ForSE: A GAN-based Algorithm for Extending CMB Foreground Models to Subdegree Angular Scales

We present F or SE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic radiation, in the context of cosmic microwave background (CMB) experiments. F or SE exploits the ability of generative adversarial neural network...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 911; no. 1; p. 42
Main Authors Krachmalnicoff, Nicoletta, Puglisi, Giuseppe
Format Journal Article
LanguageEnglish
Published Philadelphia IOP Publishing 01.04.2021
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
1538-4357
DOI10.3847/1538-4357/abe71c

Cover

Abstract We present F or SE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic radiation, in the context of cosmic microwave background (CMB) experiments. F or SE exploits the ability of generative adversarial neural networks (GANs) to learn and reproduce complex features present in a set of images, with the goal of simulating realistic and non-Gaussian foreground radiation at subdegree angular scales. This is of great importance in order to estimate the foreground contamination to lensing reconstruction, delensing, and primordial B -modes for future CMB experiments. We applied this algorithm to Galactic thermal dust emission in both total intensity and polarization. Our results show how F or SE is able to generate small-scale features (at 12′) having as input the large-scale ones (80′). The injected structures have statistical properties, evaluated by means of the Minkowski functionals, in good agreement with those of the real sky and which show the correct amplitude scaling as a function of the angular dimension. The obtained thermal dust Stokes Q and U full-sky maps as well as the F or SE package are publicly available for download.
AbstractList We present F or SE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic radiation, in the context of cosmic microwave background (CMB) experiments. F or SE exploits the ability of generative adversarial neural networks (GANs) to learn and reproduce complex features present in a set of images, with the goal of simulating realistic and non-Gaussian foreground radiation at subdegree angular scales. This is of great importance in order to estimate the foreground contamination to lensing reconstruction, delensing, and primordial B -modes for future CMB experiments. We applied this algorithm to Galactic thermal dust emission in both total intensity and polarization. Our results show how F or SE is able to generate small-scale features (at 12′) having as input the large-scale ones (80′). The injected structures have statistical properties, evaluated by means of the Minkowski functionals, in good agreement with those of the real sky and which show the correct amplitude scaling as a function of the angular dimension. The obtained thermal dust Stokes Q and U full-sky maps as well as the F or SE package are publicly available for download.
We present ForSE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic radiation, in the context of cosmic microwave background (CMB) experiments. ForSE exploits the ability of generative adversarial neural networks (GANs) to learn and reproduce complex features present in a set of images, with the goal of simulating realistic and non-Gaussian foreground radiation at subdegree angular scales. This is of great importance in order to estimate the foreground contamination to lensing reconstruction, delensing, and primordial B-modes for future CMB experiments. We applied this algorithm to Galactic thermal dust emission in both total intensity and polarization. Our results show how ForSE is able to generate small-scale features (at 12′) having as input the large-scale ones (80′). The injected structures have statistical properties, evaluated by means of the Minkowski functionals, in good agreement with those of the real sky and which show the correct amplitude scaling as a function of the angular dimension. The obtained thermal dust Stokes Q and U full-sky maps as well as the ForSE package are publicly available for download.
We present ForSE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic radiation, in the context of cosmic microwave background (CMB) experiments. ForSE exploits the ability of generative adversarial neural networks (GANs) to learn and reproduce complex features present in a set of images, with the goal of simulating realistic and non-Gaussian foreground radiation at subdegree angular scales. This is of great importance in order to estimate the foreground contamination to lensing reconstruction, delensing, and primordial B-modes for future CMB experiments. We applied this algorithm to Galactic thermal dust emission in both total intensity and polarization. Our results show how ForSE is able to generate small-scale features (at 12') having as input the large-scale ones (80'). The injected structures have statistical properties, evaluated by means of the Minkowski functionals, in good agreement with those of the real sky and which show the correct amplitude scaling as a function of the angular dimension. Furthermore, the obtained thermal dust Stokes Q and U full-sky maps as well as the ForSE package are publicly available for download.
Author Krachmalnicoff, Nicoletta
Puglisi, Giuseppe
Author_xml – sequence: 1
  givenname: Nicoletta
  orcidid: 0000-0002-5501-8449
  surname: Krachmalnicoff
  fullname: Krachmalnicoff, Nicoletta
– sequence: 2
  givenname: Giuseppe
  orcidid: 0000-0002-0689-4290
  surname: Puglisi
  fullname: Puglisi, Giuseppe
BackLink https://www.osti.gov/servlets/purl/1836484$$D View this record in Osti.gov
BookMark eNqNkEtr3DAUhUVJoZOk-y5Fs3ajlyU5O2eYpIVJupgEuigIWb6eODjSRJJp5t_Hg0sXhUBWl3v4zn2cY3TkgweEvlDyjWuhzmnJdSF4qc5tA4q6D2jxTzpCC0KIKCRXvz6h45QeDy2rqgX6fRXiZnWBa3xd3xaNTdDietiG2OeHJ9yFiFcvGXzb-y1e3lziCYdtDKNv8U1oYUg4B7wZm3ZSAXDtt-NgI944O0A6RR87OyT4_LeeoPur1d3ye7H-ef1jWa8LJ4jMBe2YdlSzTlVKO2KlpFJy0UCjmOMaKsdb4RQnWjJHhWOyYuCqsmmYaG1n-Qmi89zR7-z-jx0Gs4v9k417Q4k5xGMOWZhDFmaOZ_J8nT0h5d4k12dwDy54Dy4bqrkUWkzQ2QztYngeIWXzGMbop18MK2lJlVS6nCgyUy6GlCJ079ku_7NMB9jcB5-j7Ye3ja_9gZLj
CitedBy_id crossref_primary_10_1051_0004_6361_202140503
crossref_primary_10_1051_0004_6361_202243450
crossref_primary_10_1051_0004_6361_202244566
crossref_primary_10_1088_1742_6596_2417_1_012031
crossref_primary_10_1051_0004_6361_202244424
crossref_primary_10_3847_1538_4357_aca538
crossref_primary_10_1146_annurev_statistics_040522_093748
crossref_primary_10_1051_0004_6361_202345982
crossref_primary_10_3847_1538_4357_acbfb4
crossref_primary_10_3847_1538_4357_ac54b2
crossref_primary_10_1093_mnras_stad526
crossref_primary_10_1088_1475_7516_2022_01_039
crossref_primary_10_3847_1538_4365_ac5f4a
crossref_primary_10_1088_1475_7516_2021_06_025
crossref_primary_10_1103_PhysRevD_110_063510
crossref_primary_10_1088_1475_7516_2024_01_039
crossref_primary_10_1103_PhysRevD_104_123521
crossref_primary_10_1051_0004_6361_202449827
crossref_primary_10_1088_1475_7516_2022_08_029
Cites_doi 10.1088/1475-7516/2019/10/056
10.1051/0004-6361/201936386
10.1051/0004-6361/201629022
10.1103/PhysRevLett.112.241101
10.1088/1475-7516/2015/12/020
10.3847/1538-4357/abb9a7
10.1088/1475-7516/2019/02/056
10.21105/joss.01298
10.1051/0004-6361/201220019
10.1016/0370-2693(82)91219-9
10.3847/1538-4357/ab29f2
10.1093/mnras/staa3344
10.1016/S0370-2693(03)00592-6
10.1051/0004-6361/201526506
10.1088/1475-7516/2020/06/030
10.1088/1742-5468/2008/12/P12015
10.1088/1475-7516/2017/06/031
10.1051/0004-6361/201833881
10.1016/j.newar.2003.09.038
10.5281/zenodo.4483567
10.1093/mnras/stx949
10.1051/0004-6361/201525936
10.1086/513699
10.1093/mnras/sty1956
10.1051/0004-6361/201833880
10.1093/mnras/stz093
10.1051/0004-6361/201425034
10.1051/0004-6361/201832768
10.1103/PhysRevLett.111.141301
10.1103/PhysRevD.94.083526
10.3847/1538-4357/abc47c
10.1088/0004-637X/790/2/104
10.1186/s40668-019-0029-9
10.1088/0004-637X/794/2/171
10.1093/mnras/stz806
10.1088/1475-7516/2020/12/047
10.4249/scholarpedia.31682
10.1051/0004-6361/201527678
10.1051/0004-6361/201832618
10.1093/mnras/staa1428
10.1103/PhysRevLett.121.221301
10.1088/1475-7516/2020/07/017
10.1086/427976
10.1007/s10909-019-02329-w
10.1051/0004-6361/201525967
10.1086/148307
10.1103/PhysRevD.23.347
10.1103/PhysRevD.55.7368
10.1093/mnras/staa1233
10.1103/PhysRevD.55.1830
10.1051/0004-6361/201526803
10.1103/PhysRevD.74.063523
10.1051/0004-6361/201629992e
10.1051/0004-6361/201833910
10.1051/0004-6361/202039585
10.1103/PhysRevLett.114.101301
10.1051/0004-6361/201935211
10.1016/j.ascom.2019.100307
ContentType Journal Article
Copyright Copyright IOP Publishing Apr 01, 2021
Copyright_xml – notice: Copyright IOP Publishing Apr 01, 2021
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – sequence: 0
  name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.3847/1538-4357/abe71c
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 10.3847/1538-4357/abe71c
1836484
10_3847_1538_4357_abe71c
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AAYXX
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AEINN
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CITATION
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
7TG
8FD
H8D
KL.
L7M
OIOZB
OTOTI
41~
6TJ
6TS
9M8
AALHV
ABDPE
ADIYS
ADTOC
ADXHL
AETEA
AI.
EJD
FA8
MVM
OHT
UNPAY
VH1
WHG
YYP
ZCG
ZKB
ZY4
ID FETCH-LOGICAL-c406t-1f28c182f7978c0a6616634beb72c38e9c3d4c730862c14c2692ec95bb24dafa3
IEDL.DBID UNPAY
ISSN 0004-637X
1538-4357
IngestDate Sun Oct 26 04:15:27 EDT 2025
Thu Dec 05 06:31:14 EST 2024
Wed Aug 13 09:01:48 EDT 2025
Wed Oct 01 04:02:55 EDT 2025
Thu Apr 24 23:08:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-1f28c182f7978c0a6616634beb72c38e9c3d4c730862c14c2692ec95bb24dafa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-05CH11231
USDOE Office of Science (SC), High Energy Physics (HEP)
ORCID 0000-0002-5501-8449
0000-0002-0689-4290
0000000255018449
0000000206894290
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/abe71c/pdf
PQID 2515176785
PQPubID 4562441
ParticipantIDs unpaywall_primary_10_3847_1538_4357_abe71c
osti_scitechconnect_1836484
proquest_journals_2515176785
crossref_primary_10_3847_1538_4357_abe71c
crossref_citationtrail_10_3847_1538_4357_abe71c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
– name: United States
PublicationTitle The Astrophysical journal
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – sequence: 0
  name: IOP Publishing
– name: IOP Publishing
References Sugai (apjabe71cbib57) 2020; 199
Jew (apjabe71cbib22) 2020; 495
Planck Collaboration X (apjabe71cbib48) 2016; 594
Guth (apjabe71cbib20) 1981; 23
Linde (apjabe71cbib33) 1982; 108
Krachmalnicoff (apjabe71cbib29) 2021
Krachmalnicoff (apjabe71cbib30) 2019; 628
Vansyngel (apjabe71cbib64) 2018; 618
Thorne (apjabe71cbib61) 2021
Stompor (apjabe71cbib56) 2016; 94
Regaldo-Saint Blancard (apjabe71cbib53) 2021
Farsian (apjabe71cbib16) 2020; 2020
Kim (apjabe71cbib26) 2019; 880
Kodi Ramanah (apjabe71cbib27) 2020; 495
Penzias (apjabe71cbib38) 1965; 142
Radford (apjabe71cbib52) 2016
Aiola (apjabe71cbib2) 2020; 2020
BICEP2/Keck Array and Planck Collaborations (apjabe71cbib10) 2015; 114
Carretti (apjabe71cbib12) 2019; 489
Planck Collaboration Int. XLVIII (apjabe71cbib41) 2016; 596
Jones (apjabe71cbib24) 2003; 563
Kamionkowski (apjabe71cbib25) 1997; 55
Zonca (apjabe71cbib67) 2019; 4
LSST Dark Energy Science Collaboration (apjabe71cbib3) 2019; 484
Planck Collaboration VI (apjabe71cbib47) 2020; 641
Caldeira (apjabe71cbib11) 2019; 28
Górski (apjabe71cbib19) 2005; 622
Zaldarriaga (apjabe71cbib66) 1997; 55
Delabrouille (apjabe71cbib15) 2013; 553
The Polarbear Collaboration (apjabe71cbib58) 2014; 794
Ledig (apjabe71cbib32) 2016
Tristram (apjabe71cbib62) 2021; 647
Puglisi (apjabe71cbib51) 2020; 905
Krachmalnicoff (apjabe71cbib31) 2018; 618
Planck Collaboration Int. XXXVIII (apjabe71cbib43) 2016; 586
Mantz (apjabe71cbib35) 2008; 2008
Goodfellow (apjabe71cbib18) 2014
Planck Collaboration XXV (apjabe71cbib50) 2016; 594
Starobinskiǐ (apjabe71cbib55) 1979; 30
Fuskeland (apjabe71cbib17) 2014; 790
Planck Collaboration I (apjabe71cbib40) 2020; 641
Vachaspati (apjabe71cbib63) 2015; 10
Aylor (apjabe71cbib4) 2019; 500
Mustafa (apjabe71cbib36) 2019; 6
Abazajian (apjabe71cbib1) 2016
Thorne (apjabe71cbib60) 2017; 469
BICEP2 Collaboration I (apjabe71cbib9) 2014; 112
The Simons Observatory Collaboration (apjabe71cbib59) 2019; 2019
BICEP2 Collaboration (apjabe71cbib8) 2018; 121
Page (apjabe71cbib37) 2007; 170
Yu (apjabe71cbib65) 2018
Krachmalnicoff (apjabe71cbib28) 2016; 588
Jones (apjabe71cbib23) 2018; 480
Planck Collaboration IV (apjabe71cbib44) 2020; 641
Baccigalupi (apjabe71cbib5) 2003; 47
Choi (apjabe71cbib13) 2015; 2015
Coulton (apjabe71cbib14) 2019; 2019
Beck (apjabe71cbib7) 2020; 2020
Seljak (apjabe71cbib54) 2006; 74
Planck Collaboration V (apjabe71cbib46) 2020; 641
Planck Collaboration Int. XXX (apjabe71cbib42) 2016; 586
Petroff (apjabe71cbib39) 2020; 903
Planck Collaboration XI (apjabe71cbib49) 2020; 641
Louis (apjabe71cbib34) 2017; 6
Planck Collaboration IX (apjabe71cbib45) 2016; 594
Baumann (apjabe71cbib6) 2009
Hanson (apjabe71cbib21) 2013; 111
References_xml – volume: 2019
  start-page: 056
  year: 2019
  ident: apjabe71cbib14
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/10/056
– volume: 641
  start-page: A5
  year: 2020
  ident: apjabe71cbib46
  publication-title: A&A
  doi: 10.1051/0004-6361/201936386
– volume: 596
  start-page: A109
  year: 2016
  ident: apjabe71cbib41
  publication-title: A&A
  doi: 10.1051/0004-6361/201629022
– volume: 112
  year: 2014
  ident: apjabe71cbib9
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.112.241101
– volume: 2015
  start-page: 020
  year: 2015
  ident: apjabe71cbib13
  publication-title: JCAP
  doi: 10.1088/1475-7516/2015/12/020
– volume: 903
  start-page: 104
  year: 2020
  ident: apjabe71cbib39
  publication-title: ApJ
  doi: 10.3847/1538-4357/abb9a7
– volume: 2019
  start-page: 056
  year: 2019
  ident: apjabe71cbib59
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/02/056
– volume: 4
  start-page: 1298
  year: 2019
  ident: apjabe71cbib67
  publication-title: JOSS
  doi: 10.21105/joss.01298
– volume: 553
  start-page: A96
  year: 2013
  ident: apjabe71cbib15
  publication-title: A&A
  doi: 10.1051/0004-6361/201220019
– volume: 108
  start-page: 389
  year: 1982
  ident: apjabe71cbib33
  publication-title: PhLB
  doi: 10.1016/0370-2693(82)91219-9
– volume: 880
  start-page: 106
  year: 2019
  ident: apjabe71cbib26
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab29f2
– year: 2009
  ident: apjabe71cbib6
– volume: 500
  start-page: 3889
  year: 2019
  ident: apjabe71cbib4
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3344
– volume: 563
  start-page: 6
  year: 2003
  ident: apjabe71cbib24
  publication-title: PhLB
  doi: 10.1016/S0370-2693(03)00592-6
– volume: 586
  start-page: A141
  year: 2016
  ident: apjabe71cbib43
  publication-title: A&A
  doi: 10.1051/0004-6361/201526506
– year: 2016
  ident: apjabe71cbib32
– volume: 2020
  start-page: 030
  year: 2020
  ident: apjabe71cbib7
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/06/030
– volume: 2008
  start-page: 12
  year: 2008
  ident: apjabe71cbib35
  publication-title: JSMTE
  doi: 10.1088/1742-5468/2008/12/P12015
– volume: 6
  start-page: 031
  year: 2017
  ident: apjabe71cbib34
  publication-title: JCAP
  doi: 10.1088/1475-7516/2017/06/031
– year: 2016
  ident: apjabe71cbib1
– volume: 641
  start-page: A4
  year: 2020
  ident: apjabe71cbib44
  publication-title: A&A
  doi: 10.1051/0004-6361/201833881
– volume: 47
  start-page: 1127
  year: 2003
  ident: apjabe71cbib5
  publication-title: NewAR
  doi: 10.1016/j.newar.2003.09.038
– year: 2021
  ident: apjabe71cbib29
  publication-title: ai4cmb/ForSE v1.0.0
  doi: 10.5281/zenodo.4483567
– volume: 469
  start-page: 2821
  year: 2017
  ident: apjabe71cbib60
  publication-title: MNRAS
  doi: 10.1093/mnras/stx949
– volume: 594
  start-page: A9
  year: 2016
  ident: apjabe71cbib45
  publication-title: A&A
  doi: 10.1051/0004-6361/201525936
– volume: 170
  start-page: 335
  year: 2007
  ident: apjabe71cbib37
  publication-title: ApJS
  doi: 10.1086/513699
– volume: 480
  start-page: 3224
  year: 2018
  ident: apjabe71cbib23
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1956
– volume: 641
  start-page: A1
  year: 2020
  ident: apjabe71cbib40
  publication-title: A&A
  doi: 10.1051/0004-6361/201833880
– volume: 484
  start-page: 4127
  year: 2019
  ident: apjabe71cbib3
  publication-title: MNRAS
  doi: 10.1093/mnras/stz093
– volume: 586
  start-page: A133
  year: 2016
  ident: apjabe71cbib42
  publication-title: A&A
  doi: 10.1051/0004-6361/201425034
– volume: 618
  start-page: A166
  year: 2018
  ident: apjabe71cbib31
  publication-title: A&A
  doi: 10.1051/0004-6361/201832768
– volume: 111
  year: 2013
  ident: apjabe71cbib21
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.111.141301
– year: 2014
  ident: apjabe71cbib18
– volume: 94
  year: 2016
  ident: apjabe71cbib56
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.94.083526
– volume: 905
  start-page: 143
  year: 2020
  ident: apjabe71cbib51
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc47c
– volume: 790
  start-page: 104
  year: 2014
  ident: apjabe71cbib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/790/2/104
– year: 2021
  ident: apjabe71cbib53
– volume: 6
  start-page: 1
  year: 2019
  ident: apjabe71cbib36
  publication-title: ComAC
  doi: 10.1186/s40668-019-0029-9
– volume: 794
  start-page: 171
  year: 2014
  ident: apjabe71cbib58
  publication-title: ApJ
  doi: 10.1088/0004-637X/794/2/171
– volume: 489
  start-page: 2330
  year: 2019
  ident: apjabe71cbib12
  publication-title: MNRAS
  doi: 10.1093/mnras/stz806
– volume: 2020
  start-page: 047
  year: 2020
  ident: apjabe71cbib2
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/12/047
– volume: 30
  start-page: 682
  year: 1979
  ident: apjabe71cbib55
  publication-title: JETPL
– year: 2021
  ident: apjabe71cbib61
– volume: 10
  start-page: 31682
  year: 2015
  ident: apjabe71cbib63
  publication-title: SchpJ
  doi: 10.4249/scholarpedia.31682
– volume: 588
  start-page: A65
  year: 2016
  ident: apjabe71cbib28
  publication-title: A&A
  doi: 10.1051/0004-6361/201527678
– volume: 641
  start-page: A11
  year: 2020
  ident: apjabe71cbib49
  publication-title: A&A
  doi: 10.1051/0004-6361/201832618
– volume: 495
  start-page: 4227
  year: 2020
  ident: apjabe71cbib27
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1428
– volume: 121
  year: 2018
  ident: apjabe71cbib8
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.121.221301
– volume: 2020
  start-page: 017
  year: 2020
  ident: apjabe71cbib16
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/07/017
– volume: 622
  start-page: 759
  year: 2005
  ident: apjabe71cbib19
  publication-title: ApJ
  doi: 10.1086/427976
– volume: 199
  start-page: 1107
  year: 2020
  ident: apjabe71cbib57
  publication-title: JLTP
  doi: 10.1007/s10909-019-02329-w
– volume: 594
  start-page: A10
  year: 2016
  ident: apjabe71cbib48
  publication-title: A&A
  doi: 10.1051/0004-6361/201525967
– year: 2016
  ident: apjabe71cbib52
– volume: 142
  start-page: 419
  year: 1965
  ident: apjabe71cbib38
  publication-title: ApJ
  doi: 10.1086/148307
– volume: 23
  start-page: 347
  year: 1981
  ident: apjabe71cbib20
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.23.347
– volume: 55
  start-page: 7368
  year: 1997
  ident: apjabe71cbib25
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.55.7368
– volume: 495
  start-page: 578
  year: 2020
  ident: apjabe71cbib22
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1233
– volume: 55
  start-page: 1830
  year: 1997
  ident: apjabe71cbib66
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.55.1830
– volume: 594
  start-page: A25
  year: 2016
  ident: apjabe71cbib50
  publication-title: A&A
  doi: 10.1051/0004-6361/201526803
– volume: 74
  year: 2006
  ident: apjabe71cbib54
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.74.063523
– volume: 618
  start-page: C4
  year: 2018
  ident: apjabe71cbib64
  publication-title: A&A
  doi: 10.1051/0004-6361/201629992e
– volume: 641
  start-page: A6
  year: 2020
  ident: apjabe71cbib47
  publication-title: A&A
  doi: 10.1051/0004-6361/201833910
– volume: 647
  start-page: A128
  year: 2021
  ident: apjabe71cbib62
  publication-title: A&A
  doi: 10.1051/0004-6361/202039585
– volume: 114
  year: 2015
  ident: apjabe71cbib10
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.114.101301
– volume: 628
  start-page: A129
  year: 2019
  ident: apjabe71cbib30
  publication-title: A&A
  doi: 10.1051/0004-6361/201935211
– volume: 28
  year: 2019
  ident: apjabe71cbib11
  publication-title: A&C
  doi: 10.1016/j.ascom.2019.100307
– year: 2018
  ident: apjabe71cbib65
SSID ssj0004299
Score 2.5111423
Snippet We present F or SE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic...
We present ForSE (Foreground Scale Extender), a novel Python package that aims to overcome the current limitations in the simulation of diffuse Galactic...
SourceID unpaywall
osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 42
SubjectTerms Algorithms
Astronomical maps
ASTRONOMY AND ASTROPHYSICS
Astrophysics
Big Bang theory
Computer simulation
Cosmic dust
Cosmic microwave background
Cosmic microwave background radiation
Diffuse radiation
Dust
Dust emission
Galactic radiation
Neural networks
Radiation
Title ForSE: A GAN-based Algorithm for Extending CMB Foreground Models to Subdegree Angular Scales
URI https://www.proquest.com/docview/2515176785
https://www.osti.gov/servlets/purl/1836484
https://iopscience.iop.org/article/10.3847/1538-4357/abe71c/pdf
UnpaywallVersion publishedVersion
Volume 911
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Open access
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: O3W
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: IOP
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: M~E
  dateStart: 18950101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_a9QwFA_uhugvm07Hbt_IDyIo9O6apG3qb924cwieg3l4glDTl3SKXXtce8j8631pemMTUcTfQkna5OV9-bz05T1CnrEQIA-l8USotScUaE8CEx4LchNIyLmENtvnNDybiTfzYN7VOW3vwlSLTvUPsOkSBTsSWvnmqEuHrYyilY-GKjORD8OFzjfIZhggGO-Rzdn0PPnoQK_wQh7NXcZUN8T9qPzta-4Ypl6FAnYHdD5YlQt1_V0VxS37M9kmn9czd2En3warJhvAj1-SOv7H0h6RrQ6b0sR1f0zumXKH7CW1PS2vrq7pc9q23WFIvUPun7vWE_JpUi0vxq9oQl8nU89aRk2T4rJafm2-XFHExXTcHrajnaSnb0-oLQhq75OUmtpibEVNm4qiDtP41BialJc2OpZeIAOZ-imZTcbvT8-8rm6DBwgPGs_PmQT0W_IIXVQYKYQAiGtEZrKIAZcmBq4FoGpBbwp8ASyMmYE4yDImtMoV3yW9sirNHqG-4mwEmQqyfCQ0j6WMFfe51AECGxBBnwzXm5ZCl9Tc1tYoUnRuLElTS9LUkjR1JO2TFzcjFi6hxx_6Hlg-SHHbbEZdsKFH0KSoBUMhRZ8crtkj7QS_ThEuBn6ECACn9vKGZf76pf1_6XxAHjIbWdPGDx2SXrNcmSOERk12TDbe8Q_HnRD8BAJrB54
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_a9QwFA96Q_QXp9Oxc1PygwgKubsmaZv6WzfuHILHYB6cINT0JZ1i1x7XHjL_el-a3nAiivhbKEmbvLwvn5e-vEfIcx4BFJGyTEbGMKnBMAVcMh4WNlRQCAVdts95dLqQb5fhsq9z2t2FqVe96h9h0ycK9iR08i1Ql447GUUrH491buMAxitT3CY7UYhgfEB2FvOz9IMHvZJFIl76jKl-iP9R-dvX3DBMgxoF7AbovLupVvrqmy7Ln-zPbJd82s7ch518HW3afATff0nq-B9Le0Du99iUpr77Q3LLVnvkIG3caXl9eUVf0K7tD0OaPXLnzLcekY-zen0-fU1T-iadM2cZDU3Li3r9pf18SREX02l32I52kp68O6auIKi7T1IZ6oqxlQ1ta4o6zOBTa2laXbjoWHqODGSbx2Qxm74_OWV93QYGCA9aFhRcAfotRYwuKkw0QgDENTK3ecxBKJuAMBJQtaA3BYEEHiXcQhLmOZdGF1rsk0FVV_aA0EALPoFch3kxkUYkSiVaBEKZEIENyHBIxttNy6BPau5qa5QZOjeOpJkjaeZImnmSDsnL6xErn9DjD30PHR9kuG0uoy640CNoM9SCkVRySI627JH1gt9kCBfDIEYEgFN7dc0yf_3Sk3_pfEjucRdZ08UPHZFBu97YpwiN2vxZz_4_ANpqBqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ForSE%3A+A+GAN-based+Algorithm+for+Extending+CMB+Foreground+Models+to+Subdegree+Angular+Scales&rft.jtitle=The+Astrophysical+journal&rft.au=Krachmalnicoff%2C+Nicoletta&rft.au=Puglisi%2C+Giuseppe&rft.date=2021-04-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=911&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fabe71c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon