCKE.2014.6993468 10.1016/j.ins.2014.02.123 10.1109/MNET.001.1900659 10.15740/HAS/TAJH/9.2/386-389 10.1556/AAgr.56.2008.4.11 10.15740/HAS/ARJCI/5.2/101-104 10.1109/TVT.2020.2989297 10.1016/j.neucom.2013.08.031 10.1016/j.neucom.2014.01.023 10.1016/j.cnsns.2012.05.010 10.3788/OPE.20162406.1448 10.1016/j.compeleceng.2019.01.028 10.1109/TCSS.2019.2917335 |
| ContentType | Journal Article |
| Copyright | 2022 Faculty of Engineering, Alexandria University |
| Copyright_xml | – notice: 2022 Faculty of Engineering, Alexandria University |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.aej.2022.02.033 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 9777 |
| ExternalDocumentID | oai_doaj_org_article_ad1c3a462bb44abbb8af9e5d213807ee 10.1016/j.aej.2022.02.033 10_1016_j_aej_2022_02_033 S1110016822001223 |
| GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c406t-2af23359a7a322b78a2d41445f29908b1fd9e8b22b9ba5cb9e58f5eca2fbbba3 |
| IEDL.DBID | IXB |
| ISSN | 1110-0168 2090-2670 |
| IngestDate | Fri Oct 03 12:26:28 EDT 2025 Tue Aug 19 20:23:23 EDT 2025 Thu Apr 24 23:07:09 EDT 2025 Wed Oct 29 21:08:15 EDT 2025 Sun May 21 07:31:48 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Kidney bean BP neural network Yield Chaos theory Optimize Krill herd algorithm |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-2af23359a7a322b78a2d41445f29908b1fd9e8b22b9ba5cb9e58f5eca2fbbba3 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1110016822001223 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ad1c3a462bb44abbb8af9e5d213807ee unpaywall_primary_10_1016_j_aej_2022_02_033 crossref_citationtrail_10_1016_j_aej_2022_02_033 crossref_primary_10_1016_j_aej_2022_02_033 elsevier_sciencedirect_doi_10_1016_j_aej_2022_02_033 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Alexandria engineering journal |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Goudarzi, Kama, Anisi, Zeadally, Mumtaz (b0090) 2019; 75 Ramawtar drrakgmail.com, A.C. Shivran, B.L. Yadav. Effect of NP Fertilizers, Vermicompost and Sulphur on Growth, Yield and Quality of Clusterbean [ Cymopsis tetragonoloba (L.)] and their Residual Effect on Grain Yield of Succeeding Wheat [ Triticum aestivum (L)]. Legume Res. – Int. J. 36(1) (2013) 74–78. Huixian, Xiangzhen, Yucheng (b0085) 2019; 35 Keshri, Sulekha. Effect of Fertility Levels and Varieties on Growth Forage Yield and quality of Cluster Bean (Cyamopsis Tetragonolobus L.)[D]. Gwalior:Rajmata vijayaraje scindia krishi vishwa vidyalaya college of agricuture,2017. Wang, Guo, Gandomi (b0165) 2014; 274 Ji, Li, Cao, Li, Mumtaz, Wang (b0100) 2020; 69 K. Shamsi, Effect of planting date and density on the yield and yield components of milk thistle(Silubum marianum,L.). J. Appl. Biosci. 2009, 16:862-863. Xuan, Li-Hong, Jiang (b0150) 2016; 24 D. Jyothirmai, M. Suresh Kumar, Katta Subba, D.M. Rao, Evaluation Technology of Software Reliability by using the BP Neural Network. Int. J. Eng. Techniques 5(1) (2019) 139–143. Qiu Jing, Ruiwu (b0120) 2010; 26 Gandomi, Alavi (b0140) 2012; 17 Prityanarshini, Sasmtta. Effect of Fertility Levels and Row Spacing on Growth, Yield and Quality of Some Promising Genotypes of Clusterbean [Cyamopsis tetragonoloba (L.) Taub]Gwalior:Rajmata vijayaraje scindia krishi vishwa vidyalaya college of agriculture, 2011. Jin Shanshan, Yu Lihe, Guo Jianhua, Yu Song, Guo Wei, Xue Yingwen, Liang Haiyun, Duan Junjun, Effect of Different Cultivation Methods and Density on Yield of Kidney Bean, J. Heilongjiang Bayi Agric. Univ. 30(3) (2018) 15–19. (in Chinese with English abstract) A. Malliswara Reddy, B. Sahadeva Reddy, Effect of planting geometry and fertility level on griwth and seed yield of cluster bean [CYAMOPSIS TETRAGONOLOBA (L)] UNDER SCARCE RAINFALL ZONE OF ANDHRA PRADESH, Legume Res. 34(2) (2011) 143–145. Dong, Shuai, Qiang (b0080) 2018; 49 Sarma, Phukon, Borgohain, Goswami, Neog (b0040) 2014; 9 Vinatoru, Zamfir, Bratu (b0020) 2015; 72 Li, Zhou, Wu, Li, Mumtaz, Lin, Gacanin, Alotaibi (b0145) 2019; 6 Mahdi Bidar, Edris Fattahi, Hamidreza Rashidy Kanan, Modified Krill Herd Optimization Algorithm using Chaotic Parameters, 2014 ,4th International Conference on Computer and Knowledge Engineeering (ICCKE). Yahui, Wenju, Chao (b0070) 2018; 49 Yadav, Patel, Yadav (b0060) 2014; 5 Xiao Guowei, Chaos Krill Herd Algorithm Based on Dynamic Adjustment of Inertia Weight, J. Lanzhou Univ. Arts Sci. (Natural Sciences) 31(6) (2017) 59–63. (in Chinese with English abstract) Guo, Wang, H. Gandomi, H. Alavi, Duan (b0135) 2014; 138 Muoneke, Ogwuche, Kalu (b0005) 2007; 2 Duan, Gu, Wen, Zhang, Ji, Mumtaz (b0115) 2020; 34 Chun-hong, Liang, He (b0110) 2019; 39 I. Mitova, I. Dimitrov, Emilia. Atanasova, Ira Stancheva. Effects of fore-crop fertilization on the yield and quality of kidney beans under vegetable crop rotation conditions. Acta Agronomica Hungarica 56(4) (2008) 449–454. Bing, Xiaobing, Cheng (b0010) 2010; 4 Xuqing, Long, Zhuang (b0075) 2019; 50 G.G. Wang, A.H. GANDOMI, A.H. Alavi, et al., Stud Krill Herd Algorithm, Neurocomputing 128 (2014) 363–370. Xiaoling, Liangliang, Baowen (b0015) 2011; 12 Chen Xiao, Wang Hongying, Kong Dandan, et al. Quality prediction model of pellet feed basing on BP network using PSO parameters optimization method, Trans. Chinese Soc. Agric. Eng. (Transactions of the CSAE) 32(14) (2016) 306–314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.14.041 Jun, Ming-zhe, Xian-guo (b0105) 2015; 49 Fulin, Dong Zhigui, Zhihui (b0170) 2017; 33 Yadav (10.1016/j.aej.2022.02.033_b0060) 2014; 5 Goudarzi (10.1016/j.aej.2022.02.033_b0090) 2019; 75 Bing (10.1016/j.aej.2022.02.033_b0010) 2010; 4 Vinatoru (10.1016/j.aej.2022.02.033_b0020) 2015; 72 10.1016/j.aej.2022.02.033_b0130 10.1016/j.aej.2022.02.033_b0030 10.1016/j.aej.2022.02.033_b0055 Xiaoling (10.1016/j.aej.2022.02.033_b0015) 2011; 12 10.1016/j.aej.2022.02.033_b0095 10.1016/j.aej.2022.02.033_b0050 Huixian (10.1016/j.aej.2022.02.033_b0085) 2019; 35 10.1016/j.aej.2022.02.033_b0035 Duan (10.1016/j.aej.2022.02.033_b0115) 2020; 34 Chun-hong (10.1016/j.aej.2022.02.033_b0110) 2019; 39 10.1016/j.aej.2022.02.033_b0155 Sarma (10.1016/j.aej.2022.02.033_b0040) 2014; 9 Gandomi (10.1016/j.aej.2022.02.033_b0140) 2012; 17 Li (10.1016/j.aej.2022.02.033_b0145) 2019; 6 Qiu Jing (10.1016/j.aej.2022.02.033_b0120) 2010; 26 Xuan (10.1016/j.aej.2022.02.033_b0150) 2016; 24 Muoneke (10.1016/j.aej.2022.02.033_b0005) 2007; 2 Ji (10.1016/j.aej.2022.02.033_b0100) 2020; 69 Wang (10.1016/j.aej.2022.02.033_b0165) 2014; 274 Xuqing (10.1016/j.aej.2022.02.033_b0075) 2019; 50 10.1016/j.aej.2022.02.033_b0065 10.1016/j.aej.2022.02.033_b0160 Fulin (10.1016/j.aej.2022.02.033_b0170) 2017; 33 Yahui (10.1016/j.aej.2022.02.033_b0070) 2018; 49 Guo (10.1016/j.aej.2022.02.033_b0135) 2014; 138 10.1016/j.aej.2022.02.033_b0045 Jun (10.1016/j.aej.2022.02.033_b0105) 2015; 49 10.1016/j.aej.2022.02.033_b0125 10.1016/j.aej.2022.02.033_b0025 Dong (10.1016/j.aej.2022.02.033_b0080) 2018; 49 |
| References_xml | – reference: A. Malliswara Reddy, B. Sahadeva Reddy, Effect of planting geometry and fertility level on griwth and seed yield of cluster bean [CYAMOPSIS TETRAGONOLOBA (L)] UNDER SCARCE RAINFALL ZONE OF ANDHRA PRADESH, Legume Res. 34(2) (2011) 143–145. – volume: 6 start-page: 1395 year: 2019 end-page: 1406 ident: b0145 article-title: Decentralized On-Demand Energy Supply for Blockchain in Internet of Things: A Microgrids Approach publication-title: IEEE Trans. Comput. Social Syst. – volume: 69 start-page: 7404 year: 2020 end-page: 7415 ident: b0100 article-title: Secrecy Performance Analysis of UAV Assisted Relay Transmission for Cognitive Network With Energy Harvesting publication-title: IEEE Trans. Veh. Technol. – volume: 2 start-page: 667 year: 2007 end-page: 677 ident: b0005 article-title: Effect of maize planting density on the performance of maize/soybean intercropping system in a guinea savannah agroecosystem publication-title: Afr. J. Agric. Res. – volume: 49 start-page: 1144 year: 2015 end-page: 1148 ident: b0105 article-title: BP Neural Network Optimized by Genetic Algorithm Approch for Titanium and Iron Content Prediction in EDXRF publication-title: Atomic Energy Sci. Technol. – volume: 26 start-page: 88 year: 2010 end-page: 93 ident: b0120 article-title: Forecasting model on rice blast based on BP neural network and chaos theory publication-title: Trans. CSAE – volume: 138 start-page: 392 year: 2014 end-page: 402 ident: b0135 article-title: A new improved krill herd algorithm for global numerical optimization publication-title: Neurocomputing – reference: K. Shamsi, Effect of planting date and density on the yield and yield components of milk thistle(Silubum marianum,L.). J. Appl. Biosci. 2009, 16:862-863. – volume: 12 start-page: 1674 year: 2011 end-page: 1679 ident: b0015 article-title: Effects of Different Nutrient Management Systems and Cultivation Methods on Crop Yield and Soil Fertility publication-title: Agric. Sci. Technol. – volume: 33 start-page: 92 year: 2017 end-page: 99 ident: b0170 article-title: Optimization of maize planting density and fertilizer application rate based on BP neural network publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 9 start-page: 386 year: 2014 end-page: 389 ident: b0040 article-title: Neog.Response of french bean (Phaseolus vulgaris L.) to organic manure, vermicompost and biofertilizers on growth parameters and yield publication-title: Asian J. Horticulture – reference: Chen Xiao, Wang Hongying, Kong Dandan, et al. Quality prediction model of pellet feed basing on BP network using PSO parameters optimization method, Trans. Chinese Soc. Agric. Eng. (Transactions of the CSAE) 32(14) (2016) 306–314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.14.041 – reference: D. Jyothirmai, M. Suresh Kumar, Katta Subba, D.M. Rao, Evaluation Technology of Software Reliability by using the BP Neural Network. Int. J. Eng. Techniques 5(1) (2019) 139–143. – reference: Jin Shanshan, Yu Lihe, Guo Jianhua, Yu Song, Guo Wei, Xue Yingwen, Liang Haiyun, Duan Junjun, Effect of Different Cultivation Methods and Density on Yield of Kidney Bean, J. Heilongjiang Bayi Agric. Univ. 30(3) (2018) 15–19. (in Chinese with English abstract) – reference: I. Mitova, I. Dimitrov, Emilia. Atanasova, Ira Stancheva. Effects of fore-crop fertilization on the yield and quality of kidney beans under vegetable crop rotation conditions. Acta Agronomica Hungarica 56(4) (2008) 449–454. – volume: 4 start-page: 1 year: 2010 end-page: 9 ident: b0010 article-title: Responses of soybean yield and yield components to light enrichment and planting density publication-title: Int. J. Plant Prod. – volume: 72 start-page: 241 year: 2015 end-page: 243 ident: b0020 article-title: Viorica Lagunovschi, Luminita Cârstea. Yield and quality potential of anisia bean (Phaseolus vulgaris) variety.Bulletin UASVM publication-title: Horticulture – volume: 35 start-page: 196 year: 2019 end-page: 202 ident: b0085 article-title: Prediction and verification on heating load of ground source heat pump heating system based on BP neural network for plant factory publication-title: Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) – volume: 34 start-page: 283 year: 2020 end-page: 289 ident: b0115 article-title: Emerging Technologies for 5G-IoV Networks: Applications, Trends and Opportunities publication-title: IEEE Network – volume: 49 start-page: 275 year: 2018 end-page: 284 ident: b0080 article-title: Comprehensive Evaluation Method of Groundwater Quality Based on BP Network Optimized by Krill Herd Algorithm publication-title: Trans. Chin. Soc. Agric. Machinery – volume: 49 start-page: 196 year: 2018 end-page: 204 ident: b0070 article-title: Multi-characteristic Comprehensive Recognition of Well-facilitied Farmland Based on TOPSIS and BP Neural Network publication-title: Trans. Chin. Soc. Agric. Machinery – volume: 50 start-page: 226 year: 2019 end-page: 232 ident: b0075 article-title: Inversion of Heavy Metal Content in Rice Canopy Based on Wavelet Transform and BP Neural Network publication-title: Trans. Chin. Soc. Agric. Machinery – reference: Xiao Guowei, Chaos Krill Herd Algorithm Based on Dynamic Adjustment of Inertia Weight, J. Lanzhou Univ. Arts Sci. (Natural Sciences) 31(6) (2017) 59–63. (in Chinese with English abstract) – volume: 39 start-page: 2320 year: 2019 end-page: 2327 ident: b0110 article-title: Prediction of ammonia concentration in piggery based on ARIMA and BP neural network publication-title: China Environ. Sci. – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: b0140 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simer Simul. – reference: Keshri, Sulekha. Effect of Fertility Levels and Varieties on Growth Forage Yield and quality of Cluster Bean (Cyamopsis Tetragonolobus L.)[D]. Gwalior:Rajmata vijayaraje scindia krishi vishwa vidyalaya college of agricuture,2017. – reference: G.G. Wang, A.H. GANDOMI, A.H. Alavi, et al., Stud Krill Herd Algorithm, Neurocomputing 128 (2014) 363–370. – volume: 24 start-page: 1448 year: 2016 end-page: 1455 ident: b0150 article-title: Threat assessment of support vector machine optimized bu Krill Herd algorithm.Optics and publication-title: Precis. Eng. – reference: Ramawtar drrakgmail.com, A.C. Shivran, B.L. Yadav. Effect of NP Fertilizers, Vermicompost and Sulphur on Growth, Yield and Quality of Clusterbean [ Cymopsis tetragonoloba (L.)] and their Residual Effect on Grain Yield of Succeeding Wheat [ Triticum aestivum (L)]. Legume Res. – Int. J. 36(1) (2013) 74–78. – reference: Prityanarshini, Sasmtta. Effect of Fertility Levels and Row Spacing on Growth, Yield and Quality of Some Promising Genotypes of Clusterbean [Cyamopsis tetragonoloba (L.) Taub]Gwalior:Rajmata vijayaraje scindia krishi vishwa vidyalaya college of agriculture, 2011. – volume: 274 start-page: 17 year: 2014 end-page: 34 ident: b0165 article-title: Chaotic Krill Herd algorithm publication-title: Inf. Sci. – volume: 75 start-page: 1 year: 2019 end-page: 15 ident: b0090 article-title: Data collection using unmanned aerial vehicles for Internet of Things platforms publication-title: Comput. Electr. Eng. – volume: 5 start-page: 101 year: 2014 end-page: 104 ident: b0060 article-title: Yield, quality and soil fertility of cluster bean (Cyamopsis tetragonoloba L.) as influenced by various row spacing and levels of phosphorus publication-title: ARJCI – reference: Mahdi Bidar, Edris Fattahi, Hamidreza Rashidy Kanan, Modified Krill Herd Optimization Algorithm using Chaotic Parameters, 2014 ,4th International Conference on Computer and Knowledge Engineeering (ICCKE). – volume: 12 start-page: 1674 issue: 11 year: 2011 ident: 10.1016/j.aej.2022.02.033_b0015 article-title: Effects of Different Nutrient Management Systems and Cultivation Methods on Crop Yield and Soil Fertility publication-title: Agric. Sci. Technol. – ident: 10.1016/j.aej.2022.02.033_b0095 – ident: 10.1016/j.aej.2022.02.033_b0045 – ident: 10.1016/j.aej.2022.02.033_b0160 doi: 10.1109/ICCKE.2014.6993468 – volume: 39 start-page: 2320 issue: 6 year: 2019 ident: 10.1016/j.aej.2022.02.033_b0110 article-title: Prediction of ammonia concentration in piggery based on ARIMA and BP neural network publication-title: China Environ. Sci. – volume: 274 start-page: 17 year: 2014 ident: 10.1016/j.aej.2022.02.033_b0165 article-title: Chaotic Krill Herd algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.123 – volume: 49 start-page: 275 issue: 9 year: 2018 ident: 10.1016/j.aej.2022.02.033_b0080 article-title: Comprehensive Evaluation Method of Groundwater Quality Based on BP Network Optimized by Krill Herd Algorithm publication-title: Trans. Chin. Soc. Agric. Machinery – volume: 26 start-page: 88 issue: 14 year: 2010 ident: 10.1016/j.aej.2022.02.033_b0120 article-title: Forecasting model on rice blast based on BP neural network and chaos theory publication-title: Trans. CSAE – volume: 34 start-page: 283 issue: 5 year: 2020 ident: 10.1016/j.aej.2022.02.033_b0115 article-title: Emerging Technologies for 5G-IoV Networks: Applications, Trends and Opportunities publication-title: IEEE Network doi: 10.1109/MNET.001.1900659 – ident: 10.1016/j.aej.2022.02.033_b0055 – ident: 10.1016/j.aej.2022.02.033_b0065 – volume: 33 start-page: 92 issue: 6 year: 2017 ident: 10.1016/j.aej.2022.02.033_b0170 article-title: Optimization of maize planting density and fertilizer application rate based on BP neural network publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 4 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.aej.2022.02.033_b0010 article-title: Responses of soybean yield and yield components to light enrichment and planting density publication-title: Int. J. Plant Prod. – ident: 10.1016/j.aej.2022.02.033_b0030 – volume: 9 start-page: 386 issue: 2 year: 2014 ident: 10.1016/j.aej.2022.02.033_b0040 article-title: Neog.Response of french bean (Phaseolus vulgaris L.) to organic manure, vermicompost and biofertilizers on growth parameters and yield publication-title: Asian J. Horticulture doi: 10.15740/HAS/TAJH/9.2/386-389 – volume: 49 start-page: 1144 issue: 6 year: 2015 ident: 10.1016/j.aej.2022.02.033_b0105 article-title: BP Neural Network Optimized by Genetic Algorithm Approch for Titanium and Iron Content Prediction in EDXRF publication-title: Atomic Energy Sci. Technol. – ident: 10.1016/j.aej.2022.02.033_b0035 doi: 10.1556/AAgr.56.2008.4.11 – volume: 5 start-page: 101 issue: 2 year: 2014 ident: 10.1016/j.aej.2022.02.033_b0060 article-title: Yield, quality and soil fertility of cluster bean (Cyamopsis tetragonoloba L.) as influenced by various row spacing and levels of phosphorus publication-title: ARJCI doi: 10.15740/HAS/ARJCI/5.2/101-104 – ident: 10.1016/j.aej.2022.02.033_b0155 – ident: 10.1016/j.aej.2022.02.033_b0025 – ident: 10.1016/j.aej.2022.02.033_b0050 – volume: 69 start-page: 7404 issue: 7 year: 2020 ident: 10.1016/j.aej.2022.02.033_b0100 article-title: Secrecy Performance Analysis of UAV Assisted Relay Transmission for Cognitive Network With Energy Harvesting publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2989297 – ident: 10.1016/j.aej.2022.02.033_b0130 doi: 10.1016/j.neucom.2013.08.031 – volume: 2 start-page: 667 issue: 12 year: 2007 ident: 10.1016/j.aej.2022.02.033_b0005 article-title: Effect of maize planting density on the performance of maize/soybean intercropping system in a guinea savannah agroecosystem publication-title: Afr. J. Agric. Res. – volume: 50 start-page: 226 issue: 6 year: 2019 ident: 10.1016/j.aej.2022.02.033_b0075 article-title: Inversion of Heavy Metal Content in Rice Canopy Based on Wavelet Transform and BP Neural Network publication-title: Trans. Chin. Soc. Agric. Machinery – volume: 72 start-page: 241 issue: 1 year: 2015 ident: 10.1016/j.aej.2022.02.033_b0020 article-title: Viorica Lagunovschi, Luminita Cârstea. Yield and quality potential of anisia bean (Phaseolus vulgaris) variety.Bulletin UASVM publication-title: Horticulture – ident: 10.1016/j.aej.2022.02.033_b0125 – volume: 138 start-page: 392 year: 2014 ident: 10.1016/j.aej.2022.02.033_b0135 article-title: A new improved krill herd algorithm for global numerical optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.023 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 10.1016/j.aej.2022.02.033_b0140 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simer Simul. doi: 10.1016/j.cnsns.2012.05.010 – volume: 24 start-page: 1448 issue: 6 year: 2016 ident: 10.1016/j.aej.2022.02.033_b0150 article-title: Threat assessment of support vector machine optimized bu Krill Herd algorithm.Optics and publication-title: Precis. Eng. doi: 10.3788/OPE.20162406.1448 – volume: 35 start-page: 196 issue: 2 year: 2019 ident: 10.1016/j.aej.2022.02.033_b0085 article-title: Prediction and verification on heating load of ground source heat pump heating system based on BP neural network for plant factory publication-title: Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) – volume: 75 start-page: 1 year: 2019 ident: 10.1016/j.aej.2022.02.033_b0090 article-title: Data collection using unmanned aerial vehicles for Internet of Things platforms publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.01.028 – volume: 6 start-page: 1395 issue: 6 year: 2019 ident: 10.1016/j.aej.2022.02.033_b0145 article-title: Decentralized On-Demand Energy Supply for Blockchain in Internet of Things: A Microgrids Approach publication-title: IEEE Trans. Comput. Social Syst. doi: 10.1109/TCSS.2019.2917335 – volume: 49 start-page: 196 issue: 3 year: 2018 ident: 10.1016/j.aej.2022.02.033_b0070 article-title: Multi-characteristic Comprehensive Recognition of Well-facilitied Farmland Based on TOPSIS and BP Neural Network publication-title: Trans. Chin. Soc. Agric. Machinery |
| SSID | ssj0000579496 |
| Score | 2.4264524 |
| Snippet | Taking kidney bean as the research object, row spacing, fertilizer application and planting density were selected as experimental factors, production for the... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 9769 |
| SubjectTerms | BP neural network Chaos theory Kidney bean Krill herd algorithm Optimize Yield |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QF-CAeIrxUg6cQBVdk3bpkSHGhMTjMCRulZ0HDLoOTUNo_x6n7abuAhekntrEjT47sa26nxk7k7GRHW07QaIwCaQyIkB0aaDBxdIZBVHZ6_D-Iek_y7uX-KXR6svXhFX0wBVwl2DaWoBMIkQpAREVuNTGJmp7qnRr_ekbqrSRTFWs3mRnZXMu2su-8ipR80-aZXEX2HfKDaOo5OsUYskpldz9S75p7av4hNk35HnD9_S22GYdNPKrarHbbMUWO2yjQSW4y24fae-P6p8q-djx7hP3XJU0ragqvXnZ9IbjjOs3GJMk_jEZ5jknpRkO-et4Mpy-jfbYoHczuO4HdZOEQJMvngYRuEiIOIUO0N7EDqFrJGVJsfOORmHbmdQqpEcpQqyRsFMuthoiR2CC2GerxbiwB4xLbZxFSUcAJKS_ELw0qZ2SEtuEdIuFc5AyXROI-z4WeTavFHvPCNfM45qFdAnRYueLKZ8Ve8Zvg7se-cVAT3xd3iBzyGpzyP4yhxaTc71ldQxRxQYkavjbuy8WOv57pYf_sdIjtu5FVqUxx2x1OvmyJxTgTPG0tOUff3P4Kw priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbockA90FJaAWorHzi1Csr6kccREBRVgnIAiZ6iGT_KQsiiJStEf33HTnbFVghaKafEntgzY89YnvmGsW2lrcqNy5OswCxRhZUJoi8TA14rbwsQsdbh8Ul2dK6-X-iLHiw65MIs3N_HOCxwV3SMEyJCa0r5ii1nmtzuAVs-Pznd_RmLp8Tgqpj2JtIyTUSWz28wn6KxYIMiVP-CKVqZNrfwcA91_cjUHL7pgrTuIkJhiDC53pm2uGN-_4Xf-E-zeMtWe4eT73YassaWXPOOvX4EQ7jOvv2gfeOmT8jkY8_3TnnAuaRuTRclzmPBHI4P3FzCmCjx68morjkJ3HKof40no_by5j07Ozw42z9K-gILiSE73iYCvJBSl5ADrWvMSTJW0QlL-2CkChx6W7oC6VOJoA2WThdeOwPCIyLID2zQjBu3wbgy1jtUtH1ARrJPIVBTxhdK4TB3bpOlM45XpgcfDzUw6moWZXZVEYuqwKIqpUfKTfZl3uW2Q954rvFeEOO8YQDNji9IClW_BiuwQyNBZQJRKaAZFOBpSlYMA-p-GKSaKUHV-x-dX0GkRs_9--tcYV4e6dZ_tf7IBu1k6j6R49Pi517l_wAceP2s priority: 102 providerName: Unpaywall |
| Title | Optimization of BP neural network model by chaotic krill herd algorithm |
| URI | https://dx.doi.org/10.1016/j.aej.2022.02.033 https://doi.org/10.1016/j.aej.2022.02.033 https://doaj.org/article/ad1c3a462bb44abbb8af9e5d213807ee |
| UnpaywallVersion | publishedVersion |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 1110-0168 databaseCode: KQ8 dateStart: 20101201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0000579496 providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1110-0168 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0000579496 providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals issn: 1110-0168 databaseCode: IXB dateStart: 20101201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000579496 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1110-0168 databaseCode: AKRWK dateStart: 20101201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000579496 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPdAeUKGtCm1XPnBqFe1uPEmc4y4q0CIoqkDdnqLxCwIhWa0WVfz7jp1kxV6oVCmX-O0Ze8aP8TeMHUBiINM2i1Kp0gikEZFSLo80ugSckRgHX4dn5-nJFXyfJbMNdti_hfFmlZ3sb2V6kNZdyLCj5nBelkOahx4_KCUNF-6HPOKnAOndN3ybTVfnLP6xJQQ3XT595DP0l5vBzAvtLe0S4zggdwqxpp4Civ-altp6qOf4-Aer6okWOnrNtrvlI5-0LdxhG7beZa-egAq-Ycc_SArcd88reeP49IJ71ErKVrc23zy4v-HqkesbbKgkfrcoq4oT-wzH6rpZlMub-7fs8ujr5eFJ1LlLiDRp5WUUo4uFSHLMkGapyojOBmi_lDivcqQaO5NbqSgqV5holdtEusRqjJ1SCsU7tlk3tX3POGjjrAISBpgSJ0foSwPtJIAaZ9busVFPpEJ3UOLeo0VV9DZjtwXRtfB0LUb0CbHHPq-yzFscjecSTz3lVwk9BHYIaBbXRTcGCjRjLRDSWCkApB5IdNQlE489hr5vJPR8K9ZGFBVVPlf3lxWP_93S_f-r5AN76f9as5iPbHO5eLCfaHGzVAP2YnL689fpIBwODMJYprCr84vJ778kvPq8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKORQOiKfa8vKBEyja3Xicx5GtKAu0hcMi7c0av9qUNFmttqr67xk7yap7KRJSTn57xp6x45lvGPsA0kJuXJ5khc4SKKxItPZlYtBL8LbANMY6PD3LZr_h-0IudtjR4AsTzCp72d_J9Cit-5RRT83RsqpGtA8DflBGGi6-D4kH7CFIOp0EL77FdPOjJXhbQozTFSokocbwuhntvNBd0jUxTSN0pxBb-inC-G-pqb3rZom3N1jXd9TQ8VP2pD8_8s_dEJ-xHdc8Z4_voAq-YF9_khi46v0reev59BcPsJVUremMvnmMf8P1LTcX2FJL_M-qqmtO_LMc6_N2Va0vrl6y-fGX-dEs6eMlJIbU8jpJ0adCyBJzpG2qcyK0BbowSR90TqEn3pau0JRVapRGl04WXjqDqddao3jFdpu2cfuMg7HeaSBpgBmxcoyhNTC-ANCT3LkDNh6IpEyPJR5CWtRqMBq7VERXFeiqxvQJccA-bqosOyCN-wpPA-U3BQMGdkxoV-eqXwQK7cQIhCzVGgBpBgV6mpJNJwFEPwwSBr6prSVFTVX39f1pw-N_j_Tw_zp5z_Zm89MTdfLt7Mdr9ijkdDYyb9juenXt3tJJZ63fxZX8F0RM-Zo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbockA90FJaAWorHzi1Csr6kccREBRVgnIAiZ6iGT_KQsiiJStEf33HTnbFVghaKafEntgzY89YnvmGsW2lrcqNy5OswCxRhZUJoi8TA14rbwsQsdbh8Ul2dK6-X-iLHiw65MIs3N_HOCxwV3SMEyJCa0r5ii1nmtzuAVs-Pznd_RmLp8Tgqpj2JtIyTUSWz28wn6KxYIMiVP-CKVqZNrfwcA91_cjUHL7pgrTuIkJhiDC53pm2uGN-_4Xf-E-zeMtWe4eT73YassaWXPOOvX4EQ7jOvv2gfeOmT8jkY8_3TnnAuaRuTRclzmPBHI4P3FzCmCjx68morjkJ3HKof40no_by5j07Ozw42z9K-gILiSE73iYCvJBSl5ADrWvMSTJW0QlL-2CkChx6W7oC6VOJoA2WThdeOwPCIyLID2zQjBu3wbgy1jtUtH1ARrJPIVBTxhdK4TB3bpOlM45XpgcfDzUw6moWZXZVEYuqwKIqpUfKTfZl3uW2Q954rvFeEOO8YQDNji9IClW_BiuwQyNBZQJRKaAZFOBpSlYMA-p-GKSaKUHV-x-dX0GkRs_9--tcYV4e6dZ_tf7IBu1k6j6R49Pi517l_wAceP2s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+BP+neural+network+model+by+chaotic+krill+herd+algorithm&rft.jtitle=Alexandria+engineering+journal&rft.au=Yu%2C+Lihong&rft.au=Xie%2C+Linyang&rft.au=Liu%2C+Chunmei&rft.au=Yu%2C+Song&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=1110-0168&rft.volume=61&rft.issue=12&rft.spage=9769&rft.epage=9777&rft_id=info:doi/10.1016%2Fj.aej.2022.02.033&rft.externalDocID=S1110016822001223 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |