A Novel Short-Term Ship Motion Prediction Algorithm Based on EMD and Adaptive PSO–LSTM with the Sliding Window Approach
Under the influence of variable sea conditions, a ship will have an oscillating motion comprising six degrees of freedom, all of which are connected to each other. Among these degrees of freedom, rolling and pitching motions have a severe impact on a ship’s maritime operations. An accurate and effec...
Saved in:
Published in | Journal of marine science and engineering Vol. 11; no. 3; p. 466 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2077-1312 2077-1312 |
DOI | 10.3390/jmse11030466 |
Cover
Abstract | Under the influence of variable sea conditions, a ship will have an oscillating motion comprising six degrees of freedom, all of which are connected to each other. Among these degrees of freedom, rolling and pitching motions have a severe impact on a ship’s maritime operations. An accurate and effective ship motion attitude prediction method that makes the prediction in a short period of time is required to guarantee the safety and stability of the ship’s maritime operations. Traditional methods are based on time domain analysis, such as the autoregressive moving average (ARMA) models. However, these models have limitations when it comes to predicting the nonlinear and nonstationary characteristics of real ship motion attitude data. Many intelligent algorithms continue to be applied in nonlinear and nonstationary ship attitude prediction, such as extreme learning machines (ELMs) and the long short-term memory (LSTM) neural network, as well as other deep learning methods, showing promising results. By using the sliding window approach, the time-varying dynamic characteristics of the ship’s motion attitude can be preserved better. The simulation results demonstrate that the proposed model performs well in terms of predicting the nonlinear and nonstationary ship motion attitude. |
---|---|
AbstractList | Under the influence of variable sea conditions, a ship will have an oscillating motion comprising six degrees of freedom, all of which are connected to each other. Among these degrees of freedom, rolling and pitching motions have a severe impact on a ship’s maritime operations. An accurate and effective ship motion attitude prediction method that makes the prediction in a short period of time is required to guarantee the safety and stability of the ship’s maritime operations. Traditional methods are based on time domain analysis, such as the autoregressive moving average (ARMA) models. However, these models have limitations when it comes to predicting the nonlinear and nonstationary characteristics of real ship motion attitude data. Many intelligent algorithms continue to be applied in nonlinear and nonstationary ship attitude prediction, such as extreme learning machines (ELMs) and the long short-term memory (LSTM) neural network, as well as other deep learning methods, showing promising results. By using the sliding window approach, the time-varying dynamic characteristics of the ship’s motion attitude can be preserved better. The simulation results demonstrate that the proposed model performs well in terms of predicting the nonlinear and nonstationary ship motion attitude. |
Audience | Academic |
Author | Sun, Qian Li, Yibing Geng, Xiaoyu |
Author_xml | – sequence: 1 givenname: Xiaoyu orcidid: 0000-0002-2625-2404 surname: Geng fullname: Geng, Xiaoyu – sequence: 2 givenname: Yibing orcidid: 0000-0003-4510-982X surname: Li fullname: Li, Yibing – sequence: 3 givenname: Qian orcidid: 0000-0001-7267-7545 surname: Sun fullname: Sun, Qian |
BookMark | eNptUc1u1DAYjFCRKKW3PoAlrqT4L3Z8DKVApV1aabfqMfrin12vkjg4bqveeAfekCfB7VaoQtgHj0Yz48-et8XBGEZbFCcEnzKm8MfdMFtCMMNciFfFIcVSloQRevACvymO53mH86qpIFgcFg8N-h7ubI9W2xBTubZxyNBPaBmSDyO6itZ4_QSbfhOiT9sBfYLZGpSp8-VnBKNBjYEp-TuLrlaXv3_-WqzWS3SfpShtLVr13vhxg278aMI9aqYpBtDbd8VrB_1sj5_Po-L6y_n67Fu5uPx6cdYsSs2xSCVRvANKONddpStqjeiMNMIpTaUEJ6llmioCmgmFgXTUOW5tRWvGoO4wZkfFxT7XBNi1U_QDxIc2gG-fiBA3LcTkdW_bOv8ekxUHVnVcKtWBYkrxGpzDlIouZ73fZ-Un_Li1c2p34TaOefyWSkWE4JzJrDrdqzaQQ_3oQoqg8zZ28Dq35nzmG1kRVVe5lmz4sDfoGOY5Wvd3TILbx3Lbl-VmOf1Hrn2Cx47yPb7_v-kPC2-oZw |
CitedBy_id | crossref_primary_10_1109_TIM_2024_3412762 crossref_primary_10_1016_j_oceaneng_2024_117046 crossref_primary_10_1016_j_oceaneng_2025_120539 crossref_primary_10_3390_jmse12081413 crossref_primary_10_1016_j_oceaneng_2024_118223 crossref_primary_10_1016_j_oceaneng_2025_120468 crossref_primary_10_3390_jmse11071347 crossref_primary_10_3390_jmse13010001 crossref_primary_10_1088_1361_6501_adba7f crossref_primary_10_1016_j_oceaneng_2024_119237 crossref_primary_10_1016_j_oceaneng_2024_120046 crossref_primary_10_1016_j_irfa_2024_103793 crossref_primary_10_3390_app13095298 crossref_primary_10_1016_j_oceaneng_2023_116528 crossref_primary_10_3390_jmse12091591 crossref_primary_10_1016_j_oceaneng_2024_117951 crossref_primary_10_3390_jmse12010107 crossref_primary_10_1016_j_oceaneng_2024_117279 crossref_primary_10_3389_fmars_2025_1497956 crossref_primary_10_1063_5_0260044 crossref_primary_10_3390_app14093624 crossref_primary_10_1016_j_oceaneng_2025_120968 crossref_primary_10_1080_17445302_2024_2312749 crossref_primary_10_3390_app13074486 crossref_primary_10_1007_s13344_025_0016_7 |
Cites_doi | 10.1016/j.neucom.2005.12.126 10.1016/j.cageo.2018.08.003 10.1007/s00521-018-3434-0 10.1109/ISCID.2019.00021 10.1016/j.oceaneng.2022.113533 10.1016/j.ijepes.2013.03.034 10.1109/TCYB.2016.2561974 10.1016/j.oceaneng.2019.04.085 10.1109/TSMC.2017.2735995 10.1016/j.oceaneng.2022.112571 10.1007/s00521-016-2475-5 10.1109/MCS.2009.934408 10.1007/s13042-019-00924-7 10.1007/s10846-020-01184-2 10.1016/j.rser.2019.01.014 10.1016/j.apm.2020.06.020 10.3390/jmse9040376 10.1007/s11269-015-0962-6 10.1016/j.apor.2021.102927 10.1080/01621459.2021.1950003 10.1109/TII.2020.2973413 10.1109/GNCC42960.2018.9018688 10.1016/j.apenergy.2021.117061 10.3390/jmse9040387 10.3390/jmse11010015 10.3934/mbe.2022210 10.1016/j.asoc.2014.05.028 10.1162/neco.1997.9.8.1735 10.1016/j.asoc.2018.09.013 10.1177/0142331219860731 10.4028/www.scientific.net/AMM.344.93 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7ST 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY SOI DOA |
DOI | 10.3390/jmse11030466 |
DatabaseName | CrossRef Environment Abstracts Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Environment Abstracts Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
EISSN | 2077-1312 |
ExternalDocumentID | oai_doaj_org_article_80303754a35b4799ba939948aff0226b A751985131 10_3390_jmse11030466 |
GroupedDBID | 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AEUYN AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PROAC PTHSS PYCSY PMFND 7ST 7TN ABUWG AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQGLB PQQKQ PQUKI SOI PUEGO |
ID | FETCH-LOGICAL-c406t-194ba2144cb5c52ed6bd7d6f9c277af72e3c291ac3690a1b2ff4ee52833a8b003 |
IEDL.DBID | 8FG |
ISSN | 2077-1312 |
IngestDate | Wed Aug 27 01:13:40 EDT 2025 Fri Jul 25 12:05:59 EDT 2025 Tue Jun 10 20:25:45 EDT 2025 Tue Jul 01 02:55:42 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-194ba2144cb5c52ed6bd7d6f9c277af72e3c291ac3690a1b2ff4ee52833a8b003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4510-982X 0000-0001-7267-7545 0000-0002-2625-2404 |
OpenAccessLink | https://www.proquest.com/docview/2791664437?pq-origsite=%requestingapplication% |
PQID | 2791664437 |
PQPubID | 2032377 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80303754a35b4799ba939948aff0226b proquest_journals_2791664437 gale_infotracacademiconefile_A751985131 crossref_primary_10_3390_jmse11030466 crossref_citationtrail_10_3390_jmse11030466 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Journal of marine science and engineering |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Atiquzzaman (ref_26) 2018; 120 Hochreiter (ref_40) 1997; 9 Liu (ref_13) 2013; 344 Qian (ref_35) 2021; 38 ref_32 Wang (ref_27) 2019; 10 Babu (ref_20) 2014; 23 ref_30 Kaplan (ref_9) 1969; 3 Peng (ref_34) 2019; 41 Huang (ref_28) 2006; 70 Wang (ref_11) 2015; 29 ref_16 ref_38 ref_37 Wang (ref_3) 2019; 183 Zhang (ref_39) 2016; 16 Li (ref_22) 2019; 31 Lorencin (ref_5) 2022; 265 Tang (ref_1) 2020; 16 (ref_7) 2018; 29 Dai (ref_23) 2022; 19 Mahdi (ref_29) 2018; 2 Sun (ref_18) 2022; 118 ref_24 Kumari (ref_6) 2021; 295 ref_21 Ye (ref_19) 2020; 100 Sun (ref_17) 2018; 2018 Higgins (ref_33) 2018; 73 Liu (ref_25) 2013; 52 Ali (ref_2) 2019; 104 ElMoaqet (ref_12) 2016; 46 Veltcheva (ref_31) 2023; 269 ref_8 Xu (ref_14) 2020; 16 Xiao (ref_15) 2020; 87 ref_4 Fossen (ref_10) 2009; 29 Yin (ref_36) 2017; 48 |
References_xml | – volume: 70 start-page: 489 year: 2006 ident: ref_28 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: ref_30 – volume: 120 start-page: 105 year: 2018 ident: ref_26 article-title: Robustness of extreme learning machine in the prediction of hydrological flow series publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2018.08.003 – volume: 31 start-page: 6055 year: 2019 ident: ref_22 article-title: A novel double incremental learning algorithm for time series prediction publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3434-0 – ident: ref_38 doi: 10.1109/ISCID.2019.00021 – volume: 269 start-page: 113533 year: 2023 ident: ref_31 article-title: Analysis of wave-induced vertical ship responses by hilbert-huang transform method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113533 – volume: 52 start-page: 161 year: 2013 ident: ref_25 article-title: An experimental investigation of two wavelet-mlp hybrid frameworks for wind speed prediction using ga and pso optimization publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.03.034 – volume: 46 start-page: 1704 year: 2016 ident: ref_12 article-title: Ramachandran. Multi-step ahead predictions for critical levels in physiological time series publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2561974 – volume: 38 start-page: 257 year: 2021 ident: ref_35 article-title: A fetal electrocardiogram signal extraction method based on long short term memory network optimized by genetic algorithm publication-title: J. Biomed. Eng. – volume: 183 start-page: 270 year: 2019 ident: ref_3 article-title: Identification of ship manoeuvring motion based on nu-support vector machine publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.085 – volume: 48 start-page: 2115 year: 2017 ident: ref_36 article-title: A real-time sequential ship roll prediction scheme based on adaptive sliding data window publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2735995 – volume: 265 start-page: 112571 year: 2022 ident: ref_5 article-title: Prediction of main particulars of container ships using artificial intelligence algorithms publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112571 – volume: 16 start-page: 104 year: 2020 ident: ref_14 article-title: Real-time road traffic state prediction based on kernel-knn publication-title: Transportmetrica – volume: 29 start-page: 749 year: 2018 ident: ref_7 article-title: A new hybrid method for time series forecasting: Ar–anfis publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2475-5 – volume: 29 start-page: 32 year: 2009 ident: ref_10 article-title: Kalman filtering for positioning and heading control of ships and offshore rigs publication-title: Control. Syst. IEEE doi: 10.1109/MCS.2009.934408 – ident: ref_8 – volume: 10 start-page: 3371 year: 2019 ident: ref_27 article-title: Sensitive time series prediction using extreme learning machine publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-00924-7 – ident: ref_4 – volume: 2 start-page: 1 year: 2018 ident: ref_29 article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting publication-title: IEEE Trans. Sustain. Energy – volume: 100 start-page: 1 year: 2020 ident: ref_19 article-title: Cooperative multiple task assignment of heterogeneous uavs using a modified genetic algorithm with multi-type-gene chromosome encoding strategy publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-020-01184-2 – volume: 104 start-page: 281 year: 2019 ident: ref_2 article-title: Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.014 – volume: 87 start-page: 546 year: 2020 ident: ref_15 article-title: A novel car-following inertia grey model and its application in forecasting short-term traffic flow publication-title: Appl. Math.l Modell. doi: 10.1016/j.apm.2020.06.020 – ident: ref_16 doi: 10.3390/jmse9040376 – volume: 3 start-page: 121 year: 1969 ident: ref_9 article-title: A study of prediction techniques for aircraft carrier motions at sea publication-title: J. Hydronautics – volume: 29 start-page: 2655 year: 2015 ident: ref_11 article-title: Improving forecasting accuracy of annual runoff time series using arima based on eemd decomposition publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-0962-6 – volume: 118 start-page: 118 year: 2022 ident: ref_18 article-title: Short-term ship motion attitude prediction based on lstm and gpr publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102927 – ident: ref_24 doi: 10.1080/01621459.2021.1950003 – volume: 16 start-page: 6806 year: 2020 ident: ref_1 article-title: A novel wind speed interval prediction based on error prediction method publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.2973413 – ident: ref_37 doi: 10.1109/GNCC42960.2018.9018688 – volume: 295 start-page: 117061 year: 2021 ident: ref_6 article-title: Long short term memory–Convolutional neural network based deep hybrid approach for solar irradiance forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117061 – ident: ref_32 doi: 10.3390/jmse9040387 – volume: 2018 start-page: 1 year: 2018 ident: ref_17 article-title: Cooperative localization algorithm based on hybrid topology architecture for multiple mobile robot system publication-title: IEEE Internet Things J. – ident: ref_21 doi: 10.3390/jmse11010015 – volume: 16 start-page: 124 year: 2016 ident: ref_39 article-title: Ship rolling motion prediction and analysis based on grey pso-anfis model publication-title: Sci. Technol. Eng. – volume: 19 start-page: 4547 year: 2022 ident: ref_23 article-title: Ship power load forecasting based on pso-svm publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2022210 – volume: 23 start-page: 27 year: 2014 ident: ref_20 article-title: A moving-average filter based hybrid arima–ann model for forecasting time series data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.05.028 – volume: 9 start-page: 1735 year: 1997 ident: ref_40 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 73 start-page: 969 year: 2018 ident: ref_33 article-title: Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.013 – volume: 41 start-page: 4462 year: 2019 ident: ref_34 article-title: An improved particle swarm optimization algorithm applied to long short-term memory neural network for ship motion attitude prediction publication-title: Trans. Inst. Meas. Control. doi: 10.1177/0142331219860731 – volume: 344 start-page: 93 year: 2013 ident: ref_13 article-title: A novel method for hull’s three dimensional deformation measurement publication-title: Appl. Mech. Mater. Trans. Technol. Publ. doi: 10.4028/www.scientific.net/AMM.344.93 |
SSID | ssj0000826106 |
Score | 2.3834414 |
Snippet | Under the influence of variable sea conditions, a ship will have an oscillating motion comprising six degrees of freedom, all of which are connected to each... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 466 |
SubjectTerms | Accuracy Algorithms Analysis Artificial neural networks Attitudes Autoregressive moving-average models Control theory Datasets Deep learning Degrees of freedom Dynamic characteristics Kalman filters Long short-term memory Machine learning Methods Movement Neural networks Optimization parameter optimization algorithm Pitching Predictions Safety regulations Ship motion ship motion attitude prediction Simulation Sliding sliding window technique Slumping Time domain analysis Time series |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3SlQjiE6tVslBcyFAm88jMcqotIlaFVuwu5DW2Mp0WrYo7_8E_9Eu8d2aUuihu3IUQhiT3de4kOZeQQ6ukslEYO9J42vFj33UiGwZODGhEpYoZ4-ID5-5VeH7rXwyCwVypL7wTVtIDlxvXjEALsUyr9ALlc_iAjCGm-pFMUwg_oULvC2FsLpkqfDCgZkh2ypvuHuT1zYfxk3Xd4iAw_BWDCqr-RQ65iDKdNbJawUOalNNaJ0s23yAr19rKvOKW3iRvCb2avNiM9oaAnZ0--FZojqa0W1TkoTePePhSNJPsfgLZ_3BMWxCtDIWudveMytzQxMgpujp607v-fP-47PW7FH_KUkCEtJeNMKbRO8jYJ680qYjHt8htp90_PXeqCgqOhkA9c9zYVxJJ0bQKdMCsCZXhJkxjzTiXKWfW0yx2pfYgSZauYmnqW4t8L56M0OC3SS2f5HaHUI28OYwbyaz2FbdKuwqsOQokC7HuY52cfO-p0BW9OFa5yASkGSgBMS-BOjn6GT0taTUWjGuheH7GIBl20QEqIioVEX-pSJ0co3AFmixMScvq5QEsDMmvRMIBxgLyxEU0vuUvKlt-EowDhAbY6PHd_5jNHlnGkvXlPbYGqc0en-0-AJuZOih0-Av4XfRT priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Short-Term Ship Motion Prediction Algorithm Based on EMD and Adaptive PSO–LSTM with the Sliding Window Approach |
URI | https://www.proquest.com/docview/2791664437 https://doaj.org/article/80303754a35b4799ba939948aff0226b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2077-1312 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: 8FG dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JbxMxFLagvSAkRFlEoI18AHFAVmXP4pkTmkBChUgakVT0ZnmbLkpnQhJA3PgP_Yf8kr7nOAEO5TbyvMN43vY9L98j5KU32vgiL5l2iWVpmXJW-DxjJaARUxvhHMcLzsNRfnSSfjzNTuOC2zIeq9zExBCoXWtxjfxQSAAykLwT-Xb-lWHXKNxdjS007pJdLsCS8Kb44MN2jQXSG6CDfH3ePYHq_vDyauk5D9uB-T-ZKBD23xaWQ64ZPCQPIkik1Vqre-SObx6R-8fW6yYyTD8mPys6ar_7GZ2cA4JmU4iw8Hgxp8PQl4eOF7gFEx6r2RnMZHV-RXuQsxyFof7wPdWNo5XTcwx4dDw5_v3r-tNkOqS4NEsBF9LJ7AIzG_0CdXv7g1aRfvwJORn0p--OWOyjwCyk6xXjZWo0UqNZk9lMeJcbJ11el1ZIqWspfGJFybVNoFTW3Ii6Tr1H1pdEF-j2T8lO0zb-GaEW2XOEdFp4mxrpjeUGfLrItMix-2OHvNn8U2UjyTj2upgpKDZQA-pvDXTIq630fE2ucYtcD9WzlUFK7DDQLs5U9DBVgCz289VJZlIJlqZLAF9poesacEpuOuQ1Kleh48InWR3vH8DEkAJLVRLALOBPnMT-Rv8qevRS_bG_5_9__YLcw5b063Nq-2RntfjmDwC4rEw3WGeX7Pb6o_Hnbij_bwDgje_B |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgBVQuUlAi3sgYoDsop3ba99QMilDSmN00pJRW_LvtymSu2QBKre-A_8D34Uv4QZPwIcyq231Xpk2TuzM9_s4xtCXjqttIujxFOWGy9IAt-LXRR6CaARnWtmrY8XnLNB1DsOPp6EJyvkZ3sXBo9Vtj6xctS2NLhGvs0EABkI3ly8m37xsGoU7q62JTRqszhwV5eQss3f7u-CfrcY6-6N3ve8pqqAZyB4LTzI2rVCojCjQxMyZyNthY3yxDAhVC6Y44YlvjIcEkfla5bngXPIgcJVjJMA3nuL3A4458jVH3c_LNd0IJwCGonq8_WcJ2-2zy_mzver7cfon8hXFQi4LgxUsa27Tu41oJSmtRXdJyuueEDWDo1TRcNo_ZBcpXRQfnMTOjwDxO6NwKNDczylWVUHiB7NcMunaqaTUxi5xdkF3YEYaSl07WW7VBWWplZN0cHSo-Hhr-8_-sNRRnEpmAIOpcPJGCMp_TQubHlJ04bu_BE5vpERfkxWi7JwTwg1yNbDhFXMmUALp42vwYfEoWIRVpvskNftmErTkJpjbY2JhOQGNSD_1kCHbC2lpzWZxzVyO6iepQxScFcd5exUNjNaxiCL9YMVD3UgwLJVAmAviFWeAy6KdIe8QuVKdBTwSUY19x3gx5ByS6YCwDPgXfyJjVb_svEgc_nH3p_-__ELcqc3yvqyvz84eEbuMgBh9Rm5DbK6mH11mwCaFvp5ZamUfL7pqfEbUAIqgw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVEIICfEUaQvMgooFsoLHj7EXFXJIopY2aURS0d0wL7dBqR2SQNUd_8Bf8Rl8Cfc64wCLsuvOskeWPXfuvWce9xxCXlollU3i1JMm0F6Yhr6X2DjyUkAjKlfMGB8LnPuDeP8kfH8anW6Qn3UtDB6rrGNiFahNqXGNvMU4ABlI3gFv5e5YxLDTezv74qGCFO601nIa0sksmL2KbswVeRzaq0uYzi32Djpg-13Get3xu33PKQ54GhLb0oMZvZJIIqZVpCNmTawMN3Geasa5zDmzgWapL3UAk0rpK5bnobXIjxLIBB0E3nuLbHKsF22QzXZ3MPywXvGBZAtYJV6dvg-C9E3r88XC-n61ORn_kxcr-YDrkkSV-Xr3yT0HWWm2GmMPyIYtHpK7x9rKwvFdPyJXGR2U3-yUjs4Bz3tjiPdwOZnRfqUSRIdz3BCqLrPpGfTl8vyCtiGDGgq3uv0OlYWhmZEzDL90ODr-9f3H0Wjcp7hQTAGl0tF0gnmWfpwUprykmSNDf0xObqSPn5BGURb2KaEauXwYN5JZHSpulfYVRJgkkixGLcomeV33qdCO8hyVN6YCpj5oAfG3BZpkd916tqL6uKZdG82zboME3dWNcn4mnL-LBNqiurAMIhVyGPcyhUERJjLPATXFqkleoXEFhhH4JC1dNQT8GBJyiYwDtAY0jD-xU9tfuPiyEH-8Yev_j1-Q2-Am4uhgcLhN7jBAaKsDdDuksZx_tc8AUS3VczdUKfl0097xG4-5NV0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Short-Term+Ship+Motion+Prediction+Algorithm+Based+on+EMD+and+Adaptive+PSO%E2%80%93LSTM+with+the+Sliding+Window+Approach&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Geng%2C+Xiaoyu&rft.au=Li%2C+Yibing&rft.au=Sun%2C+Qian&rft.date=2023-03-01&rft.issn=2077-1312&rft.eissn=2077-1312&rft.volume=11&rft.issue=3&rft.spage=466&rft_id=info:doi/10.3390%2Fjmse11030466&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jmse11030466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon |