A General-Purpose Multi-Dimensional Convex Landscape Generator
Heuristic and evolutionary algorithms are proposed to solve challenging real-world optimization problems. In the evolutionary community, many benchmark problems for empirical evaluations of algorithms have been proposed. One of the most important classes of test problems is the class of convex funct...
Saved in:
| Published in | Mathematics (Basel) Vol. 10; no. 21; p. 3974 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.11.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-7390 2227-7390 |
| DOI | 10.3390/math10213974 |
Cover
| Abstract | Heuristic and evolutionary algorithms are proposed to solve challenging real-world optimization problems. In the evolutionary community, many benchmark problems for empirical evaluations of algorithms have been proposed. One of the most important classes of test problems is the class of convex functions, particularly the d-dimensional sphere function. However, the convex function type is somewhat limited. In principle, one can select a set of convex basis functions and use operations that preserve convexity to generate a family of convex functions. This method will inevitably introduce bias in favor of the basis functions. In this paper, the problem is solved by employing insights from computational geometry, which gives the first-ever general-purpose multi-dimensional convex landscape generator. The new proposed generator has the advantage of being generic, which means that it has no bias toward a specific analytical function. A set of N random d-dimensional points is generated for the construction of a d-dimensional convex hull. The upper part of the convex hull is removed by considering the normal of the polygons. The remaining part defines a convex function. It is shown that the complexity of constructing the function is O(Md3), where M is the number of polygons of the convex function. For the method to work as a benchmark function, queries of an arbitrary (d−1) dimensional input are generated, and the generator has to return the value of the convex function. The complexity of answering the query is O(Md). The convexity of the function from the generator is verified with a nonconvex ratio test. The performance of the generator is also evaluated using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) gradient descent algorithm. The source code of the generator is available. |
|---|---|
| AbstractList | Heuristic and evolutionary algorithms are proposed to solve challenging real-world optimization problems. In the evolutionary community, many benchmark problems for empirical evaluations of algorithms have been proposed. One of the most important classes of test problems is the class of convex functions, particularly the d-dimensional sphere function. However, the convex function type is somewhat limited. In principle, one can select a set of convex basis functions and use operations that preserve convexity to generate a family of convex functions. This method will inevitably introduce bias in favor of the basis functions. In this paper, the problem is solved by employing insights from computational geometry, which gives the first-ever general-purpose multi-dimensional convex landscape generator. The new proposed generator has the advantage of being generic, which means that it has no bias toward a specific analytical function. A set of N random d-dimensional points is generated for the construction of a d-dimensional convex hull. The upper part of the convex hull is removed by considering the normal of the polygons. The remaining part defines a convex function. It is shown that the complexity of constructing the function is O ( Md3 ) , where M is the number of polygons of the convex function. For the method to work as a benchmark function, queries of an arbitrary ( d−1 ) dimensional input are generated, and the generator has to return the value of the convex function. The complexity of answering the query is O ( Md ) . The convexity of the function from the generator is verified with a nonconvex ratio test. The performance of the generator is also evaluated using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) gradient descent algorithm. The source code of the generator is available. Heuristic and evolutionary algorithms are proposed to solve challenging real-world optimization problems. In the evolutionary community, many benchmark problems for empirical evaluations of algorithms have been proposed. One of the most important classes of test problems is the class of convex functions, particularly the d-dimensional sphere function. However, the convex function type is somewhat limited. In principle, one can select a set of convex basis functions and use operations that preserve convexity to generate a family of convex functions. This method will inevitably introduce bias in favor of the basis functions. In this paper, the problem is solved by employing insights from computational geometry, which gives the first-ever general-purpose multi-dimensional convex landscape generator. The new proposed generator has the advantage of being generic, which means that it has no bias toward a specific analytical function. A set of N random d-dimensional points is generated for the construction of a d-dimensional convex hull. The upper part of the convex hull is removed by considering the normal of the polygons. The remaining part defines a convex function. It is shown that the complexity of constructing the function is O(Md[sup.3] ), where M is the number of polygons of the convex function. For the method to work as a benchmark function, queries of an arbitrary (d−1) dimensional input are generated, and the generator has to return the value of the convex function. The complexity of answering the query is O(Md). The convexity of the function from the generator is verified with a nonconvex ratio test. The performance of the generator is also evaluated using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) gradient descent algorithm. The source code of the generator is available. |
| Audience | Academic |
| Author | Liu, Wenwen Yuen, Shiu Yin Chung, Kwok Wai Sung, Chi Wan |
| Author_xml | – sequence: 1 givenname: Wenwen orcidid: 0000-0002-2349-3704 surname: Liu fullname: Liu, Wenwen – sequence: 2 givenname: Shiu Yin orcidid: 0000-0002-5889-8808 surname: Yuen fullname: Yuen, Shiu Yin – sequence: 3 givenname: Kwok Wai orcidid: 0000-0002-0153-8801 surname: Chung fullname: Chung, Kwok Wai – sequence: 4 givenname: Chi Wan orcidid: 0000-0001-7468-9793 surname: Sung fullname: Sung, Chi Wan |
| BookMark | eNqFUV1vFCEUJaYm1to3f8AmvjotMDDAi8lmtR_JGn3QZ3L3wlQ2szDCTG3_fbHTmMaYCA9cLuccTs59TY5iip6Qt4yeta2h5weYfjDKWWuUeEGOOeeqUfXh6Fn9ipyWsqd1GdZqYY7Jh_Xq0kefYWi-znlMxa8-z8MUmo_h4GMJKcKw2qR46-9WW4iuIIz-iTKl_Ia87GEo_vTpPCHfLz5921w12y-X15v1tkFBu6lhrqMoWE_7as-hAd56kI5JrplQFOud0Z0XSJ1ARMk7qb3ZaYdMgtqx9oRcL7ouwd6OORwg39sEwT42Ur6xkKeAg7edNwhaoAanhAZlDGWMUi69lmBQVq1m0ZrjCPe_YBj-CDJqf2dpn2dZ8e8W_JjTz9mXye7TnGsuxXLVik62muqKOltQN1BNhNinKQPW7fwhYB1VH2p_rYRQUnDdVcL7hYA5lZJ9_z8X_C84hgmmOqD6Txj-TXoAzIaiyA |
| CitedBy_id | crossref_primary_10_12688_openreseurope_15789_1 crossref_primary_10_12688_openreseurope_15789_2 |
| Cites_doi | 10.1007/3-540-32494-1_4 10.1109/TCYB.2018.2825343 10.1016/0020-0190(73)90020-3 10.1109/CEC.2014.6900487 10.1016/j.ins.2013.04.015 10.1145/2001576.2001690 10.1016/j.ins.2018.10.009 10.1162/evco_a_00262 10.1109/ACCESS.2022.3144067 10.1109/TPAMI.1984.4767603 10.1109/TCYB.2020.3011828 10.1080/02331930701618740 10.1016/j.knosys.2021.107486 10.1162/evco_a_00194 10.1109/TPAMI.1982.4767221 10.1109/TEVC.2010.2059031 10.1007/978-981-16-6265-2_5 10.1007/s00500-010-0611-1 10.1109/TEVC.2021.3060012 10.1109/TPAMI.1982.4767314 10.1080/10556788.2020.1808977 10.1162/evco_a_00236 10.1109/TEVC.2005.863628 10.1007/978-3-642-41888-4_4 10.1017/CBO9780511804441 10.1109/TCYB.2019.2896021 10.1016/j.swevo.2018.04.005 10.1145/235815.235821 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/math10213974 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_6e9ca84c8ad748a7990110025e85a9c5 10.3390/math10213974 A744754286 10_3390_math10213974 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c406t-1d60c41f0f139dc9a23ea5d15281470ca2310be4c0d4ccc52658e9b8dc15a7b13 |
| IEDL.DBID | BENPR |
| ISSN | 2227-7390 |
| IngestDate | Fri Oct 03 12:44:26 EDT 2025 Sun Oct 26 04:10:19 EDT 2025 Fri Jul 25 11:53:00 EDT 2025 Mon Oct 20 17:03:47 EDT 2025 Thu Apr 24 23:08:17 EDT 2025 Thu Oct 16 04:33:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-1d60c41f0f139dc9a23ea5d15281470ca2310be4c0d4ccc52658e9b8dc15a7b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7468-9793 0000-0002-2349-3704 0000-0002-0153-8801 0000-0002-5889-8808 |
| OpenAccessLink | https://www.proquest.com/docview/2734653808?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2734653808 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6e9ca84c8ad748a7990110025e85a9c5 unpaywall_primary_10_3390_math10213974 proquest_journals_2734653808 gale_infotracacademiconefile_A744754286 crossref_primary_10_3390_math10213974 crossref_citationtrail_10_3390_math10213974 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Jarvis (ref_38) 1973; 2 Das (ref_11) 2010; 15 (ref_22) 2020; 28 Kudela (ref_28) 2022; 10 ref_14 ref_36 ref_13 Chassery (ref_35) 1984; PAMI-6 ref_33 ref_10 Malan (ref_19) 2013; 241 ref_32 Li (ref_27) 2018; 49 ref_31 Barber (ref_39) 1996; 22 ref_18 ref_16 ref_15 ref_37 Karaboga (ref_9) 2009; 214 Gee (ref_25) 2016; 47 Hansen (ref_3) 2021; 36 Li (ref_7) 2011; 15 Tamura (ref_40) 2019; 476 ref_24 (ref_21) 2017; 25 ref_44 ref_43 ref_20 ref_42 Yazdani (ref_29) 2020; 52 ref_41 Salawudeen (ref_12) 2021; 232 Kerschke (ref_17) 2019; 27 ref_2 Taylan (ref_1) 2007; 56 Kim (ref_34) 1982; PAMI-4 Gallagher (ref_6) 2006; 10 ref_8 Jiang (ref_26) 2019; 50 Lou (ref_23) 2019; 44 ref_5 ref_4 Yazdani (ref_30) 2021; 25 |
| References_xml | – ident: ref_14 doi: 10.1007/3-540-32494-1_4 – volume: 49 start-page: 2316 year: 2018 ident: ref_27 article-title: An open framework for constructing continuous optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2825343 – volume: 2 start-page: 18 year: 1973 ident: ref_38 article-title: On the identification of the convex hull of a finite set of points in the plane publication-title: Inf. Process. Lett. doi: 10.1016/0020-0190(73)90020-3 – ident: ref_5 – ident: ref_24 doi: 10.1109/CEC.2014.6900487 – ident: ref_32 – volume: 241 start-page: 148 year: 2013 ident: ref_19 article-title: A survey of techniques for characterising fitness landscapes and some possible ways forward publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.04.015 – ident: ref_18 doi: 10.1145/2001576.2001690 – volume: 476 start-page: 64 year: 2019 ident: ref_40 article-title: Quantitative measure of nonconvexity for black-box continuous functions publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.10.009 – volume: 28 start-page: 379 year: 2020 ident: ref_22 article-title: Generating new space-filling test instances for continuous black-box optimization publication-title: Evol. Comput. doi: 10.1162/evco_a_00262 – volume: 10 start-page: 8262 year: 2022 ident: ref_28 article-title: New Benchmark Functions for Single-Objective Optimization Based on a Zigzag Pattern publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3144067 – ident: ref_16 – ident: ref_37 – ident: ref_42 – volume: PAMI-6 start-page: 794 year: 1984 ident: ref_35 article-title: An iterative segmentation method based on a contextual color and shape criterion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1984.4767603 – ident: ref_44 – volume: 52 start-page: 3380 year: 2020 ident: ref_29 article-title: Benchmarking continuous dynamic optimization: Survey and generalized test suite publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3011828 – volume: 56 start-page: 675 year: 2007 ident: ref_1 article-title: New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and technology publication-title: Optimization doi: 10.1080/02331930701618740 – volume: 232 start-page: 107486 year: 2021 ident: ref_12 article-title: A Novel Smell Agent Optimization (SAO): An extensive CEC study and engineering application publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107486 – volume: 25 start-page: 529 year: 2017 ident: ref_21 article-title: Performance analysis of continuous black-box optimization algorithms via footprints in instance space publication-title: Evol. Comput. doi: 10.1162/evco_a_00194 – ident: ref_33 doi: 10.1109/TPAMI.1982.4767221 – ident: ref_8 – ident: ref_4 – ident: ref_31 – volume: 15 start-page: 4 year: 2010 ident: ref_11 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – ident: ref_13 doi: 10.1007/978-981-16-6265-2_5 – volume: 15 start-page: 1689 year: 2011 ident: ref_7 article-title: A framework for generating tunable test functions for multimodal optimization publication-title: Soft Comput. doi: 10.1007/s00500-010-0611-1 – ident: ref_10 – volume: 47 start-page: 461 year: 2016 ident: ref_25 article-title: A benchmark test suite for dynamic evolutionary multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 25 start-page: 630 year: 2021 ident: ref_30 article-title: A survey of evolutionary continuous dynamic optimization over two decades—Part B publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3060012 – volume: 214 start-page: 108 year: 2009 ident: ref_9 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. – ident: ref_41 – ident: ref_15 – volume: PAMI-4 start-page: 612 year: 1982 ident: ref_34 article-title: Convex digital solids publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1982.4767314 – volume: 36 start-page: 114 year: 2021 ident: ref_3 article-title: COCO: A platform for comparing continuous optimizers in a black-box setting publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2020.1808977 – volume: 27 start-page: 99 year: 2019 ident: ref_17 article-title: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning publication-title: Evol. Comput. doi: 10.1162/evco_a_00236 – ident: ref_36 – volume: 10 start-page: 590 year: 2006 ident: ref_6 article-title: A general-purpose tunable landscape generator publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.863628 – ident: ref_20 doi: 10.1007/978-3-642-41888-4_4 – ident: ref_43 – ident: ref_2 doi: 10.1017/CBO9780511804441 – volume: 50 start-page: 2814 year: 2019 ident: ref_26 article-title: A scalable test suite for continuous dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2896021 – volume: 44 start-page: 287 year: 2019 ident: ref_23 article-title: On constructing alternative benchmark suite for evolutionary algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.04.005 – volume: 22 start-page: 469 year: 1996 ident: ref_39 article-title: The quickhull algorithm for convex hulls publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/235815.235821 |
| SSID | ssj0000913849 |
| Score | 2.223548 |
| Snippet | Heuristic and evolutionary algorithms are proposed to solve challenging real-world optimization problems. In the evolutionary community, many benchmark... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3974 |
| SubjectTerms | Algorithms Basis functions Benchmarks Bias Complexity Computational geometry continuous black-box optimization Control theory Convex analysis convex function Convex functions convex hull Convexity Empirical analysis Evolutionary algorithms Function generators Generators Geometry Optimization Polygons Source code Tests, problems and exercises |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEICDeNE9iE9cX_Tg4yBhk23SJhdhXV1EVDy4sLeQpCkeliruivrvnWm7S0XUi9eSwmQm6czQmW8IOQxaiyTPJWVeSCpy5ai2UtFExiKxTOaqHNp3e5dcDcX1SI4ao76wJqzCA1eK6yRBe6uEVzZLhbIp_sdBbKgMSlrtS3opU7qRTJXfYM1jJXRV6R5DXt-B-O8Rx1iD_xVffFCJ6v_-QW6Rpdfi2X682fG44XEGq2SlDhWjXiXiGlkIxTpp3c45q5MNctaLam40vQeNPU1CVHbU0guE9lfAjaiPheXv0Q029WK5U_0KJNubZDi4fOhf0XoiAvXgeKeUZwnolOcsh31kXttuHKzMwAcrLlLmLUZrLgjPMuG9R_S9CtqpzHNpU8fjLbJYPBVhm0SQFvNgQ6atY8I77nDwiGN5Chlf4Klqk9OZjoyvceE4tWJsIG1AjZqmRtvkaL76ucJk_LDuHNU9X4Nw6_IBmNzUJjd_mbxNTtBYBq8giORt3UkAG0OYlemlSDGEvCppk72ZPU19NycGgT5wFBWDPR7Pbfyr2Dv_IfYuWe5i70TZyLhHFqcvr2EfIpqpOygP7ycf_fBR priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbxMxDLege4A9sPElyj50D3w8oKyXNsklL5u6wTQhNu2BSuMpSnI5QFRttbaw7a-ffZdWBQRC4vXkRPHZju07-2eAF9EYoapKsjwIyUSlPTNOaqZkTyiXy0rXQ_tOz9TJQLy_kBcrXfxUVomp-Nf6kqY-TVZgVo623enyDvpO0ZmU1cH39C2JK4XpiDZdfRfWlMRovAVrg7Pz_ieaKbdY3dS792gfjAK_0DBr2uknT1QD9v9-La_Dvflo4q5_uOFwxe8cb4BbnLgpN_m2N5_5vXDzC5jj_7C0CQ9SUJr1Gy16CHfi6BGsny4RXaePYb-fJYRqdo6yGU9jVvfusrc0HqCB9siOqIT9KvtA7cNUWJWWYFr_BAbH7z4enbA0e4EFdPEzxkuF0uNVXuG7KoNx3V50skRvr7ko8uAoLvRRhLwUIQQC2dfReF0GLl3hee8ptEbjUXwGGSbgPLpYGudzETz3NOLE51WBuWVEVtvwZiEHGxIwOc3HGFpMUEhqdlVqbXi5pJ40gBx_oDskkS5pCEa7fjC-_GyTVVoVTXBaBO3KQmhX0E9CwqSVUUtngmzDa1IIS8aORwou9SwgYwSbZfsF4SViBqfasL3QGZtugakl6CBUep0jj6-WevTXYz__V8ItuN-lToy6LXIbWrPLedzB-Gjmd5MJ3AL_wgdP priority: 102 providerName: Unpaywall |
| Title | A General-Purpose Multi-Dimensional Convex Landscape Generator |
| URI | https://www.proquest.com/docview/2734653808 https://www.mdpi.com/2227-7390/10/21/3974/pdf?version=1667178928 https://doaj.org/article/6e9ca84c8ad748a7990110025e85a9c5 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: AMVHM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QPsAfGpBUaVBxgPyFrS2on9AKgbKxPaqgpRaTxZ_sr2ULVl7QT773eXOmHTxB4TOZZzZ_vu7LvfD-BdUIoXVSVY5rhgvJKWKSMkK0SfFyYTlaxJ-05HxfGEfz8TZxswamphKK2y2RPrjdrPHZ2R7xMMC3YgM_ll8ZsRaxTdrjYUGiZSK_hPNcTYJmz1CBmrA1sHR6Pxj_bUhVAwJVfrDPg-xvv76BdeEL012mV-xzbVEP73N-pteHQ1W5jrP2Y6vWWJhk_hSXQh08Fa589gI8yew_Zpi7-6fAGfB2nEk2ZjlOR8GdK60pZ9JTD_NRBHekgJ53_TEyr2pTSo-AkG4S9hMjz6eXjMIlMCc2iQVyz3Bco6r7IK_8M7ZXr9YIRH2yxzXmbOkBdnA3eZ5845gsSXQVnpXS5MafP-K-jM5rOwAymGy3kwwStjM-5sbomQxGZViZFgyEuZwMdGRtpFGHFis5hqDCdIovq2RBN437ZerOEz_tPugMTdtiHQ6_rF_PJcxzWki6CckdxJ40suTUlXeoQgK4IURjmRwAdSlqaliUNyJlYY4I8RyJUelIRuiPFWkcBuo08d1-xS_5thCey1On5w2K8f7ucNPO5RtURdurgLndXlVXiLPszKdmFTDr914_Ts1icB-DQZjQe_bgDpovJ1 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ9qWgo5lPZQWTgbO7EPFC0vLWV3hSqQuLmO47SH1e6WXUT5c_1tnck6gaoqN66RYzkz9jzime8DeO-1FllVScadkExUqmDaSsUymYrMclmpmrRvMMx65-LLhbxYgt9NLwyVVTY2sTbU5cTRP_JtgmHBCRRXu9OfjFij6Ha1odCwgVqh3KkhxkJjx4m_ucYUbrZzfID63up0jg7P9nsssAwwh85szpIyw3UmFa8wGCqdtp3UW1miX1OJyLmzFAEVXjheCuccwckrrwtVukTavEhSnPcRrIhUaEz-VvYOh6df2788hLqphF5U3Kep5tsYh_4gOm2MA8RfvrCmDPjXMazB6tV4am-u7Wh0x_MdPYUnIWSNu4s99gyW_Pg5rA1avNfZC_jcjQN-NTtFzU1mPq47e9kBkQcsgD_ifSpw_xX3qbmYyq7CK5j0v4TzB5HZK1geT8b-NcSYnife-lLbggtXJAURoBS8yjHz9EmuIvjUyMi4AFtO7Bkjg-kLSdTclWgEW-3o6QKu4z_j9kjc7RgC2a4fTC6_m3BmTea1s0o4ZctcKJvTFSIh1kqvpNVORvCRlGXIFOCSnA0dDfhhBKplujmhKWJ-l0Ww3ujTBBsxM7c7OoIPrY7vXfab--fZhNXe2aBv-sfDk7fwuEOdGnXb5Doszy-v_DuMn-bFRtikMXx76HPxBxJEK8k |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IF5VAy3kQOGArHU2dmIfoFq6LC19qAcq9eY6jkMPq91td6vSv8avYyZxQhGit14jx3Jmxp6ZeOb7AN56rUVWVZJxJyQTlSqYtlKxTKYis1xWqibtOzjMdo7FtxN5sgS_2l4YKqtsz8T6oC6njv6R9wiGBSdQXPWqUBZxNBxtzc4ZMUjRTWtLp9GYyJ6_vsL0bf5xd4i63uz3R1--b--wwDDAHDqyBUvKDNeYVLzCQKh02vZTb2WJPk0lIufOUvRTeOF4KZxzBCWvvC5U6RJp8yJJcd57cD8nFHfqUh997f7vEN6mErqptU9TzXsYgZ4RkTZGAOIvL1iTBfzrElbg4eVkZq-v7Hh8w-eNnsDjEKzGg8a6nsKSnzyDlYMO6XX-HD4N4oBczY5QZ9O5j-ueXjYk2oAG8iPeptL2n_E-tRVTwVV4BdP9F3B8JxJbheXJdOLXIMbEPPHWl9oWXLgiKYj6pOBVjjmnT3IVwYdWRsYFwHLizRgbTFxIouamRCPY7EbPGqCO_4z7TOLuxhC8dv1gevHDhN1qMq-dVcIpW-ZC2ZwuDwmrVnolrXYygvekLEOHAC7J2dDLgB9GcFpmkBOOImZ2WQTrrT5NOB3m5o8tR_Cu0_Gty355-zxv4AHuBrO_e7j3Ch71qUWj7pdch-XFxaXfwMBpUbyuLTSG07veEr8B3IopYw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbxMxDLege4A9sPElyj50D3w8oKyXNsklL5u6wTQhNu2BSuMpSnI5QFRttbaw7a-ffZdWBQRC4vXkRPHZju07-2eAF9EYoapKsjwIyUSlPTNOaqZkTyiXy0rXQ_tOz9TJQLy_kBcrXfxUVomp-Nf6kqY-TVZgVo623enyDvpO0ZmU1cH39C2JK4XpiDZdfRfWlMRovAVrg7Pz_ieaKbdY3dS792gfjAK_0DBr2uknT1QD9v9-La_Dvflo4q5_uOFwxe8cb4BbnLgpN_m2N5_5vXDzC5jj_7C0CQ9SUJr1Gy16CHfi6BGsny4RXaePYb-fJYRqdo6yGU9jVvfusrc0HqCB9siOqIT9KvtA7cNUWJWWYFr_BAbH7z4enbA0e4EFdPEzxkuF0uNVXuG7KoNx3V50skRvr7ko8uAoLvRRhLwUIQQC2dfReF0GLl3hee8ptEbjUXwGGSbgPLpYGudzETz3NOLE51WBuWVEVtvwZiEHGxIwOc3HGFpMUEhqdlVqbXi5pJ40gBx_oDskkS5pCEa7fjC-_GyTVVoVTXBaBO3KQmhX0E9CwqSVUUtngmzDa1IIS8aORwou9SwgYwSbZfsF4SViBqfasL3QGZtugakl6CBUep0jj6-WevTXYz__V8ItuN-lToy6LXIbWrPLedzB-Gjmd5MJ3AL_wgdP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General-Purpose+Multi-Dimensional+Convex+Landscape+Generator&rft.jtitle=Mathematics+%28Basel%29&rft.au=Liu%2C+Wenwen&rft.au=Yuen%2C+Shiu+Yin&rft.au=Chung%2C+Kwok+Wai&rft.au=Sung%2C+Chi+Wan&rft.date=2022-11-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=21&rft.spage=3974&rft_id=info:doi/10.3390%2Fmath10213974&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math10213974 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |