ForSE: A GAN-based Algorithm for Extending CMB Foreground Models to Subdegree Angular Scales
We present F or SE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic radiation, in the context of cosmic microwave background (CMB) experiments. F or SE exploits the ability of generative adversarial neural network...
        Saved in:
      
    
          | Published in | The Astrophysical journal Vol. 911; no. 1; p. 42 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Philadelphia
          IOP Publishing
    
        01.04.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0004-637X 1538-4357 1538-4357  | 
| DOI | 10.3847/1538-4357/abe71c | 
Cover
| Abstract | We present F
or
SE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic radiation, in the context of cosmic microwave background (CMB) experiments. F
or
SE exploits the ability of generative adversarial neural networks (GANs) to learn and reproduce complex features present in a set of images, with the goal of simulating realistic and non-Gaussian foreground radiation at subdegree angular scales. This is of great importance in order to estimate the foreground contamination to lensing reconstruction, delensing, and primordial
B
-modes for future CMB experiments. We applied this algorithm to Galactic thermal dust emission in both total intensity and polarization. Our results show how F
or
SE is able to generate small-scale features (at 12′) having as input the large-scale ones (80′). The injected structures have statistical properties, evaluated by means of the Minkowski functionals, in good agreement with those of the real sky and which show the correct amplitude scaling as a function of the angular dimension. The obtained thermal dust Stokes
Q
and
U
full-sky maps as well as the F
or
SE package are publicly available for download. | 
    
|---|---|
| AbstractList | We present F
or
SE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic radiation, in the context of cosmic microwave background (CMB) experiments. F
or
SE exploits the ability of generative adversarial neural networks (GANs) to learn and reproduce complex features present in a set of images, with the goal of simulating realistic and non-Gaussian foreground radiation at subdegree angular scales. This is of great importance in order to estimate the foreground contamination to lensing reconstruction, delensing, and primordial
B
-modes for future CMB experiments. We applied this algorithm to Galactic thermal dust emission in both total intensity and polarization. Our results show how F
or
SE is able to generate small-scale features (at 12′) having as input the large-scale ones (80′). The injected structures have statistical properties, evaluated by means of the Minkowski functionals, in good agreement with those of the real sky and which show the correct amplitude scaling as a function of the angular dimension. The obtained thermal dust Stokes
Q
and
U
full-sky maps as well as the F
or
SE package are publicly available for download. We present ForSE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic radiation, in the context of cosmic microwave background (CMB) experiments. ForSE exploits the ability of generative adversarial neural networks (GANs) to learn and reproduce complex features present in a set of images, with the goal of simulating realistic and non-Gaussian foreground radiation at subdegree angular scales. This is of great importance in order to estimate the foreground contamination to lensing reconstruction, delensing, and primordial B-modes for future CMB experiments. We applied this algorithm to Galactic thermal dust emission in both total intensity and polarization. Our results show how ForSE is able to generate small-scale features (at 12′) having as input the large-scale ones (80′). The injected structures have statistical properties, evaluated by means of the Minkowski functionals, in good agreement with those of the real sky and which show the correct amplitude scaling as a function of the angular dimension. The obtained thermal dust Stokes Q and U full-sky maps as well as the ForSE package are publicly available for download. We present ForSE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic radiation, in the context of cosmic microwave background (CMB) experiments. ForSE exploits the ability of generative adversarial neural networks (GANs) to learn and reproduce complex features present in a set of images, with the goal of simulating realistic and non-Gaussian foreground radiation at subdegree angular scales. This is of great importance in order to estimate the foreground contamination to lensing reconstruction, delensing, and primordial B-modes for future CMB experiments. We applied this algorithm to Galactic thermal dust emission in both total intensity and polarization. Our results show how ForSE is able to generate small-scale features (at 12') having as input the large-scale ones (80'). The injected structures have statistical properties, evaluated by means of the Minkowski functionals, in good agreement with those of the real sky and which show the correct amplitude scaling as a function of the angular dimension. Furthermore, the obtained thermal dust Stokes Q and U full-sky maps as well as the ForSE package are publicly available for download.  | 
    
| Author | Krachmalnicoff, Nicoletta Puglisi, Giuseppe  | 
    
| Author_xml | – sequence: 1 givenname: Nicoletta orcidid: 0000-0002-5501-8449 surname: Krachmalnicoff fullname: Krachmalnicoff, Nicoletta – sequence: 2 givenname: Giuseppe orcidid: 0000-0002-0689-4290 surname: Puglisi fullname: Puglisi, Giuseppe  | 
    
| BackLink | https://www.osti.gov/servlets/purl/1836484$$D View this record in Osti.gov | 
    
| BookMark | eNqNkEtr3DAUhUVJoZOk-y5Fs3ajlyU5O2eYpIVJupgEuigIWb6eODjSRJJp5t_Hg0sXhUBWl3v4zn2cY3TkgweEvlDyjWuhzmnJdSF4qc5tA4q6D2jxTzpCC0KIKCRXvz6h45QeDy2rqgX6fRXiZnWBa3xd3xaNTdDietiG2OeHJ9yFiFcvGXzb-y1e3lziCYdtDKNv8U1oYUg4B7wZm3ZSAXDtt-NgI944O0A6RR87OyT4_LeeoPur1d3ye7H-ef1jWa8LJ4jMBe2YdlSzTlVKO2KlpFJy0UCjmOMaKsdb4RQnWjJHhWOyYuCqsmmYaG1n-Qmi89zR7-z-jx0Gs4v9k417Q4k5xGMOWZhDFmaOZ_J8nT0h5d4k12dwDy54Dy4bqrkUWkzQ2QztYngeIWXzGMbop18MK2lJlVS6nCgyUy6GlCJ079ku_7NMB9jcB5-j7Ye3ja_9gZLj | 
    
| CitedBy_id | crossref_primary_10_1051_0004_6361_202140503 crossref_primary_10_1051_0004_6361_202243450 crossref_primary_10_1051_0004_6361_202244566 crossref_primary_10_1088_1742_6596_2417_1_012031 crossref_primary_10_1051_0004_6361_202244424 crossref_primary_10_3847_1538_4357_aca538 crossref_primary_10_1146_annurev_statistics_040522_093748 crossref_primary_10_1051_0004_6361_202345982 crossref_primary_10_3847_1538_4357_acbfb4 crossref_primary_10_3847_1538_4357_ac54b2 crossref_primary_10_1093_mnras_stad526 crossref_primary_10_1088_1475_7516_2022_01_039 crossref_primary_10_3847_1538_4365_ac5f4a crossref_primary_10_1088_1475_7516_2021_06_025 crossref_primary_10_1103_PhysRevD_110_063510 crossref_primary_10_1088_1475_7516_2024_01_039 crossref_primary_10_1103_PhysRevD_104_123521 crossref_primary_10_1051_0004_6361_202449827 crossref_primary_10_1088_1475_7516_2022_08_029  | 
    
| Cites_doi | 10.1088/1475-7516/2019/10/056 10.1051/0004-6361/201936386 10.1051/0004-6361/201629022 10.1103/PhysRevLett.112.241101 10.1088/1475-7516/2015/12/020 10.3847/1538-4357/abb9a7 10.1088/1475-7516/2019/02/056 10.21105/joss.01298 10.1051/0004-6361/201220019 10.1016/0370-2693(82)91219-9 10.3847/1538-4357/ab29f2 10.1093/mnras/staa3344 10.1016/S0370-2693(03)00592-6 10.1051/0004-6361/201526506 10.1088/1475-7516/2020/06/030 10.1088/1742-5468/2008/12/P12015 10.1088/1475-7516/2017/06/031 10.1051/0004-6361/201833881 10.1016/j.newar.2003.09.038 10.5281/zenodo.4483567 10.1093/mnras/stx949 10.1051/0004-6361/201525936 10.1086/513699 10.1093/mnras/sty1956 10.1051/0004-6361/201833880 10.1093/mnras/stz093 10.1051/0004-6361/201425034 10.1051/0004-6361/201832768 10.1103/PhysRevLett.111.141301 10.1103/PhysRevD.94.083526 10.3847/1538-4357/abc47c 10.1088/0004-637X/790/2/104 10.1186/s40668-019-0029-9 10.1088/0004-637X/794/2/171 10.1093/mnras/stz806 10.1088/1475-7516/2020/12/047 10.4249/scholarpedia.31682 10.1051/0004-6361/201527678 10.1051/0004-6361/201832618 10.1093/mnras/staa1428 10.1103/PhysRevLett.121.221301 10.1088/1475-7516/2020/07/017 10.1086/427976 10.1007/s10909-019-02329-w 10.1051/0004-6361/201525967 10.1086/148307 10.1103/PhysRevD.23.347 10.1103/PhysRevD.55.7368 10.1093/mnras/staa1233 10.1103/PhysRevD.55.1830 10.1051/0004-6361/201526803 10.1103/PhysRevD.74.063523 10.1051/0004-6361/201629992e 10.1051/0004-6361/201833910 10.1051/0004-6361/202039585 10.1103/PhysRevLett.114.101301 10.1051/0004-6361/201935211 10.1016/j.ascom.2019.100307  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright IOP Publishing Apr 01, 2021 | 
    
| Copyright_xml | – notice: Copyright IOP Publishing Apr 01, 2021 | 
    
| CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) | 
    
| CorporateAuthor_xml | – sequence: 0 name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)  | 
    
| DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M OIOZB OTOTI ADTOC UNPAY  | 
    
| DOI | 10.3847/1538-4357/abe71c | 
    
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic  | 
    
| DatabaseTitleList | CrossRef Aerospace Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Astronomy & Astrophysics Physics  | 
    
| EISSN | 1538-4357 | 
    
| ExternalDocumentID | 10.3847/1538-4357/abe71c 1836484 10_3847_1538_4357_abe71c  | 
    
| GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AAYXX ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AEINN AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CITATION CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW 7TG 8FD H8D KL. L7M OIOZB OTOTI 41~ 6TJ 6TS 9M8 AALHV ABDPE ADIYS ADTOC ADXHL AETEA AI. EJD FA8 MVM OHT UNPAY VH1 WHG YYP ZCG ZKB ZY4  | 
    
| ID | FETCH-LOGICAL-c406t-1f28c182f7978c0a6616634beb72c38e9c3d4c730862c14c2692ec95bb24dafa3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0004-637X 1538-4357  | 
    
| IngestDate | Sun Oct 26 04:15:27 EDT 2025 Thu Dec 05 06:31:14 EST 2024 Wed Aug 13 09:01:48 EDT 2025 Wed Oct 01 04:02:55 EDT 2025 Thu Apr 24 23:08:00 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c406t-1f28c182f7978c0a6616634beb72c38e9c3d4c730862c14c2692ec95bb24dafa3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-05CH11231 USDOE Office of Science (SC), High Energy Physics (HEP)  | 
    
| ORCID | 0000-0002-5501-8449 0000-0002-0689-4290 0000000255018449 0000000206894290  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/abe71c/pdf | 
    
| PQID | 2515176785 | 
    
| PQPubID | 4562441 | 
    
| ParticipantIDs | unpaywall_primary_10_3847_1538_4357_abe71c osti_scitechconnect_1836484 proquest_journals_2515176785 crossref_primary_10_3847_1538_4357_abe71c crossref_citationtrail_10_3847_1538_4357_abe71c  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-04-01 | 
    
| PublicationDateYYYYMMDD | 2021-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Philadelphia | 
    
| PublicationPlace_xml | – name: Philadelphia – name: United States  | 
    
| PublicationTitle | The Astrophysical journal | 
    
| PublicationYear | 2021 | 
    
| Publisher | IOP Publishing | 
    
| Publisher_xml | – sequence: 0 name: IOP Publishing – name: IOP Publishing  | 
    
| References | Sugai (apjabe71cbib57) 2020; 199 Jew (apjabe71cbib22) 2020; 495 Planck Collaboration X (apjabe71cbib48) 2016; 594 Guth (apjabe71cbib20) 1981; 23 Linde (apjabe71cbib33) 1982; 108 Krachmalnicoff (apjabe71cbib29) 2021 Krachmalnicoff (apjabe71cbib30) 2019; 628 Vansyngel (apjabe71cbib64) 2018; 618 Thorne (apjabe71cbib61) 2021 Stompor (apjabe71cbib56) 2016; 94 Regaldo-Saint Blancard (apjabe71cbib53) 2021 Farsian (apjabe71cbib16) 2020; 2020 Kim (apjabe71cbib26) 2019; 880 Kodi Ramanah (apjabe71cbib27) 2020; 495 Penzias (apjabe71cbib38) 1965; 142 Radford (apjabe71cbib52) 2016 Aiola (apjabe71cbib2) 2020; 2020 BICEP2/Keck Array and Planck Collaborations (apjabe71cbib10) 2015; 114 Carretti (apjabe71cbib12) 2019; 489 Planck Collaboration Int. XLVIII (apjabe71cbib41) 2016; 596 Jones (apjabe71cbib24) 2003; 563 Kamionkowski (apjabe71cbib25) 1997; 55 Zonca (apjabe71cbib67) 2019; 4 LSST Dark Energy Science Collaboration (apjabe71cbib3) 2019; 484 Planck Collaboration VI (apjabe71cbib47) 2020; 641 Caldeira (apjabe71cbib11) 2019; 28 Górski (apjabe71cbib19) 2005; 622 Zaldarriaga (apjabe71cbib66) 1997; 55 Delabrouille (apjabe71cbib15) 2013; 553 The Polarbear Collaboration (apjabe71cbib58) 2014; 794 Ledig (apjabe71cbib32) 2016 Tristram (apjabe71cbib62) 2021; 647 Puglisi (apjabe71cbib51) 2020; 905 Krachmalnicoff (apjabe71cbib31) 2018; 618 Planck Collaboration Int. XXXVIII (apjabe71cbib43) 2016; 586 Mantz (apjabe71cbib35) 2008; 2008 Goodfellow (apjabe71cbib18) 2014 Planck Collaboration XXV (apjabe71cbib50) 2016; 594 Starobinskiǐ (apjabe71cbib55) 1979; 30 Fuskeland (apjabe71cbib17) 2014; 790 Planck Collaboration I (apjabe71cbib40) 2020; 641 Vachaspati (apjabe71cbib63) 2015; 10 Aylor (apjabe71cbib4) 2019; 500 Mustafa (apjabe71cbib36) 2019; 6 Abazajian (apjabe71cbib1) 2016 Thorne (apjabe71cbib60) 2017; 469 BICEP2 Collaboration I (apjabe71cbib9) 2014; 112 The Simons Observatory Collaboration (apjabe71cbib59) 2019; 2019 BICEP2 Collaboration (apjabe71cbib8) 2018; 121 Page (apjabe71cbib37) 2007; 170 Yu (apjabe71cbib65) 2018 Krachmalnicoff (apjabe71cbib28) 2016; 588 Jones (apjabe71cbib23) 2018; 480 Planck Collaboration IV (apjabe71cbib44) 2020; 641 Baccigalupi (apjabe71cbib5) 2003; 47 Choi (apjabe71cbib13) 2015; 2015 Coulton (apjabe71cbib14) 2019; 2019 Beck (apjabe71cbib7) 2020; 2020 Seljak (apjabe71cbib54) 2006; 74 Planck Collaboration V (apjabe71cbib46) 2020; 641 Planck Collaboration Int. XXX (apjabe71cbib42) 2016; 586 Petroff (apjabe71cbib39) 2020; 903 Planck Collaboration XI (apjabe71cbib49) 2020; 641 Louis (apjabe71cbib34) 2017; 6 Planck Collaboration IX (apjabe71cbib45) 2016; 594 Baumann (apjabe71cbib6) 2009 Hanson (apjabe71cbib21) 2013; 111  | 
    
| References_xml | – volume: 2019 start-page: 056 year: 2019 ident: apjabe71cbib14 publication-title: JCAP doi: 10.1088/1475-7516/2019/10/056 – volume: 641 start-page: A5 year: 2020 ident: apjabe71cbib46 publication-title: A&A doi: 10.1051/0004-6361/201936386 – volume: 596 start-page: A109 year: 2016 ident: apjabe71cbib41 publication-title: A&A doi: 10.1051/0004-6361/201629022 – volume: 112 year: 2014 ident: apjabe71cbib9 publication-title: PhRvL doi: 10.1103/PhysRevLett.112.241101 – volume: 2015 start-page: 020 year: 2015 ident: apjabe71cbib13 publication-title: JCAP doi: 10.1088/1475-7516/2015/12/020 – volume: 903 start-page: 104 year: 2020 ident: apjabe71cbib39 publication-title: ApJ doi: 10.3847/1538-4357/abb9a7 – volume: 2019 start-page: 056 year: 2019 ident: apjabe71cbib59 publication-title: JCAP doi: 10.1088/1475-7516/2019/02/056 – volume: 4 start-page: 1298 year: 2019 ident: apjabe71cbib67 publication-title: JOSS doi: 10.21105/joss.01298 – volume: 553 start-page: A96 year: 2013 ident: apjabe71cbib15 publication-title: A&A doi: 10.1051/0004-6361/201220019 – volume: 108 start-page: 389 year: 1982 ident: apjabe71cbib33 publication-title: PhLB doi: 10.1016/0370-2693(82)91219-9 – volume: 880 start-page: 106 year: 2019 ident: apjabe71cbib26 publication-title: ApJ doi: 10.3847/1538-4357/ab29f2 – year: 2009 ident: apjabe71cbib6 – volume: 500 start-page: 3889 year: 2019 ident: apjabe71cbib4 publication-title: MNRAS doi: 10.1093/mnras/staa3344 – volume: 563 start-page: 6 year: 2003 ident: apjabe71cbib24 publication-title: PhLB doi: 10.1016/S0370-2693(03)00592-6 – volume: 586 start-page: A141 year: 2016 ident: apjabe71cbib43 publication-title: A&A doi: 10.1051/0004-6361/201526506 – year: 2016 ident: apjabe71cbib32 – volume: 2020 start-page: 030 year: 2020 ident: apjabe71cbib7 publication-title: JCAP doi: 10.1088/1475-7516/2020/06/030 – volume: 2008 start-page: 12 year: 2008 ident: apjabe71cbib35 publication-title: JSMTE doi: 10.1088/1742-5468/2008/12/P12015 – volume: 6 start-page: 031 year: 2017 ident: apjabe71cbib34 publication-title: JCAP doi: 10.1088/1475-7516/2017/06/031 – year: 2016 ident: apjabe71cbib1 – volume: 641 start-page: A4 year: 2020 ident: apjabe71cbib44 publication-title: A&A doi: 10.1051/0004-6361/201833881 – volume: 47 start-page: 1127 year: 2003 ident: apjabe71cbib5 publication-title: NewAR doi: 10.1016/j.newar.2003.09.038 – year: 2021 ident: apjabe71cbib29 publication-title: ai4cmb/ForSE v1.0.0 doi: 10.5281/zenodo.4483567 – volume: 469 start-page: 2821 year: 2017 ident: apjabe71cbib60 publication-title: MNRAS doi: 10.1093/mnras/stx949 – volume: 594 start-page: A9 year: 2016 ident: apjabe71cbib45 publication-title: A&A doi: 10.1051/0004-6361/201525936 – volume: 170 start-page: 335 year: 2007 ident: apjabe71cbib37 publication-title: ApJS doi: 10.1086/513699 – volume: 480 start-page: 3224 year: 2018 ident: apjabe71cbib23 publication-title: MNRAS doi: 10.1093/mnras/sty1956 – volume: 641 start-page: A1 year: 2020 ident: apjabe71cbib40 publication-title: A&A doi: 10.1051/0004-6361/201833880 – volume: 484 start-page: 4127 year: 2019 ident: apjabe71cbib3 publication-title: MNRAS doi: 10.1093/mnras/stz093 – volume: 586 start-page: A133 year: 2016 ident: apjabe71cbib42 publication-title: A&A doi: 10.1051/0004-6361/201425034 – volume: 618 start-page: A166 year: 2018 ident: apjabe71cbib31 publication-title: A&A doi: 10.1051/0004-6361/201832768 – volume: 111 year: 2013 ident: apjabe71cbib21 publication-title: PhRvL doi: 10.1103/PhysRevLett.111.141301 – year: 2014 ident: apjabe71cbib18 – volume: 94 year: 2016 ident: apjabe71cbib56 publication-title: PhRvD doi: 10.1103/PhysRevD.94.083526 – volume: 905 start-page: 143 year: 2020 ident: apjabe71cbib51 publication-title: ApJ doi: 10.3847/1538-4357/abc47c – volume: 790 start-page: 104 year: 2014 ident: apjabe71cbib17 publication-title: ApJ doi: 10.1088/0004-637X/790/2/104 – year: 2021 ident: apjabe71cbib53 – volume: 6 start-page: 1 year: 2019 ident: apjabe71cbib36 publication-title: ComAC doi: 10.1186/s40668-019-0029-9 – volume: 794 start-page: 171 year: 2014 ident: apjabe71cbib58 publication-title: ApJ doi: 10.1088/0004-637X/794/2/171 – volume: 489 start-page: 2330 year: 2019 ident: apjabe71cbib12 publication-title: MNRAS doi: 10.1093/mnras/stz806 – volume: 2020 start-page: 047 year: 2020 ident: apjabe71cbib2 publication-title: JCAP doi: 10.1088/1475-7516/2020/12/047 – volume: 30 start-page: 682 year: 1979 ident: apjabe71cbib55 publication-title: JETPL – year: 2021 ident: apjabe71cbib61 – volume: 10 start-page: 31682 year: 2015 ident: apjabe71cbib63 publication-title: SchpJ doi: 10.4249/scholarpedia.31682 – volume: 588 start-page: A65 year: 2016 ident: apjabe71cbib28 publication-title: A&A doi: 10.1051/0004-6361/201527678 – volume: 641 start-page: A11 year: 2020 ident: apjabe71cbib49 publication-title: A&A doi: 10.1051/0004-6361/201832618 – volume: 495 start-page: 4227 year: 2020 ident: apjabe71cbib27 publication-title: MNRAS doi: 10.1093/mnras/staa1428 – volume: 121 year: 2018 ident: apjabe71cbib8 publication-title: PhRvL doi: 10.1103/PhysRevLett.121.221301 – volume: 2020 start-page: 017 year: 2020 ident: apjabe71cbib16 publication-title: JCAP doi: 10.1088/1475-7516/2020/07/017 – volume: 622 start-page: 759 year: 2005 ident: apjabe71cbib19 publication-title: ApJ doi: 10.1086/427976 – volume: 199 start-page: 1107 year: 2020 ident: apjabe71cbib57 publication-title: JLTP doi: 10.1007/s10909-019-02329-w – volume: 594 start-page: A10 year: 2016 ident: apjabe71cbib48 publication-title: A&A doi: 10.1051/0004-6361/201525967 – year: 2016 ident: apjabe71cbib52 – volume: 142 start-page: 419 year: 1965 ident: apjabe71cbib38 publication-title: ApJ doi: 10.1086/148307 – volume: 23 start-page: 347 year: 1981 ident: apjabe71cbib20 publication-title: PhRvD doi: 10.1103/PhysRevD.23.347 – volume: 55 start-page: 7368 year: 1997 ident: apjabe71cbib25 publication-title: PhRvD doi: 10.1103/PhysRevD.55.7368 – volume: 495 start-page: 578 year: 2020 ident: apjabe71cbib22 publication-title: MNRAS doi: 10.1093/mnras/staa1233 – volume: 55 start-page: 1830 year: 1997 ident: apjabe71cbib66 publication-title: PhRvD doi: 10.1103/PhysRevD.55.1830 – volume: 594 start-page: A25 year: 2016 ident: apjabe71cbib50 publication-title: A&A doi: 10.1051/0004-6361/201526803 – volume: 74 year: 2006 ident: apjabe71cbib54 publication-title: PhRvD doi: 10.1103/PhysRevD.74.063523 – volume: 618 start-page: C4 year: 2018 ident: apjabe71cbib64 publication-title: A&A doi: 10.1051/0004-6361/201629992e – volume: 641 start-page: A6 year: 2020 ident: apjabe71cbib47 publication-title: A&A doi: 10.1051/0004-6361/201833910 – volume: 647 start-page: A128 year: 2021 ident: apjabe71cbib62 publication-title: A&A doi: 10.1051/0004-6361/202039585 – volume: 114 year: 2015 ident: apjabe71cbib10 publication-title: PhRvL doi: 10.1103/PhysRevLett.114.101301 – volume: 628 start-page: A129 year: 2019 ident: apjabe71cbib30 publication-title: A&A doi: 10.1051/0004-6361/201935211 – volume: 28 year: 2019 ident: apjabe71cbib11 publication-title: A&C doi: 10.1016/j.ascom.2019.100307 – year: 2018 ident: apjabe71cbib65  | 
    
| SSID | ssj0004299 | 
    
| Score | 2.5111423 | 
    
| Snippet | We present F
or
SE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic... We present ForSE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic...  | 
    
| SourceID | unpaywall osti proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 42 | 
    
| SubjectTerms | Algorithms Astronomical maps ASTRONOMY AND ASTROPHYSICS Astrophysics Big Bang theory Computer simulation Cosmic dust Cosmic microwave background Cosmic microwave background radiation Diffuse radiation Dust Dust emission Galactic radiation Neural networks Radiation  | 
    
| Title | ForSE: A GAN-based Algorithm for Extending CMB Foreground Models to Subdegree Angular Scales | 
    
| URI | https://www.proquest.com/docview/2515176785 https://www.osti.gov/servlets/purl/1836484 https://iopscience.iop.org/article/10.3847/1538-4357/abe71c/pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 911 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Open access customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: O3W dateStart: 19950701 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: IOP dateStart: 19961101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: M~E dateStart: 18950101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_a9QwFA_uhugvm07Hbt_IDyIo9O6apG3qb924cwieg3l4glDTl3SKXXtce8j8631pemMTUcTfQkna5OV9-bz05T1CnrEQIA-l8USotScUaE8CEx4LchNIyLmENtvnNDybiTfzYN7VOW3vwlSLTvUPsOkSBTsSWvnmqEuHrYyilY-GKjORD8OFzjfIZhggGO-Rzdn0PPnoQK_wQh7NXcZUN8T9qPzta-4Ypl6FAnYHdD5YlQt1_V0VxS37M9kmn9czd2En3warJhvAj1-SOv7H0h6RrQ6b0sR1f0zumXKH7CW1PS2vrq7pc9q23WFIvUPun7vWE_JpUi0vxq9oQl8nU89aRk2T4rJafm2-XFHExXTcHrajnaSnb0-oLQhq75OUmtpibEVNm4qiDtP41BialJc2OpZeIAOZ-imZTcbvT8-8rm6DBwgPGs_PmQT0W_IIXVQYKYQAiGtEZrKIAZcmBq4FoGpBbwp8ASyMmYE4yDImtMoV3yW9sirNHqG-4mwEmQqyfCQ0j6WMFfe51AECGxBBnwzXm5ZCl9Tc1tYoUnRuLElTS9LUkjR1JO2TFzcjFi6hxx_6Hlg-SHHbbEZdsKFH0KSoBUMhRZ8crtkj7QS_ThEuBn6ECACn9vKGZf76pf1_6XxAHjIbWdPGDx2SXrNcmSOERk12TDbe8Q_HnRD8BAJrB54 | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_a9QwFA96Q_QXp9Oxc1PygwgKubsmaZv6WzfuHILHYB6cINT0JZ1i1x7XHjL_el-a3nAiivhbKEmbvLwvn5e-vEfIcx4BFJGyTEbGMKnBMAVcMh4WNlRQCAVdts95dLqQb5fhsq9z2t2FqVe96h9h0ycK9iR08i1Ql447GUUrH491buMAxitT3CY7UYhgfEB2FvOz9IMHvZJFIl76jKl-iP9R-dvX3DBMgxoF7AbovLupVvrqmy7Ln-zPbJd82s7ch518HW3afATff0nq-B9Le0Du99iUpr77Q3LLVnvkIG3caXl9eUVf0K7tD0OaPXLnzLcekY-zen0-fU1T-iadM2cZDU3Li3r9pf18SREX02l32I52kp68O6auIKi7T1IZ6oqxlQ1ta4o6zOBTa2laXbjoWHqODGSbx2Qxm74_OWV93QYGCA9aFhRcAfotRYwuKkw0QgDENTK3ecxBKJuAMBJQtaA3BYEEHiXcQhLmOZdGF1rsk0FVV_aA0EALPoFch3kxkUYkSiVaBEKZEIENyHBIxttNy6BPau5qa5QZOjeOpJkjaeZImnmSDsnL6xErn9DjD30PHR9kuG0uoy640CNoM9SCkVRySI627JH1gt9kCBfDIEYEgFN7dc0yf_3Sk3_pfEjucRdZ08UPHZFBu97YpwiN2vxZz_4_ANpqBqQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ForSE%3A+A+GAN-based+Algorithm+for+Extending+CMB+Foreground+Models+to+Subdegree+Angular+Scales&rft.jtitle=The+Astrophysical+journal&rft.au=Krachmalnicoff%2C+Nicoletta&rft.au=Puglisi%2C+Giuseppe&rft.date=2021-04-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=911&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fabe71c&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |