A General-Purpose Multi-Dimensional Convex Landscape Generator

Heuristic and evolutionary algorithms are proposed to solve challenging real-world optimization problems. In the evolutionary community, many benchmark problems for empirical evaluations of algorithms have been proposed. One of the most important classes of test problems is the class of convex funct...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 10; no. 21; p. 3974
Main Authors Liu, Wenwen, Yuen, Shiu Yin, Chung, Kwok Wai, Sung, Chi Wan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2022
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math10213974

Cover

Abstract Heuristic and evolutionary algorithms are proposed to solve challenging real-world optimization problems. In the evolutionary community, many benchmark problems for empirical evaluations of algorithms have been proposed. One of the most important classes of test problems is the class of convex functions, particularly the d-dimensional sphere function. However, the convex function type is somewhat limited. In principle, one can select a set of convex basis functions and use operations that preserve convexity to generate a family of convex functions. This method will inevitably introduce bias in favor of the basis functions. In this paper, the problem is solved by employing insights from computational geometry, which gives the first-ever general-purpose multi-dimensional convex landscape generator. The new proposed generator has the advantage of being generic, which means that it has no bias toward a specific analytical function. A set of N random d-dimensional points is generated for the construction of a d-dimensional convex hull. The upper part of the convex hull is removed by considering the normal of the polygons. The remaining part defines a convex function. It is shown that the complexity of constructing the function is O(Md3), where M is the number of polygons of the convex function. For the method to work as a benchmark function, queries of an arbitrary (d−1) dimensional input are generated, and the generator has to return the value of the convex function. The complexity of answering the query is O(Md). The convexity of the function from the generator is verified with a nonconvex ratio test. The performance of the generator is also evaluated using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) gradient descent algorithm. The source code of the generator is available.
AbstractList Heuristic and evolutionary algorithms are proposed to solve challenging real-world optimization problems. In the evolutionary community, many benchmark problems for empirical evaluations of algorithms have been proposed. One of the most important classes of test problems is the class of convex functions, particularly the d-dimensional sphere function. However, the convex function type is somewhat limited. In principle, one can select a set of convex basis functions and use operations that preserve convexity to generate a family of convex functions. This method will inevitably introduce bias in favor of the basis functions. In this paper, the problem is solved by employing insights from computational geometry, which gives the first-ever general-purpose multi-dimensional convex landscape generator. The new proposed generator has the advantage of being generic, which means that it has no bias toward a specific analytical function. A set of N random d-dimensional points is generated for the construction of a d-dimensional convex hull. The upper part of the convex hull is removed by considering the normal of the polygons. The remaining part defines a convex function. It is shown that the complexity of constructing the function is O ( Md3 ) , where M is the number of polygons of the convex function. For the method to work as a benchmark function, queries of an arbitrary ( d−1 ) dimensional input are generated, and the generator has to return the value of the convex function. The complexity of answering the query is O ( Md ) . The convexity of the function from the generator is verified with a nonconvex ratio test. The performance of the generator is also evaluated using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) gradient descent algorithm. The source code of the generator is available.
Heuristic and evolutionary algorithms are proposed to solve challenging real-world optimization problems. In the evolutionary community, many benchmark problems for empirical evaluations of algorithms have been proposed. One of the most important classes of test problems is the class of convex functions, particularly the d-dimensional sphere function. However, the convex function type is somewhat limited. In principle, one can select a set of convex basis functions and use operations that preserve convexity to generate a family of convex functions. This method will inevitably introduce bias in favor of the basis functions. In this paper, the problem is solved by employing insights from computational geometry, which gives the first-ever general-purpose multi-dimensional convex landscape generator. The new proposed generator has the advantage of being generic, which means that it has no bias toward a specific analytical function. A set of N random d-dimensional points is generated for the construction of a d-dimensional convex hull. The upper part of the convex hull is removed by considering the normal of the polygons. The remaining part defines a convex function. It is shown that the complexity of constructing the function is O(Md[sup.3] ), where M is the number of polygons of the convex function. For the method to work as a benchmark function, queries of an arbitrary (d−1) dimensional input are generated, and the generator has to return the value of the convex function. The complexity of answering the query is O(Md). The convexity of the function from the generator is verified with a nonconvex ratio test. The performance of the generator is also evaluated using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) gradient descent algorithm. The source code of the generator is available.
Audience Academic
Author Liu, Wenwen
Yuen, Shiu Yin
Chung, Kwok Wai
Sung, Chi Wan
Author_xml – sequence: 1
  givenname: Wenwen
  orcidid: 0000-0002-2349-3704
  surname: Liu
  fullname: Liu, Wenwen
– sequence: 2
  givenname: Shiu Yin
  orcidid: 0000-0002-5889-8808
  surname: Yuen
  fullname: Yuen, Shiu Yin
– sequence: 3
  givenname: Kwok Wai
  orcidid: 0000-0002-0153-8801
  surname: Chung
  fullname: Chung, Kwok Wai
– sequence: 4
  givenname: Chi Wan
  orcidid: 0000-0001-7468-9793
  surname: Sung
  fullname: Sung, Chi Wan
BookMark eNqFUV1vFCEUJaYm1to3f8AmvjotMDDAi8lmtR_JGn3QZ3L3wlQ2szDCTG3_fbHTmMaYCA9cLuccTs59TY5iip6Qt4yeta2h5weYfjDKWWuUeEGOOeeqUfXh6Fn9ipyWsqd1GdZqYY7Jh_Xq0kefYWi-znlMxa8-z8MUmo_h4GMJKcKw2qR46-9WW4iuIIz-iTKl_Ia87GEo_vTpPCHfLz5921w12y-X15v1tkFBu6lhrqMoWE_7as-hAd56kI5JrplQFOud0Z0XSJ1ARMk7qb3ZaYdMgtqx9oRcL7ouwd6OORwg39sEwT42Ur6xkKeAg7edNwhaoAanhAZlDGWMUi69lmBQVq1m0ZrjCPe_YBj-CDJqf2dpn2dZ8e8W_JjTz9mXye7TnGsuxXLVik62muqKOltQN1BNhNinKQPW7fwhYB1VH2p_rYRQUnDdVcL7hYA5lZJ9_z8X_C84hgmmOqD6Txj-TXoAzIaiyA
CitedBy_id crossref_primary_10_12688_openreseurope_15789_1
crossref_primary_10_12688_openreseurope_15789_2
Cites_doi 10.1007/3-540-32494-1_4
10.1109/TCYB.2018.2825343
10.1016/0020-0190(73)90020-3
10.1109/CEC.2014.6900487
10.1016/j.ins.2013.04.015
10.1145/2001576.2001690
10.1016/j.ins.2018.10.009
10.1162/evco_a_00262
10.1109/ACCESS.2022.3144067
10.1109/TPAMI.1984.4767603
10.1109/TCYB.2020.3011828
10.1080/02331930701618740
10.1016/j.knosys.2021.107486
10.1162/evco_a_00194
10.1109/TPAMI.1982.4767221
10.1109/TEVC.2010.2059031
10.1007/978-981-16-6265-2_5
10.1007/s00500-010-0611-1
10.1109/TEVC.2021.3060012
10.1109/TPAMI.1982.4767314
10.1080/10556788.2020.1808977
10.1162/evco_a_00236
10.1109/TEVC.2005.863628
10.1007/978-3-642-41888-4_4
10.1017/CBO9780511804441
10.1109/TCYB.2019.2896021
10.1016/j.swevo.2018.04.005
10.1145/235815.235821
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/math10213974
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_6e9ca84c8ad748a7990110025e85a9c5
10.3390/math10213974
A744754286
10_3390_math10213974
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c406t-1d60c41f0f139dc9a23ea5d15281470ca2310be4c0d4ccc52658e9b8dc15a7b13
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Fri Oct 03 12:44:26 EDT 2025
Sun Oct 26 04:10:19 EDT 2025
Fri Jul 25 11:53:00 EDT 2025
Mon Oct 20 17:03:47 EDT 2025
Thu Apr 24 23:08:17 EDT 2025
Thu Oct 16 04:33:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-1d60c41f0f139dc9a23ea5d15281470ca2310be4c0d4ccc52658e9b8dc15a7b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7468-9793
0000-0002-2349-3704
0000-0002-0153-8801
0000-0002-5889-8808
OpenAccessLink https://www.proquest.com/docview/2734653808?pq-origsite=%requestingapplication%&accountid=15518
PQID 2734653808
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_6e9ca84c8ad748a7990110025e85a9c5
unpaywall_primary_10_3390_math10213974
proquest_journals_2734653808
gale_infotracacademiconefile_A744754286
crossref_primary_10_3390_math10213974
crossref_citationtrail_10_3390_math10213974
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jarvis (ref_38) 1973; 2
Das (ref_11) 2010; 15
(ref_22) 2020; 28
Kudela (ref_28) 2022; 10
ref_14
ref_36
ref_13
Chassery (ref_35) 1984; PAMI-6
ref_33
ref_10
Malan (ref_19) 2013; 241
ref_32
Li (ref_27) 2018; 49
ref_31
Barber (ref_39) 1996; 22
ref_18
ref_16
ref_15
ref_37
Karaboga (ref_9) 2009; 214
Gee (ref_25) 2016; 47
Hansen (ref_3) 2021; 36
Li (ref_7) 2011; 15
Tamura (ref_40) 2019; 476
ref_24
(ref_21) 2017; 25
ref_44
ref_43
ref_20
ref_42
Yazdani (ref_29) 2020; 52
ref_41
Salawudeen (ref_12) 2021; 232
Kerschke (ref_17) 2019; 27
ref_2
Taylan (ref_1) 2007; 56
Kim (ref_34) 1982; PAMI-4
Gallagher (ref_6) 2006; 10
ref_8
Jiang (ref_26) 2019; 50
Lou (ref_23) 2019; 44
ref_5
ref_4
Yazdani (ref_30) 2021; 25
References_xml – ident: ref_14
  doi: 10.1007/3-540-32494-1_4
– volume: 49
  start-page: 2316
  year: 2018
  ident: ref_27
  article-title: An open framework for constructing continuous optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2825343
– volume: 2
  start-page: 18
  year: 1973
  ident: ref_38
  article-title: On the identification of the convex hull of a finite set of points in the plane
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(73)90020-3
– ident: ref_5
– ident: ref_24
  doi: 10.1109/CEC.2014.6900487
– ident: ref_32
– volume: 241
  start-page: 148
  year: 2013
  ident: ref_19
  article-title: A survey of techniques for characterising fitness landscapes and some possible ways forward
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.04.015
– ident: ref_18
  doi: 10.1145/2001576.2001690
– volume: 476
  start-page: 64
  year: 2019
  ident: ref_40
  article-title: Quantitative measure of nonconvexity for black-box continuous functions
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.10.009
– volume: 28
  start-page: 379
  year: 2020
  ident: ref_22
  article-title: Generating new space-filling test instances for continuous black-box optimization
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00262
– volume: 10
  start-page: 8262
  year: 2022
  ident: ref_28
  article-title: New Benchmark Functions for Single-Objective Optimization Based on a Zigzag Pattern
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3144067
– ident: ref_16
– ident: ref_37
– ident: ref_42
– volume: PAMI-6
  start-page: 794
  year: 1984
  ident: ref_35
  article-title: An iterative segmentation method based on a contextual color and shape criterion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1984.4767603
– ident: ref_44
– volume: 52
  start-page: 3380
  year: 2020
  ident: ref_29
  article-title: Benchmarking continuous dynamic optimization: Survey and generalized test suite
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3011828
– volume: 56
  start-page: 675
  year: 2007
  ident: ref_1
  article-title: New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and technology
  publication-title: Optimization
  doi: 10.1080/02331930701618740
– volume: 232
  start-page: 107486
  year: 2021
  ident: ref_12
  article-title: A Novel Smell Agent Optimization (SAO): An extensive CEC study and engineering application
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107486
– volume: 25
  start-page: 529
  year: 2017
  ident: ref_21
  article-title: Performance analysis of continuous black-box optimization algorithms via footprints in instance space
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00194
– ident: ref_33
  doi: 10.1109/TPAMI.1982.4767221
– ident: ref_8
– ident: ref_4
– ident: ref_31
– volume: 15
  start-page: 4
  year: 2010
  ident: ref_11
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– ident: ref_13
  doi: 10.1007/978-981-16-6265-2_5
– volume: 15
  start-page: 1689
  year: 2011
  ident: ref_7
  article-title: A framework for generating tunable test functions for multimodal optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0611-1
– ident: ref_10
– volume: 47
  start-page: 461
  year: 2016
  ident: ref_25
  article-title: A benchmark test suite for dynamic evolutionary multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 25
  start-page: 630
  year: 2021
  ident: ref_30
  article-title: A survey of evolutionary continuous dynamic optimization over two decades—Part B
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3060012
– volume: 214
  start-page: 108
  year: 2009
  ident: ref_9
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– ident: ref_41
– ident: ref_15
– volume: PAMI-4
  start-page: 612
  year: 1982
  ident: ref_34
  article-title: Convex digital solids
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1982.4767314
– volume: 36
  start-page: 114
  year: 2021
  ident: ref_3
  article-title: COCO: A platform for comparing continuous optimizers in a black-box setting
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2020.1808977
– volume: 27
  start-page: 99
  year: 2019
  ident: ref_17
  article-title: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00236
– ident: ref_36
– volume: 10
  start-page: 590
  year: 2006
  ident: ref_6
  article-title: A general-purpose tunable landscape generator
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.863628
– ident: ref_20
  doi: 10.1007/978-3-642-41888-4_4
– ident: ref_43
– ident: ref_2
  doi: 10.1017/CBO9780511804441
– volume: 50
  start-page: 2814
  year: 2019
  ident: ref_26
  article-title: A scalable test suite for continuous dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2896021
– volume: 44
  start-page: 287
  year: 2019
  ident: ref_23
  article-title: On constructing alternative benchmark suite for evolutionary algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.04.005
– volume: 22
  start-page: 469
  year: 1996
  ident: ref_39
  article-title: The quickhull algorithm for convex hulls
  publication-title: ACM Trans. Math. Softw. (TOMS)
  doi: 10.1145/235815.235821
SSID ssj0000913849
Score 2.223548
Snippet Heuristic and evolutionary algorithms are proposed to solve challenging real-world optimization problems. In the evolutionary community, many benchmark...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3974
SubjectTerms Algorithms
Basis functions
Benchmarks
Bias
Complexity
Computational geometry
continuous black-box optimization
Control theory
Convex analysis
convex function
Convex functions
convex hull
Convexity
Empirical analysis
Evolutionary algorithms
Function generators
Generators
Geometry
Optimization
Polygons
Source code
Tests, problems and exercises
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEICDeNE9iE9cX_Tg4yBhk23SJhdhXV1EVDy4sLeQpCkeliruivrvnWm7S0XUi9eSwmQm6czQmW8IOQxaiyTPJWVeSCpy5ai2UtFExiKxTOaqHNp3e5dcDcX1SI4ao76wJqzCA1eK6yRBe6uEVzZLhbIp_sdBbKgMSlrtS3opU7qRTJXfYM1jJXRV6R5DXt-B-O8Rx1iD_xVffFCJ6v_-QW6Rpdfi2X682fG44XEGq2SlDhWjXiXiGlkIxTpp3c45q5MNctaLam40vQeNPU1CVHbU0guE9lfAjaiPheXv0Q029WK5U_0KJNubZDi4fOhf0XoiAvXgeKeUZwnolOcsh31kXttuHKzMwAcrLlLmLUZrLgjPMuG9R_S9CtqpzHNpU8fjLbJYPBVhm0SQFvNgQ6atY8I77nDwiGN5Chlf4Klqk9OZjoyvceE4tWJsIG1AjZqmRtvkaL76ucJk_LDuHNU9X4Nw6_IBmNzUJjd_mbxNTtBYBq8giORt3UkAG0OYlemlSDGEvCppk72ZPU19NycGgT5wFBWDPR7Pbfyr2Dv_IfYuWe5i70TZyLhHFqcvr2EfIpqpOygP7ycf_fBR
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbxMxDLege4A9sPElyj50D3w8oKyXNsklL5u6wTQhNu2BSuMpSnI5QFRttbaw7a-ffZdWBQRC4vXkRPHZju07-2eAF9EYoapKsjwIyUSlPTNOaqZkTyiXy0rXQ_tOz9TJQLy_kBcrXfxUVomp-Nf6kqY-TVZgVo623enyDvpO0ZmU1cH39C2JK4XpiDZdfRfWlMRovAVrg7Pz_ieaKbdY3dS792gfjAK_0DBr2uknT1QD9v9-La_Dvflo4q5_uOFwxe8cb4BbnLgpN_m2N5_5vXDzC5jj_7C0CQ9SUJr1Gy16CHfi6BGsny4RXaePYb-fJYRqdo6yGU9jVvfusrc0HqCB9siOqIT9KvtA7cNUWJWWYFr_BAbH7z4enbA0e4EFdPEzxkuF0uNVXuG7KoNx3V50skRvr7ko8uAoLvRRhLwUIQQC2dfReF0GLl3hee8ptEbjUXwGGSbgPLpYGudzETz3NOLE51WBuWVEVtvwZiEHGxIwOc3HGFpMUEhqdlVqbXi5pJ40gBx_oDskkS5pCEa7fjC-_GyTVVoVTXBaBO3KQmhX0E9CwqSVUUtngmzDa1IIS8aORwou9SwgYwSbZfsF4SViBqfasL3QGZtugakl6CBUep0jj6-WevTXYz__V8ItuN-lToy6LXIbWrPLedzB-Gjmd5MJ3AL_wgdP
  priority: 102
  providerName: Unpaywall
Title A General-Purpose Multi-Dimensional Convex Landscape Generator
URI https://www.proquest.com/docview/2734653808
https://www.mdpi.com/2227-7390/10/21/3974/pdf?version=1667178928
https://doaj.org/article/6e9ca84c8ad748a7990110025e85a9c5
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: AMVHM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QPsAfGpBUaVBxgPyFrS2on9AKgbKxPaqgpRaTxZ_sr2ULVl7QT773eXOmHTxB4TOZZzZ_vu7LvfD-BdUIoXVSVY5rhgvJKWKSMkK0SfFyYTlaxJ-05HxfGEfz8TZxswamphKK2y2RPrjdrPHZ2R7xMMC3YgM_ll8ZsRaxTdrjYUGiZSK_hPNcTYJmz1CBmrA1sHR6Pxj_bUhVAwJVfrDPg-xvv76BdeEL012mV-xzbVEP73N-pteHQ1W5jrP2Y6vWWJhk_hSXQh08Fa589gI8yew_Zpi7-6fAGfB2nEk2ZjlOR8GdK60pZ9JTD_NRBHekgJ53_TEyr2pTSo-AkG4S9hMjz6eXjMIlMCc2iQVyz3Bco6r7IK_8M7ZXr9YIRH2yxzXmbOkBdnA3eZ5845gsSXQVnpXS5MafP-K-jM5rOwAymGy3kwwStjM-5sbomQxGZViZFgyEuZwMdGRtpFGHFis5hqDCdIovq2RBN437ZerOEz_tPugMTdtiHQ6_rF_PJcxzWki6CckdxJ40suTUlXeoQgK4IURjmRwAdSlqaliUNyJlYY4I8RyJUelIRuiPFWkcBuo08d1-xS_5thCey1On5w2K8f7ucNPO5RtURdurgLndXlVXiLPszKdmFTDr914_Ts1icB-DQZjQe_bgDpovJ1
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ9qWgo5lPZQWTgbO7EPFC0vLWV3hSqQuLmO47SH1e6WXUT5c_1tnck6gaoqN66RYzkz9jzime8DeO-1FllVScadkExUqmDaSsUymYrMclmpmrRvMMx65-LLhbxYgt9NLwyVVTY2sTbU5cTRP_JtgmHBCRRXu9OfjFij6Ha1odCwgVqh3KkhxkJjx4m_ucYUbrZzfID63up0jg7P9nsssAwwh85szpIyw3UmFa8wGCqdtp3UW1miX1OJyLmzFAEVXjheCuccwckrrwtVukTavEhSnPcRrIhUaEz-VvYOh6df2788hLqphF5U3Kep5tsYh_4gOm2MA8RfvrCmDPjXMazB6tV4am-u7Wh0x_MdPYUnIWSNu4s99gyW_Pg5rA1avNfZC_jcjQN-NTtFzU1mPq47e9kBkQcsgD_ifSpw_xX3qbmYyq7CK5j0v4TzB5HZK1geT8b-NcSYnife-lLbggtXJAURoBS8yjHz9EmuIvjUyMi4AFtO7Bkjg-kLSdTclWgEW-3o6QKu4z_j9kjc7RgC2a4fTC6_m3BmTea1s0o4ZctcKJvTFSIh1kqvpNVORvCRlGXIFOCSnA0dDfhhBKplujmhKWJ-l0Ww3ujTBBsxM7c7OoIPrY7vXfab--fZhNXe2aBv-sfDk7fwuEOdGnXb5Doszy-v_DuMn-bFRtikMXx76HPxBxJEK8k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IF5VAy3kQOGArHU2dmIfoFq6LC19qAcq9eY6jkMPq91td6vSv8avYyZxQhGit14jx3Jmxp6ZeOb7AN56rUVWVZJxJyQTlSqYtlKxTKYis1xWqibtOzjMdo7FtxN5sgS_2l4YKqtsz8T6oC6njv6R9wiGBSdQXPWqUBZxNBxtzc4ZMUjRTWtLp9GYyJ6_vsL0bf5xd4i63uz3R1--b--wwDDAHDqyBUvKDNeYVLzCQKh02vZTb2WJPk0lIufOUvRTeOF4KZxzBCWvvC5U6RJp8yJJcd57cD8nFHfqUh997f7vEN6mErqptU9TzXsYgZ4RkTZGAOIvL1iTBfzrElbg4eVkZq-v7Hh8w-eNnsDjEKzGg8a6nsKSnzyDlYMO6XX-HD4N4oBczY5QZ9O5j-ueXjYk2oAG8iPeptL2n_E-tRVTwVV4BdP9F3B8JxJbheXJdOLXIMbEPPHWl9oWXLgiKYj6pOBVjjmnT3IVwYdWRsYFwHLizRgbTFxIouamRCPY7EbPGqCO_4z7TOLuxhC8dv1gevHDhN1qMq-dVcIpW-ZC2ZwuDwmrVnolrXYygvekLEOHAC7J2dDLgB9GcFpmkBOOImZ2WQTrrT5NOB3m5o8tR_Cu0_Gty355-zxv4AHuBrO_e7j3Ch71qUWj7pdch-XFxaXfwMBpUbyuLTSG07veEr8B3IopYw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbxMxDLege4A9sPElyj50D3w8oKyXNsklL5u6wTQhNu2BSuMpSnI5QFRttbaw7a-ffZdWBQRC4vXkRPHZju07-2eAF9EYoapKsjwIyUSlPTNOaqZkTyiXy0rXQ_tOz9TJQLy_kBcrXfxUVomp-Nf6kqY-TVZgVo623enyDvpO0ZmU1cH39C2JK4XpiDZdfRfWlMRovAVrg7Pz_ieaKbdY3dS792gfjAK_0DBr2uknT1QD9v9-La_Dvflo4q5_uOFwxe8cb4BbnLgpN_m2N5_5vXDzC5jj_7C0CQ9SUJr1Gy16CHfi6BGsny4RXaePYb-fJYRqdo6yGU9jVvfusrc0HqCB9siOqIT9KvtA7cNUWJWWYFr_BAbH7z4enbA0e4EFdPEzxkuF0uNVXuG7KoNx3V50skRvr7ko8uAoLvRRhLwUIQQC2dfReF0GLl3hee8ptEbjUXwGGSbgPLpYGudzETz3NOLE51WBuWVEVtvwZiEHGxIwOc3HGFpMUEhqdlVqbXi5pJ40gBx_oDskkS5pCEa7fjC-_GyTVVoVTXBaBO3KQmhX0E9CwqSVUUtngmzDa1IIS8aORwou9SwgYwSbZfsF4SViBqfasL3QGZtugakl6CBUep0jj6-WevTXYz__V8ItuN-lToy6LXIbWrPLedzB-Gjmd5MJ3AL_wgdP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General-Purpose+Multi-Dimensional+Convex+Landscape+Generator&rft.jtitle=Mathematics+%28Basel%29&rft.au=Liu%2C+Wenwen&rft.au=Yuen%2C+Shiu+Yin&rft.au=Chung%2C+Kwok+Wai&rft.au=Sung%2C+Chi+Wan&rft.date=2022-11-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=21&rft.spage=3974&rft_id=info:doi/10.3390%2Fmath10213974&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math10213974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon