Strong gradients, cool performance: A 64‐channel array coil with concurrent field monitoring and thermal control for ex vivo diffusion‐weighted brain imaging using the 3T connectome 2.0 MRI scanner

Purpose High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise ratio (SNR), magnetic field perturbations, and temperature‐related measurement shifts. This work introduces a hardware‐based solution to address...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 94; no. 5; pp. 2268 - 2285
Main Authors Müller, Alina, Mahmutovic, Mirsad, Alem, Mona, Ramos‐Llordén, Gabriel, Sung, Dongsuk, Shrestha, Manisha, Hansen, Sam‐Luca J.D., Chemlali, Chaimaa, Ghotra, Anpreet, Stockmann, Jason, Mekkaoui, Choukri, Wald, Lawrence L., Yendiki, Anastasia, Huang, Susie Y., Keil, Boris
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.11.2025
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30599

Cover

Abstract Purpose High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise ratio (SNR), magnetic field perturbations, and temperature‐related measurement shifts. This work introduces a hardware‐based solution to address these limitations in human ex vivo brain imaging. Methods A customized anatomically conformal 64‐channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion‐weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient‐induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g‐factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion‐weighted scans. Results The system demonstrated 73% higher SNR compared with a 72‐channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion‐weighted measurements by eliminating measurement drift during a 13‐hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively. Conclusion We describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high‐diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution.
AbstractList Purpose High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise ratio (SNR), magnetic field perturbations, and temperature‐related measurement shifts. This work introduces a hardware‐based solution to address these limitations in human ex vivo brain imaging. Methods A customized anatomically conformal 64‐channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion‐weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient‐induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g‐factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion‐weighted scans. Results The system demonstrated 73% higher SNR compared with a 72‐channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion‐weighted measurements by eliminating measurement drift during a 13‐hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively. Conclusion We describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high‐diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution.
Purpose High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise ratio (SNR), magnetic field perturbations, and temperature‐related measurement shifts. This work introduces a hardware‐based solution to address these limitations in human ex vivo brain imaging. Methods A customized anatomically conformal 64‐channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion‐weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient‐induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g‐factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion‐weighted scans. Results The system demonstrated 73% higher SNR compared with a 72‐channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion‐weighted measurements by eliminating measurement drift during a 13‐hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively. Conclusion We describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high‐diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution.
High-resolution ex vivo diffusion-weighted imaging (dMRI) with high -values presents significant challenges, including low signal-to-noise ratio (SNR), magnetic field perturbations, and temperature-related measurement shifts. This work introduces a hardware-based solution to address these limitations in human ex vivo brain imaging. A customized anatomically conformal 64-channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion-weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient-induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g-factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion-weighted scans. The system demonstrated 73% higher SNR compared with a 72-channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion-weighted measurements by eliminating measurement drift during a 13-hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively. We describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high-diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution.
High-resolution ex vivo diffusion-weighted imaging (dMRI) with high b $$ b $$ -values presents significant challenges, including low signal-to-noise ratio (SNR), magnetic field perturbations, and temperature-related measurement shifts. This work introduces a hardware-based solution to address these limitations in human ex vivo brain imaging.PURPOSEHigh-resolution ex vivo diffusion-weighted imaging (dMRI) with high b $$ b $$ -values presents significant challenges, including low signal-to-noise ratio (SNR), magnetic field perturbations, and temperature-related measurement shifts. This work introduces a hardware-based solution to address these limitations in human ex vivo brain imaging.A customized anatomically conformal 64-channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion-weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient-induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g-factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion-weighted scans.METHODSA customized anatomically conformal 64-channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion-weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient-induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g-factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion-weighted scans.The system demonstrated 73% higher SNR compared with a 72-channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion-weighted measurements by eliminating measurement drift during a 13-hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively.RESULTSThe system demonstrated 73% higher SNR compared with a 72-channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion-weighted measurements by eliminating measurement drift during a 13-hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively.We describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high-diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution.CONCLUSIONWe describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high-diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution.
Author Mahmutovic, Mirsad
Sung, Dongsuk
Alem, Mona
Ramos‐Llordén, Gabriel
Huang, Susie Y.
Stockmann, Jason
Hansen, Sam‐Luca J.D.
Keil, Boris
Wald, Lawrence L.
Shrestha, Manisha
Müller, Alina
Yendiki, Anastasia
Mekkaoui, Choukri
Ghotra, Anpreet
Chemlali, Chaimaa
AuthorAffiliation 5 LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT) TH Mittelhessen University of Applied Sciences Giessen Hesse Germany
2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
4 Department of Diagnostic and Interventional Radiology University Hospital Marburg, Philipps University of Marburg Hesse Germany
3 Harvard‐MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge Massachusetts USA
1 Institute of Medical Physics and Radiation Protection TH Mittelhessen University of Applied Sciences Giessen Hesse Germany
AuthorAffiliation_xml – name: 4 Department of Diagnostic and Interventional Radiology University Hospital Marburg, Philipps University of Marburg Hesse Germany
– name: 1 Institute of Medical Physics and Radiation Protection TH Mittelhessen University of Applied Sciences Giessen Hesse Germany
– name: 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
– name: 5 LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT) TH Mittelhessen University of Applied Sciences Giessen Hesse Germany
– name: 3 Harvard‐MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge Massachusetts USA
Author_xml – sequence: 1
  givenname: Alina
  orcidid: 0000-0002-3324-6889
  surname: Müller
  fullname: Müller, Alina
  email: alina.mueller@lse.thm.de
  organization: TH Mittelhessen University of Applied Sciences
– sequence: 2
  givenname: Mirsad
  orcidid: 0000-0001-9178-4194
  surname: Mahmutovic
  fullname: Mahmutovic, Mirsad
  organization: TH Mittelhessen University of Applied Sciences
– sequence: 3
  givenname: Mona
  orcidid: 0009-0008-4092-9304
  surname: Alem
  fullname: Alem, Mona
  organization: TH Mittelhessen University of Applied Sciences
– sequence: 4
  givenname: Gabriel
  orcidid: 0000-0003-4020-705X
  surname: Ramos‐Llordén
  fullname: Ramos‐Llordén, Gabriel
  organization: Massachusetts General Hospital, Harvard Medical School
– sequence: 5
  givenname: Dongsuk
  orcidid: 0000-0001-6287-2144
  surname: Sung
  fullname: Sung, Dongsuk
  organization: Massachusetts General Hospital, Harvard Medical School
– sequence: 6
  givenname: Manisha
  orcidid: 0009-0004-0066-4066
  surname: Shrestha
  fullname: Shrestha, Manisha
  organization: TH Mittelhessen University of Applied Sciences
– sequence: 7
  givenname: Sam‐Luca J.D.
  orcidid: 0000-0002-5353-5573
  surname: Hansen
  fullname: Hansen, Sam‐Luca J.D.
  organization: TH Mittelhessen University of Applied Sciences
– sequence: 8
  givenname: Chaimaa
  orcidid: 0000-0002-2896-7155
  surname: Chemlali
  fullname: Chemlali, Chaimaa
  organization: TH Mittelhessen University of Applied Sciences
– sequence: 9
  givenname: Anpreet
  orcidid: 0000-0001-6445-9062
  surname: Ghotra
  fullname: Ghotra, Anpreet
  organization: TH Mittelhessen University of Applied Sciences
– sequence: 10
  givenname: Jason
  orcidid: 0000-0001-8454-5347
  surname: Stockmann
  fullname: Stockmann, Jason
  organization: Massachusetts General Hospital, Harvard Medical School
– sequence: 11
  givenname: Choukri
  orcidid: 0000-0001-8597-9219
  surname: Mekkaoui
  fullname: Mekkaoui, Choukri
  organization: Massachusetts General Hospital, Harvard Medical School
– sequence: 12
  givenname: Lawrence L.
  orcidid: 0000-0001-8278-6307
  surname: Wald
  fullname: Wald, Lawrence L.
  organization: Massachusetts Institute of Technology
– sequence: 13
  givenname: Anastasia
  orcidid: 0000-0003-1386-3828
  surname: Yendiki
  fullname: Yendiki, Anastasia
  organization: Massachusetts General Hospital, Harvard Medical School
– sequence: 14
  givenname: Susie Y.
  orcidid: 0000-0003-2950-7254
  surname: Huang
  fullname: Huang, Susie Y.
  organization: Massachusetts Institute of Technology
– sequence: 15
  givenname: Boris
  orcidid: 0000-0003-0805-8330
  surname: Keil
  fullname: Keil, Boris
  organization: TH Mittelhessen University of Applied Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40485105$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEQgC1URNPCgRdAlrgAIqn_djfmgqqKn0qNkEo5W17vbOLKa6f2bkJuPAKvxWvwJHhJ-ZXgYluab74Ze3yEDnzwgNBDSmaUEHbSxW7GSSHlHTShBWNTVkhxgCakEmTKqRSH6Cila0KIlJW4hw4FEfOCkmKCvrzvY_BLvIy6seD79BybEBxeQ2xD7LQ38AKf4lJ8_fTZrLT34LCOUe8yZh3e2n6VT94MMeZs3FpwDe6Ct32INnu1b3C_gmxyI5eLOZzFGD7ijd0E3Ni2HZINPvu3YJerHhpcR209tp1ejooczmuWYH41OjyYPnSA2YzgxeU5TmZsK95Hd1vtEjy43Y_Rh9evrs7eTi_evTk_O72YGkFKOW01AHBu2lYKw0mlmZGMaULmJdQMdF2apiAV5xLmValZ1da1ZFoXpqo5pwU_Rs_23sGv9W6rnVPrmHuNO0WJGueh8jzU93lk-OUeXg91B43JbxT1r4Sgrfoz4u1KLcNGUcZlntxY7smtIYabAVKvOpsMOKc9hCEpzmgpaUlEldHHf6HXYYg-P0amhChokaFMPfq9pZ-9_PgTGXi6B0wMKUVo_3u_kz27tQ52_wbV4nKxz_gGmkfbtQ
Cites_doi 10.1002/mrm.29816
10.1016/j.neuroimage.2021.118530
10.1016/j.neuroimage.2017.03.039
10.1016/j.neuroimage.2021.118256
10.1118/1.595535
10.1002/mrm.30424
10.1002/mrm.29873
10.1002/mrm.27176
10.1016/j.neuroimage.2022.119146
10.1002/jmri.21665
10.1016/j.neuroimage.2011.03.070
10.1002/mrm.1910010107
10.1016/0079‐6565(78)80002‐8
10.1002/mrm.28791
10.1016/j.neuroimage.2005.02.018
10.1002/mrm.21603
10.1002/mrm.24799
10.1002/mrm.24751
10.1007/s00429‐018‐1617‐1
10.1002/mrm.29124
10.1002/jmri.20583
10.1016/j.neuroimage.2020.116704
10.13140/RG.2.2.21380.07041
10.1002/nbm.3941
10.1002/mrm.20713
10.1016/j.neuroimage.2021.118010
10.1016/j.neuroimage.2013.05.078
10.3389/fnana.2016.00066
10.1016/j.neuroimage.2006.12.028
10.1002/(SICI)1522‐2594(199911)42:5¡952::AID‐MRM16¿3.0.CO;2‐S
10.1002/mrm.21577
10.1002/mrm.1910350217
10.1002/mrm.27055
10.1002/nbm.4831
10.1002/mrm.21624
10.1016/0022‐2364(86)90421‐X
10.1016/j.neuroimage.2014.07.061
10.1016/j.neuroimage.2013.05.074
10.3389/fnhum.2010.00042
10.1038/s41597‐019‐0254‐8
10.1016/j.neuroimage.2019.116087
10.1002/mrm.29130
10.1002/cmr.b.20008
10.1002/mrm.26059
10.1038/s41467‐022‐32595‐4
10.1002/mrm.1910160203
10.1186/s12868‐018‐0416‐1
10.1016/j.neuroimage.2022.119474
10.1002/mrm.25827
10.1002/mrm.1910330617
10.1002/mrm.26054
10.1002/mrm.25303
10.1002/mrm.26493
10.1016/j.neuroimage.2019.116137
10.1002/mrm.21948
10.1002/mrm.1910200209
10.1002/mrm.24427
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mrm.30599
DatabaseName Wiley Online Library (Open Access Collection)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Biochemistry Abstracts 1
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate MüLLER et al
EISSN 1522-2594
EndPage 2285
ExternalDocumentID 10.1002/mrm.30599
PMC12393195
40485105
10_1002_mrm_30599
MRM30599
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Hessisches Ministerium für Wissenschaft und Kunst
  funderid: LOEWE/2/16/519/03/09.001(0001)/101; LOEWE/4TP/I519/05/02.002(0004)/107
– fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: K99NS132984; P41‐EB030006; U01‐EB026996; U24‐NS137077
– fundername: Deutsche Forschungsgemeinschaft
  funderid: INST‐169/22‐1
– fundername: NIBIB NIH HHS
  grantid: U24-NS137077
– fundername: Hessisches Ministerium für Wissenschaft und Kunst
  grantid: LOEWE/4TP/I519/05/02.002(0004)/107
– fundername: Hessisches Ministerium für Wissenschaft und Kunst
  grantid: LOEWE/2/16/519/03/09.001(0001)/101
– fundername: NINDS NIH HHS
  grantid: U24 NS137077
– fundername: Deutsche Forschungsgemeinschaft
  grantid: INST-169/22-1
– fundername: NIBIB NIH HHS
  grantid: U01 EB026996
– fundername: NIBIB NIH HHS
  grantid: K99NS132984
– fundername: NIBIB NIH HHS
  grantid: P41-EB030006
– fundername: NINDS NIH HHS
  grantid: K99 NS132984
– fundername: NIBIB NIH HHS
  grantid: U01-EB026996
– fundername: ;
  grantid: INST‐169/22‐1
– fundername: ;
  grantid: K99NS132984; P41‐EB030006; U01‐EB026996; U24‐NS137077
– fundername: ;
  grantid: LOEWE/2/16/519/03/09.001(0001)/101; LOEWE/4TP/I519/05/02.002(0004)/107
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4069-faeee33cff94c307a2c922a0086eb2eab6cd507339e876a27fbb92aa5c7b33153
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 03:52:04 EDT 2025
Sat Aug 30 05:11:23 EDT 2025
Fri Sep 05 15:55:47 EDT 2025
Tue Oct 07 06:38:51 EDT 2025
Tue Sep 09 02:32:27 EDT 2025
Wed Oct 01 05:35:27 EDT 2025
Fri Aug 29 10:00:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords diffusion MRI
radiofrequency coil
field monitoring
human connectome
phased array coil
Language English
License Attribution
2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4069-faeee33cff94c307a2c922a0086eb2eab6cd507339e876a27fbb92aa5c7b33153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8597-9219
0000-0001-6287-2144
0000-0002-5353-5573
0000-0001-9178-4194
0000-0001-6445-9062
0000-0003-4020-705X
0000-0003-1386-3828
0000-0003-2950-7254
0009-0004-0066-4066
0000-0003-0805-8330
0000-0002-3324-6889
0009-0008-4092-9304
0000-0001-8278-6307
0000-0002-2896-7155
0000-0001-8454-5347
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.30599
PMID 40485105
PQID 3244515473
PQPubID 1016391
PageCount 18
ParticipantIDs unpaywall_primary_10_1002_mrm_30599
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12393195
proquest_miscellaneous_3216916047
proquest_journals_3244515473
pubmed_primary_40485105
crossref_primary_10_1002_mrm_30599
wiley_primary_10_1002_mrm_30599_MRM30599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2025
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2023; 36
1990; 16
2015; 73
2018; 168
2015; 74
1995; 33
2016; 76
2018; 80
2019; 202
2013; 70
2011; 57
1999; 42
2021; 243
2024
2005; 26
1996; 35
2007; 35
2022; 256
2006; 23
2021; 235
2021; 238
2017; 77
1984; 11
2020; 214
2004; 21B
2010; 4
2008; 60
2021; 86
2019; 6
1978; 12
2010
2009; 61
2019; 32
2018; 223
2016; 10
2009
2008; 59
2022; 87
2025; 93
2009; 29
2018; 19
2022; 260
2023
2021
1984; 1
2020
1986; 67
1991; 20
2024; 91
2013; 80
2019
2022; 13
2005; 54
2015
2014
2023; 90
2014; 71
2014; 103
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Barmet C (e_1_2_9_40_1) 2010
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
Ramos‐Llordén G (e_1_2_9_8_1) 2021
e_1_2_9_18_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
Barmet C (e_1_2_9_49_1) 2009
e_1_2_9_2_1
Mahmutovic M (e_1_2_9_30_1) 2021
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_53_1
Gruber B (e_1_2_9_17_1) 2014
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_70_1
Mahmutovic M (e_1_2_9_32_1) 2024
e_1_2_9_15_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Chu S (e_1_2_9_38_1) 2023
e_1_2_9_42_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Dhollander T (e_1_2_9_63_1) 2019
e_1_2_9_9_1
e_1_2_9_25_1
Brunheim S (e_1_2_9_41_1) 2020
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
Ramos‐Llordén G (e_1_2_9_23_1) 2024
e_1_2_9_29_1
Brunner DO (e_1_2_9_31_1) 2019
References_xml – volume: 54
  start-page: 1439
  year: 2005
  end-page: 1447
  article-title: Image reconstruction in SNR units: a general method for SNR measurement
  publication-title: Magn Reson Med
– start-page: 901
  year: 2024
– volume: 21B
  start-page: 26
  year: 2004
  end-page: 31
  article-title: Floating shield current suppression trap
  publication-title: Concepts Magn Reson B Magn Reson Eng
– volume: 260
  year: 2022
  article-title: SynthStrip: skull‐stripping for any brain image
  publication-title: Neuroimage
– start-page: 555
  year: 2019
– start-page: 1856
  year: 2015
– volume: 93
  start-page: 2561
  year: 2025
  end-page: 2582
  article-title: Considerations and recommendations from the ISMRM diffusion study Group for Preclinical Diffusion MRI: part 3—ex vivo imaging: data processing, comparisons with microscopy, and Tractography
  publication-title: Magn Reson Med
– volume: 87
  start-page: 2551
  year: 2022
  end-page: 2565
  article-title: Integration of an RF coil and commercial field camera for ultrahigh‐field MRI
  publication-title: Magn Reson Med
– volume: 13
  start-page: 4933
  year: 2022
  article-title: Population‐based tract‐to‐region connectome of the human brain and its hierarchical topology
  publication-title: Nat Commun
– volume: 74
  start-page: 925
  year: 2015
  end-page: 933
  article-title: Diffusion MRI with concurrent magnetic field monitoring
  publication-title: Magn Reson Med
– volume: 80
  start-page: 234
  year: 2013
  end-page: 245
  article-title: The human connectome project and beyond: initial applications of 300 mT/m gradients
  publication-title: Neuroimage
– volume: 73
  start-page: 1833
  year: 2015
  end-page: 1843
  article-title: Retrospective correction of physiological field fluctuations in high‐field brain MRI using concurrent field monitoring
  publication-title: Magn Reson Med
– volume: 60
  start-page: 187
  year: 2008
  end-page: 197
  article-title: Spatiotemporal magnetic field monitoring for MR
  publication-title: Magn Reson Med
– start-page: 300
  year: 2021
– volume: 71
  start-page: 1575
  year: 2014
  end-page: 1580
  article-title: Temperature‐induced changes of magnetic resonance relaxation times in the human brain: a Postmortem study
  publication-title: Magn Reson Med
– volume: 61
  start-page: 1201
  year: 2009
  end-page: 1209
  article-title: Noise figure limits for circular loop MR coils
  publication-title: Magn Reson Med
– volume: 80
  start-page: 1836
  year: 2018
  end-page: 1846
  article-title: Single‐Shot Spiral Imaging at 7 T
  publication-title: Magn Reson Med
– volume: 23
  start-page: 827
  year: 2006
  end-page: 839
  article-title: Report on a Multicenter fMRI quality assurance protocol
  publication-title: J Magn Reson Imaging
– start-page: 781
  year: 2009
– volume: 36
  year: 2023
  article-title: High‐Fidelity, high‐spatial‐resolution diffusion magnetic resonance imaging of ex vivo whole human brain at ultra‐high gradient strength with structured low‐rank Echo‐planar imaging ghost correction
  publication-title: NMR Biomed
– volume: 91
  start-page: 541
  year: 2024
  end-page: 557
  article-title: Eddy current‐induced Artifact correction in high b‐value ex vivo human brain diffusion MRI with dynamic field monitoring
  publication-title: Magn Reson Med
– volume: 29
  start-page: 692
  year: 2009
  end-page: 698
  article-title: Construction of a temperature‐controlled diffusion phantom for quality control of diffusion measurements
  publication-title: J Magn Reson Imaging
– volume: 11
  start-page: 425
  year: 1984
  end-page: 448
  article-title: A review of Normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age
  publication-title: Med Phys
– volume: 238
  year: 2021
  article-title: A 48‐channel receive Array coil for mesoscopic diffusion‐weighted MRI of ex vivo human brain on the 3 T connectome scanner
  publication-title: Neuroimage
– volume: 32
  year: 2019
  article-title: Ex vivo diffusion MRI of the human brain: technical challenges and recent advances
  publication-title: NMR Biomed
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  article-title: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA
  publication-title: Magn Reson Med
– volume: 87
  start-page: 2209
  year: 2022
  end-page: 2223
  article-title: Characterization and correction of time‐varying Eddy currents for diffusion MRI
  publication-title: Magn Reson Med
– volume: 70
  start-page: 248
  year: 2013
  end-page: 258
  article-title: A 64‐channel 3T Array coil for accelerated brain MRI
  publication-title: Magn Reson Med
– volume: 202
  year: 2019
  article-title: Ultra‐high resolution and multi‐Shell diffusion MRI of intact ex vivo human brains using kT‐dSTEAM at 9.4T
  publication-title: Neuroimage
– volume: 59
  start-page: 1347
  year: 2008
  end-page: 1354
  article-title: Axcaliber: a method for measuring axon diameter distribution from diffusion MRI
  publication-title: Magn Reson Med
– start-page: 4885
  year: 2014
– volume: 76
  start-page: 1582
  year: 2016
  end-page: 1593
  article-title: Diffusion MRI noise mapping using random matrix theory
  publication-title: Magn Reson Med
– volume: 60
  start-page: 176
  year: 2008
  end-page: 186
  article-title: NMR probes for measuring magnetic fields and field dynamics in MR systems
  publication-title: Magn Reson Med
– volume: 80
  start-page: 833
  year: 2018
  end-page: 839
  article-title: An industrial design solution for integrating NMR magnetic field sensors into an MRI scanner
  publication-title: Magn Reson Med
– volume: 90
  start-page: 2643
  year: 2023
  end-page: 2652
  article-title: A temperature‐controlled cooling system for accurate quantitative post‐mortem MRI
  publication-title: Magn Reson Med
– volume: 202
  year: 2019
  article-title: : a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
– volume: 33
  start-page: 848
  year: 1995
  end-page: 852
  article-title: Design of Matching Networks for low noise preamplifiers
  publication-title: Magn Reson Med
– start-page: 3389
  year: 2020
– volume: 214
  year: 2020
  article-title: Insight into the fundamental trade‐offs of diffusion MRI from polarization‐sensitive optical coherence tomography in ex vivo human brain
  publication-title: Neuroimage
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 6
  start-page: 244
  year: 2019
  article-title: 7 tesla MRI of the ex vivo human brain at 100 Micron resolution
  publication-title: Sci Data
– volume: 76
  start-page: 1574
  year: 2016
  end-page: 1581
  article-title: Gibbs‐ringing Artifact removal based on local subvoxel‐shifts
  publication-title: Magn Reson Med
– start-page: 4589
  year: 2023
– volume: 4
  start-page: 42
  year: 2010
  article-title: Direct visualization of the Perforant pathway in the human brain with ex vivo diffusion tensor imaging
  publication-title: Front Hum Neurosci
– volume: 20
  start-page: 268
  year: 1991
  end-page: 284
  article-title: Temporal and spatial analysis of fields generated by Eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems
  publication-title: Magn Reson Med
– volume: 103
  start-page: 411
  year: 2014
  end-page: 426
  article-title: Multi‐tissue constrained spherical deconvolution for improved analysis of multi‐Shell diffusion MRI data
  publication-title: Neuroimage
– volume: 256
  start-page: 119146
  year: 2022
  article-title: Post mortem mapping of connectional anatomy for the validation of diffusion MRI
  publication-title: Neuroimage
– start-page: 216
  year: 2010
– start-page: 623
  year: 2021
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  article-title: The NMR phased Array
  publication-title: Magn Reson Med
– volume: 19
  start-page: 11
  year: 2018
  article-title: Dissecting the pathobiology of altered MRI signal in amyotrophic lateral sclerosis: a post mortem whole brain sampling strategy for the integration of ultra‐high‐field MRI and quantitative neuropathology
  publication-title: BMC Neurosci
– start-page: 1046
  year: 2019
– volume: 243
  year: 2021
  article-title: Connectome 2.0: developing the next‐generation ultra‐high gradient strength human MRI scanner for bridging studies of the micro‐, Meso‐ and macro‐connectome
  publication-title: Neuroimage
– volume: 223
  start-page: 2157
  year: 2018
  end-page: 2179
  article-title: Post‐mortem inference of the human hippocampal connectivity and microstructure using ultra‐high field diffusion MRI at 11.7 T
  publication-title: Brain Struct Funct
– volume: 1
  start-page: 44
  year: 1984
  end-page: 65
  article-title: Magnet field profiling: analysis and correcting coil design
  publication-title: Magn Reson Med
– volume: 35
  start-page: 246
  year: 1996
  end-page: 251
  article-title: Imaging of the active B1 field in vivo
  publication-title: Magn Reson Med
– volume: 77
  start-page: 83
  year: 2017
  end-page: 91
  article-title: Single‐shot spiral imaging enabled by an expanded encoding model: demonstration in diffusion MRI
  publication-title: Magn Reson Med
– volume: 12
  start-page: 41
  year: 1978
  end-page: 77
  article-title: The NMR receiver: a description and analysis of design
  publication-title: Prog Nucl Magn Reson Spectrosc
– volume: 10
  start-page: 10
  year: 2016
  article-title: Ultra‐high field MRI post mortem structural connectivity of the human subthalamic nucleus, substantia Nigra, and Globus Pallidus
  publication-title: Front Neuroanat
– start-page: 1027
  year: 2024
– volume: 57
  start-page: 167
  year: 2011
  end-page: 181
  article-title: Diffusion imaging of whole, post‐mortem human brains on a clinical MRI scanner
  publication-title: Neuroimage
– volume: 67
  start-page: 156
  year: 1986
  end-page: 161
  article-title: Electronic decoupling of surface‐coil receivers for NMR imaging and spectroscopy
  publication-title: J Magn Reson
– volume: 235
  year: 2021
  article-title: Dedicated container for Postmortem human brain ultra‐high field magnetic resonance imaging
  publication-title: Neuroimage
– volume: 168
  start-page: 162
  year: 2018
  end-page: 171
  article-title: High resolution anatomical and quantitative MRI of the entire human occipital lobe ex vivo at 9.4T
  publication-title: Neuroimage
– volume: 35
  start-page: 553
  year: 2007
  end-page: 565
  article-title: An approach to high resolution diffusion tensor imaging in fixed primate brain
  publication-title: Neuroimage
– volume: 86
  start-page: 1773
  year: 2021
  end-page: 1785
  article-title: A size‐adaptive 32‐channel Array coil for awake infant neuroimaging at 3 tesla MRI
  publication-title: Magn Reson Med
– volume: 80
  start-page: 220
  year: 2013
  end-page: 233
  article-title: Pushing the limits of in vivo diffusion MRI for the human connectome project
  publication-title: Neuroimage
– ident: e_1_2_9_43_1
  doi: 10.1002/mrm.29816
– ident: e_1_2_9_22_1
  doi: 10.1016/j.neuroimage.2021.118530
– ident: e_1_2_9_18_1
  doi: 10.1016/j.neuroimage.2017.03.039
– ident: e_1_2_9_7_1
  doi: 10.1016/j.neuroimage.2021.118256
– ident: e_1_2_9_68_1
  doi: 10.1118/1.595535
– ident: e_1_2_9_6_1
  doi: 10.1002/mrm.30424
– ident: e_1_2_9_37_1
  doi: 10.1002/mrm.29873
– start-page: 781
  volume-title: Proceedings of the 17th Annual Meeting of ISMRM. Honululu, USA
  year: 2009
  ident: e_1_2_9_49_1
– ident: e_1_2_9_67_1
  doi: 10.1002/mrm.27176
– ident: e_1_2_9_24_1
  doi: 10.1016/j.neuroimage.2022.119146
– ident: e_1_2_9_42_1
  doi: 10.1002/jmri.21665
– start-page: 555
  volume-title: Proceedings of the 27th Annual Meeting of ISMRM. Montréal, Québec, Canada
  year: 2019
  ident: e_1_2_9_63_1
– ident: e_1_2_9_12_1
  doi: 10.1016/j.neuroimage.2011.03.070
– ident: e_1_2_9_35_1
  doi: 10.1002/mrm.1910010107
– ident: e_1_2_9_53_1
  doi: 10.1016/0079‐6565(78)80002‐8
– ident: e_1_2_9_51_1
  doi: 10.1002/mrm.28791
– ident: e_1_2_9_61_1
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: e_1_2_9_34_1
  doi: 10.1002/mrm.21603
– ident: e_1_2_9_69_1
  doi: 10.1002/mrm.24799
– ident: e_1_2_9_57_1
  doi: 10.1002/mrm.24751
– ident: e_1_2_9_5_1
  doi: 10.1007/s00429‐018‐1617‐1
– ident: e_1_2_9_28_1
  doi: 10.1002/mrm.29124
– ident: e_1_2_9_52_1
  doi: 10.1002/jmri.20583
– ident: e_1_2_9_13_1
  doi: 10.1016/j.neuroimage.2020.116704
– start-page: 901
  volume-title: Proceedings of the 32nd Annual Meeting of ISMRM. Singapore
  year: 2024
  ident: e_1_2_9_23_1
– ident: e_1_2_9_16_1
  doi: 10.13140/RG.2.2.21380.07041
– ident: e_1_2_9_25_1
  doi: 10.1002/nbm.3941
– ident: e_1_2_9_54_1
  doi: 10.1002/mrm.20713
– ident: e_1_2_9_14_1
  doi: 10.1016/j.neuroimage.2021.118010
– ident: e_1_2_9_3_1
  doi: 10.1016/j.neuroimage.2013.05.078
– ident: e_1_2_9_19_1
  doi: 10.3389/fnana.2016.00066
– ident: e_1_2_9_21_1
  doi: 10.1016/j.neuroimage.2006.12.028
– start-page: 1046
  volume-title: Proceedings of the 27th Annual Meeting of ISMRM. Montreal, Canada
  year: 2019
  ident: e_1_2_9_31_1
– ident: e_1_2_9_56_1
  doi: 10.1002/(SICI)1522‐2594(199911)42:5¡952::AID‐MRM16¿3.0.CO;2‐S
– start-page: 3389
  volume-title: Proceedings of the 28th Annual Meeting of ISMRM. Vitrual Meeting
  year: 2020
  ident: e_1_2_9_41_1
– ident: e_1_2_9_4_1
  doi: 10.1002/mrm.21577
– ident: e_1_2_9_55_1
  doi: 10.1002/mrm.1910350217
– ident: e_1_2_9_39_1
  doi: 10.1002/mrm.27055
– ident: e_1_2_9_70_1
– ident: e_1_2_9_9_1
  doi: 10.1002/nbm.4831
– ident: e_1_2_9_33_1
  doi: 10.1002/mrm.21624
– ident: e_1_2_9_47_1
  doi: 10.1016/0022‐2364(86)90421‐X
– ident: e_1_2_9_62_1
  doi: 10.1016/j.neuroimage.2014.07.061
– ident: e_1_2_9_2_1
  doi: 10.1016/j.neuroimage.2013.05.074
– start-page: 216
  volume-title: Proceedings of the 19th Annual Meeting of ISMRM
  year: 2010
  ident: e_1_2_9_40_1
– ident: e_1_2_9_10_1
  doi: 10.3389/fnhum.2010.00042
– ident: e_1_2_9_15_1
  doi: 10.1038/s41597‐019‐0254‐8
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neuroimage.2019.116087
– ident: e_1_2_9_27_1
  doi: 10.1002/mrm.29130
– start-page: 4885
  volume-title: Proceedings of the 23rd Annual Meeting of ISMRM. Milan, Italy
  year: 2014
  ident: e_1_2_9_17_1
– start-page: 4589
  volume-title: Proceedings of the 31st Annual Meeting of ISMRM. Toronto, Canada
  year: 2023
  ident: e_1_2_9_38_1
– ident: e_1_2_9_50_1
  doi: 10.1002/cmr.b.20008
– ident: e_1_2_9_58_1
  doi: 10.1002/mrm.26059
– ident: e_1_2_9_65_1
  doi: 10.1038/s41467‐022‐32595‐4
– ident: e_1_2_9_46_1
  doi: 10.1002/mrm.1910160203
– ident: e_1_2_9_20_1
  doi: 10.1186/s12868‐018‐0416‐1
– ident: e_1_2_9_60_1
  doi: 10.1016/j.neuroimage.2022.119474
– ident: e_1_2_9_26_1
  doi: 10.1002/mrm.25827
– start-page: 1027
  volume-title: Proceedings of the 32nd Annual Meeting of ISMRM. Singapore
  year: 2024
  ident: e_1_2_9_32_1
– ident: e_1_2_9_45_1
  doi: 10.1002/mrm.1910330617
– ident: e_1_2_9_59_1
  doi: 10.1002/mrm.26054
– ident: e_1_2_9_36_1
  doi: 10.1002/mrm.25303
– ident: e_1_2_9_66_1
  doi: 10.1002/mrm.26493
– start-page: 623
  volume-title: Proceedings of the 29th Annual Meeting of ISMRM. Virtual Meeting
  year: 2021
  ident: e_1_2_9_30_1
– ident: e_1_2_9_64_1
  doi: 10.1016/j.neuroimage.2019.116137
– start-page: 300
  volume-title: In: Proceedings of the 29th Annual Meeting of ISMRM. Virtual Meeting
  year: 2021
  ident: e_1_2_9_8_1
– ident: e_1_2_9_44_1
  doi: 10.1002/mrm.21948
– ident: e_1_2_9_29_1
  doi: 10.1002/mrm.1910200209
– ident: e_1_2_9_48_1
  doi: 10.1002/mrm.24427
SSID ssj0009974
Score 2.4957063
Snippet Purpose High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise...
High-resolution ex vivo diffusion-weighted imaging (dMRI) with high -values presents significant challenges, including low signal-to-noise ratio (SNR),...
Purpose High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise...
High-resolution ex vivo diffusion-weighted imaging (dMRI) with high b $$ b $$ -values presents significant challenges, including low signal-to-noise ratio...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2268
SubjectTerms Anisotropy
Arrays
Brain
Brain - diagnostic imaging
Cameras
Coils
Connectome - instrumentation
Connectome - methods
Diffusion Magnetic Resonance Imaging - instrumentation
Diffusion Magnetic Resonance Imaging - methods
diffusion MRI
Diffusivity
Equipment Design
Field cameras
field monitoring
Hardware
Hardware and Instrumentation
human connectome
Humans
Image Processing, Computer-Assisted - methods
Image quality
Kurtosis
Magnetic resonance imaging
Medical imaging
Monitoring
Neuroimaging
Perturbation
Phantoms, Imaging
phased array coil
radiofrequency coil
Reliability
Reproducibility of Results
Signal-To-Noise Ratio
Stabilization
Temperature
Thermal instability
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSjwuPMorUNDwOHAg28R2HoZThagKUjgsrdQDUmQ7zrJik11ld1vKiZ_A3-Jv8EvwONmslgqEuEXKZGIr48nn8cw3hDwTKoyVkaFfcJH4XKfGT2MW-AnVNEhlIXiK1cjZ-_jwmL87iU62yKtVLUzLD9EH3HBlOH-NC1yq-d6aNLRqqgFDdhHrf0MWu-3UcE0dJUTLwJxw9DOCr1iFArrXP7n5L7oAMC_mSV5Z1jN5fiYnk00s635GB9fJx9U02hyUz4PlQg30198YHv9znjfItQ6kwn5rVTfJlql3yOWsO4bfIZdc3qie3yI_PmAofQSjxqWOLeYvQE-nE5it6xFewj7E_Oe371hjbAcDsmnkuRUbTwCjwPaq1i1LFLh8Oqicn8GAI8i6AISolR1Ol1UPVjGYL3A6Pp0C9ndZYsDP6j9zUV5TgMK2FzCuXAMmwMz-ESoBdoQ6ajynqAzQQQDZ8C3MNQ6ruU2OD94cvT70u-4QvsZqXb-UxhjGdFkKrq2nklQLSiXu0YyiRqpYFxG2pBTGenxJk1IpQaWMdKIYs47-Dtmup7W5R0DKQpcs1rGxcAxVCbvrZTKK7G6SlkHqkScrO8lnLQlI3tI909x-ntx9Ho_sriwo7_zAPLdwlVvEyBPmkcf9bbuC8VhG1ma6RBkkLIoDnnjkbmtw_Vu4dbAIgT2SbphiL4Ds4Jt36vEnxxIeIrldKOyjT3ur_dvonzsj_LNEng0zd3H_30UfkKsU-yW72s1dsr1oluahBXEL9cit1l8K3Ui-
  priority: 102
  providerName: Wiley-Blackwell
Title Strong gradients, cool performance: A 64‐channel array coil with concurrent field monitoring and thermal control for ex vivo diffusion‐weighted brain imaging using the 3T connectome 2.0 MRI scanner
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30599
https://www.ncbi.nlm.nih.gov/pubmed/40485105
https://www.proquest.com/docview/3244515473
https://www.proquest.com/docview/3216916047
https://pubmed.ncbi.nlm.nih.gov/PMC12393195
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.30599
UnpaywallVersion publishedVersion
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RVDwuPMorUKrhceCAQ7Jev7hFQFWQUlWhkcrJXa_XISJ2IidpKSd-An-Lv8EvYWbtBEIFQuJiWfJ6vCvPzn47O_MNwJMo6fiJUR0nlVHgSB0aJ_TdthMILdqhSiMZcjZyb9_fG8i3R95RXeeUc2EqfoiVw41nhrXXPMGnaVbZ-fp0XzzPy7zlMsPIBmz6HoHxBmwO9g-67yvyTbYwthQiLVLCIaAvl9xCv767viKdg5nnoyUvL4qpOjtV4_E6orVL0u41OF4OpopE-dhazJOW_vwbz-N_jPY6XK3hKnYr_boBF0yxBZd69YH8Fly0EaR6dhO-vWOn-hCHpQ0im8-eoZ5Mxjj9mZnwArvoy-9fvnK2MXUIVVmqM2o2GiP7g-mu0BVfFNrIOsytxWHXI6oiRQarOXWnjq9HEozmE56MTibIlV4W7Poj-afW32tSTLgABo5yW4oJOcZ_yELQPWQZBZ9Y5AZFq429_hucae5WeQsGu68PX-45dZ0IR3PerpMpY4zr6iyLpCabpYSOhFC8WzOJMCrxdepxccrIkO1XIsiSJBJKeTpIXJdM_m1oFJPC3AVUKtWZ62vfEDBjURHtf13lebSvFFk7bMKjpa7E04oOJK6In0VMvye2v6cJ20stimuLMIsJuErCjjJwm_Bw9ZjmMh_QqMJMFtyGqYv8tgyacKdSutVXJJlaBsNNCNfUcdWAecLXnxSjD5YvvMM0d52IXn280ty_9f6pVcQ_t4h7_Z69ufdPAu_DFcFFk20C5zY05uXCPCAkN092YEPIA7q-6oudeub-AFruTts
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKEZQLgvIXKDD8HDiQNrGdHyMuFaLaQlOhspV6ixzHWVbaJKvsbktvPAKvxWvwJHicbFarCsQtUiYTK-OZzIxnviHktcj8MNPSd3MuIperWLtxyDw3oop6scwFj7EbOTkOB6f801lwtkHeL3thWnyIPuGGmmHtNSo4JqT3VqihZVPuMoQXuUau89APMfSi_MsKcle0GMwRR0sj-BJXyKN7_aPrf6MrLubVSsmtRTWVlxdyMln3Zu3v6OAOud35kbDfCv4u2dDVNrmZdCfl2-SGLe1Us3vk11fMdo9g1NjqrvnsLai6nsB01TLwDvYh5L9__MQ2YPNdQDaNvDRk4wlgotZcVaoFcgJb8galNQWYEwRZ5YBeZGmW0xW-g2EM-jucj89rwBEsC8zJGf4XNhGrc8hwMgWMSzsjCbD4foRMgA2RR4VHCaUGuutBcnIIM4XLau6T04OPww8Dtxvg4CpsqHULqbVmTBWF4MoYE0mVoFRiGGUCei2zUOUBTo0U2hhlSaMiywSVMlBRxpixxQ_IZlVX-hEBKXNVsFCF2nhMyEqYwJTJIDABHy282CEvl4JMpy1OR9oiMtPUSDu10nbIzlLEaaeqs9R4lNw4dTxiDnnR3zZKhicnstL1AmkQUyj0eOSQh-2O6N_CjQ1EL9Uh8dpe6QkQwHv9TjX-ZoG8fcSf84V59FW_rf61-jd2w_2dIk1OEnvx-P9Jn5OtwTA5So8Ojz8_Ibcojje2rZY7ZHPeLPRT43PNs2dWtf4Ae2YsFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VIgoXfkoLgQLDz6EHnDrr9c8iLhUlaoFUKLRSL8har9chInYiJ2kpJx6B1-I1eBJ21omjUIEQN0sej3fl2fG3szPfADwTSStItGw5KRehw1WknSjwXCdkirmRTAWPqBq5cxjsH_M3J_7JCryc18JU_BB1wI1WhvXXtMD1KM12FqyheZk3PaIXuQSXuS8iSujb6y7Io4SoOJhDTp5G8DmvkMt26keX_0YXIObFTMmr02Ikz8_kYLCMZu3vqH0DPs4nUmWhfG5OJ0lTff2N4_F_Z3oTrs9wKu5WhnULVnSxDmud2Un8OlyxqaNqfBt-fKBoeg97pc0em4yfoxoOBzhalCS8wF0M-M9v36nM2IwGZVnKcyPWHyAFgs1VoSqiKLQpdZhbV0MxR5RFioRSczOcWWI9GsWov-Bp_3SI1OJlSjE_o__MBnp1igl1vsB-bnswISX390gJekeko6Cjilwja7rY6R7gWNGwyg04br8-erXvzBpEOIoKdp1Maq09T2WZ4Mo4K8mUYEzSNk0nTMskUKlPXSmFNk5fsjBLEsGk9FWYeJ7x9ZuwWgwLfRdQylRlXqACbRAZqRJm4-tJ3zcbSpa5UQOezA0lHlU8IHHF-Mxi83li-3kasDU3oXjmCsaxQazcgEYeeg14XN82i5hOZmShh1OSIc6iwOVhA-5UFle_hRsfSyi4AdGSLdYCRBC-fKfof7JE4S3it2sJ8-jT2mz_Nvpta4V_log73Y69uPfvoo9g7f1eO353cPj2Plxj1D3ZVnJuweqknOoHBtJNkod25f4Cq51MYw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVjwuPMorUNDwOHAgS9ZxXtxWFVVB2gqVrlROqeM4y4pNsspuWsqJn8Df4m_wS5hxsoGlAiFxi2R74ijj8efxzDeMPY2SgZ9oObBTEQW2UKG2Q9917IAr7oQyjURI2cijfX9vLN4ceUdtnVPKhWn4ITqHG60MY69pgc_TrLHz7e0-f5FXed8lhpELbNP3EIz32OZ4_-3wfUO-SRbGlELETYrbCPTFilvo17HrO9I5mHk-WvJyXczl2amczdYRrdmSdq-x49XHNJEoH_v1Mumrz7_xPP7H115nV1u4CsNGv26wDV1ssUuj9kJ-i100EaRqcZN9e0dO9QlMKhNEtlw8B1WWM5j_zEx4CUPwxfcvXynbGCcEsqrkGXabzoD8wfhUqIYvCkxkHeTG4pDrEWSRAoHVHKfTxtcDCgb9CU6mJyVQpZeaXH8o_9T4e3UKCRXAgGluSjEBxfhPSAi4hySjoBuLXAPvOzA6eA0LRdOqbrHx7qvDnT27rRNhK8rbtTOptXZdlWWRUGizJFcR55JOazrhWia-Sj0qThlptP2SB1mSRFxKTwWJ66LJv816RVnouwykTFXm-srXCMxIVITnX1d6Hp4reeaEFnu80pV43tCBxA3xM4_x98Tm91hse6VFcWsRFjECV4HYUQSuxR51zbiW6YJGFrqsqQ9RF_mOCCx2p1G67i0CTS2BYYuFa-rYdSCe8PWWYvrB8IUPiOZuEOHQJ53m_m32z4wi_rlHPDoYmYd7_yTwPrvCqWiySeDcZr1lVesHiOSWycN2tf4AujRNGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+gradients%2C+cool+performance%3A+A+64-channel+array+coil+with+concurrent+field+monitoring+and+thermal+control+for+ex+vivo+diffusion-weighted+brain+imaging+using+the+3T+connectome+2.0+MRI+scanner&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=M%C3%BCller%2C+Alina&rft.au=Mahmutovic%2C+Mirsad&rft.au=Alem%2C+Mona&rft.au=Ramos-Llord%C3%A9n%2C+Gabriel&rft.date=2025-11-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft_id=info:doi/10.1002%2Fmrm.30599&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon