Feature Selection Using Golden Jackal Optimization for Software Fault Prediction
A program’s bug, fault, or mistake that results in unintended results is known as a software defect or fault. Software flaws are programming errors due to mistakes in the requirements, architecture, or source code. Finding and fixing bugs as soon as they arise is a crucial goal of software developme...
Saved in:
| Published in | Mathematics (Basel) Vol. 11; no. 11; p. 2438 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
25.05.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-7390 2227-7390 |
| DOI | 10.3390/math11112438 |
Cover
| Abstract | A program’s bug, fault, or mistake that results in unintended results is known as a software defect or fault. Software flaws are programming errors due to mistakes in the requirements, architecture, or source code. Finding and fixing bugs as soon as they arise is a crucial goal of software development that can be achieved in various ways. So, selecting a handful of optimal subsets of features from any dataset is a prime approach. Indirectly, the classification performance can be improved through the selection of features. A novel approach to feature selection (FS) has been developed, which incorporates the Golden Jackal Optimization (GJO) algorithm, a meta-heuristic optimization technique that draws on the hunting tactics of golden jackals. Combining this algorithm with four classifiers, namely K-Nearest Neighbor, Decision Tree, Quadrative Discriminant Analysis, and Naive Bayes, will aid in selecting a subset of relevant features from software fault prediction datasets. To evaluate the accuracy of this algorithm, we will compare its performance with other feature selection methods such as FSDE (Differential Evolution), FSPSO (Particle Swarm Optimization), FSGA (Genetic Algorithm), and FSACO (Ant Colony Optimization). The result that we got from FSGJO is great for almost all the cases. For many of the results, FSGJO has given higher classification accuracy. By utilizing the Friedman and Holm tests, to determine statistical significance, the suggested strategy has been verified and found to be superior to prior methods in selecting an optimal set of attributes. |
|---|---|
| AbstractList | A program’s bug, fault, or mistake that results in unintended results is known as a software defect or fault. Software flaws are programming errors due to mistakes in the requirements, architecture, or source code. Finding and fixing bugs as soon as they arise is a crucial goal of software development that can be achieved in various ways. So, selecting a handful of optimal subsets of features from any dataset is a prime approach. Indirectly, the classification performance can be improved through the selection of features. A novel approach to feature selection (FS) has been developed, which incorporates the Golden Jackal Optimization (GJO) algorithm, a meta-heuristic optimization technique that draws on the hunting tactics of golden jackals. Combining this algorithm with four classifiers, namely K-Nearest Neighbor, Decision Tree, Quadrative Discriminant Analysis, and Naive Bayes, will aid in selecting a subset of relevant features from software fault prediction datasets. To evaluate the accuracy of this algorithm, we will compare its performance with other feature selection methods such as FSDE (Differential Evolution), FSPSO (Particle Swarm Optimization), FSGA (Genetic Algorithm), and FSACO (Ant Colony Optimization). The result that we got from FSGJO is great for almost all the cases. For many of the results, FSGJO has given higher classification accuracy. By utilizing the Friedman and Holm tests, to determine statistical significance, the suggested strategy has been verified and found to be superior to prior methods in selecting an optimal set of attributes. |
| Audience | Academic |
| Author | Das, Himansu Gourisaria, Mahendra Kumar Prajapati, Sanjay Alameen, Abdalla Pattanayak, Radha Mohan Kolhar, Manjur |
| Author_xml | – sequence: 1 givenname: Himansu orcidid: 0000-0002-3995-2768 surname: Das fullname: Das, Himansu – sequence: 2 givenname: Sanjay orcidid: 0009-0006-7211-2433 surname: Prajapati fullname: Prajapati, Sanjay – sequence: 3 givenname: Mahendra Kumar surname: Gourisaria fullname: Gourisaria, Mahendra Kumar – sequence: 4 givenname: Radha Mohan orcidid: 0000-0003-3053-4858 surname: Pattanayak fullname: Pattanayak, Radha Mohan – sequence: 5 givenname: Abdalla orcidid: 0000-0003-4197-4859 surname: Alameen fullname: Alameen, Abdalla – sequence: 6 givenname: Manjur orcidid: 0000-0001-9152-3242 surname: Kolhar fullname: Kolhar, Manjur |
| BookMark | eNqFkU1v3CAQhlGVSknT3PIDLPVaJ3zYBo5R1M2HIiVSmrM1hmHLljVbjBWlv75kXVVRVanDARie9wVmPpCDMY5IyCmjZ0Joer6F_I2V4I1Q78gR51zWshwcvFkfkpNp2tASmgnV6CPysELIc8LqEQOa7ONYPU1-XFdXMVgcq1sw3yFU97vst_4n7AEXU_UYXX6GolvBHHL1kND6vfwjee8gTHjyez4mT6svXy-v67v7q5vLi7vaNLTLNRu0NablioFAAUYa1YFQreiQQUe1AzUwThEVYwOytuw7oZy0crCSMiOOyc3iayNs-l3yW0gvfQTf7xMxrXtI2ZuAvRyMdoJaNCCb1hldbBuquVW0tczQ4lUvXvO4g5dnCOGPIaP9a3X7t9Ut_KeF36X4Y8Yp95s4p7F8t-eKN5TyhrNCnS3UGsoj_OhiTmDKsLj1pjTP-ZK_kC1vZKuZLoLPi8CkOE0J3f9ewf_Cjc_7DpV7fPi36Bfktqp_ |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124266 crossref_primary_10_1038_s41598_024_70572_7 crossref_primary_10_3390_biomimetics9050270 crossref_primary_10_1016_j_jksuci_2024_102132 crossref_primary_10_1177_09596518231208500 crossref_primary_10_1007_s40998_025_00796_4 crossref_primary_10_1007_s11042_024_19974_3 crossref_primary_10_1109_ACCESS_2023_3332902 crossref_primary_10_1007_s40031_024_01083_2 crossref_primary_10_1016_j_cosrev_2025_100733 crossref_primary_10_1007_s10586_024_04599_w crossref_primary_10_1038_s41598_024_75374_5 crossref_primary_10_1007_s44196_024_00716_0 crossref_primary_10_3934_era_2024021 crossref_primary_10_12688_f1000research_150927_1 crossref_primary_10_12688_f1000research_150927_2 crossref_primary_10_1109_ACCESS_2024_3467183 crossref_primary_10_1007_s12541_024_01070_z crossref_primary_10_1016_j_eswa_2023_121582 |
| Cites_doi | 10.1109/IIH-MSP.2009.145 10.1109/ICACCI.2014.6968592 10.1016/j.asoc.2014.03.032 10.14257/ijast.2014.65.04 10.3390/s22239321 10.1145/2853073.2853083 10.1109/OCIT56763.2022.00041 10.1016/j.eswa.2018.12.033 10.1109/ICCISci.2019.8716478 10.1080/01621459.1937.10503522 10.1016/j.neucom.2015.01.070 10.1109/TEVC.2010.2059031 10.1007/s10586-017-1235-3 10.1214/aoms/1177731944 10.1109/OTCON56053.2023.10113990 10.1016/j.eswa.2010.10.024 10.1371/journal.pone.0122827 10.1109/ISCON57294.2023.10112054 10.4304/jsw.9.5.1324-1333 10.1080/03610928008827904 10.1109/QRS.2017.42 10.1111/exsy.12553 10.1109/OTCON56053.2023.10113937 10.1016/j.eswa.2016.06.004 10.1016/j.ins.2009.12.010 10.1016/j.compeleceng.2013.11.024 10.1007/978-981-15-2455-4 10.1007/s00607-016-0489-6 10.1109/ICSEM.2010.14 10.1016/j.eswa.2008.11.041 10.1016/j.cosrev.2020.100285 10.1016/j.eswa.2022.116924 10.1007/s13369-021-05486-x 10.1162/NECO_a_00816 10.1016/j.imu.2019.100288 10.1109/ICTCS.2017.39 10.1007/978-981-16-4641-6_20 10.1038/s41467-019-13055-y 10.3390/app8091521 10.1109/ICACA.2016.7887916 10.1007/978-3-319-41192-7 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/math11112438 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_7bc9f30deca745fc90ee4092d805d1c0 10.3390/math11112438 A752475919 10_3390_math11112438 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c406t-1b9dcc5281a3e3ac7c86a38536e1a609fa8b120ee811be15fa8638f7d7bd701c3 |
| IEDL.DBID | DOA |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 18:42:15 EDT 2025 Sun Oct 26 04:15:15 EDT 2025 Sun Jul 13 03:23:15 EDT 2025 Mon Oct 20 16:20:11 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 Thu Oct 16 04:35:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-1b9dcc5281a3e3ac7c86a38536e1a609fa8b120ee811be15fa8638f7d7bd701c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3995-2768 0009-0006-7211-2433 0000-0003-4197-4859 0000-0001-9152-3242 0000-0003-3053-4858 |
| OpenAccessLink | https://doaj.org/article/7bc9f30deca745fc90ee4092d805d1c0 |
| PQID | 2824002421 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7bc9f30deca745fc90ee4092d805d1c0 unpaywall_primary_10_3390_math11112438 proquest_journals_2824002421 gale_infotracacademiconefile_A752475919 crossref_primary_10_3390_math11112438 crossref_citationtrail_10_3390_math11112438 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-25 |
| PublicationDateYYYYMMDD | 2023-05-25 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Paul (ref_20) 2016; 28 ref_13 ref_12 ref_11 Chen (ref_18) 2020; 37 Friedman (ref_52) 1937; 32 Gm (ref_4) 2020; 38 Song (ref_21) 2010; Volume 1 ref_19 ref_17 ref_15 (ref_51) 2006; 7 (ref_40) 2016; 62 ref_25 ref_24 ref_23 Wahono (ref_42) 2013; 7 Agarwal (ref_38) 2014; 65 Catal (ref_1) 2011; 38 Chopra (ref_30) 2022; 198 Turabieh (ref_39) 2019; 122 ref_29 ref_27 ref_26 Rathore (ref_6) 2016; 41 Rong (ref_43) 2016; 15 Iman (ref_54) 1980; 9 Belkina (ref_22) 2019; 10 Jacob (ref_45) 2015; 117 Borboudakis (ref_16) 2019; 20 Chandrashekar (ref_10) 2014; 40 Das (ref_35) 2020; 18 ref_36 ref_33 ref_32 ref_31 Rathore (ref_5) 2017; 99 Malhotra (ref_3) 2014; 21 ref_37 Das (ref_28) 2010; 15 Luengo (ref_56) 2009; 36 Luengo (ref_55) 2010; 180 Friedman (ref_53) 1940; 11 Chen (ref_14) 2015; 159 Wahono (ref_44) 2014; 9 Das (ref_34) 2020; 34 ref_41 Das (ref_47) 2020; 34 ref_2 Das (ref_46) 2021; 46 ref_49 ref_48 Anbu (ref_50) 2019; 22 ref_9 ref_8 ref_7 |
| References_xml | – ident: ref_15 doi: 10.1109/IIH-MSP.2009.145 – ident: ref_23 doi: 10.1109/ICACCI.2014.6968592 – volume: 21 start-page: 286 year: 2014 ident: ref_3 article-title: Comparative analysis of statistical and machine learning methods for predicting faulty modules publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.03.032 – ident: ref_49 – ident: ref_32 – volume: 65 start-page: 39 year: 2014 ident: ref_38 article-title: A Feature Selection Based Model for Software Defect Prediction publication-title: Int. J. Adv. Sci. Technol. doi: 10.14257/ijast.2014.65.04 – volume: 117 start-page: 18 year: 2015 ident: ref_45 article-title: Improved Random Forest Algorithm for Software Defect Prediction through Data Mining Techniques publication-title: Int. J. Comput. Appl. – ident: ref_48 doi: 10.3390/s22239321 – volume: 41 start-page: 1 year: 2016 ident: ref_6 article-title: A Decision Tree Regression based Approach for the Number of Software Faults Prediction publication-title: ACM SIGSOFT Softw. Eng. Notes doi: 10.1145/2853073.2853083 – ident: ref_2 doi: 10.1109/OCIT56763.2022.00041 – volume: 122 start-page: 27 year: 2019 ident: ref_39 article-title: Iterated feature selection algorithms with layered recurrent neural network for software fault prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.033 – ident: ref_12 doi: 10.1109/ICCISci.2019.8716478 – volume: 32 start-page: 675 year: 1937 ident: ref_52 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1937.10503522 – volume: 159 start-page: 219 year: 2015 ident: ref_14 article-title: A novel wrapper method for feature selection and its applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.070 – volume: 15 start-page: 4 year: 2010 ident: ref_28 article-title: Differential Evolution: A Survey of the State-of-the-Art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – volume: 22 start-page: 10925 year: 2019 ident: ref_50 article-title: Feature selection using firefly algorithm in software defect prediction publication-title: Clust. Comput. doi: 10.1007/s10586-017-1235-3 – volume: 11 start-page: 86 year: 1940 ident: ref_53 article-title: A comparison of alternative tests of signifcance for the problem of m rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – ident: ref_27 – ident: ref_33 doi: 10.1109/OTCON56053.2023.10113990 – volume: 38 start-page: 4626 year: 2011 ident: ref_1 article-title: Software fault prediction: A literature review and current trends publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.10.024 – volume: 20 start-page: 276 year: 2019 ident: ref_16 article-title: Forward-backward selection with early dropping publication-title: J. Mach. Learn. Res. – ident: ref_24 doi: 10.1371/journal.pone.0122827 – ident: ref_29 doi: 10.1109/ISCON57294.2023.10112054 – ident: ref_13 – volume: 9 start-page: 1324 year: 2014 ident: ref_44 article-title: Metaheuristic Optimization based Feature Selection for Software Defect Prediction publication-title: J. Softw. doi: 10.4304/jsw.9.5.1324-1333 – volume: 9 start-page: 571 year: 1980 ident: ref_54 article-title: Approximations of the critical region of the fbietkan statistic publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610928008827904 – ident: ref_8 doi: 10.1109/QRS.2017.42 – ident: ref_17 – volume: 37 start-page: e12553 year: 2020 ident: ref_18 article-title: Ensemble feature selection in medical datasets: Combining filter, wrapper, and embedded feature selection results publication-title: Expert Syst. doi: 10.1111/exsy.12553 – ident: ref_25 doi: 10.1109/OTCON56053.2023.10113937 – volume: 34 start-page: 3851 year: 2020 ident: ref_47 article-title: A Jaya algorithm based wrapper method for optimal feature selection in supervised classification publication-title: J. King Saud Univ. Comput. Inf. Sci. – ident: ref_7 – volume: 62 start-page: 91 year: 2016 ident: ref_40 article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.06.004 – volume: 180 start-page: 2044 year: 2010 ident: ref_55 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.12.010 – volume: 40 start-page: 16 year: 2014 ident: ref_10 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – ident: ref_31 doi: 10.1007/978-981-15-2455-4 – volume: 99 start-page: 255 year: 2017 ident: ref_5 article-title: A decision tree logic based recommendation system to select software fault prediction techniques publication-title: Computing doi: 10.1007/s00607-016-0489-6 – volume: 7 start-page: 153 year: 2013 ident: ref_42 article-title: Combining Particle Swarm Optimization based Feature Selection and Bagging Technique for Software Defect Prediction publication-title: Int. J. Softw. Eng. Its Appl. – volume: Volume 1 start-page: 27 year: 2010 ident: ref_21 article-title: Feature selection using principal component analysis publication-title: Proceedings of the 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization doi: 10.1109/ICSEM.2010.14 – volume: 36 start-page: 7798 year: 2009 ident: ref_56 article-title: A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.11.041 – volume: 38 start-page: 100285 year: 2020 ident: ref_4 article-title: A comprehensive survey and analysis of generative models in machine learning publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100285 – ident: ref_37 – volume: 15 start-page: 19 year: 2016 ident: ref_43 article-title: A model for software defect prediction using support vector machine based on CBA publication-title: Int. J. Intell. Syst. Technol. Appl. – volume: 198 start-page: 116924 year: 2022 ident: ref_30 article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116924 – volume: 46 start-page: 8355 year: 2021 ident: ref_46 article-title: Optimal Selection of Features Using Artificial Electric Field Algorithm for Classification publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05486-x – volume: 28 start-page: 716 year: 2016 ident: ref_20 article-title: Feature Selection for Ridge Regression with Provable Guarantees publication-title: Neural Comput. doi: 10.1162/NECO_a_00816 – volume: 18 start-page: 100288 year: 2020 ident: ref_35 article-title: Medical disease analysis using neuro-fuzzy with feature extraction model for classification publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2019.100288 – ident: ref_41 doi: 10.1109/ICTCS.2017.39 – volume: 34 start-page: 2540 year: 2020 ident: ref_34 article-title: Biomedical data analysis using neuro-fuzzy model with post-feature reduction publication-title: J. King Saud Univ. Comput. Inf. Sci. – ident: ref_36 – ident: ref_9 doi: 10.1007/978-981-16-4641-6_20 – volume: 7 start-page: 1 year: 2006 ident: ref_51 article-title: Statistical comparisons of classifers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 10 start-page: 5415 year: 2019 ident: ref_22 article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets publication-title: Nat. Commun. doi: 10.1038/s41467-019-13055-y – ident: ref_11 doi: 10.3390/app8091521 – ident: ref_19 doi: 10.1109/ICACA.2016.7887916 – ident: ref_26 doi: 10.1007/978-3-319-41192-7 |
| SSID | ssj0000913849 |
| Score | 2.335725 |
| Snippet | A program’s bug, fault, or mistake that results in unintended results is known as a software defect or fault. Software flaws are programming errors due to... A program's bug, fault, or mistake that results in unintended results is known as a software defect or fault. Software flaws are programming errors due to... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2438 |
| SubjectTerms | Algorithms Ant colony optimization Classification classification algorithms Datasets Debugging Decision analysis Decision trees Defects Discriminant analysis Evolution & development Evolutionary computation Fault diagnosis Feature selection Foraging behavior Genetic algorithms golden jackal optimization Heuristic methods Machine learning Mathematical optimization Mutation Optimization algorithms Particle swarm optimization Program errors software defect prediction Software development software fault prediction Software quality Source code Trends Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gH2gPgU3QbKAx8PKFoc20n8gNCGViaklYoxaW-WfXbHQ2hL12riv-cuTUIlxF4iJXEi2-f78vl-B_Ca1EogK1amsahMqiJdDOmpNAuVFFgoE5tA-_m4OLtUX6701Q6Mu1wYPlbZycRGUIc58h75EbkGqlEo4uPiV8pVozi62pXQcG1phfChgRi7B7s5I2MNYPfkdDz51u-6MApmpczmBLwkf_-I7MIfLDZyxSkqW7qpgfD_V1Dvwf31bOF-37q63tJEo0fwsDUhk-MNzR_DTpw9gb3zHn_15ilM2LJbL2Ny0ZS5oblPmrMByed5TYIm4cx6-sVXkhc_20TMhKzX5IKE8q2j70ZuXa-SyZLDOPz2GVyOTr9_Okvb2gkpkopepcKbgKjzSjgZpcMSq8JJ0s1FFK7IzNRVXuRZjJUQPgpN98SJ0zKUPpSZQPkcBrP5LL6AxOlQcnxaeIkKo_MYnNI-04hGaZcN4X03axZbYHGub1FbcjB4ju32HA_hTd96sQHU-E-7EyZA34ZhsJsH8-W1bbnKlh7NVGYhoiuVnqKhAZHDmocq00Egde0dk88ys1KX0LU5BzQwhr2yx6XOGfBQmCEcdhS2LRff2L9rbghve6rf2e39u_9zAA-4Xj0fP8j1IQxWy3V8SVbNyr9ql-ofjVr2cQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB9070Hvwe_D1VP64MeD9C5pkjZ5klVcD-HOhXPhfCr5qop1d9lrPfSvd6bbXVZFEYRSaJsMCZmP3zQzE4BHaFYColiRxlybVEa8GbRTKQtacJ9LE7uN9uOT_Ggq35yps60sfgqrRFf8U6ekKU8zLdArP-ScrkwKfbgI1fOv_b8knmtpNDNaXoadXCEaH8DO9GQyek9nyq17r-LdBdFBFPiRlARR-skSdQX7f1fLu3ClnS3stwtb11t2Z3wd7HrEq3CTzwdt4w7891-KOf7PlG7AtR6UJqMVF92ES3F2C3aPNxVdz2_DhLBiu4zJaXdwDtJIumiD5PW8RtWVUK4-kniLGuhLn9qZIB5OTlHNX1jsN7Zt3SSTJW0M0dc7MB2_evfyKO1PY0g9Gv0m5c4E71WmuRVRWF94nVuB1j6P3ObMVFY7nrEYNecucoXPKNtVEQoXCsa92IPBbD6LdyGxKhS0482d8NJH63ywUjmmvDdSWTaEZ-uVKX1fqpxOzKhLdFloHcvtdRzC403rxapExx_avaBF3rShwtrdi_nyQ9nLaVk4byrBQvS2kKryBieELnAWNFOBexzaU2KRksQfh-Rtn8WAE6NCWuWoUBmVUORmCPtrLip7vXBeooMrO1jEh_Bkw1l_Hfa9f214H65miMAotCFT-zBolm18gIipcQ97ofgBLe8O8g priority: 102 providerName: Unpaywall |
| Title | Feature Selection Using Golden Jackal Optimization for Software Fault Prediction |
| URI | https://www.proquest.com/docview/2824002421 https://www.mdpi.com/2227-7390/11/11/2438/pdf?version=1684980984 https://doaj.org/article/7bc9f30deca745fc90ee4092d805d1c0 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: AMVHM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7S9NDmUPqkbtNFhz4OxUSyJFs6bko2IZDt0nQhPQm9lh7cTdjsEvrvO5KdxVDaXHIxyJbNeGY0D6T5BuA9upWAUSwvY610KSJeNPqpkgbFma-Fjnmj_Wxan8zF6YW8GLT6SmfCOnjgjnEHjfN6wWmI3jZCLrymMWJOUgVFZWA-Z-tU6UEylW2wZlwJ3Z1055jXH2D89zOZh0qkUpSBD8pQ_X8b5D14tFle2d83tm0HHmfyFJ70oSIZdyQ-g524fA57Z1uc1esXMEsR3GYVyXluZ4M8JvkMADm-bNGgkFRBj5_4inbhV19wSTBKJedofG8svjexm3ZNZqu0XZOevoT55Oj7l5Oy75FQenTF65I5HbyXlWKWR25941VtOfrgOjJbU72wyrEKeaYYc5FJHOOKWzShcaGhzPNXsLu8XMbXQKwMTdqHZo574aN1PlghHZXeayEtLeDzLdeM7wHEUx-L1mAikXhshjwu4MN29lUHnPGPeYdJANs5Ce4630AlML0SmLuUoIBPSXwmLUokydu-tgB_LMFbmXEjqwRsyHQB-7cSNv1qvTaYdoocrLACPm6l_l-y39wH2W_hcepenw4jVHIfdterTXyHMc7ajeCBmhyP4OHh0XT2bZSVG0fz6Wz84w_t8v2U |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHsAfEpCgPywOABRYtjO4kfJrTBSsfWUrFN2ptxbBceQlv6oWr_HH8bd6kbKiH2tpdISRzL9l3ud-fz3QG8RlhxqMXy2GeFioXHi0KcihNXcGYzoXztaO_2ss6l-Hwlrzbg9yoWho5VrmRiLajdyNIe-T6aBqIGFPZ-_CumqlHkXV2V0DChtII7qFOMhcCOU3-9QBNuenDyEem9l6bt44sPnThUGYgtgtksZqVy1sq0YIZ7bmxui8xwRLHMM5MlamCKkqWJ9wVjpWcS75FnB7nLS5cnzHLs9w5sCS4UGn9bR8e9_tdml4eybhZCLU_cc66SfdRDf5CYSgWFxKxhYV0y4F9g2IHt-XBsrhemqtaQr30f7gWVNTpc8tgD2PDDh7DTbfK9Th9BnzTJ-cRH53VZHaR1VJ9FiD6NKhRsEUXyYxdfUD79DIGfEWrL0TmCwMLgd20zr2ZRf0JuI3r7GC5vZRWfwOZwNPRPITLS5eQPZyW3wnpTWmeELBNprRLSJC14t1o1bUMic6qnUWk0aGiN9foat2CvaT1eJvD4T7sjIkDThtJu1w9Gk-86_MU6L60a8MR5a3IhB1bhhNBATl2RSMcsDu0tkU-TcMAhWRNiHHBilGZLH-YypQSLTLVgd0VhHaTGVP_l8Ra8aah-47Cf3dzPK9juXHTP9NlJ7_Q53E1RQ6OjD6nchc3ZZO5foEY1K18Gto3g223_KX8A0-8z6A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKBPSAeIqFAj5QOKBo49hO4gNChZK2lJaVSqXeXMd24BB2l31o1V_j65jJJstKiN56iZTEsZyZ8Tw8L4BXKFY8arEiCmmuIxnwolFORbHPBXep1KFxtB-fpAdn8vO5Ot-A310uDIVVdjyxYdR-5OiMvI-mgWwECu9XbVjEYK94P_4VUQcp8rR27TSWJHIULhdovk3fHe4hrneSpPj07eNB1HYYiBwKslnES-2dU0nOrQjCuszlqRUowdLAbRrryuYlT-IQcs7LwBXeI71Wmc9Kn8XcCZz3BtzMqIo7ZakX-6vzHaq3mUu9jLUXQsd91EB_EINKJCXDrEnBplnAvyJhC27Ph2N7ubB1vSbzintwt1VW2e6Suu7DRhg-gK3jVaXX6UMYkA45nwR22jTUQSyzJgqB7Y9qZGmMcvhxiq_ImX62KZ8M9WR2iux_YfG7ws7rGRtMyGFEbx_B2bXA8DFsDkfD8ASYVT4jTzgvhZMu2NJ5K1UZK-e0VDbuwdsOasa1Jcypk0Zt0JQhGJt1GPdgZzV6vCzd8Z9xHwgBqzFUcLt5MJp8N-3-NVnpdCViH5zNpKqcxh9C0zjxeaw8d7i0N4Q-Q2wBl-Rsm92AP0YFtsxuphIqrch1D7Y7DJuWX0zNX-ruwesV1q9c9tOr53kJt3B_mC-HJ0fP4E6CqhnFPCRqGzZnk3l4jqrUrHzR0CyDi-veJH8Acd8xgg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB9070Hvwe_D1VP64MeD9C5pkjZ5klVcD-HOhXPhfCr5qop1d9lrPfSvd6bbXVZFEYRSaJsMCZmP3zQzE4BHaFYColiRxlybVEa8GbRTKQtacJ9LE7uN9uOT_Ggq35yps60sfgqrRFf8U6ekKU8zLdArP-ScrkwKfbgI1fOv_b8knmtpNDNaXoadXCEaH8DO9GQyek9nyq17r-LdBdFBFPiRlARR-skSdQX7f1fLu3ClnS3stwtb11t2Z3wd7HrEq3CTzwdt4w7891-KOf7PlG7AtR6UJqMVF92ES3F2C3aPNxVdz2_DhLBiu4zJaXdwDtJIumiD5PW8RtWVUK4-kniLGuhLn9qZIB5OTlHNX1jsN7Zt3SSTJW0M0dc7MB2_evfyKO1PY0g9Gv0m5c4E71WmuRVRWF94nVuB1j6P3ObMVFY7nrEYNecucoXPKNtVEQoXCsa92IPBbD6LdyGxKhS0482d8NJH63ywUjmmvDdSWTaEZ-uVKX1fqpxOzKhLdFloHcvtdRzC403rxapExx_avaBF3rShwtrdi_nyQ9nLaVk4byrBQvS2kKryBieELnAWNFOBexzaU2KRksQfh-Rtn8WAE6NCWuWoUBmVUORmCPtrLip7vXBeooMrO1jEh_Bkw1l_Hfa9f214H65miMAotCFT-zBolm18gIipcQ97ofgBLe8O8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+Using+Golden+Jackal+Optimization+for+Software+Fault+Prediction&rft.jtitle=Mathematics+%28Basel%29&rft.au=Himansu+Das&rft.au=Sanjay+Prajapati&rft.au=Mahendra+Kumar+Gourisaria&rft.au=Radha+Mohan+Pattanayak&rft.date=2023-05-25&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=11&rft.spage=2438&rft_id=info:doi/10.3390%2Fmath11112438&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7bc9f30deca745fc90ee4092d805d1c0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |