A Novel Short-Term Ship Motion Prediction Algorithm Based on EMD and Adaptive PSO–LSTM with the Sliding Window Approach

Under the influence of variable sea conditions, a ship will have an oscillating motion comprising six degrees of freedom, all of which are connected to each other. Among these degrees of freedom, rolling and pitching motions have a severe impact on a ship’s maritime operations. An accurate and effec...

Full description

Saved in:
Bibliographic Details
Published inJournal of marine science and engineering Vol. 11; no. 3; p. 466
Main Authors Geng, Xiaoyu, Li, Yibing, Sun, Qian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2023
Subjects
Online AccessGet full text
ISSN2077-1312
2077-1312
DOI10.3390/jmse11030466

Cover

Abstract Under the influence of variable sea conditions, a ship will have an oscillating motion comprising six degrees of freedom, all of which are connected to each other. Among these degrees of freedom, rolling and pitching motions have a severe impact on a ship’s maritime operations. An accurate and effective ship motion attitude prediction method that makes the prediction in a short period of time is required to guarantee the safety and stability of the ship’s maritime operations. Traditional methods are based on time domain analysis, such as the autoregressive moving average (ARMA) models. However, these models have limitations when it comes to predicting the nonlinear and nonstationary characteristics of real ship motion attitude data. Many intelligent algorithms continue to be applied in nonlinear and nonstationary ship attitude prediction, such as extreme learning machines (ELMs) and the long short-term memory (LSTM) neural network, as well as other deep learning methods, showing promising results. By using the sliding window approach, the time-varying dynamic characteristics of the ship’s motion attitude can be preserved better. The simulation results demonstrate that the proposed model performs well in terms of predicting the nonlinear and nonstationary ship motion attitude.
AbstractList Under the influence of variable sea conditions, a ship will have an oscillating motion comprising six degrees of freedom, all of which are connected to each other. Among these degrees of freedom, rolling and pitching motions have a severe impact on a ship’s maritime operations. An accurate and effective ship motion attitude prediction method that makes the prediction in a short period of time is required to guarantee the safety and stability of the ship’s maritime operations. Traditional methods are based on time domain analysis, such as the autoregressive moving average (ARMA) models. However, these models have limitations when it comes to predicting the nonlinear and nonstationary characteristics of real ship motion attitude data. Many intelligent algorithms continue to be applied in nonlinear and nonstationary ship attitude prediction, such as extreme learning machines (ELMs) and the long short-term memory (LSTM) neural network, as well as other deep learning methods, showing promising results. By using the sliding window approach, the time-varying dynamic characteristics of the ship’s motion attitude can be preserved better. The simulation results demonstrate that the proposed model performs well in terms of predicting the nonlinear and nonstationary ship motion attitude.
Audience Academic
Author Sun, Qian
Li, Yibing
Geng, Xiaoyu
Author_xml – sequence: 1
  givenname: Xiaoyu
  orcidid: 0000-0002-2625-2404
  surname: Geng
  fullname: Geng, Xiaoyu
– sequence: 2
  givenname: Yibing
  orcidid: 0000-0003-4510-982X
  surname: Li
  fullname: Li, Yibing
– sequence: 3
  givenname: Qian
  orcidid: 0000-0001-7267-7545
  surname: Sun
  fullname: Sun, Qian
BookMark eNptUc1u1DAYjFCRKKW3PoAlrqT4L3Z8DKVApV1aabfqMfrin12vkjg4bqveeAfekCfB7VaoQtgHj0Yz48-et8XBGEZbFCcEnzKm8MfdMFtCMMNciFfFIcVSloQRevACvymO53mH86qpIFgcFg8N-h7ubI9W2xBTubZxyNBPaBmSDyO6itZ4_QSbfhOiT9sBfYLZGpSp8-VnBKNBjYEp-TuLrlaXv3_-WqzWS3SfpShtLVr13vhxg278aMI9aqYpBtDbd8VrB_1sj5_Po-L6y_n67Fu5uPx6cdYsSs2xSCVRvANKONddpStqjeiMNMIpTaUEJ6llmioCmgmFgXTUOW5tRWvGoO4wZkfFxT7XBNi1U_QDxIc2gG-fiBA3LcTkdW_bOv8ekxUHVnVcKtWBYkrxGpzDlIouZ73fZ-Un_Li1c2p34TaOefyWSkWE4JzJrDrdqzaQQ_3oQoqg8zZ28Dq35nzmG1kRVVe5lmz4sDfoGOY5Wvd3TILbx3Lbl-VmOf1Hrn2Cx47yPb7_v-kPC2-oZw
CitedBy_id crossref_primary_10_1109_TIM_2024_3412762
crossref_primary_10_1016_j_oceaneng_2024_117046
crossref_primary_10_1016_j_oceaneng_2025_120539
crossref_primary_10_3390_jmse12081413
crossref_primary_10_1016_j_oceaneng_2024_118223
crossref_primary_10_1016_j_oceaneng_2025_120468
crossref_primary_10_3390_jmse11071347
crossref_primary_10_3390_jmse13010001
crossref_primary_10_1088_1361_6501_adba7f
crossref_primary_10_1016_j_oceaneng_2024_119237
crossref_primary_10_1016_j_oceaneng_2024_120046
crossref_primary_10_1016_j_irfa_2024_103793
crossref_primary_10_3390_app13095298
crossref_primary_10_1016_j_oceaneng_2023_116528
crossref_primary_10_3390_jmse12091591
crossref_primary_10_1016_j_oceaneng_2024_117951
crossref_primary_10_3390_jmse12010107
crossref_primary_10_1016_j_oceaneng_2024_117279
crossref_primary_10_3389_fmars_2025_1497956
crossref_primary_10_1063_5_0260044
crossref_primary_10_3390_app14093624
crossref_primary_10_1016_j_oceaneng_2025_120968
crossref_primary_10_1080_17445302_2024_2312749
crossref_primary_10_3390_app13074486
crossref_primary_10_1007_s13344_025_0016_7
Cites_doi 10.1016/j.neucom.2005.12.126
10.1016/j.cageo.2018.08.003
10.1007/s00521-018-3434-0
10.1109/ISCID.2019.00021
10.1016/j.oceaneng.2022.113533
10.1016/j.ijepes.2013.03.034
10.1109/TCYB.2016.2561974
10.1016/j.oceaneng.2019.04.085
10.1109/TSMC.2017.2735995
10.1016/j.oceaneng.2022.112571
10.1007/s00521-016-2475-5
10.1109/MCS.2009.934408
10.1007/s13042-019-00924-7
10.1007/s10846-020-01184-2
10.1016/j.rser.2019.01.014
10.1016/j.apm.2020.06.020
10.3390/jmse9040376
10.1007/s11269-015-0962-6
10.1016/j.apor.2021.102927
10.1080/01621459.2021.1950003
10.1109/TII.2020.2973413
10.1109/GNCC42960.2018.9018688
10.1016/j.apenergy.2021.117061
10.3390/jmse9040387
10.3390/jmse11010015
10.3934/mbe.2022210
10.1016/j.asoc.2014.05.028
10.1162/neco.1997.9.8.1735
10.1016/j.asoc.2018.09.013
10.1177/0142331219860731
10.4028/www.scientific.net/AMM.344.93
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
SOI
DOA
DOI 10.3390/jmse11030466
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Environment Abstracts
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2077-1312
ExternalDocumentID oai_doaj_org_article_80303754a35b4799ba939948aff0226b
A751985131
10_3390_jmse11030466
GroupedDBID 5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AEUYN
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
PMFND
7ST
7TN
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
SOI
PUEGO
ID FETCH-LOGICAL-c406t-194ba2144cb5c52ed6bd7d6f9c277af72e3c291ac3690a1b2ff4ee52833a8b003
IEDL.DBID 8FG
ISSN 2077-1312
IngestDate Wed Aug 27 01:13:40 EDT 2025
Fri Jul 25 12:05:59 EDT 2025
Tue Jun 10 20:25:45 EDT 2025
Tue Jul 01 02:55:42 EDT 2025
Thu Apr 24 23:07:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-194ba2144cb5c52ed6bd7d6f9c277af72e3c291ac3690a1b2ff4ee52833a8b003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4510-982X
0000-0001-7267-7545
0000-0002-2625-2404
OpenAccessLink https://www.proquest.com/docview/2791664437?pq-origsite=%requestingapplication%
PQID 2791664437
PQPubID 2032377
ParticipantIDs doaj_primary_oai_doaj_org_article_80303754a35b4799ba939948aff0226b
proquest_journals_2791664437
gale_infotracacademiconefile_A751985131
crossref_primary_10_3390_jmse11030466
crossref_citationtrail_10_3390_jmse11030466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of marine science and engineering
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Atiquzzaman (ref_26) 2018; 120
Hochreiter (ref_40) 1997; 9
Liu (ref_13) 2013; 344
Qian (ref_35) 2021; 38
ref_32
Wang (ref_27) 2019; 10
Babu (ref_20) 2014; 23
ref_30
Kaplan (ref_9) 1969; 3
Peng (ref_34) 2019; 41
Huang (ref_28) 2006; 70
Wang (ref_11) 2015; 29
ref_16
ref_38
ref_37
Wang (ref_3) 2019; 183
Zhang (ref_39) 2016; 16
Li (ref_22) 2019; 31
Lorencin (ref_5) 2022; 265
Tang (ref_1) 2020; 16
(ref_7) 2018; 29
Dai (ref_23) 2022; 19
Mahdi (ref_29) 2018; 2
Sun (ref_18) 2022; 118
ref_24
Kumari (ref_6) 2021; 295
ref_21
Ye (ref_19) 2020; 100
Sun (ref_17) 2018; 2018
Higgins (ref_33) 2018; 73
Liu (ref_25) 2013; 52
Ali (ref_2) 2019; 104
ElMoaqet (ref_12) 2016; 46
Veltcheva (ref_31) 2023; 269
ref_8
Xu (ref_14) 2020; 16
Xiao (ref_15) 2020; 87
ref_4
Fossen (ref_10) 2009; 29
Yin (ref_36) 2017; 48
References_xml – volume: 70
  start-page: 489
  year: 2006
  ident: ref_28
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref_30
– volume: 120
  start-page: 105
  year: 2018
  ident: ref_26
  article-title: Robustness of extreme learning machine in the prediction of hydrological flow series
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2018.08.003
– volume: 31
  start-page: 6055
  year: 2019
  ident: ref_22
  article-title: A novel double incremental learning algorithm for time series prediction
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3434-0
– ident: ref_38
  doi: 10.1109/ISCID.2019.00021
– volume: 269
  start-page: 113533
  year: 2023
  ident: ref_31
  article-title: Analysis of wave-induced vertical ship responses by hilbert-huang transform method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.113533
– volume: 52
  start-page: 161
  year: 2013
  ident: ref_25
  article-title: An experimental investigation of two wavelet-mlp hybrid frameworks for wind speed prediction using ga and pso optimization
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.03.034
– volume: 46
  start-page: 1704
  year: 2016
  ident: ref_12
  article-title: Ramachandran. Multi-step ahead predictions for critical levels in physiological time series
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2561974
– volume: 38
  start-page: 257
  year: 2021
  ident: ref_35
  article-title: A fetal electrocardiogram signal extraction method based on long short term memory network optimized by genetic algorithm
  publication-title: J. Biomed. Eng.
– volume: 183
  start-page: 270
  year: 2019
  ident: ref_3
  article-title: Identification of ship manoeuvring motion based on nu-support vector machine
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.04.085
– volume: 48
  start-page: 2115
  year: 2017
  ident: ref_36
  article-title: A real-time sequential ship roll prediction scheme based on adaptive sliding data window
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2735995
– volume: 265
  start-page: 112571
  year: 2022
  ident: ref_5
  article-title: Prediction of main particulars of container ships using artificial intelligence algorithms
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112571
– volume: 16
  start-page: 104
  year: 2020
  ident: ref_14
  article-title: Real-time road traffic state prediction based on kernel-knn
  publication-title: Transportmetrica
– volume: 29
  start-page: 749
  year: 2018
  ident: ref_7
  article-title: A new hybrid method for time series forecasting: Ar–anfis
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2475-5
– volume: 29
  start-page: 32
  year: 2009
  ident: ref_10
  article-title: Kalman filtering for positioning and heading control of ships and offshore rigs
  publication-title: Control. Syst. IEEE
  doi: 10.1109/MCS.2009.934408
– ident: ref_8
– volume: 10
  start-page: 3371
  year: 2019
  ident: ref_27
  article-title: Sensitive time series prediction using extreme learning machine
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-00924-7
– ident: ref_4
– volume: 2
  start-page: 1
  year: 2018
  ident: ref_29
  article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting
  publication-title: IEEE Trans. Sustain. Energy
– volume: 100
  start-page: 1
  year: 2020
  ident: ref_19
  article-title: Cooperative multiple task assignment of heterogeneous uavs using a modified genetic algorithm with multi-type-gene chromosome encoding strategy
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-020-01184-2
– volume: 104
  start-page: 281
  year: 2019
  ident: ref_2
  article-title: Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.01.014
– volume: 87
  start-page: 546
  year: 2020
  ident: ref_15
  article-title: A novel car-following inertia grey model and its application in forecasting short-term traffic flow
  publication-title: Appl. Math.l Modell.
  doi: 10.1016/j.apm.2020.06.020
– ident: ref_16
  doi: 10.3390/jmse9040376
– volume: 3
  start-page: 121
  year: 1969
  ident: ref_9
  article-title: A study of prediction techniques for aircraft carrier motions at sea
  publication-title: J. Hydronautics
– volume: 29
  start-page: 2655
  year: 2015
  ident: ref_11
  article-title: Improving forecasting accuracy of annual runoff time series using arima based on eemd decomposition
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-0962-6
– volume: 118
  start-page: 118
  year: 2022
  ident: ref_18
  article-title: Short-term ship motion attitude prediction based on lstm and gpr
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102927
– ident: ref_24
  doi: 10.1080/01621459.2021.1950003
– volume: 16
  start-page: 6806
  year: 2020
  ident: ref_1
  article-title: A novel wind speed interval prediction based on error prediction method
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2973413
– ident: ref_37
  doi: 10.1109/GNCC42960.2018.9018688
– volume: 295
  start-page: 117061
  year: 2021
  ident: ref_6
  article-title: Long short term memory–Convolutional neural network based deep hybrid approach for solar irradiance forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117061
– ident: ref_32
  doi: 10.3390/jmse9040387
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_17
  article-title: Cooperative localization algorithm based on hybrid topology architecture for multiple mobile robot system
  publication-title: IEEE Internet Things J.
– ident: ref_21
  doi: 10.3390/jmse11010015
– volume: 16
  start-page: 124
  year: 2016
  ident: ref_39
  article-title: Ship rolling motion prediction and analysis based on grey pso-anfis model
  publication-title: Sci. Technol. Eng.
– volume: 19
  start-page: 4547
  year: 2022
  ident: ref_23
  article-title: Ship power load forecasting based on pso-svm
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2022210
– volume: 23
  start-page: 27
  year: 2014
  ident: ref_20
  article-title: A moving-average filter based hybrid arima–ann model for forecasting time series data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.05.028
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_40
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 73
  start-page: 969
  year: 2018
  ident: ref_33
  article-title: Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.013
– volume: 41
  start-page: 4462
  year: 2019
  ident: ref_34
  article-title: An improved particle swarm optimization algorithm applied to long short-term memory neural network for ship motion attitude prediction
  publication-title: Trans. Inst. Meas. Control.
  doi: 10.1177/0142331219860731
– volume: 344
  start-page: 93
  year: 2013
  ident: ref_13
  article-title: A novel method for hull’s three dimensional deformation measurement
  publication-title: Appl. Mech. Mater. Trans. Technol. Publ.
  doi: 10.4028/www.scientific.net/AMM.344.93
SSID ssj0000826106
Score 2.3834414
Snippet Under the influence of variable sea conditions, a ship will have an oscillating motion comprising six degrees of freedom, all of which are connected to each...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 466
SubjectTerms Accuracy
Algorithms
Analysis
Artificial neural networks
Attitudes
Autoregressive moving-average models
Control theory
Datasets
Deep learning
Degrees of freedom
Dynamic characteristics
Kalman filters
Long short-term memory
Machine learning
Methods
Movement
Neural networks
Optimization
parameter optimization algorithm
Pitching
Predictions
Safety regulations
Ship motion
ship motion attitude prediction
Simulation
Sliding
sliding window technique
Slumping
Time domain analysis
Time series
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3SlQjiE6tVslBcyFAm88jMcqotIlaFVuwu5DW2Mp0WrYo7_8E_9Eu8d2aUuihu3IUQhiT3de4kOZeQQ6ukslEYO9J42vFj33UiGwZODGhEpYoZ4-ID5-5VeH7rXwyCwVypL7wTVtIDlxvXjEALsUyr9ALlc_iAjCGm-pFMUwg_oULvC2FsLpkqfDCgZkh2ypvuHuT1zYfxk3Xd4iAw_BWDCqr-RQ65iDKdNbJawUOalNNaJ0s23yAr19rKvOKW3iRvCb2avNiM9oaAnZ0--FZojqa0W1TkoTePePhSNJPsfgLZ_3BMWxCtDIWudveMytzQxMgpujp607v-fP-47PW7FH_KUkCEtJeNMKbRO8jYJ680qYjHt8htp90_PXeqCgqOhkA9c9zYVxJJ0bQKdMCsCZXhJkxjzTiXKWfW0yx2pfYgSZauYmnqW4t8L56M0OC3SS2f5HaHUI28OYwbyaz2FbdKuwqsOQokC7HuY52cfO-p0BW9OFa5yASkGSgBMS-BOjn6GT0taTUWjGuheH7GIBl20QEqIioVEX-pSJ0co3AFmixMScvq5QEsDMmvRMIBxgLyxEU0vuUvKlt-EowDhAbY6PHd_5jNHlnGkvXlPbYGqc0en-0-AJuZOih0-Av4XfRT
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Short-Term Ship Motion Prediction Algorithm Based on EMD and Adaptive PSO–LSTM with the Sliding Window Approach
URI https://www.proquest.com/docview/2791664437
https://doaj.org/article/80303754a35b4799ba939948aff0226b
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JbxMxFLagvSAkRFlEoI18AHFAVmXP4pkTmkBChUgakVT0ZnmbLkpnQhJA3PgP_Yf8kr7nOAEO5TbyvMN43vY9L98j5KU32vgiL5l2iWVpmXJW-DxjJaARUxvhHMcLzsNRfnSSfjzNTuOC2zIeq9zExBCoXWtxjfxQSAAykLwT-Xb-lWHXKNxdjS007pJdLsCS8Kb44MN2jQXSG6CDfH3ePYHq_vDyauk5D9uB-T-ZKBD23xaWQ64ZPCQPIkik1Vqre-SObx6R-8fW6yYyTD8mPys6ar_7GZ2cA4JmU4iw8Hgxp8PQl4eOF7gFEx6r2RnMZHV-RXuQsxyFof7wPdWNo5XTcwx4dDw5_v3r-tNkOqS4NEsBF9LJ7AIzG_0CdXv7g1aRfvwJORn0p--OWOyjwCyk6xXjZWo0UqNZk9lMeJcbJ11el1ZIqWspfGJFybVNoFTW3Ii6Tr1H1pdEF-j2T8lO0zb-GaEW2XOEdFp4mxrpjeUGfLrItMix-2OHvNn8U2UjyTj2upgpKDZQA-pvDXTIq630fE2ucYtcD9WzlUFK7DDQLs5U9DBVgCz289VJZlIJlqZLAF9poesacEpuOuQ1Kleh48InWR3vH8DEkAJLVRLALOBPnMT-Rv8qevRS_bG_5_9__YLcw5b063Nq-2RntfjmDwC4rEw3WGeX7Pb6o_Hnbij_bwDgje_B
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgBVQuUlAi3sgYoDsop3ba99QMilDSmN00pJRW_LvtymSu2QBKre-A_8D34Uv4QZPwIcyq231Xpk2TuzM9_s4xtCXjqttIujxFOWGy9IAt-LXRR6CaARnWtmrY8XnLNB1DsOPp6EJyvkZ3sXBo9Vtj6xctS2NLhGvs0EABkI3ly8m37xsGoU7q62JTRqszhwV5eQss3f7u-CfrcY6-6N3ve8pqqAZyB4LTzI2rVCojCjQxMyZyNthY3yxDAhVC6Y44YlvjIcEkfla5bngXPIgcJVjJMA3nuL3A4458jVH3c_LNd0IJwCGonq8_WcJ2-2zy_mzver7cfon8hXFQi4LgxUsa27Tu41oJSmtRXdJyuueEDWDo1TRcNo_ZBcpXRQfnMTOjwDxO6NwKNDczylWVUHiB7NcMunaqaTUxi5xdkF3YEYaSl07WW7VBWWplZN0cHSo-Hhr-8_-sNRRnEpmAIOpcPJGCMp_TQubHlJ04bu_BE5vpERfkxWi7JwTwg1yNbDhFXMmUALp42vwYfEoWIRVpvskNftmErTkJpjbY2JhOQGNSD_1kCHbC2lpzWZxzVyO6iepQxScFcd5exUNjNaxiCL9YMVD3UgwLJVAmAviFWeAy6KdIe8QuVKdBTwSUY19x3gx5ByS6YCwDPgXfyJjVb_svEgc_nH3p_-__ELcqc3yvqyvz84eEbuMgBh9Rm5DbK6mH11mwCaFvp5ZamUfL7pqfEbUAIqgw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVEIICfEUaQvMgooFsoLHj7EXFXJIopY2aURS0d0wL7dBqR2SQNUd_8Bf8Rl8Cfc64wCLsuvOskeWPXfuvWce9xxCXlollU3i1JMm0F6Yhr6X2DjyUkAjKlfMGB8LnPuDeP8kfH8anW6Qn3UtDB6rrGNiFahNqXGNvMU4ABlI3gFv5e5YxLDTezv74qGCFO601nIa0sksmL2KbswVeRzaq0uYzi32Djpg-13Get3xu33PKQ54GhLb0oMZvZJIIqZVpCNmTawMN3Geasa5zDmzgWapL3UAk0rpK5bnobXIjxLIBB0E3nuLbHKsF22QzXZ3MPywXvGBZAtYJV6dvg-C9E3r88XC-n61ORn_kxcr-YDrkkSV-Xr3yT0HWWm2GmMPyIYtHpK7x9rKwvFdPyJXGR2U3-yUjs4Bz3tjiPdwOZnRfqUSRIdz3BCqLrPpGfTl8vyCtiGDGgq3uv0OlYWhmZEzDL90ODr-9f3H0Wjcp7hQTAGl0tF0gnmWfpwUprykmSNDf0xObqSPn5BGURb2KaEauXwYN5JZHSpulfYVRJgkkixGLcomeV33qdCO8hyVN6YCpj5oAfG3BZpkd916tqL6uKZdG82zboME3dWNcn4mnL-LBNqiurAMIhVyGPcyhUERJjLPATXFqkleoXEFhhH4JC1dNQT8GBJyiYwDtAY0jD-xU9tfuPiyEH-8Yev_j1-Q2-Am4uhgcLhN7jBAaKsDdDuksZx_tc8AUS3VczdUKfl0097xG4-5NV0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Short-Term+Ship+Motion+Prediction+Algorithm+Based+on+EMD+and+Adaptive+PSO%E2%80%93LSTM+with+the+Sliding+Window+Approach&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Geng%2C+Xiaoyu&rft.au=Li%2C+Yibing&rft.au=Sun%2C+Qian&rft.date=2023-03-01&rft.issn=2077-1312&rft.eissn=2077-1312&rft.volume=11&rft.issue=3&rft.spage=466&rft_id=info:doi/10.3390%2Fjmse11030466&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jmse11030466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon