Feature Selection Using Golden Jackal Optimization for Software Fault Prediction

A program’s bug, fault, or mistake that results in unintended results is known as a software defect or fault. Software flaws are programming errors due to mistakes in the requirements, architecture, or source code. Finding and fixing bugs as soon as they arise is a crucial goal of software developme...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 11; no. 11; p. 2438
Main Authors Das, Himansu, Prajapati, Sanjay, Gourisaria, Mahendra Kumar, Pattanayak, Radha Mohan, Alameen, Abdalla, Kolhar, Manjur
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 25.05.2023
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math11112438

Cover

Abstract A program’s bug, fault, or mistake that results in unintended results is known as a software defect or fault. Software flaws are programming errors due to mistakes in the requirements, architecture, or source code. Finding and fixing bugs as soon as they arise is a crucial goal of software development that can be achieved in various ways. So, selecting a handful of optimal subsets of features from any dataset is a prime approach. Indirectly, the classification performance can be improved through the selection of features. A novel approach to feature selection (FS) has been developed, which incorporates the Golden Jackal Optimization (GJO) algorithm, a meta-heuristic optimization technique that draws on the hunting tactics of golden jackals. Combining this algorithm with four classifiers, namely K-Nearest Neighbor, Decision Tree, Quadrative Discriminant Analysis, and Naive Bayes, will aid in selecting a subset of relevant features from software fault prediction datasets. To evaluate the accuracy of this algorithm, we will compare its performance with other feature selection methods such as FSDE (Differential Evolution), FSPSO (Particle Swarm Optimization), FSGA (Genetic Algorithm), and FSACO (Ant Colony Optimization). The result that we got from FSGJO is great for almost all the cases. For many of the results, FSGJO has given higher classification accuracy. By utilizing the Friedman and Holm tests, to determine statistical significance, the suggested strategy has been verified and found to be superior to prior methods in selecting an optimal set of attributes.
AbstractList A program’s bug, fault, or mistake that results in unintended results is known as a software defect or fault. Software flaws are programming errors due to mistakes in the requirements, architecture, or source code. Finding and fixing bugs as soon as they arise is a crucial goal of software development that can be achieved in various ways. So, selecting a handful of optimal subsets of features from any dataset is a prime approach. Indirectly, the classification performance can be improved through the selection of features. A novel approach to feature selection (FS) has been developed, which incorporates the Golden Jackal Optimization (GJO) algorithm, a meta-heuristic optimization technique that draws on the hunting tactics of golden jackals. Combining this algorithm with four classifiers, namely K-Nearest Neighbor, Decision Tree, Quadrative Discriminant Analysis, and Naive Bayes, will aid in selecting a subset of relevant features from software fault prediction datasets. To evaluate the accuracy of this algorithm, we will compare its performance with other feature selection methods such as FSDE (Differential Evolution), FSPSO (Particle Swarm Optimization), FSGA (Genetic Algorithm), and FSACO (Ant Colony Optimization). The result that we got from FSGJO is great for almost all the cases. For many of the results, FSGJO has given higher classification accuracy. By utilizing the Friedman and Holm tests, to determine statistical significance, the suggested strategy has been verified and found to be superior to prior methods in selecting an optimal set of attributes.
Audience Academic
Author Das, Himansu
Gourisaria, Mahendra Kumar
Prajapati, Sanjay
Alameen, Abdalla
Pattanayak, Radha Mohan
Kolhar, Manjur
Author_xml – sequence: 1
  givenname: Himansu
  orcidid: 0000-0002-3995-2768
  surname: Das
  fullname: Das, Himansu
– sequence: 2
  givenname: Sanjay
  orcidid: 0009-0006-7211-2433
  surname: Prajapati
  fullname: Prajapati, Sanjay
– sequence: 3
  givenname: Mahendra Kumar
  surname: Gourisaria
  fullname: Gourisaria, Mahendra Kumar
– sequence: 4
  givenname: Radha Mohan
  orcidid: 0000-0003-3053-4858
  surname: Pattanayak
  fullname: Pattanayak, Radha Mohan
– sequence: 5
  givenname: Abdalla
  orcidid: 0000-0003-4197-4859
  surname: Alameen
  fullname: Alameen, Abdalla
– sequence: 6
  givenname: Manjur
  orcidid: 0000-0001-9152-3242
  surname: Kolhar
  fullname: Kolhar, Manjur
BookMark eNqFkU1v3CAQhlGVSknT3PIDLPVaJ3zYBo5R1M2HIiVSmrM1hmHLljVbjBWlv75kXVVRVanDARie9wVmPpCDMY5IyCmjZ0Joer6F_I2V4I1Q78gR51zWshwcvFkfkpNp2tASmgnV6CPysELIc8LqEQOa7ONYPU1-XFdXMVgcq1sw3yFU97vst_4n7AEXU_UYXX6GolvBHHL1kND6vfwjee8gTHjyez4mT6svXy-v67v7q5vLi7vaNLTLNRu0NablioFAAUYa1YFQreiQQUe1AzUwThEVYwOytuw7oZy0crCSMiOOyc3iayNs-l3yW0gvfQTf7xMxrXtI2ZuAvRyMdoJaNCCb1hldbBuquVW0tczQ4lUvXvO4g5dnCOGPIaP9a3X7t9Ut_KeF36X4Y8Yp95s4p7F8t-eKN5TyhrNCnS3UGsoj_OhiTmDKsLj1pjTP-ZK_kC1vZKuZLoLPi8CkOE0J3f9ewf_Cjc_7DpV7fPi36Bfktqp_
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124266
crossref_primary_10_1038_s41598_024_70572_7
crossref_primary_10_3390_biomimetics9050270
crossref_primary_10_1016_j_jksuci_2024_102132
crossref_primary_10_1177_09596518231208500
crossref_primary_10_1007_s40998_025_00796_4
crossref_primary_10_1007_s11042_024_19974_3
crossref_primary_10_1109_ACCESS_2023_3332902
crossref_primary_10_1007_s40031_024_01083_2
crossref_primary_10_1016_j_cosrev_2025_100733
crossref_primary_10_1007_s10586_024_04599_w
crossref_primary_10_1038_s41598_024_75374_5
crossref_primary_10_1007_s44196_024_00716_0
crossref_primary_10_3934_era_2024021
crossref_primary_10_12688_f1000research_150927_1
crossref_primary_10_12688_f1000research_150927_2
crossref_primary_10_1109_ACCESS_2024_3467183
crossref_primary_10_1007_s12541_024_01070_z
crossref_primary_10_1016_j_eswa_2023_121582
Cites_doi 10.1109/IIH-MSP.2009.145
10.1109/ICACCI.2014.6968592
10.1016/j.asoc.2014.03.032
10.14257/ijast.2014.65.04
10.3390/s22239321
10.1145/2853073.2853083
10.1109/OCIT56763.2022.00041
10.1016/j.eswa.2018.12.033
10.1109/ICCISci.2019.8716478
10.1080/01621459.1937.10503522
10.1016/j.neucom.2015.01.070
10.1109/TEVC.2010.2059031
10.1007/s10586-017-1235-3
10.1214/aoms/1177731944
10.1109/OTCON56053.2023.10113990
10.1016/j.eswa.2010.10.024
10.1371/journal.pone.0122827
10.1109/ISCON57294.2023.10112054
10.4304/jsw.9.5.1324-1333
10.1080/03610928008827904
10.1109/QRS.2017.42
10.1111/exsy.12553
10.1109/OTCON56053.2023.10113937
10.1016/j.eswa.2016.06.004
10.1016/j.ins.2009.12.010
10.1016/j.compeleceng.2013.11.024
10.1007/978-981-15-2455-4
10.1007/s00607-016-0489-6
10.1109/ICSEM.2010.14
10.1016/j.eswa.2008.11.041
10.1016/j.cosrev.2020.100285
10.1016/j.eswa.2022.116924
10.1007/s13369-021-05486-x
10.1162/NECO_a_00816
10.1016/j.imu.2019.100288
10.1109/ICTCS.2017.39
10.1007/978-981-16-4641-6_20
10.1038/s41467-019-13055-y
10.3390/app8091521
10.1109/ICACA.2016.7887916
10.1007/978-3-319-41192-7
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/math11112438
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_7bc9f30deca745fc90ee4092d805d1c0
10.3390/math11112438
A752475919
10_3390_math11112438
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c406t-1b9dcc5281a3e3ac7c86a38536e1a609fa8b120ee811be15fa8638f7d7bd701c3
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Tue Oct 14 18:42:15 EDT 2025
Sun Oct 26 04:15:15 EDT 2025
Sun Jul 13 03:23:15 EDT 2025
Mon Oct 20 16:20:11 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
Thu Oct 16 04:35:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-1b9dcc5281a3e3ac7c86a38536e1a609fa8b120ee811be15fa8638f7d7bd701c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3995-2768
0009-0006-7211-2433
0000-0003-4197-4859
0000-0001-9152-3242
0000-0003-3053-4858
OpenAccessLink https://doaj.org/article/7bc9f30deca745fc90ee4092d805d1c0
PQID 2824002421
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_7bc9f30deca745fc90ee4092d805d1c0
unpaywall_primary_10_3390_math11112438
proquest_journals_2824002421
gale_infotracacademiconefile_A752475919
crossref_primary_10_3390_math11112438
crossref_citationtrail_10_3390_math11112438
PublicationCentury 2000
PublicationDate 2023-05-25
PublicationDateYYYYMMDD 2023-05-25
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-25
  day: 25
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Paul (ref_20) 2016; 28
ref_13
ref_12
ref_11
Chen (ref_18) 2020; 37
Friedman (ref_52) 1937; 32
Gm (ref_4) 2020; 38
Song (ref_21) 2010; Volume 1
ref_19
ref_17
ref_15
(ref_51) 2006; 7
(ref_40) 2016; 62
ref_25
ref_24
ref_23
Wahono (ref_42) 2013; 7
Agarwal (ref_38) 2014; 65
Catal (ref_1) 2011; 38
Chopra (ref_30) 2022; 198
Turabieh (ref_39) 2019; 122
ref_29
ref_27
ref_26
Rathore (ref_6) 2016; 41
Rong (ref_43) 2016; 15
Iman (ref_54) 1980; 9
Belkina (ref_22) 2019; 10
Jacob (ref_45) 2015; 117
Borboudakis (ref_16) 2019; 20
Chandrashekar (ref_10) 2014; 40
Das (ref_35) 2020; 18
ref_36
ref_33
ref_32
ref_31
Rathore (ref_5) 2017; 99
Malhotra (ref_3) 2014; 21
ref_37
Das (ref_28) 2010; 15
Luengo (ref_56) 2009; 36
Luengo (ref_55) 2010; 180
Friedman (ref_53) 1940; 11
Chen (ref_14) 2015; 159
Wahono (ref_44) 2014; 9
Das (ref_34) 2020; 34
ref_41
Das (ref_47) 2020; 34
ref_2
Das (ref_46) 2021; 46
ref_49
ref_48
Anbu (ref_50) 2019; 22
ref_9
ref_8
ref_7
References_xml – ident: ref_15
  doi: 10.1109/IIH-MSP.2009.145
– ident: ref_23
  doi: 10.1109/ICACCI.2014.6968592
– volume: 21
  start-page: 286
  year: 2014
  ident: ref_3
  article-title: Comparative analysis of statistical and machine learning methods for predicting faulty modules
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.03.032
– ident: ref_49
– ident: ref_32
– volume: 65
  start-page: 39
  year: 2014
  ident: ref_38
  article-title: A Feature Selection Based Model for Software Defect Prediction
  publication-title: Int. J. Adv. Sci. Technol.
  doi: 10.14257/ijast.2014.65.04
– volume: 117
  start-page: 18
  year: 2015
  ident: ref_45
  article-title: Improved Random Forest Algorithm for Software Defect Prediction through Data Mining Techniques
  publication-title: Int. J. Comput. Appl.
– ident: ref_48
  doi: 10.3390/s22239321
– volume: 41
  start-page: 1
  year: 2016
  ident: ref_6
  article-title: A Decision Tree Regression based Approach for the Number of Software Faults Prediction
  publication-title: ACM SIGSOFT Softw. Eng. Notes
  doi: 10.1145/2853073.2853083
– ident: ref_2
  doi: 10.1109/OCIT56763.2022.00041
– volume: 122
  start-page: 27
  year: 2019
  ident: ref_39
  article-title: Iterated feature selection algorithms with layered recurrent neural network for software fault prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.033
– ident: ref_12
  doi: 10.1109/ICCISci.2019.8716478
– volume: 32
  start-page: 675
  year: 1937
  ident: ref_52
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1937.10503522
– volume: 159
  start-page: 219
  year: 2015
  ident: ref_14
  article-title: A novel wrapper method for feature selection and its applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.070
– volume: 15
  start-page: 4
  year: 2010
  ident: ref_28
  article-title: Differential Evolution: A Survey of the State-of-the-Art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– volume: 22
  start-page: 10925
  year: 2019
  ident: ref_50
  article-title: Feature selection using firefly algorithm in software defect prediction
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-017-1235-3
– volume: 11
  start-page: 86
  year: 1940
  ident: ref_53
  article-title: A comparison of alternative tests of signifcance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– ident: ref_27
– ident: ref_33
  doi: 10.1109/OTCON56053.2023.10113990
– volume: 38
  start-page: 4626
  year: 2011
  ident: ref_1
  article-title: Software fault prediction: A literature review and current trends
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.10.024
– volume: 20
  start-page: 276
  year: 2019
  ident: ref_16
  article-title: Forward-backward selection with early dropping
  publication-title: J. Mach. Learn. Res.
– ident: ref_24
  doi: 10.1371/journal.pone.0122827
– ident: ref_29
  doi: 10.1109/ISCON57294.2023.10112054
– ident: ref_13
– volume: 9
  start-page: 1324
  year: 2014
  ident: ref_44
  article-title: Metaheuristic Optimization based Feature Selection for Software Defect Prediction
  publication-title: J. Softw.
  doi: 10.4304/jsw.9.5.1324-1333
– volume: 9
  start-page: 571
  year: 1980
  ident: ref_54
  article-title: Approximations of the critical region of the fbietkan statistic
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610928008827904
– ident: ref_8
  doi: 10.1109/QRS.2017.42
– ident: ref_17
– volume: 37
  start-page: e12553
  year: 2020
  ident: ref_18
  article-title: Ensemble feature selection in medical datasets: Combining filter, wrapper, and embedded feature selection results
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12553
– ident: ref_25
  doi: 10.1109/OTCON56053.2023.10113937
– volume: 34
  start-page: 3851
  year: 2020
  ident: ref_47
  article-title: A Jaya algorithm based wrapper method for optimal feature selection in supervised classification
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– ident: ref_7
– volume: 62
  start-page: 91
  year: 2016
  ident: ref_40
  article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.06.004
– volume: 180
  start-page: 2044
  year: 2010
  ident: ref_55
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.12.010
– volume: 40
  start-page: 16
  year: 2014
  ident: ref_10
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: ref_31
  doi: 10.1007/978-981-15-2455-4
– volume: 99
  start-page: 255
  year: 2017
  ident: ref_5
  article-title: A decision tree logic based recommendation system to select software fault prediction techniques
  publication-title: Computing
  doi: 10.1007/s00607-016-0489-6
– volume: 7
  start-page: 153
  year: 2013
  ident: ref_42
  article-title: Combining Particle Swarm Optimization based Feature Selection and Bagging Technique for Software Defect Prediction
  publication-title: Int. J. Softw. Eng. Its Appl.
– volume: Volume 1
  start-page: 27
  year: 2010
  ident: ref_21
  article-title: Feature selection using principal component analysis
  publication-title: Proceedings of the 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization
  doi: 10.1109/ICSEM.2010.14
– volume: 36
  start-page: 7798
  year: 2009
  ident: ref_56
  article-title: A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.11.041
– volume: 38
  start-page: 100285
  year: 2020
  ident: ref_4
  article-title: A comprehensive survey and analysis of generative models in machine learning
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2020.100285
– ident: ref_37
– volume: 15
  start-page: 19
  year: 2016
  ident: ref_43
  article-title: A model for software defect prediction using support vector machine based on CBA
  publication-title: Int. J. Intell. Syst. Technol. Appl.
– volume: 198
  start-page: 116924
  year: 2022
  ident: ref_30
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116924
– volume: 46
  start-page: 8355
  year: 2021
  ident: ref_46
  article-title: Optimal Selection of Features Using Artificial Electric Field Algorithm for Classification
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05486-x
– volume: 28
  start-page: 716
  year: 2016
  ident: ref_20
  article-title: Feature Selection for Ridge Regression with Provable Guarantees
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00816
– volume: 18
  start-page: 100288
  year: 2020
  ident: ref_35
  article-title: Medical disease analysis using neuro-fuzzy with feature extraction model for classification
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2019.100288
– ident: ref_41
  doi: 10.1109/ICTCS.2017.39
– volume: 34
  start-page: 2540
  year: 2020
  ident: ref_34
  article-title: Biomedical data analysis using neuro-fuzzy model with post-feature reduction
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– ident: ref_36
– ident: ref_9
  doi: 10.1007/978-981-16-4641-6_20
– volume: 7
  start-page: 1
  year: 2006
  ident: ref_51
  article-title: Statistical comparisons of classifers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 5415
  year: 2019
  ident: ref_22
  article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13055-y
– ident: ref_11
  doi: 10.3390/app8091521
– ident: ref_19
  doi: 10.1109/ICACA.2016.7887916
– ident: ref_26
  doi: 10.1007/978-3-319-41192-7
SSID ssj0000913849
Score 2.335725
Snippet A program’s bug, fault, or mistake that results in unintended results is known as a software defect or fault. Software flaws are programming errors due to...
A program's bug, fault, or mistake that results in unintended results is known as a software defect or fault. Software flaws are programming errors due to...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2438
SubjectTerms Algorithms
Ant colony optimization
Classification
classification algorithms
Datasets
Debugging
Decision analysis
Decision trees
Defects
Discriminant analysis
Evolution & development
Evolutionary computation
Fault diagnosis
Feature selection
Foraging behavior
Genetic algorithms
golden jackal optimization
Heuristic methods
Machine learning
Mathematical optimization
Mutation
Optimization algorithms
Particle swarm optimization
Program errors
software defect prediction
Software development
software fault prediction
Software quality
Source code
Trends
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gH2gPgU3QbKAx8PKFoc20n8gNCGViaklYoxaW-WfXbHQ2hL12riv-cuTUIlxF4iJXEi2-f78vl-B_Ca1EogK1amsahMqiJdDOmpNAuVFFgoE5tA-_m4OLtUX6701Q6Mu1wYPlbZycRGUIc58h75EbkGqlEo4uPiV8pVozi62pXQcG1phfChgRi7B7s5I2MNYPfkdDz51u-6MApmpczmBLwkf_-I7MIfLDZyxSkqW7qpgfD_V1Dvwf31bOF-37q63tJEo0fwsDUhk-MNzR_DTpw9gb3zHn_15ilM2LJbL2Ny0ZS5oblPmrMByed5TYIm4cx6-sVXkhc_20TMhKzX5IKE8q2j70ZuXa-SyZLDOPz2GVyOTr9_Okvb2gkpkopepcKbgKjzSjgZpcMSq8JJ0s1FFK7IzNRVXuRZjJUQPgpN98SJ0zKUPpSZQPkcBrP5LL6AxOlQcnxaeIkKo_MYnNI-04hGaZcN4X03axZbYHGub1FbcjB4ju32HA_hTd96sQHU-E-7EyZA34ZhsJsH8-W1bbnKlh7NVGYhoiuVnqKhAZHDmocq00Egde0dk88ys1KX0LU5BzQwhr2yx6XOGfBQmCEcdhS2LRff2L9rbghve6rf2e39u_9zAA-4Xj0fP8j1IQxWy3V8SVbNyr9ql-ofjVr2cQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB9070Hvwe_D1VP64MeD9C5pkjZ5klVcD-HOhXPhfCr5qop1d9lrPfSvd6bbXVZFEYRSaJsMCZmP3zQzE4BHaFYColiRxlybVEa8GbRTKQtacJ9LE7uN9uOT_Ggq35yps60sfgqrRFf8U6ekKU8zLdArP-ScrkwKfbgI1fOv_b8knmtpNDNaXoadXCEaH8DO9GQyek9nyq17r-LdBdFBFPiRlARR-skSdQX7f1fLu3ClnS3stwtb11t2Z3wd7HrEq3CTzwdt4w7891-KOf7PlG7AtR6UJqMVF92ES3F2C3aPNxVdz2_DhLBiu4zJaXdwDtJIumiD5PW8RtWVUK4-kniLGuhLn9qZIB5OTlHNX1jsN7Zt3SSTJW0M0dc7MB2_evfyKO1PY0g9Gv0m5c4E71WmuRVRWF94nVuB1j6P3ObMVFY7nrEYNecucoXPKNtVEQoXCsa92IPBbD6LdyGxKhS0482d8NJH63ywUjmmvDdSWTaEZ-uVKX1fqpxOzKhLdFloHcvtdRzC403rxapExx_avaBF3rShwtrdi_nyQ9nLaVk4byrBQvS2kKryBieELnAWNFOBexzaU2KRksQfh-Rtn8WAE6NCWuWoUBmVUORmCPtrLip7vXBeooMrO1jEh_Bkw1l_Hfa9f214H65miMAotCFT-zBolm18gIipcQ97ofgBLe8O8g
  priority: 102
  providerName: Unpaywall
Title Feature Selection Using Golden Jackal Optimization for Software Fault Prediction
URI https://www.proquest.com/docview/2824002421
https://www.mdpi.com/2227-7390/11/11/2438/pdf?version=1684980984
https://doaj.org/article/7bc9f30deca745fc90ee4092d805d1c0
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: AMVHM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7S9NDmUPqkbtNFhz4OxUSyJFs6bko2IZDt0nQhPQm9lh7cTdjsEvrvO5KdxVDaXHIxyJbNeGY0D6T5BuA9upWAUSwvY610KSJeNPqpkgbFma-Fjnmj_Wxan8zF6YW8GLT6SmfCOnjgjnEHjfN6wWmI3jZCLrymMWJOUgVFZWA-Z-tU6UEylW2wZlwJ3Z1055jXH2D89zOZh0qkUpSBD8pQ_X8b5D14tFle2d83tm0HHmfyFJ70oSIZdyQ-g524fA57Z1uc1esXMEsR3GYVyXluZ4M8JvkMADm-bNGgkFRBj5_4inbhV19wSTBKJedofG8svjexm3ZNZqu0XZOevoT55Oj7l5Oy75FQenTF65I5HbyXlWKWR25941VtOfrgOjJbU72wyrEKeaYYc5FJHOOKWzShcaGhzPNXsLu8XMbXQKwMTdqHZo574aN1PlghHZXeayEtLeDzLdeM7wHEUx-L1mAikXhshjwu4MN29lUHnPGPeYdJANs5Ce4630AlML0SmLuUoIBPSXwmLUokydu-tgB_LMFbmXEjqwRsyHQB-7cSNv1qvTaYdoocrLACPm6l_l-y39wH2W_hcepenw4jVHIfdterTXyHMc7ajeCBmhyP4OHh0XT2bZSVG0fz6Wz84w_t8v2U
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHsAfEpCgPywOABRYtjO4kfJrTBSsfWUrFN2ptxbBceQlv6oWr_HH8bd6kbKiH2tpdISRzL9l3ud-fz3QG8RlhxqMXy2GeFioXHi0KcihNXcGYzoXztaO_2ss6l-Hwlrzbg9yoWho5VrmRiLajdyNIe-T6aBqIGFPZ-_CumqlHkXV2V0DChtII7qFOMhcCOU3-9QBNuenDyEem9l6bt44sPnThUGYgtgtksZqVy1sq0YIZ7bmxui8xwRLHMM5MlamCKkqWJ9wVjpWcS75FnB7nLS5cnzHLs9w5sCS4UGn9bR8e9_tdml4eybhZCLU_cc66SfdRDf5CYSgWFxKxhYV0y4F9g2IHt-XBsrhemqtaQr30f7gWVNTpc8tgD2PDDh7DTbfK9Th9BnzTJ-cRH53VZHaR1VJ9FiD6NKhRsEUXyYxdfUD79DIGfEWrL0TmCwMLgd20zr2ZRf0JuI3r7GC5vZRWfwOZwNPRPITLS5eQPZyW3wnpTWmeELBNprRLSJC14t1o1bUMic6qnUWk0aGiN9foat2CvaT1eJvD4T7sjIkDThtJu1w9Gk-86_MU6L60a8MR5a3IhB1bhhNBATl2RSMcsDu0tkU-TcMAhWRNiHHBilGZLH-YypQSLTLVgd0VhHaTGVP_l8Ra8aah-47Cf3dzPK9juXHTP9NlJ7_Q53E1RQ6OjD6nchc3ZZO5foEY1K18Gto3g223_KX8A0-8z6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKBPSAeIqFAj5QOKBo49hO4gNChZK2lJaVSqXeXMd24BB2l31o1V_j65jJJstKiN56iZTEsZyZ8Tw8L4BXKFY8arEiCmmuIxnwolFORbHPBXep1KFxtB-fpAdn8vO5Ot-A310uDIVVdjyxYdR-5OiMvI-mgWwECu9XbVjEYK94P_4VUQcp8rR27TSWJHIULhdovk3fHe4hrneSpPj07eNB1HYYiBwKslnES-2dU0nOrQjCuszlqRUowdLAbRrryuYlT-IQcs7LwBXeI71Wmc9Kn8XcCZz3BtzMqIo7ZakX-6vzHaq3mUu9jLUXQsd91EB_EINKJCXDrEnBplnAvyJhC27Ph2N7ubB1vSbzintwt1VW2e6Suu7DRhg-gK3jVaXX6UMYkA45nwR22jTUQSyzJgqB7Y9qZGmMcvhxiq_ImX62KZ8M9WR2iux_YfG7ws7rGRtMyGFEbx_B2bXA8DFsDkfD8ASYVT4jTzgvhZMu2NJ5K1UZK-e0VDbuwdsOasa1Jcypk0Zt0JQhGJt1GPdgZzV6vCzd8Z9xHwgBqzFUcLt5MJp8N-3-NVnpdCViH5zNpKqcxh9C0zjxeaw8d7i0N4Q-Q2wBl-Rsm92AP0YFtsxuphIqrch1D7Y7DJuWX0zNX-ruwesV1q9c9tOr53kJt3B_mC-HJ0fP4E6CqhnFPCRqGzZnk3l4jqrUrHzR0CyDi-veJH8Acd8xgg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB9070Hvwe_D1VP64MeD9C5pkjZ5klVcD-HOhXPhfCr5qop1d9lrPfSvd6bbXVZFEYRSaJsMCZmP3zQzE4BHaFYColiRxlybVEa8GbRTKQtacJ9LE7uN9uOT_Ggq35yps60sfgqrRFf8U6ekKU8zLdArP-ScrkwKfbgI1fOv_b8knmtpNDNaXoadXCEaH8DO9GQyek9nyq17r-LdBdFBFPiRlARR-skSdQX7f1fLu3ClnS3stwtb11t2Z3wd7HrEq3CTzwdt4w7891-KOf7PlG7AtR6UJqMVF92ES3F2C3aPNxVdz2_DhLBiu4zJaXdwDtJIumiD5PW8RtWVUK4-kniLGuhLn9qZIB5OTlHNX1jsN7Zt3SSTJW0M0dc7MB2_evfyKO1PY0g9Gv0m5c4E71WmuRVRWF94nVuB1j6P3ObMVFY7nrEYNecucoXPKNtVEQoXCsa92IPBbD6LdyGxKhS0482d8NJH63ywUjmmvDdSWTaEZ-uVKX1fqpxOzKhLdFloHcvtdRzC403rxapExx_avaBF3rShwtrdi_nyQ9nLaVk4byrBQvS2kKryBieELnAWNFOBexzaU2KRksQfh-Rtn8WAE6NCWuWoUBmVUORmCPtrLip7vXBeooMrO1jEh_Bkw1l_Hfa9f214H65miMAotCFT-zBolm18gIipcQ97ofgBLe8O8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+Using+Golden+Jackal+Optimization+for+Software+Fault+Prediction&rft.jtitle=Mathematics+%28Basel%29&rft.au=Himansu+Das&rft.au=Sanjay+Prajapati&rft.au=Mahendra+Kumar+Gourisaria&rft.au=Radha+Mohan+Pattanayak&rft.date=2023-05-25&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=11&rft.spage=2438&rft_id=info:doi/10.3390%2Fmath11112438&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7bc9f30deca745fc90ee4092d805d1c0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon