Strong gradients, cool performance: A 64‐channel array coil with concurrent field monitoring and thermal control for ex vivo diffusion‐weighted brain imaging using the 3T connectome 2.0 MRI scanner
Purpose High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise ratio (SNR), magnetic field perturbations, and temperature‐related measurement shifts. This work introduces a hardware‐based solution to address...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 94; no. 5; pp. 2268 - 2285 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.11.2025
John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.30599 |
Cover
| Abstract | Purpose
High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise ratio (SNR), magnetic field perturbations, and temperature‐related measurement shifts. This work introduces a hardware‐based solution to address these limitations in human ex vivo brain imaging.
Methods
A customized anatomically conformal 64‐channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion‐weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient‐induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g‐factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion‐weighted scans.
Results
The system demonstrated 73% higher SNR compared with a 72‐channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion‐weighted measurements by eliminating measurement drift during a 13‐hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively.
Conclusion
We describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high‐diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution. |
|---|---|
| AbstractList | Purpose
High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise ratio (SNR), magnetic field perturbations, and temperature‐related measurement shifts. This work introduces a hardware‐based solution to address these limitations in human ex vivo brain imaging.
Methods
A customized anatomically conformal 64‐channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion‐weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient‐induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g‐factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion‐weighted scans.
Results
The system demonstrated 73% higher SNR compared with a 72‐channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion‐weighted measurements by eliminating measurement drift during a 13‐hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively.
Conclusion
We describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high‐diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution. Purpose High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise ratio (SNR), magnetic field perturbations, and temperature‐related measurement shifts. This work introduces a hardware‐based solution to address these limitations in human ex vivo brain imaging. Methods A customized anatomically conformal 64‐channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion‐weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient‐induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g‐factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion‐weighted scans. Results The system demonstrated 73% higher SNR compared with a 72‐channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion‐weighted measurements by eliminating measurement drift during a 13‐hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively. Conclusion We describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high‐diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution. High-resolution ex vivo diffusion-weighted imaging (dMRI) with high -values presents significant challenges, including low signal-to-noise ratio (SNR), magnetic field perturbations, and temperature-related measurement shifts. This work introduces a hardware-based solution to address these limitations in human ex vivo brain imaging. A customized anatomically conformal 64-channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion-weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient-induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g-factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion-weighted scans. The system demonstrated 73% higher SNR compared with a 72-channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion-weighted measurements by eliminating measurement drift during a 13-hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively. We describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high-diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution. High-resolution ex vivo diffusion-weighted imaging (dMRI) with high b $$ b $$ -values presents significant challenges, including low signal-to-noise ratio (SNR), magnetic field perturbations, and temperature-related measurement shifts. This work introduces a hardware-based solution to address these limitations in human ex vivo brain imaging.PURPOSEHigh-resolution ex vivo diffusion-weighted imaging (dMRI) with high b $$ b $$ -values presents significant challenges, including low signal-to-noise ratio (SNR), magnetic field perturbations, and temperature-related measurement shifts. This work introduces a hardware-based solution to address these limitations in human ex vivo brain imaging.A customized anatomically conformal 64-channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion-weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient-induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g-factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion-weighted scans.METHODSA customized anatomically conformal 64-channel receive array coil with a dedicated Tx birdcage coil was developed for 3T diffusion-weighted imaging of whole human ex vivo brain specimens. Field monitoring capabilities were integrated to correct spatiotemporal field perturbations caused by gradient-induced eddy currents. Temperature stability throughout extended acquisition periods was achieved through an integrated stabilization system. Coil performance was validated through comprehensive measurement of SNR, g-factor maps, field camera free induction decays (FIDs), temperature, mean diffusivity, and fractional anisotropy across multiple diffusion-weighted scans.The system demonstrated 73% higher SNR compared with a 72-channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion-weighted measurements by eliminating measurement drift during a 13-hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively.RESULTSThe system demonstrated 73% higher SNR compared with a 72-channel in vivo head coil. Integration of the field camera maintained its FID quality without SNR penalties or significant receive coil coupling effects. Temperature stabilization improved the reliability of quantitative diffusion-weighted measurements by eliminating measurement drift during a 13-hour acquisition, where mean diffusivity and mean kurtosis would have increased by 22% and decreased by 19%, respectively.We describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high-diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution.CONCLUSIONWe describe an integrated hardware approach for addressing higher order field perturbations, thermal instability, and SNR challenges in human ex vivo whole brain dMRI under high-diffusion sensitizing gradient conditions. This approach combines an anatomically optimized multichannel receive array, concurrent field monitoring, and active temperature stabilization. Enhanced image quality and improved reliability of quantitative MR imaging were demonstrated with this comprehensive hardware solution. |
| Author | Mahmutovic, Mirsad Sung, Dongsuk Alem, Mona Ramos‐Llordén, Gabriel Huang, Susie Y. Stockmann, Jason Hansen, Sam‐Luca J.D. Keil, Boris Wald, Lawrence L. Shrestha, Manisha Müller, Alina Yendiki, Anastasia Mekkaoui, Choukri Ghotra, Anpreet Chemlali, Chaimaa |
| AuthorAffiliation | 5 LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT) TH Mittelhessen University of Applied Sciences Giessen Hesse Germany 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA 4 Department of Diagnostic and Interventional Radiology University Hospital Marburg, Philipps University of Marburg Hesse Germany 3 Harvard‐MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge Massachusetts USA 1 Institute of Medical Physics and Radiation Protection TH Mittelhessen University of Applied Sciences Giessen Hesse Germany |
| AuthorAffiliation_xml | – name: 4 Department of Diagnostic and Interventional Radiology University Hospital Marburg, Philipps University of Marburg Hesse Germany – name: 1 Institute of Medical Physics and Radiation Protection TH Mittelhessen University of Applied Sciences Giessen Hesse Germany – name: 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA – name: 5 LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT) TH Mittelhessen University of Applied Sciences Giessen Hesse Germany – name: 3 Harvard‐MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge Massachusetts USA |
| Author_xml | – sequence: 1 givenname: Alina orcidid: 0000-0002-3324-6889 surname: Müller fullname: Müller, Alina email: alina.mueller@lse.thm.de organization: TH Mittelhessen University of Applied Sciences – sequence: 2 givenname: Mirsad orcidid: 0000-0001-9178-4194 surname: Mahmutovic fullname: Mahmutovic, Mirsad organization: TH Mittelhessen University of Applied Sciences – sequence: 3 givenname: Mona orcidid: 0009-0008-4092-9304 surname: Alem fullname: Alem, Mona organization: TH Mittelhessen University of Applied Sciences – sequence: 4 givenname: Gabriel orcidid: 0000-0003-4020-705X surname: Ramos‐Llordén fullname: Ramos‐Llordén, Gabriel organization: Massachusetts General Hospital, Harvard Medical School – sequence: 5 givenname: Dongsuk orcidid: 0000-0001-6287-2144 surname: Sung fullname: Sung, Dongsuk organization: Massachusetts General Hospital, Harvard Medical School – sequence: 6 givenname: Manisha orcidid: 0009-0004-0066-4066 surname: Shrestha fullname: Shrestha, Manisha organization: TH Mittelhessen University of Applied Sciences – sequence: 7 givenname: Sam‐Luca J.D. orcidid: 0000-0002-5353-5573 surname: Hansen fullname: Hansen, Sam‐Luca J.D. organization: TH Mittelhessen University of Applied Sciences – sequence: 8 givenname: Chaimaa orcidid: 0000-0002-2896-7155 surname: Chemlali fullname: Chemlali, Chaimaa organization: TH Mittelhessen University of Applied Sciences – sequence: 9 givenname: Anpreet orcidid: 0000-0001-6445-9062 surname: Ghotra fullname: Ghotra, Anpreet organization: TH Mittelhessen University of Applied Sciences – sequence: 10 givenname: Jason orcidid: 0000-0001-8454-5347 surname: Stockmann fullname: Stockmann, Jason organization: Massachusetts General Hospital, Harvard Medical School – sequence: 11 givenname: Choukri orcidid: 0000-0001-8597-9219 surname: Mekkaoui fullname: Mekkaoui, Choukri organization: Massachusetts General Hospital, Harvard Medical School – sequence: 12 givenname: Lawrence L. orcidid: 0000-0001-8278-6307 surname: Wald fullname: Wald, Lawrence L. organization: Massachusetts Institute of Technology – sequence: 13 givenname: Anastasia orcidid: 0000-0003-1386-3828 surname: Yendiki fullname: Yendiki, Anastasia organization: Massachusetts General Hospital, Harvard Medical School – sequence: 14 givenname: Susie Y. orcidid: 0000-0003-2950-7254 surname: Huang fullname: Huang, Susie Y. organization: Massachusetts Institute of Technology – sequence: 15 givenname: Boris orcidid: 0000-0003-0805-8330 surname: Keil fullname: Keil, Boris organization: TH Mittelhessen University of Applied Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40485105$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1uEzEQgC1URNPCgRdAlrgAIqn_djfmgqqKn0qNkEo5W17vbOLKa6f2bkJuPAKvxWvwJHhJ-ZXgYluab74Ze3yEDnzwgNBDSmaUEHbSxW7GSSHlHTShBWNTVkhxgCakEmTKqRSH6Cila0KIlJW4hw4FEfOCkmKCvrzvY_BLvIy6seD79BybEBxeQ2xD7LQ38AKf4lJ8_fTZrLT34LCOUe8yZh3e2n6VT94MMeZs3FpwDe6Ct32INnu1b3C_gmxyI5eLOZzFGD7ijd0E3Ni2HZINPvu3YJerHhpcR209tp1ejooczmuWYH41OjyYPnSA2YzgxeU5TmZsK95Hd1vtEjy43Y_Rh9evrs7eTi_evTk_O72YGkFKOW01AHBu2lYKw0mlmZGMaULmJdQMdF2apiAV5xLmValZ1da1ZFoXpqo5pwU_Rs_23sGv9W6rnVPrmHuNO0WJGueh8jzU93lk-OUeXg91B43JbxT1r4Sgrfoz4u1KLcNGUcZlntxY7smtIYabAVKvOpsMOKc9hCEpzmgpaUlEldHHf6HXYYg-P0amhChokaFMPfq9pZ-9_PgTGXi6B0wMKUVo_3u_kz27tQ52_wbV4nKxz_gGmkfbtQ |
| Cites_doi | 10.1002/mrm.29816 10.1016/j.neuroimage.2021.118530 10.1016/j.neuroimage.2017.03.039 10.1016/j.neuroimage.2021.118256 10.1118/1.595535 10.1002/mrm.30424 10.1002/mrm.29873 10.1002/mrm.27176 10.1016/j.neuroimage.2022.119146 10.1002/jmri.21665 10.1016/j.neuroimage.2011.03.070 10.1002/mrm.1910010107 10.1016/0079‐6565(78)80002‐8 10.1002/mrm.28791 10.1016/j.neuroimage.2005.02.018 10.1002/mrm.21603 10.1002/mrm.24799 10.1002/mrm.24751 10.1007/s00429‐018‐1617‐1 10.1002/mrm.29124 10.1002/jmri.20583 10.1016/j.neuroimage.2020.116704 10.13140/RG.2.2.21380.07041 10.1002/nbm.3941 10.1002/mrm.20713 10.1016/j.neuroimage.2021.118010 10.1016/j.neuroimage.2013.05.078 10.3389/fnana.2016.00066 10.1016/j.neuroimage.2006.12.028 10.1002/(SICI)1522‐2594(199911)42:5¡952::AID‐MRM16¿3.0.CO;2‐S 10.1002/mrm.21577 10.1002/mrm.1910350217 10.1002/mrm.27055 10.1002/nbm.4831 10.1002/mrm.21624 10.1016/0022‐2364(86)90421‐X 10.1016/j.neuroimage.2014.07.061 10.1016/j.neuroimage.2013.05.074 10.3389/fnhum.2010.00042 10.1038/s41597‐019‐0254‐8 10.1016/j.neuroimage.2019.116087 10.1002/mrm.29130 10.1002/cmr.b.20008 10.1002/mrm.26059 10.1038/s41467‐022‐32595‐4 10.1002/mrm.1910160203 10.1186/s12868‐018‐0416‐1 10.1016/j.neuroimage.2022.119474 10.1002/mrm.25827 10.1002/mrm.1910330617 10.1002/mrm.26054 10.1002/mrm.25303 10.1002/mrm.26493 10.1016/j.neuroimage.2019.116137 10.1002/mrm.21948 10.1002/mrm.1910200209 10.1002/mrm.24427 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/mrm.30599 |
| DatabaseName | Wiley Online Library (Open Access Collection) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | MüLLER et al |
| EISSN | 1522-2594 |
| EndPage | 2285 |
| ExternalDocumentID | 10.1002/mrm.30599 PMC12393195 40485105 10_1002_mrm_30599 MRM30599 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: Hessisches Ministerium für Wissenschaft und Kunst funderid: LOEWE/2/16/519/03/09.001(0001)/101; LOEWE/4TP/I519/05/02.002(0004)/107 – fundername: National Institute of Biomedical Imaging and Bioengineering funderid: K99NS132984; P41‐EB030006; U01‐EB026996; U24‐NS137077 – fundername: Deutsche Forschungsgemeinschaft funderid: INST‐169/22‐1 – fundername: NIBIB NIH HHS grantid: U24-NS137077 – fundername: Hessisches Ministerium für Wissenschaft und Kunst grantid: LOEWE/4TP/I519/05/02.002(0004)/107 – fundername: Hessisches Ministerium für Wissenschaft und Kunst grantid: LOEWE/2/16/519/03/09.001(0001)/101 – fundername: NINDS NIH HHS grantid: U24 NS137077 – fundername: Deutsche Forschungsgemeinschaft grantid: INST-169/22-1 – fundername: NIBIB NIH HHS grantid: U01 EB026996 – fundername: NIBIB NIH HHS grantid: K99NS132984 – fundername: NIBIB NIH HHS grantid: P41-EB030006 – fundername: NINDS NIH HHS grantid: K99 NS132984 – fundername: NIBIB NIH HHS grantid: U01-EB026996 – fundername: ; grantid: INST‐169/22‐1 – fundername: ; grantid: K99NS132984; P41‐EB030006; U01‐EB026996; U24‐NS137077 – fundername: ; grantid: LOEWE/2/16/519/03/09.001(0001)/101; LOEWE/4TP/I519/05/02.002(0004)/107 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AIQQE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4069-faeee33cff94c307a2c922a0086eb2eab6cd507339e876a27fbb92aa5c7b33153 |
| IEDL.DBID | UNPAY |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Sun Oct 26 03:52:04 EDT 2025 Sat Aug 30 05:11:23 EDT 2025 Fri Sep 05 15:55:47 EDT 2025 Tue Oct 07 06:38:51 EDT 2025 Tue Sep 09 02:32:27 EDT 2025 Wed Oct 01 05:35:27 EDT 2025 Fri Aug 29 10:00:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | diffusion MRI radiofrequency coil field monitoring human connectome phased array coil |
| Language | English |
| License | Attribution 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4069-faeee33cff94c307a2c922a0086eb2eab6cd507339e876a27fbb92aa5c7b33153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8597-9219 0000-0001-6287-2144 0000-0002-5353-5573 0000-0001-9178-4194 0000-0001-6445-9062 0000-0003-4020-705X 0000-0003-1386-3828 0000-0003-2950-7254 0009-0004-0066-4066 0000-0003-0805-8330 0000-0002-3324-6889 0009-0008-4092-9304 0000-0001-8278-6307 0000-0002-2896-7155 0000-0001-8454-5347 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.30599 |
| PMID | 40485105 |
| PQID | 3244515473 |
| PQPubID | 1016391 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1002_mrm_30599 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12393195 proquest_miscellaneous_3216916047 proquest_journals_3244515473 pubmed_primary_40485105 crossref_primary_10_1002_mrm_30599 wiley_primary_10_1002_mrm_30599_MRM30599 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2023; 36 1990; 16 2015; 73 2018; 168 2015; 74 1995; 33 2016; 76 2018; 80 2019; 202 2013; 70 2011; 57 1999; 42 2021; 243 2024 2005; 26 1996; 35 2007; 35 2022; 256 2006; 23 2021; 235 2021; 238 2017; 77 1984; 11 2020; 214 2004; 21B 2010; 4 2008; 60 2021; 86 2019; 6 1978; 12 2010 2009; 61 2019; 32 2018; 223 2016; 10 2009 2008; 59 2022; 87 2025; 93 2009; 29 2018; 19 2022; 260 2023 2021 1984; 1 2020 1986; 67 1991; 20 2024; 91 2013; 80 2019 2022; 13 2005; 54 2015 2014 2023; 90 2014; 71 2014; 103 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Barmet C (e_1_2_9_40_1) 2010 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 Ramos‐Llordén G (e_1_2_9_8_1) 2021 e_1_2_9_18_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 Barmet C (e_1_2_9_49_1) 2009 e_1_2_9_2_1 Mahmutovic M (e_1_2_9_30_1) 2021 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_53_1 Gruber B (e_1_2_9_17_1) 2014 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_55_1 e_1_2_9_70_1 Mahmutovic M (e_1_2_9_32_1) 2024 e_1_2_9_15_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Chu S (e_1_2_9_38_1) 2023 e_1_2_9_42_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Dhollander T (e_1_2_9_63_1) 2019 e_1_2_9_9_1 e_1_2_9_25_1 Brunheim S (e_1_2_9_41_1) 2020 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 Ramos‐Llordén G (e_1_2_9_23_1) 2024 e_1_2_9_29_1 Brunner DO (e_1_2_9_31_1) 2019 |
| References_xml | – volume: 54 start-page: 1439 year: 2005 end-page: 1447 article-title: Image reconstruction in SNR units: a general method for SNR measurement publication-title: Magn Reson Med – start-page: 901 year: 2024 – volume: 21B start-page: 26 year: 2004 end-page: 31 article-title: Floating shield current suppression trap publication-title: Concepts Magn Reson B Magn Reson Eng – volume: 260 year: 2022 article-title: SynthStrip: skull‐stripping for any brain image publication-title: Neuroimage – start-page: 555 year: 2019 – start-page: 1856 year: 2015 – volume: 93 start-page: 2561 year: 2025 end-page: 2582 article-title: Considerations and recommendations from the ISMRM diffusion study Group for Preclinical Diffusion MRI: part 3—ex vivo imaging: data processing, comparisons with microscopy, and Tractography publication-title: Magn Reson Med – volume: 87 start-page: 2551 year: 2022 end-page: 2565 article-title: Integration of an RF coil and commercial field camera for ultrahigh‐field MRI publication-title: Magn Reson Med – volume: 13 start-page: 4933 year: 2022 article-title: Population‐based tract‐to‐region connectome of the human brain and its hierarchical topology publication-title: Nat Commun – volume: 74 start-page: 925 year: 2015 end-page: 933 article-title: Diffusion MRI with concurrent magnetic field monitoring publication-title: Magn Reson Med – volume: 80 start-page: 234 year: 2013 end-page: 245 article-title: The human connectome project and beyond: initial applications of 300 mT/m gradients publication-title: Neuroimage – volume: 73 start-page: 1833 year: 2015 end-page: 1843 article-title: Retrospective correction of physiological field fluctuations in high‐field brain MRI using concurrent field monitoring publication-title: Magn Reson Med – volume: 60 start-page: 187 year: 2008 end-page: 197 article-title: Spatiotemporal magnetic field monitoring for MR publication-title: Magn Reson Med – start-page: 300 year: 2021 – volume: 71 start-page: 1575 year: 2014 end-page: 1580 article-title: Temperature‐induced changes of magnetic resonance relaxation times in the human brain: a Postmortem study publication-title: Magn Reson Med – volume: 61 start-page: 1201 year: 2009 end-page: 1209 article-title: Noise figure limits for circular loop MR coils publication-title: Magn Reson Med – volume: 80 start-page: 1836 year: 2018 end-page: 1846 article-title: Single‐Shot Spiral Imaging at 7 T publication-title: Magn Reson Med – volume: 23 start-page: 827 year: 2006 end-page: 839 article-title: Report on a Multicenter fMRI quality assurance protocol publication-title: J Magn Reson Imaging – start-page: 781 year: 2009 – volume: 36 year: 2023 article-title: High‐Fidelity, high‐spatial‐resolution diffusion magnetic resonance imaging of ex vivo whole human brain at ultra‐high gradient strength with structured low‐rank Echo‐planar imaging ghost correction publication-title: NMR Biomed – volume: 91 start-page: 541 year: 2024 end-page: 557 article-title: Eddy current‐induced Artifact correction in high b‐value ex vivo human brain diffusion MRI with dynamic field monitoring publication-title: Magn Reson Med – volume: 29 start-page: 692 year: 2009 end-page: 698 article-title: Construction of a temperature‐controlled diffusion phantom for quality control of diffusion measurements publication-title: J Magn Reson Imaging – volume: 11 start-page: 425 year: 1984 end-page: 448 article-title: A review of Normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age publication-title: Med Phys – volume: 238 year: 2021 article-title: A 48‐channel receive Array coil for mesoscopic diffusion‐weighted MRI of ex vivo human brain on the 3 T connectome scanner publication-title: Neuroimage – volume: 32 year: 2019 article-title: Ex vivo diffusion MRI of the human brain: technical challenges and recent advances publication-title: NMR Biomed – volume: 71 start-page: 990 year: 2014 end-page: 1001 article-title: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA publication-title: Magn Reson Med – volume: 87 start-page: 2209 year: 2022 end-page: 2223 article-title: Characterization and correction of time‐varying Eddy currents for diffusion MRI publication-title: Magn Reson Med – volume: 70 start-page: 248 year: 2013 end-page: 258 article-title: A 64‐channel 3T Array coil for accelerated brain MRI publication-title: Magn Reson Med – volume: 202 year: 2019 article-title: Ultra‐high resolution and multi‐Shell diffusion MRI of intact ex vivo human brains using kT‐dSTEAM at 9.4T publication-title: Neuroimage – volume: 59 start-page: 1347 year: 2008 end-page: 1354 article-title: Axcaliber: a method for measuring axon diameter distribution from diffusion MRI publication-title: Magn Reson Med – start-page: 4885 year: 2014 – volume: 76 start-page: 1582 year: 2016 end-page: 1593 article-title: Diffusion MRI noise mapping using random matrix theory publication-title: Magn Reson Med – volume: 60 start-page: 176 year: 2008 end-page: 186 article-title: NMR probes for measuring magnetic fields and field dynamics in MR systems publication-title: Magn Reson Med – volume: 80 start-page: 833 year: 2018 end-page: 839 article-title: An industrial design solution for integrating NMR magnetic field sensors into an MRI scanner publication-title: Magn Reson Med – volume: 90 start-page: 2643 year: 2023 end-page: 2652 article-title: A temperature‐controlled cooling system for accurate quantitative post‐mortem MRI publication-title: Magn Reson Med – volume: 202 year: 2019 article-title: : a fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage – volume: 33 start-page: 848 year: 1995 end-page: 852 article-title: Design of Matching Networks for low noise preamplifiers publication-title: Magn Reson Med – start-page: 3389 year: 2020 – volume: 214 year: 2020 article-title: Insight into the fundamental trade‐offs of diffusion MRI from polarization‐sensitive optical coherence tomography in ex vivo human brain publication-title: Neuroimage – volume: 26 start-page: 839 year: 2005 end-page: 851 article-title: Unified segmentation publication-title: Neuroimage – volume: 6 start-page: 244 year: 2019 article-title: 7 tesla MRI of the ex vivo human brain at 100 Micron resolution publication-title: Sci Data – volume: 76 start-page: 1574 year: 2016 end-page: 1581 article-title: Gibbs‐ringing Artifact removal based on local subvoxel‐shifts publication-title: Magn Reson Med – start-page: 4589 year: 2023 – volume: 4 start-page: 42 year: 2010 article-title: Direct visualization of the Perforant pathway in the human brain with ex vivo diffusion tensor imaging publication-title: Front Hum Neurosci – volume: 20 start-page: 268 year: 1991 end-page: 284 article-title: Temporal and spatial analysis of fields generated by Eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems publication-title: Magn Reson Med – volume: 103 start-page: 411 year: 2014 end-page: 426 article-title: Multi‐tissue constrained spherical deconvolution for improved analysis of multi‐Shell diffusion MRI data publication-title: Neuroimage – volume: 256 start-page: 119146 year: 2022 article-title: Post mortem mapping of connectional anatomy for the validation of diffusion MRI publication-title: Neuroimage – start-page: 216 year: 2010 – start-page: 623 year: 2021 – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 16 start-page: 192 year: 1990 end-page: 225 article-title: The NMR phased Array publication-title: Magn Reson Med – volume: 19 start-page: 11 year: 2018 article-title: Dissecting the pathobiology of altered MRI signal in amyotrophic lateral sclerosis: a post mortem whole brain sampling strategy for the integration of ultra‐high‐field MRI and quantitative neuropathology publication-title: BMC Neurosci – start-page: 1046 year: 2019 – volume: 243 year: 2021 article-title: Connectome 2.0: developing the next‐generation ultra‐high gradient strength human MRI scanner for bridging studies of the micro‐, Meso‐ and macro‐connectome publication-title: Neuroimage – volume: 223 start-page: 2157 year: 2018 end-page: 2179 article-title: Post‐mortem inference of the human hippocampal connectivity and microstructure using ultra‐high field diffusion MRI at 11.7 T publication-title: Brain Struct Funct – volume: 1 start-page: 44 year: 1984 end-page: 65 article-title: Magnet field profiling: analysis and correcting coil design publication-title: Magn Reson Med – volume: 35 start-page: 246 year: 1996 end-page: 251 article-title: Imaging of the active B1 field in vivo publication-title: Magn Reson Med – volume: 77 start-page: 83 year: 2017 end-page: 91 article-title: Single‐shot spiral imaging enabled by an expanded encoding model: demonstration in diffusion MRI publication-title: Magn Reson Med – volume: 12 start-page: 41 year: 1978 end-page: 77 article-title: The NMR receiver: a description and analysis of design publication-title: Prog Nucl Magn Reson Spectrosc – volume: 10 start-page: 10 year: 2016 article-title: Ultra‐high field MRI post mortem structural connectivity of the human subthalamic nucleus, substantia Nigra, and Globus Pallidus publication-title: Front Neuroanat – start-page: 1027 year: 2024 – volume: 57 start-page: 167 year: 2011 end-page: 181 article-title: Diffusion imaging of whole, post‐mortem human brains on a clinical MRI scanner publication-title: Neuroimage – volume: 67 start-page: 156 year: 1986 end-page: 161 article-title: Electronic decoupling of surface‐coil receivers for NMR imaging and spectroscopy publication-title: J Magn Reson – volume: 235 year: 2021 article-title: Dedicated container for Postmortem human brain ultra‐high field magnetic resonance imaging publication-title: Neuroimage – volume: 168 start-page: 162 year: 2018 end-page: 171 article-title: High resolution anatomical and quantitative MRI of the entire human occipital lobe ex vivo at 9.4T publication-title: Neuroimage – volume: 35 start-page: 553 year: 2007 end-page: 565 article-title: An approach to high resolution diffusion tensor imaging in fixed primate brain publication-title: Neuroimage – volume: 86 start-page: 1773 year: 2021 end-page: 1785 article-title: A size‐adaptive 32‐channel Array coil for awake infant neuroimaging at 3 tesla MRI publication-title: Magn Reson Med – volume: 80 start-page: 220 year: 2013 end-page: 233 article-title: Pushing the limits of in vivo diffusion MRI for the human connectome project publication-title: Neuroimage – ident: e_1_2_9_43_1 doi: 10.1002/mrm.29816 – ident: e_1_2_9_22_1 doi: 10.1016/j.neuroimage.2021.118530 – ident: e_1_2_9_18_1 doi: 10.1016/j.neuroimage.2017.03.039 – ident: e_1_2_9_7_1 doi: 10.1016/j.neuroimage.2021.118256 – ident: e_1_2_9_68_1 doi: 10.1118/1.595535 – ident: e_1_2_9_6_1 doi: 10.1002/mrm.30424 – ident: e_1_2_9_37_1 doi: 10.1002/mrm.29873 – start-page: 781 volume-title: Proceedings of the 17th Annual Meeting of ISMRM. Honululu, USA year: 2009 ident: e_1_2_9_49_1 – ident: e_1_2_9_67_1 doi: 10.1002/mrm.27176 – ident: e_1_2_9_24_1 doi: 10.1016/j.neuroimage.2022.119146 – ident: e_1_2_9_42_1 doi: 10.1002/jmri.21665 – start-page: 555 volume-title: Proceedings of the 27th Annual Meeting of ISMRM. Montréal, Québec, Canada year: 2019 ident: e_1_2_9_63_1 – ident: e_1_2_9_12_1 doi: 10.1016/j.neuroimage.2011.03.070 – ident: e_1_2_9_35_1 doi: 10.1002/mrm.1910010107 – ident: e_1_2_9_53_1 doi: 10.1016/0079‐6565(78)80002‐8 – ident: e_1_2_9_51_1 doi: 10.1002/mrm.28791 – ident: e_1_2_9_61_1 doi: 10.1016/j.neuroimage.2005.02.018 – ident: e_1_2_9_34_1 doi: 10.1002/mrm.21603 – ident: e_1_2_9_69_1 doi: 10.1002/mrm.24799 – ident: e_1_2_9_57_1 doi: 10.1002/mrm.24751 – ident: e_1_2_9_5_1 doi: 10.1007/s00429‐018‐1617‐1 – ident: e_1_2_9_28_1 doi: 10.1002/mrm.29124 – ident: e_1_2_9_52_1 doi: 10.1002/jmri.20583 – ident: e_1_2_9_13_1 doi: 10.1016/j.neuroimage.2020.116704 – start-page: 901 volume-title: Proceedings of the 32nd Annual Meeting of ISMRM. Singapore year: 2024 ident: e_1_2_9_23_1 – ident: e_1_2_9_16_1 doi: 10.13140/RG.2.2.21380.07041 – ident: e_1_2_9_25_1 doi: 10.1002/nbm.3941 – ident: e_1_2_9_54_1 doi: 10.1002/mrm.20713 – ident: e_1_2_9_14_1 doi: 10.1016/j.neuroimage.2021.118010 – ident: e_1_2_9_3_1 doi: 10.1016/j.neuroimage.2013.05.078 – ident: e_1_2_9_19_1 doi: 10.3389/fnana.2016.00066 – ident: e_1_2_9_21_1 doi: 10.1016/j.neuroimage.2006.12.028 – start-page: 1046 volume-title: Proceedings of the 27th Annual Meeting of ISMRM. Montreal, Canada year: 2019 ident: e_1_2_9_31_1 – ident: e_1_2_9_56_1 doi: 10.1002/(SICI)1522‐2594(199911)42:5¡952::AID‐MRM16¿3.0.CO;2‐S – start-page: 3389 volume-title: Proceedings of the 28th Annual Meeting of ISMRM. Vitrual Meeting year: 2020 ident: e_1_2_9_41_1 – ident: e_1_2_9_4_1 doi: 10.1002/mrm.21577 – ident: e_1_2_9_55_1 doi: 10.1002/mrm.1910350217 – ident: e_1_2_9_39_1 doi: 10.1002/mrm.27055 – ident: e_1_2_9_70_1 – ident: e_1_2_9_9_1 doi: 10.1002/nbm.4831 – ident: e_1_2_9_33_1 doi: 10.1002/mrm.21624 – ident: e_1_2_9_47_1 doi: 10.1016/0022‐2364(86)90421‐X – ident: e_1_2_9_62_1 doi: 10.1016/j.neuroimage.2014.07.061 – ident: e_1_2_9_2_1 doi: 10.1016/j.neuroimage.2013.05.074 – start-page: 216 volume-title: Proceedings of the 19th Annual Meeting of ISMRM year: 2010 ident: e_1_2_9_40_1 – ident: e_1_2_9_10_1 doi: 10.3389/fnhum.2010.00042 – ident: e_1_2_9_15_1 doi: 10.1038/s41597‐019‐0254‐8 – ident: e_1_2_9_11_1 doi: 10.1016/j.neuroimage.2019.116087 – ident: e_1_2_9_27_1 doi: 10.1002/mrm.29130 – start-page: 4885 volume-title: Proceedings of the 23rd Annual Meeting of ISMRM. Milan, Italy year: 2014 ident: e_1_2_9_17_1 – start-page: 4589 volume-title: Proceedings of the 31st Annual Meeting of ISMRM. Toronto, Canada year: 2023 ident: e_1_2_9_38_1 – ident: e_1_2_9_50_1 doi: 10.1002/cmr.b.20008 – ident: e_1_2_9_58_1 doi: 10.1002/mrm.26059 – ident: e_1_2_9_65_1 doi: 10.1038/s41467‐022‐32595‐4 – ident: e_1_2_9_46_1 doi: 10.1002/mrm.1910160203 – ident: e_1_2_9_20_1 doi: 10.1186/s12868‐018‐0416‐1 – ident: e_1_2_9_60_1 doi: 10.1016/j.neuroimage.2022.119474 – ident: e_1_2_9_26_1 doi: 10.1002/mrm.25827 – start-page: 1027 volume-title: Proceedings of the 32nd Annual Meeting of ISMRM. Singapore year: 2024 ident: e_1_2_9_32_1 – ident: e_1_2_9_45_1 doi: 10.1002/mrm.1910330617 – ident: e_1_2_9_59_1 doi: 10.1002/mrm.26054 – ident: e_1_2_9_36_1 doi: 10.1002/mrm.25303 – ident: e_1_2_9_66_1 doi: 10.1002/mrm.26493 – start-page: 623 volume-title: Proceedings of the 29th Annual Meeting of ISMRM. Virtual Meeting year: 2021 ident: e_1_2_9_30_1 – ident: e_1_2_9_64_1 doi: 10.1016/j.neuroimage.2019.116137 – start-page: 300 volume-title: In: Proceedings of the 29th Annual Meeting of ISMRM. Virtual Meeting year: 2021 ident: e_1_2_9_8_1 – ident: e_1_2_9_44_1 doi: 10.1002/mrm.21948 – ident: e_1_2_9_29_1 doi: 10.1002/mrm.1910200209 – ident: e_1_2_9_48_1 doi: 10.1002/mrm.24427 |
| SSID | ssj0009974 |
| Score | 2.4957063 |
| Snippet | Purpose
High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise... High-resolution ex vivo diffusion-weighted imaging (dMRI) with high -values presents significant challenges, including low signal-to-noise ratio (SNR),... Purpose High‐resolution ex vivo diffusion‐weighted imaging (dMRI) with high b$$ b $$‐values presents significant challenges, including low signal‐to‐noise... High-resolution ex vivo diffusion-weighted imaging (dMRI) with high b $$ b $$ -values presents significant challenges, including low signal-to-noise ratio... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 2268 |
| SubjectTerms | Anisotropy Arrays Brain Brain - diagnostic imaging Cameras Coils Connectome - instrumentation Connectome - methods Diffusion Magnetic Resonance Imaging - instrumentation Diffusion Magnetic Resonance Imaging - methods diffusion MRI Diffusivity Equipment Design Field cameras field monitoring Hardware Hardware and Instrumentation human connectome Humans Image Processing, Computer-Assisted - methods Image quality Kurtosis Magnetic resonance imaging Medical imaging Monitoring Neuroimaging Perturbation Phantoms, Imaging phased array coil radiofrequency coil Reliability Reproducibility of Results Signal-To-Noise Ratio Stabilization Temperature Thermal instability |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSjwuPMorUNDwOHAg28R2HoZThagKUjgsrdQDUmQ7zrJik11ld1vKiZ_A3-Jv8EvwONmslgqEuEXKZGIr48nn8cw3hDwTKoyVkaFfcJH4XKfGT2MW-AnVNEhlIXiK1cjZ-_jwmL87iU62yKtVLUzLD9EH3HBlOH-NC1yq-d6aNLRqqgFDdhHrf0MWu-3UcE0dJUTLwJxw9DOCr1iFArrXP7n5L7oAMC_mSV5Z1jN5fiYnk00s635GB9fJx9U02hyUz4PlQg30198YHv9znjfItQ6kwn5rVTfJlql3yOWsO4bfIZdc3qie3yI_PmAofQSjxqWOLeYvQE-nE5it6xFewj7E_Oe371hjbAcDsmnkuRUbTwCjwPaq1i1LFLh8Oqicn8GAI8i6AISolR1Ol1UPVjGYL3A6Pp0C9ndZYsDP6j9zUV5TgMK2FzCuXAMmwMz-ESoBdoQ6ajynqAzQQQDZ8C3MNQ6ruU2OD94cvT70u-4QvsZqXb-UxhjGdFkKrq2nklQLSiXu0YyiRqpYFxG2pBTGenxJk1IpQaWMdKIYs47-Dtmup7W5R0DKQpcs1rGxcAxVCbvrZTKK7G6SlkHqkScrO8lnLQlI3tI909x-ntx9Ho_sriwo7_zAPLdwlVvEyBPmkcf9bbuC8VhG1ma6RBkkLIoDnnjkbmtw_Vu4dbAIgT2SbphiL4Ds4Jt36vEnxxIeIrldKOyjT3ur_dvonzsj_LNEng0zd3H_30UfkKsU-yW72s1dsr1oluahBXEL9cit1l8K3Ui- priority: 102 providerName: Wiley-Blackwell |
| Title | Strong gradients, cool performance: A 64‐channel array coil with concurrent field monitoring and thermal control for ex vivo diffusion‐weighted brain imaging using the 3T connectome 2.0 MRI scanner |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30599 https://www.ncbi.nlm.nih.gov/pubmed/40485105 https://www.proquest.com/docview/3244515473 https://www.proquest.com/docview/3216916047 https://pubmed.ncbi.nlm.nih.gov/PMC12393195 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.30599 |
| UnpaywallVersion | publishedVersion |
| Volume | 94 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RVDwuPMorUKrhceCAQ7Jev7hFQFWQUlWhkcrJXa_XISJ2IidpKSd-An-Lv8EvYWbtBEIFQuJiWfJ6vCvPzn47O_MNwJMo6fiJUR0nlVHgSB0aJ_TdthMILdqhSiMZcjZyb9_fG8i3R95RXeeUc2EqfoiVw41nhrXXPMGnaVbZ-fp0XzzPy7zlMsPIBmz6HoHxBmwO9g-67yvyTbYwthQiLVLCIaAvl9xCv767viKdg5nnoyUvL4qpOjtV4_E6orVL0u41OF4OpopE-dhazJOW_vwbz-N_jPY6XK3hKnYr_boBF0yxBZd69YH8Fly0EaR6dhO-vWOn-hCHpQ0im8-eoZ5Mxjj9mZnwArvoy-9fvnK2MXUIVVmqM2o2GiP7g-mu0BVfFNrIOsytxWHXI6oiRQarOXWnjq9HEozmE56MTibIlV4W7Poj-afW32tSTLgABo5yW4oJOcZ_yELQPWQZBZ9Y5AZFq429_hucae5WeQsGu68PX-45dZ0IR3PerpMpY4zr6iyLpCabpYSOhFC8WzOJMCrxdepxccrIkO1XIsiSJBJKeTpIXJdM_m1oFJPC3AVUKtWZ62vfEDBjURHtf13lebSvFFk7bMKjpa7E04oOJK6In0VMvye2v6cJ20stimuLMIsJuErCjjJwm_Bw9ZjmMh_QqMJMFtyGqYv8tgyacKdSutVXJJlaBsNNCNfUcdWAecLXnxSjD5YvvMM0d52IXn280ty_9f6pVcQ_t4h7_Z69ufdPAu_DFcFFk20C5zY05uXCPCAkN092YEPIA7q-6oudeub-AFruTts |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKEZQLgvIXKDD8HDiQNrGdHyMuFaLaQlOhspV6ixzHWVbaJKvsbktvPAKvxWvwJHicbFarCsQtUiYTK-OZzIxnviHktcj8MNPSd3MuIperWLtxyDw3oop6scwFj7EbOTkOB6f801lwtkHeL3thWnyIPuGGmmHtNSo4JqT3VqihZVPuMoQXuUau89APMfSi_MsKcle0GMwRR0sj-BJXyKN7_aPrf6MrLubVSsmtRTWVlxdyMln3Zu3v6OAOud35kbDfCv4u2dDVNrmZdCfl2-SGLe1Us3vk11fMdo9g1NjqrvnsLai6nsB01TLwDvYh5L9__MQ2YPNdQDaNvDRk4wlgotZcVaoFcgJb8galNQWYEwRZ5YBeZGmW0xW-g2EM-jucj89rwBEsC8zJGf4XNhGrc8hwMgWMSzsjCbD4foRMgA2RR4VHCaUGuutBcnIIM4XLau6T04OPww8Dtxvg4CpsqHULqbVmTBWF4MoYE0mVoFRiGGUCei2zUOUBTo0U2hhlSaMiywSVMlBRxpixxQ_IZlVX-hEBKXNVsFCF2nhMyEqYwJTJIDABHy282CEvl4JMpy1OR9oiMtPUSDu10nbIzlLEaaeqs9R4lNw4dTxiDnnR3zZKhicnstL1AmkQUyj0eOSQh-2O6N_CjQ1EL9Uh8dpe6QkQwHv9TjX-ZoG8fcSf84V59FW_rf61-jd2w_2dIk1OEnvx-P9Jn5OtwTA5So8Ojz8_Ibcojje2rZY7ZHPeLPRT43PNs2dWtf4Ae2YsFQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VIgoXfkoLgQLDz6EHnDrr9c8iLhUlaoFUKLRSL8har9chInYiJ2kpJx6B1-I1eBJ21omjUIEQN0sej3fl2fG3szPfADwTSStItGw5KRehw1WknSjwXCdkirmRTAWPqBq5cxjsH_M3J_7JCryc18JU_BB1wI1WhvXXtMD1KM12FqyheZk3PaIXuQSXuS8iSujb6y7Io4SoOJhDTp5G8DmvkMt26keX_0YXIObFTMmr02Ikz8_kYLCMZu3vqH0DPs4nUmWhfG5OJ0lTff2N4_F_Z3oTrs9wKu5WhnULVnSxDmud2Un8OlyxqaNqfBt-fKBoeg97pc0em4yfoxoOBzhalCS8wF0M-M9v36nM2IwGZVnKcyPWHyAFgs1VoSqiKLQpdZhbV0MxR5RFioRSczOcWWI9GsWov-Bp_3SI1OJlSjE_o__MBnp1igl1vsB-bnswISX390gJekeko6Cjilwja7rY6R7gWNGwyg04br8-erXvzBpEOIoKdp1Maq09T2WZ4Mo4K8mUYEzSNk0nTMskUKlPXSmFNk5fsjBLEsGk9FWYeJ7x9ZuwWgwLfRdQylRlXqACbRAZqRJm4-tJ3zcbSpa5UQOezA0lHlU8IHHF-Mxi83li-3kasDU3oXjmCsaxQazcgEYeeg14XN82i5hOZmShh1OSIc6iwOVhA-5UFle_hRsfSyi4AdGSLdYCRBC-fKfof7JE4S3it2sJ8-jT2mz_Nvpta4V_log73Y69uPfvoo9g7f1eO353cPj2Plxj1D3ZVnJuweqknOoHBtJNkod25f4Cq51MYw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVjwuPMorUNDwOHAgS9ZxXtxWFVVB2gqVrlROqeM4y4pNsspuWsqJn8Df4m_wS5hxsoGlAiFxi2R74ijj8efxzDeMPY2SgZ9oObBTEQW2UKG2Q9917IAr7oQyjURI2cijfX9vLN4ceUdtnVPKhWn4ITqHG60MY69pgc_TrLHz7e0-f5FXed8lhpELbNP3EIz32OZ4_-3wfUO-SRbGlELETYrbCPTFilvo17HrO9I5mHk-WvJyXczl2amczdYRrdmSdq-x49XHNJEoH_v1Mumrz7_xPP7H115nV1u4CsNGv26wDV1ssUuj9kJ-i100EaRqcZN9e0dO9QlMKhNEtlw8B1WWM5j_zEx4CUPwxfcvXynbGCcEsqrkGXabzoD8wfhUqIYvCkxkHeTG4pDrEWSRAoHVHKfTxtcDCgb9CU6mJyVQpZeaXH8o_9T4e3UKCRXAgGluSjEBxfhPSAi4hySjoBuLXAPvOzA6eA0LRdOqbrHx7qvDnT27rRNhK8rbtTOptXZdlWWRUGizJFcR55JOazrhWia-Sj0qThlptP2SB1mSRFxKTwWJ66LJv816RVnouwykTFXm-srXCMxIVITnX1d6Hp4reeaEFnu80pV43tCBxA3xM4_x98Tm91hse6VFcWsRFjECV4HYUQSuxR51zbiW6YJGFrqsqQ9RF_mOCCx2p1G67i0CTS2BYYuFa-rYdSCe8PWWYvrB8IUPiOZuEOHQJ53m_m32z4wi_rlHPDoYmYd7_yTwPrvCqWiySeDcZr1lVesHiOSWycN2tf4AujRNGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+gradients%2C+cool+performance%3A+A+64-channel+array+coil+with+concurrent+field+monitoring+and+thermal+control+for+ex+vivo+diffusion-weighted+brain+imaging+using+the+3T+connectome+2.0+MRI+scanner&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=M%C3%BCller%2C+Alina&rft.au=Mahmutovic%2C+Mirsad&rft.au=Alem%2C+Mona&rft.au=Ramos-Llord%C3%A9n%2C+Gabriel&rft.date=2025-11-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft_id=info:doi/10.1002%2Fmrm.30599&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |