Optimization of BP neural network model by chaotic krill herd algorithm

Taking kidney bean as the research object, row spacing, fertilizer application and planting density were selected as experimental factors, production for the response indicators, the chaos theory, krill herd algorithm is introduced into the BP neural network, the minimum error in training as a targe...

Full description

Saved in:
Bibliographic Details
Published inAlexandria engineering journal Vol. 61; no. 12; pp. 9769 - 9777
Main Authors Yu, Lihong, Xie, Linyang, Liu, Chunmei, Yu, Song, Guo, Yongxia, Yang, Kejun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Elsevier
Subjects
Online AccessGet full text
ISSN1110-0168
2090-2670
DOI10.1016/j.aej.2022.02.033

Cover

Abstract Taking kidney bean as the research object, row spacing, fertilizer application and planting density were selected as experimental factors, production for the response indicators, the chaos theory, krill herd algorithm is introduced into the BP neural network, the minimum error in training as a target, the model of weight and threshold as variables to optimize the BP neural network and chaotic krill herd algorithm BP neural network prediction model was set up (C-KHA-BP). The RMSE of C-KHA-BP model is 191.93 kg/hm2、MAE is 153.18 kg/hm2, and MAPE is 12.67%, the correlation coefficient R2 is 0.95.By solving the global optimal solution of C-KHA-BP model, the optimal row spacing of kidney bean was 72.63 cm, the fertilizer application rate was 103.91 kg/hm2, and the planting density was 30 × 104 plants /hm2. The next year, the validation test was conducted in the same test area, and the yield of kidney bean under the test scheme was 2843.2 kg /hm2, the relative error between the test result and the simulation optimization result (2949.5 kg /hm2) was only −3.65%, indicating that the fitting function of C-KHA-BP prediction model was precision and the optimization result was accurate. The results of this study can provide a new approach to the prediction and optimization of similar models in the field of grain production.
AbstractList Taking kidney bean as the research object, row spacing, fertilizer application and planting density were selected as experimental factors, production for the response indicators, the chaos theory, krill herd algorithm is introduced into the BP neural network, the minimum error in training as a target, the model of weight and threshold as variables to optimize the BP neural network and chaotic krill herd algorithm BP neural network prediction model was set up (C-KHA-BP). The RMSE of C-KHA-BP model is 191.93 kg/hm2、MAE is 153.18 kg/hm2, and MAPE is 12.67%, the correlation coefficient R2 is 0.95.By solving the global optimal solution of C-KHA-BP model, the optimal row spacing of kidney bean was 72.63 cm, the fertilizer application rate was 103.91 kg/hm2, and the planting density was 30 × 104 plants /hm2. The next year, the validation test was conducted in the same test area, and the yield of kidney bean under the test scheme was 2843.2 kg /hm2, the relative error between the test result and the simulation optimization result (2949.5 kg /hm2) was only −3.65%, indicating that the fitting function of C-KHA-BP prediction model was precision and the optimization result was accurate. The results of this study can provide a new approach to the prediction and optimization of similar models in the field of grain production.
Author Yang, Kejun
Guo, Yongxia
Yu, Song
Liu, Chunmei
Yu, Lihong
Xie, Linyang
Author_xml – sequence: 1
  givenname: Lihong
  surname: Yu
  fullname: Yu, Lihong
– sequence: 2
  givenname: Linyang
  surname: Xie
  fullname: Xie, Linyang
– sequence: 3
  givenname: Chunmei
  surname: Liu
  fullname: Liu, Chunmei
– sequence: 4
  givenname: Song
  surname: Yu
  fullname: Yu, Song
– sequence: 5
  givenname: Yongxia
  surname: Guo
  fullname: Guo, Yongxia
– sequence: 6
  givenname: Kejun
  surname: Yang
  fullname: Yang, Kejun
  email: byndykj@yeah.net
BookMark eNqNkMtKAzEUhrNQsF4ewF1eoDWXmc4MrlS8FAq6cB9OMic203RSMlGpT2_aigsXxXDgQA7fd5L_lBz1oUdCLjmbcManV90EsJsIJsSE5ZLyiIw452ych_UJuRiGjuVTVk3RTEfk8Xmd3Mp9QXKhp8HS2xfa43sEn1v6DHFJV6FFT_WGmgWE5AxdRuc9XWBsKfi3EF1arM7JsQU_4MVPPyOvD_evd0_j-fPj7O5mPjYFm6axACukLBuoQAqhqxpEW_CiKK1oGlZrbtsGa51HjYbS6AbL2pZoQFitNcgzMttr2wCdWke3grhRAZzaXYT4piDmN3pU0HIjoZgKrYsCMl2DzbpWcFmzCjG7xN713q9h8wne_wo5U9swVadymGobpmK5pMxQtYdMDMMQ0Srj0i68FMH5gyT_Q_5n2_WewRzph8OoBuOwN9i6iCblT7sD9DeJI6Or
CitedBy_id crossref_primary_10_3389_fphys_2025_1511716
crossref_primary_10_3233_JCM_230001
crossref_primary_10_5194_ms_14_47_2023
crossref_primary_10_3390_app14051996
crossref_primary_10_1007_s11368_024_03886_8
crossref_primary_10_1002_for_3134
crossref_primary_10_1155_2022_6098797
crossref_primary_10_1016_j_applthermaleng_2024_124509
crossref_primary_10_3390_buildings13061395
crossref_primary_10_3390_app13095575
crossref_primary_10_3390_ma18010139
crossref_primary_10_3390_s23115317
crossref_primary_10_1155_2022_3391881
crossref_primary_10_1016_j_jmrt_2023_07_203
crossref_primary_10_1016_j_coco_2024_102073
crossref_primary_10_1016_j_scienta_2024_113171
crossref_primary_10_1109_TSC_2024_3384094
crossref_primary_10_2478_amns_2023_1_00026
crossref_primary_10_1080_15440478_2024_2389161
crossref_primary_10_1155_2022_3986247
crossref_primary_10_3233_JIFS_233251
crossref_primary_10_1016_j_lwt_2024_116252
Cites_doi 10.1109/ICCKE.2014.6993468
10.1016/j.ins.2014.02.123
10.1109/MNET.001.1900659
10.15740/HAS/TAJH/9.2/386-389
10.1556/AAgr.56.2008.4.11
10.15740/HAS/ARJCI/5.2/101-104
10.1109/TVT.2020.2989297
10.1016/j.neucom.2013.08.031
10.1016/j.neucom.2014.01.023
10.1016/j.cnsns.2012.05.010
10.3788/OPE.20162406.1448
10.1016/j.compeleceng.2019.01.028
10.1109/TCSS.2019.2917335
ContentType Journal Article
Copyright 2022 Faculty of Engineering, Alexandria University
Copyright_xml – notice: 2022 Faculty of Engineering, Alexandria University
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.aej.2022.02.033
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 9777
ExternalDocumentID oai_doaj_org_article_ad1c3a462bb44abbb8af9e5d213807ee
10.1016/j.aej.2022.02.033
10_1016_j_aej_2022_02_033
S1110016822001223
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c406t-2af23359a7a322b78a2d41445f29908b1fd9e8b22b9ba5cb9e58f5eca2fbbba3
IEDL.DBID IXB
ISSN 1110-0168
2090-2670
IngestDate Fri Oct 03 12:26:28 EDT 2025
Tue Aug 19 20:23:23 EDT 2025
Thu Apr 24 23:07:09 EDT 2025
Wed Oct 29 21:08:15 EDT 2025
Sun May 21 07:31:48 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Kidney bean
BP neural network
Yield
Chaos theory
Optimize
Krill herd algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-2af23359a7a322b78a2d41445f29908b1fd9e8b22b9ba5cb9e58f5eca2fbbba3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1110016822001223
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_ad1c3a462bb44abbb8af9e5d213807ee
unpaywall_primary_10_1016_j_aej_2022_02_033
crossref_citationtrail_10_1016_j_aej_2022_02_033
crossref_primary_10_1016_j_aej_2022_02_033
elsevier_sciencedirect_doi_10_1016_j_aej_2022_02_033
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Goudarzi, Kama, Anisi, Zeadally, Mumtaz (b0090) 2019; 75
Ramawtar drrakgmail.com, A.C. Shivran, B.L. Yadav. Effect of NP Fertilizers, Vermicompost and Sulphur on Growth, Yield and Quality of Clusterbean [ Cymopsis tetragonoloba (L.)] and their Residual Effect on Grain Yield of Succeeding Wheat [ Triticum aestivum (L)]. Legume Res. – Int. J. 36(1) (2013) 74–78.
Huixian, Xiangzhen, Yucheng (b0085) 2019; 35
Keshri, Sulekha. Effect of Fertility Levels and Varieties on Growth Forage Yield and quality of Cluster Bean (Cyamopsis Tetragonolobus L.)[D]. Gwalior:Rajmata vijayaraje scindia krishi vishwa vidyalaya college of agricuture,2017.
Wang, Guo, Gandomi (b0165) 2014; 274
Ji, Li, Cao, Li, Mumtaz, Wang (b0100) 2020; 69
K. Shamsi, Effect of planting date and density on the yield and yield components of milk thistle(Silubum marianum,L.). J. Appl. Biosci. 2009, 16:862-863.
Xuan, Li-Hong, Jiang (b0150) 2016; 24
D. Jyothirmai, M. Suresh Kumar, Katta Subba, D.M. Rao, Evaluation Technology of Software Reliability by using the BP Neural Network. Int. J. Eng. Techniques 5(1) (2019) 139–143.
Qiu Jing, Ruiwu (b0120) 2010; 26
Gandomi, Alavi (b0140) 2012; 17
Prityanarshini, Sasmtta. Effect of Fertility Levels and Row Spacing on Growth, Yield and Quality of Some Promising Genotypes of Clusterbean [Cyamopsis tetragonoloba (L.) Taub]Gwalior:Rajmata vijayaraje scindia krishi vishwa vidyalaya college of agriculture, 2011.
Jin Shanshan, Yu Lihe, Guo Jianhua, Yu Song, Guo Wei, Xue Yingwen, Liang Haiyun, Duan Junjun, Effect of Different Cultivation Methods and Density on Yield of Kidney Bean, J. Heilongjiang Bayi Agric. Univ. 30(3) (2018) 15–19. (in Chinese with English abstract)
A. Malliswara Reddy, B. Sahadeva Reddy, Effect of planting geometry and fertility level on griwth and seed yield of cluster bean [CYAMOPSIS TETRAGONOLOBA (L)] UNDER SCARCE RAINFALL ZONE OF ANDHRA PRADESH, Legume Res. 34(2) (2011) 143–145.
Dong, Shuai, Qiang (b0080) 2018; 49
Sarma, Phukon, Borgohain, Goswami, Neog (b0040) 2014; 9
Vinatoru, Zamfir, Bratu (b0020) 2015; 72
Li, Zhou, Wu, Li, Mumtaz, Lin, Gacanin, Alotaibi (b0145) 2019; 6
Mahdi Bidar, Edris Fattahi, Hamidreza Rashidy Kanan, Modified Krill Herd Optimization Algorithm using Chaotic Parameters, 2014 ,4th International Conference on Computer and Knowledge Engineeering (ICCKE).
Yahui, Wenju, Chao (b0070) 2018; 49
Yadav, Patel, Yadav (b0060) 2014; 5
Xiao Guowei, Chaos Krill Herd Algorithm Based on Dynamic Adjustment of Inertia Weight, J. Lanzhou Univ. Arts Sci. (Natural Sciences) 31(6) (2017) 59–63. (in Chinese with English abstract)
Guo, Wang, H. Gandomi, H. Alavi, Duan (b0135) 2014; 138
Muoneke, Ogwuche, Kalu (b0005) 2007; 2
Duan, Gu, Wen, Zhang, Ji, Mumtaz (b0115) 2020; 34
Chun-hong, Liang, He (b0110) 2019; 39
I. Mitova, I. Dimitrov, Emilia. Atanasova, Ira Stancheva. Effects of fore-crop fertilization on the yield and quality of kidney beans under vegetable crop rotation conditions. Acta Agronomica Hungarica 56(4) (2008) 449–454.
Bing, Xiaobing, Cheng (b0010) 2010; 4
Xuqing, Long, Zhuang (b0075) 2019; 50
G.G. Wang, A.H. GANDOMI, A.H. Alavi, et al., Stud Krill Herd Algorithm, Neurocomputing 128 (2014) 363–370.
Xiaoling, Liangliang, Baowen (b0015) 2011; 12
Chen Xiao, Wang Hongying, Kong Dandan, et al. Quality prediction model of pellet feed basing on BP network using PSO parameters optimization method, Trans. Chinese Soc. Agric. Eng. (Transactions of the CSAE) 32(14) (2016) 306–314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.14.041
Jun, Ming-zhe, Xian-guo (b0105) 2015; 49
Fulin, Dong Zhigui, Zhihui (b0170) 2017; 33
Yadav (10.1016/j.aej.2022.02.033_b0060) 2014; 5
Goudarzi (10.1016/j.aej.2022.02.033_b0090) 2019; 75
Bing (10.1016/j.aej.2022.02.033_b0010) 2010; 4
Vinatoru (10.1016/j.aej.2022.02.033_b0020) 2015; 72
10.1016/j.aej.2022.02.033_b0130
10.1016/j.aej.2022.02.033_b0030
10.1016/j.aej.2022.02.033_b0055
Xiaoling (10.1016/j.aej.2022.02.033_b0015) 2011; 12
10.1016/j.aej.2022.02.033_b0095
10.1016/j.aej.2022.02.033_b0050
Huixian (10.1016/j.aej.2022.02.033_b0085) 2019; 35
10.1016/j.aej.2022.02.033_b0035
Duan (10.1016/j.aej.2022.02.033_b0115) 2020; 34
Chun-hong (10.1016/j.aej.2022.02.033_b0110) 2019; 39
10.1016/j.aej.2022.02.033_b0155
Sarma (10.1016/j.aej.2022.02.033_b0040) 2014; 9
Gandomi (10.1016/j.aej.2022.02.033_b0140) 2012; 17
Li (10.1016/j.aej.2022.02.033_b0145) 2019; 6
Qiu Jing (10.1016/j.aej.2022.02.033_b0120) 2010; 26
Xuan (10.1016/j.aej.2022.02.033_b0150) 2016; 24
Muoneke (10.1016/j.aej.2022.02.033_b0005) 2007; 2
Ji (10.1016/j.aej.2022.02.033_b0100) 2020; 69
Wang (10.1016/j.aej.2022.02.033_b0165) 2014; 274
Xuqing (10.1016/j.aej.2022.02.033_b0075) 2019; 50
10.1016/j.aej.2022.02.033_b0065
10.1016/j.aej.2022.02.033_b0160
Fulin (10.1016/j.aej.2022.02.033_b0170) 2017; 33
Yahui (10.1016/j.aej.2022.02.033_b0070) 2018; 49
Guo (10.1016/j.aej.2022.02.033_b0135) 2014; 138
10.1016/j.aej.2022.02.033_b0045
Jun (10.1016/j.aej.2022.02.033_b0105) 2015; 49
10.1016/j.aej.2022.02.033_b0125
10.1016/j.aej.2022.02.033_b0025
Dong (10.1016/j.aej.2022.02.033_b0080) 2018; 49
References_xml – reference: A. Malliswara Reddy, B. Sahadeva Reddy, Effect of planting geometry and fertility level on griwth and seed yield of cluster bean [CYAMOPSIS TETRAGONOLOBA (L)] UNDER SCARCE RAINFALL ZONE OF ANDHRA PRADESH, Legume Res. 34(2) (2011) 143–145.
– volume: 6
  start-page: 1395
  year: 2019
  end-page: 1406
  ident: b0145
  article-title: Decentralized On-Demand Energy Supply for Blockchain in Internet of Things: A Microgrids Approach
  publication-title: IEEE Trans. Comput. Social Syst.
– volume: 69
  start-page: 7404
  year: 2020
  end-page: 7415
  ident: b0100
  article-title: Secrecy Performance Analysis of UAV Assisted Relay Transmission for Cognitive Network With Energy Harvesting
  publication-title: IEEE Trans. Veh. Technol.
– volume: 2
  start-page: 667
  year: 2007
  end-page: 677
  ident: b0005
  article-title: Effect of maize planting density on the performance of maize/soybean intercropping system in a guinea savannah agroecosystem
  publication-title: Afr. J. Agric. Res.
– volume: 49
  start-page: 1144
  year: 2015
  end-page: 1148
  ident: b0105
  article-title: BP Neural Network Optimized by Genetic Algorithm Approch for Titanium and Iron Content Prediction in EDXRF
  publication-title: Atomic Energy Sci. Technol.
– volume: 26
  start-page: 88
  year: 2010
  end-page: 93
  ident: b0120
  article-title: Forecasting model on rice blast based on BP neural network and chaos theory
  publication-title: Trans. CSAE
– volume: 138
  start-page: 392
  year: 2014
  end-page: 402
  ident: b0135
  article-title: A new improved krill herd algorithm for global numerical optimization
  publication-title: Neurocomputing
– reference: K. Shamsi, Effect of planting date and density on the yield and yield components of milk thistle(Silubum marianum,L.). J. Appl. Biosci. 2009, 16:862-863.
– volume: 12
  start-page: 1674
  year: 2011
  end-page: 1679
  ident: b0015
  article-title: Effects of Different Nutrient Management Systems and Cultivation Methods on Crop Yield and Soil Fertility
  publication-title: Agric. Sci. Technol.
– volume: 33
  start-page: 92
  year: 2017
  end-page: 99
  ident: b0170
  article-title: Optimization of maize planting density and fertilizer application rate based on BP neural network
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 9
  start-page: 386
  year: 2014
  end-page: 389
  ident: b0040
  article-title: Neog.Response of french bean (Phaseolus vulgaris L.) to organic manure, vermicompost and biofertilizers on growth parameters and yield
  publication-title: Asian J. Horticulture
– reference: Chen Xiao, Wang Hongying, Kong Dandan, et al. Quality prediction model of pellet feed basing on BP network using PSO parameters optimization method, Trans. Chinese Soc. Agric. Eng. (Transactions of the CSAE) 32(14) (2016) 306–314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.14.041
– reference: D. Jyothirmai, M. Suresh Kumar, Katta Subba, D.M. Rao, Evaluation Technology of Software Reliability by using the BP Neural Network. Int. J. Eng. Techniques 5(1) (2019) 139–143.
– reference: Jin Shanshan, Yu Lihe, Guo Jianhua, Yu Song, Guo Wei, Xue Yingwen, Liang Haiyun, Duan Junjun, Effect of Different Cultivation Methods and Density on Yield of Kidney Bean, J. Heilongjiang Bayi Agric. Univ. 30(3) (2018) 15–19. (in Chinese with English abstract)
– reference: I. Mitova, I. Dimitrov, Emilia. Atanasova, Ira Stancheva. Effects of fore-crop fertilization on the yield and quality of kidney beans under vegetable crop rotation conditions. Acta Agronomica Hungarica 56(4) (2008) 449–454.
– volume: 4
  start-page: 1
  year: 2010
  end-page: 9
  ident: b0010
  article-title: Responses of soybean yield and yield components to light enrichment and planting density
  publication-title: Int. J. Plant Prod.
– volume: 72
  start-page: 241
  year: 2015
  end-page: 243
  ident: b0020
  article-title: Viorica Lagunovschi, Luminita Cârstea. Yield and quality potential of anisia bean (Phaseolus vulgaris) variety.Bulletin UASVM
  publication-title: Horticulture
– volume: 35
  start-page: 196
  year: 2019
  end-page: 202
  ident: b0085
  article-title: Prediction and verification on heating load of ground source heat pump heating system based on BP neural network for plant factory
  publication-title: Trans. Chin. Soc. Agric. Eng. (Trans. CSAE)
– volume: 34
  start-page: 283
  year: 2020
  end-page: 289
  ident: b0115
  article-title: Emerging Technologies for 5G-IoV Networks: Applications, Trends and Opportunities
  publication-title: IEEE Network
– volume: 49
  start-page: 275
  year: 2018
  end-page: 284
  ident: b0080
  article-title: Comprehensive Evaluation Method of Groundwater Quality Based on BP Network Optimized by Krill Herd Algorithm
  publication-title: Trans. Chin. Soc. Agric. Machinery
– volume: 49
  start-page: 196
  year: 2018
  end-page: 204
  ident: b0070
  article-title: Multi-characteristic Comprehensive Recognition of Well-facilitied Farmland Based on TOPSIS and BP Neural Network
  publication-title: Trans. Chin. Soc. Agric. Machinery
– volume: 50
  start-page: 226
  year: 2019
  end-page: 232
  ident: b0075
  article-title: Inversion of Heavy Metal Content in Rice Canopy Based on Wavelet Transform and BP Neural Network
  publication-title: Trans. Chin. Soc. Agric. Machinery
– reference: Xiao Guowei, Chaos Krill Herd Algorithm Based on Dynamic Adjustment of Inertia Weight, J. Lanzhou Univ. Arts Sci. (Natural Sciences) 31(6) (2017) 59–63. (in Chinese with English abstract)
– volume: 39
  start-page: 2320
  year: 2019
  end-page: 2327
  ident: b0110
  article-title: Prediction of ammonia concentration in piggery based on ARIMA and BP neural network
  publication-title: China Environ. Sci.
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4845
  ident: b0140
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simer Simul.
– reference: Keshri, Sulekha. Effect of Fertility Levels and Varieties on Growth Forage Yield and quality of Cluster Bean (Cyamopsis Tetragonolobus L.)[D]. Gwalior:Rajmata vijayaraje scindia krishi vishwa vidyalaya college of agricuture,2017.
– reference: G.G. Wang, A.H. GANDOMI, A.H. Alavi, et al., Stud Krill Herd Algorithm, Neurocomputing 128 (2014) 363–370.
– volume: 24
  start-page: 1448
  year: 2016
  end-page: 1455
  ident: b0150
  article-title: Threat assessment of support vector machine optimized bu Krill Herd algorithm.Optics and
  publication-title: Precis. Eng.
– reference: Ramawtar drrakgmail.com, A.C. Shivran, B.L. Yadav. Effect of NP Fertilizers, Vermicompost and Sulphur on Growth, Yield and Quality of Clusterbean [ Cymopsis tetragonoloba (L.)] and their Residual Effect on Grain Yield of Succeeding Wheat [ Triticum aestivum (L)]. Legume Res. – Int. J. 36(1) (2013) 74–78.
– reference: Prityanarshini, Sasmtta. Effect of Fertility Levels and Row Spacing on Growth, Yield and Quality of Some Promising Genotypes of Clusterbean [Cyamopsis tetragonoloba (L.) Taub]Gwalior:Rajmata vijayaraje scindia krishi vishwa vidyalaya college of agriculture, 2011.
– volume: 274
  start-page: 17
  year: 2014
  end-page: 34
  ident: b0165
  article-title: Chaotic Krill Herd algorithm
  publication-title: Inf. Sci.
– volume: 75
  start-page: 1
  year: 2019
  end-page: 15
  ident: b0090
  article-title: Data collection using unmanned aerial vehicles for Internet of Things platforms
  publication-title: Comput. Electr. Eng.
– volume: 5
  start-page: 101
  year: 2014
  end-page: 104
  ident: b0060
  article-title: Yield, quality and soil fertility of cluster bean (Cyamopsis tetragonoloba L.) as influenced by various row spacing and levels of phosphorus
  publication-title: ARJCI
– reference: Mahdi Bidar, Edris Fattahi, Hamidreza Rashidy Kanan, Modified Krill Herd Optimization Algorithm using Chaotic Parameters, 2014 ,4th International Conference on Computer and Knowledge Engineeering (ICCKE).
– volume: 12
  start-page: 1674
  issue: 11
  year: 2011
  ident: 10.1016/j.aej.2022.02.033_b0015
  article-title: Effects of Different Nutrient Management Systems and Cultivation Methods on Crop Yield and Soil Fertility
  publication-title: Agric. Sci. Technol.
– ident: 10.1016/j.aej.2022.02.033_b0095
– ident: 10.1016/j.aej.2022.02.033_b0045
– ident: 10.1016/j.aej.2022.02.033_b0160
  doi: 10.1109/ICCKE.2014.6993468
– volume: 39
  start-page: 2320
  issue: 6
  year: 2019
  ident: 10.1016/j.aej.2022.02.033_b0110
  article-title: Prediction of ammonia concentration in piggery based on ARIMA and BP neural network
  publication-title: China Environ. Sci.
– volume: 274
  start-page: 17
  year: 2014
  ident: 10.1016/j.aej.2022.02.033_b0165
  article-title: Chaotic Krill Herd algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.123
– volume: 49
  start-page: 275
  issue: 9
  year: 2018
  ident: 10.1016/j.aej.2022.02.033_b0080
  article-title: Comprehensive Evaluation Method of Groundwater Quality Based on BP Network Optimized by Krill Herd Algorithm
  publication-title: Trans. Chin. Soc. Agric. Machinery
– volume: 26
  start-page: 88
  issue: 14
  year: 2010
  ident: 10.1016/j.aej.2022.02.033_b0120
  article-title: Forecasting model on rice blast based on BP neural network and chaos theory
  publication-title: Trans. CSAE
– volume: 34
  start-page: 283
  issue: 5
  year: 2020
  ident: 10.1016/j.aej.2022.02.033_b0115
  article-title: Emerging Technologies for 5G-IoV Networks: Applications, Trends and Opportunities
  publication-title: IEEE Network
  doi: 10.1109/MNET.001.1900659
– ident: 10.1016/j.aej.2022.02.033_b0055
– ident: 10.1016/j.aej.2022.02.033_b0065
– volume: 33
  start-page: 92
  issue: 6
  year: 2017
  ident: 10.1016/j.aej.2022.02.033_b0170
  article-title: Optimization of maize planting density and fertilizer application rate based on BP neural network
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 4
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.aej.2022.02.033_b0010
  article-title: Responses of soybean yield and yield components to light enrichment and planting density
  publication-title: Int. J. Plant Prod.
– ident: 10.1016/j.aej.2022.02.033_b0030
– volume: 9
  start-page: 386
  issue: 2
  year: 2014
  ident: 10.1016/j.aej.2022.02.033_b0040
  article-title: Neog.Response of french bean (Phaseolus vulgaris L.) to organic manure, vermicompost and biofertilizers on growth parameters and yield
  publication-title: Asian J. Horticulture
  doi: 10.15740/HAS/TAJH/9.2/386-389
– volume: 49
  start-page: 1144
  issue: 6
  year: 2015
  ident: 10.1016/j.aej.2022.02.033_b0105
  article-title: BP Neural Network Optimized by Genetic Algorithm Approch for Titanium and Iron Content Prediction in EDXRF
  publication-title: Atomic Energy Sci. Technol.
– ident: 10.1016/j.aej.2022.02.033_b0035
  doi: 10.1556/AAgr.56.2008.4.11
– volume: 5
  start-page: 101
  issue: 2
  year: 2014
  ident: 10.1016/j.aej.2022.02.033_b0060
  article-title: Yield, quality and soil fertility of cluster bean (Cyamopsis tetragonoloba L.) as influenced by various row spacing and levels of phosphorus
  publication-title: ARJCI
  doi: 10.15740/HAS/ARJCI/5.2/101-104
– ident: 10.1016/j.aej.2022.02.033_b0155
– ident: 10.1016/j.aej.2022.02.033_b0025
– ident: 10.1016/j.aej.2022.02.033_b0050
– volume: 69
  start-page: 7404
  issue: 7
  year: 2020
  ident: 10.1016/j.aej.2022.02.033_b0100
  article-title: Secrecy Performance Analysis of UAV Assisted Relay Transmission for Cognitive Network With Energy Harvesting
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2989297
– ident: 10.1016/j.aej.2022.02.033_b0130
  doi: 10.1016/j.neucom.2013.08.031
– volume: 2
  start-page: 667
  issue: 12
  year: 2007
  ident: 10.1016/j.aej.2022.02.033_b0005
  article-title: Effect of maize planting density on the performance of maize/soybean intercropping system in a guinea savannah agroecosystem
  publication-title: Afr. J. Agric. Res.
– volume: 50
  start-page: 226
  issue: 6
  year: 2019
  ident: 10.1016/j.aej.2022.02.033_b0075
  article-title: Inversion of Heavy Metal Content in Rice Canopy Based on Wavelet Transform and BP Neural Network
  publication-title: Trans. Chin. Soc. Agric. Machinery
– volume: 72
  start-page: 241
  issue: 1
  year: 2015
  ident: 10.1016/j.aej.2022.02.033_b0020
  article-title: Viorica Lagunovschi, Luminita Cârstea. Yield and quality potential of anisia bean (Phaseolus vulgaris) variety.Bulletin UASVM
  publication-title: Horticulture
– ident: 10.1016/j.aej.2022.02.033_b0125
– volume: 138
  start-page: 392
  year: 2014
  ident: 10.1016/j.aej.2022.02.033_b0135
  article-title: A new improved krill herd algorithm for global numerical optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.023
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 10.1016/j.aej.2022.02.033_b0140
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simer Simul.
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 24
  start-page: 1448
  issue: 6
  year: 2016
  ident: 10.1016/j.aej.2022.02.033_b0150
  article-title: Threat assessment of support vector machine optimized bu Krill Herd algorithm.Optics and
  publication-title: Precis. Eng.
  doi: 10.3788/OPE.20162406.1448
– volume: 35
  start-page: 196
  issue: 2
  year: 2019
  ident: 10.1016/j.aej.2022.02.033_b0085
  article-title: Prediction and verification on heating load of ground source heat pump heating system based on BP neural network for plant factory
  publication-title: Trans. Chin. Soc. Agric. Eng. (Trans. CSAE)
– volume: 75
  start-page: 1
  year: 2019
  ident: 10.1016/j.aej.2022.02.033_b0090
  article-title: Data collection using unmanned aerial vehicles for Internet of Things platforms
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.01.028
– volume: 6
  start-page: 1395
  issue: 6
  year: 2019
  ident: 10.1016/j.aej.2022.02.033_b0145
  article-title: Decentralized On-Demand Energy Supply for Blockchain in Internet of Things: A Microgrids Approach
  publication-title: IEEE Trans. Comput. Social Syst.
  doi: 10.1109/TCSS.2019.2917335
– volume: 49
  start-page: 196
  issue: 3
  year: 2018
  ident: 10.1016/j.aej.2022.02.033_b0070
  article-title: Multi-characteristic Comprehensive Recognition of Well-facilitied Farmland Based on TOPSIS and BP Neural Network
  publication-title: Trans. Chin. Soc. Agric. Machinery
SSID ssj0000579496
Score 2.4264524
Snippet Taking kidney bean as the research object, row spacing, fertilizer application and planting density were selected as experimental factors, production for the...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 9769
SubjectTerms BP neural network
Chaos theory
Kidney bean
Krill herd algorithm
Optimize
Yield
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QF-CAeIrxUg6cQBVdk3bpkSHGhMTjMCRulZ0HDLoOTUNo_x6n7abuAhekntrEjT47sa26nxk7k7GRHW07QaIwCaQyIkB0aaDBxdIZBVHZ6_D-Iek_y7uX-KXR6svXhFX0wBVwl2DaWoBMIkQpAREVuNTGJmp7qnRr_ekbqrSRTFWs3mRnZXMu2su-8ipR80-aZXEX2HfKDaOo5OsUYskpldz9S75p7av4hNk35HnD9_S22GYdNPKrarHbbMUWO2yjQSW4y24fae-P6p8q-djx7hP3XJU0ragqvXnZ9IbjjOs3GJMk_jEZ5jknpRkO-et4Mpy-jfbYoHczuO4HdZOEQJMvngYRuEiIOIUO0N7EDqFrJGVJsfOORmHbmdQqpEcpQqyRsFMuthoiR2CC2GerxbiwB4xLbZxFSUcAJKS_ELw0qZ2SEtuEdIuFc5AyXROI-z4WeTavFHvPCNfM45qFdAnRYueLKZ8Ve8Zvg7se-cVAT3xd3iBzyGpzyP4yhxaTc71ldQxRxQYkavjbuy8WOv57pYf_sdIjtu5FVqUxx2x1OvmyJxTgTPG0tOUff3P4Kw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbockA90FJaAWorHzi1Csr6kccREBRVgnIAiZ6iGT_KQsiiJStEf33HTnbFVghaKafEntgzY89YnvmGsW2lrcqNy5OswCxRhZUJoi8TA14rbwsQsdbh8Ul2dK6-X-iLHiw65MIs3N_HOCxwV3SMEyJCa0r5ii1nmtzuAVs-Pznd_RmLp8Tgqpj2JtIyTUSWz28wn6KxYIMiVP-CKVqZNrfwcA91_cjUHL7pgrTuIkJhiDC53pm2uGN-_4Xf-E-zeMtWe4eT73YassaWXPOOvX4EQ7jOvv2gfeOmT8jkY8_3TnnAuaRuTRclzmPBHI4P3FzCmCjx68morjkJ3HKof40no_by5j07Ozw42z9K-gILiSE73iYCvJBSl5ADrWvMSTJW0QlL-2CkChx6W7oC6VOJoA2WThdeOwPCIyLID2zQjBu3wbgy1jtUtH1ARrJPIVBTxhdK4TB3bpOlM45XpgcfDzUw6moWZXZVEYuqwKIqpUfKTfZl3uW2Q954rvFeEOO8YQDNji9IClW_BiuwQyNBZQJRKaAZFOBpSlYMA-p-GKSaKUHV-x-dX0GkRs_9--tcYV4e6dZ_tf7IBu1k6j6R49Pi517l_wAceP2s
  priority: 102
  providerName: Unpaywall
Title Optimization of BP neural network model by chaotic krill herd algorithm
URI https://dx.doi.org/10.1016/j.aej.2022.02.033
https://doi.org/10.1016/j.aej.2022.02.033
https://doaj.org/article/ad1c3a462bb44abbb8af9e5d213807ee
UnpaywallVersion publishedVersion
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1110-0168
  databaseCode: KQ8
  dateStart: 20101201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1110-0168
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  issn: 1110-0168
  databaseCode: IXB
  dateStart: 20101201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1110-0168
  databaseCode: AKRWK
  dateStart: 20101201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPdAeUKGtCm1XPnBqFe1uPEmc4y4q0CIoqkDdnqLxCwIhWa0WVfz7jp1kxV6oVCmX-O0Ze8aP8TeMHUBiINM2i1Kp0gikEZFSLo80ugSckRgHX4dn5-nJFXyfJbMNdti_hfFmlZ3sb2V6kNZdyLCj5nBelkOahx4_KCUNF-6HPOKnAOndN3ybTVfnLP6xJQQ3XT595DP0l5vBzAvtLe0S4zggdwqxpp4Civ-altp6qOf4-Aer6okWOnrNtrvlI5-0LdxhG7beZa-egAq-Ycc_SArcd88reeP49IJ71ErKVrc23zy4v-HqkesbbKgkfrcoq4oT-wzH6rpZlMub-7fs8ujr5eFJ1LlLiDRp5WUUo4uFSHLMkGapyojOBmi_lDivcqQaO5NbqSgqV5holdtEusRqjJ1SCsU7tlk3tX3POGjjrAISBpgSJ0foSwPtJIAaZ9busVFPpEJ3UOLeo0VV9DZjtwXRtfB0LUb0CbHHPq-yzFscjecSTz3lVwk9BHYIaBbXRTcGCjRjLRDSWCkApB5IdNQlE489hr5vJPR8K9ZGFBVVPlf3lxWP_93S_f-r5AN76f9as5iPbHO5eLCfaHGzVAP2YnL689fpIBwODMJYprCr84vJ778kvPq8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKORQOiKfa8vKBEyja3Xicx5GtKAu0hcMi7c0av9qUNFmttqr67xk7yap7KRJSTn57xp6x45lvGPsA0kJuXJ5khc4SKKxItPZlYtBL8LbANMY6PD3LZr_h-0IudtjR4AsTzCp72d_J9Cit-5RRT83RsqpGtA8DflBGGi6-D4kH7CFIOp0EL77FdPOjJXhbQozTFSokocbwuhntvNBd0jUxTSN0pxBb-inC-G-pqb3rZom3N1jXd9TQ8VP2pD8_8s_dEJ-xHdc8Z4_voAq-YF9_khi46v0reev59BcPsJVUremMvnmMf8P1LTcX2FJL_M-qqmtO_LMc6_N2Va0vrl6y-fGX-dEs6eMlJIbU8jpJ0adCyBJzpG2qcyK0BbowSR90TqEn3pau0JRVapRGl04WXjqDqddao3jFdpu2cfuMg7HeaSBpgBmxcoyhNTC-ANCT3LkDNh6IpEyPJR5CWtRqMBq7VERXFeiqxvQJccA-bqosOyCN-wpPA-U3BQMGdkxoV-eqXwQK7cQIhCzVGgBpBgV6mpJNJwFEPwwSBr6prSVFTVX39f1pw-N_j_Tw_zp5z_Zm89MTdfLt7Mdr9ijkdDYyb9juenXt3tJJZ63fxZX8F0RM-Zo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbockA90FJaAWorHzi1Csr6kccREBRVgnIAiZ6iGT_KQsiiJStEf33HTnbFVghaKafEntgzY89YnvmGsW2lrcqNy5OswCxRhZUJoi8TA14rbwsQsdbh8Ul2dK6-X-iLHiw65MIs3N_HOCxwV3SMEyJCa0r5ii1nmtzuAVs-Pznd_RmLp8Tgqpj2JtIyTUSWz28wn6KxYIMiVP-CKVqZNrfwcA91_cjUHL7pgrTuIkJhiDC53pm2uGN-_4Xf-E-zeMtWe4eT73YassaWXPOOvX4EQ7jOvv2gfeOmT8jkY8_3TnnAuaRuTRclzmPBHI4P3FzCmCjx68morjkJ3HKof40no_by5j07Ozw42z9K-gILiSE73iYCvJBSl5ADrWvMSTJW0QlL-2CkChx6W7oC6VOJoA2WThdeOwPCIyLID2zQjBu3wbgy1jtUtH1ARrJPIVBTxhdK4TB3bpOlM45XpgcfDzUw6moWZXZVEYuqwKIqpUfKTfZl3uW2Q954rvFeEOO8YQDNji9IClW_BiuwQyNBZQJRKaAZFOBpSlYMA-p-GKSaKUHV-x-dX0GkRs_9--tcYV4e6dZ_tf7IBu1k6j6R49Pi517l_wAceP2s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+BP+neural+network+model+by+chaotic+krill+herd+algorithm&rft.jtitle=Alexandria+engineering+journal&rft.au=Yu%2C+Lihong&rft.au=Xie%2C+Linyang&rft.au=Liu%2C+Chunmei&rft.au=Yu%2C+Song&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=1110-0168&rft.volume=61&rft.issue=12&rft.spage=9769&rft.epage=9777&rft_id=info:doi/10.1016%2Fj.aej.2022.02.033&rft.externalDocID=S1110016822001223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon