Atrial Fibrillation Treatment Stratification Based on Artificial Intelligence‐Driven Analysis of the Electrophysiological Complexity

ABSTRACT Background Atrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI) has arisen as a powerful tool for treatment efficacy prediction. Objective We developed an AI‐driven platform for the stratification of patien...

Full description

Saved in:
Bibliographic Details
Published inJournal of cardiovascular electrophysiology Vol. 36; no. 8; pp. 1903 - 1912
Main Authors Nava, Ana María Sánchez, Ros, Santiago, Carta, Alejandro, González‐Torrecilla, Esteban, Mansilla, Ana González, Bermejo, Javier, Arenal, Ángel, Climent, Andreu M., Guillem, María S., Atienza, Felipe
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.08.2025
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1045-3873
1540-8167
1540-8167
DOI10.1111/jce.16754

Cover

Abstract ABSTRACT Background Atrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI) has arisen as a powerful tool for treatment efficacy prediction. Objective We developed an AI‐driven platform for the stratification of patients based on noninvasive Electrocardiographic Imaging (ECGI) biomarkers and clinical parameters to evaluate and predict optimal patient treatment. Methods We evaluated 204 patients treated according to clinical guidelines and characterized them at the electrophysiological level using ECGI recordings during AF. ECGI signals were calculated to obtain frequency and rotational biomarkers. Baseline clinical characteristics and treatment after inclusion were registered. Results A clustering algorithm was calibrated taking three different variables for 1 year outcome prediction: (1) AF type (paroxysmal or persistent); (2) ECGI complexity score (calculated based on highest dominant frequency, median dominant frequency, and mean rotor time); and (3) type of treatment: rhythm control (drugs, AF ablation) or rate control. The cluster analysis classified patients into five groups: Low electrophysiological complexity patterns were associated with an improved outcome after ablation, regardless of the time duration of the AF. Intermediate complexity scores in paroxysmal AF had a favourable outcome with rhythm control treatments, but not in persistent AF patients. Cluster patterns with higher electrophysiological complexity were associated with a higher probability of AF recurrence, both in paroxysmal and persistent groups. The performance of the algorithm predicting the outcome was (AUC: 0.73 (0.63–0.81)), increasing overall performance with respect to conventional persistent and paroxysmal classification (AUC: 0.58 (0.48–0.68); p < 0.05). This algorithm was evaluated on the 20% test set, obtaining 90% prediction success. Conclusions AI‐driven analysis that combined clinical information with ECGI biomarkers increased the performance of conventional classification methods for AF treatment stratification.
AbstractList Background Atrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI) has arisen as a powerful tool for treatment efficacy prediction. Objective We developed an AI‐driven platform for the stratification of patients based on noninvasive Electrocardiographic Imaging (ECGI) biomarkers and clinical parameters to evaluate and predict optimal patient treatment. Methods We evaluated 204 patients treated according to clinical guidelines and characterized them at the electrophysiological level using ECGI recordings during AF. ECGI signals were calculated to obtain frequency and rotational biomarkers. Baseline clinical characteristics and treatment after inclusion were registered. Results A clustering algorithm was calibrated taking three different variables for 1 year outcome prediction: (1) AF type (paroxysmal or persistent); (2) ECGI complexity score (calculated based on highest dominant frequency, median dominant frequency, and mean rotor time); and (3) type of treatment: rhythm control (drugs, AF ablation) or rate control. The cluster analysis classified patients into five groups: Low electrophysiological complexity patterns were associated with an improved outcome after ablation, regardless of the time duration of the AF. Intermediate complexity scores in paroxysmal AF had a favourable outcome with rhythm control treatments, but not in persistent AF patients. Cluster patterns with higher electrophysiological complexity were associated with a higher probability of AF recurrence, both in paroxysmal and persistent groups. The performance of the algorithm predicting the outcome was (AUC: 0.73 (0.63–0.81)), increasing overall performance with respect to conventional persistent and paroxysmal classification (AUC: 0.58 (0.48–0.68); p < 0.05). This algorithm was evaluated on the 20% test set, obtaining 90% prediction success. Conclusions AI‐driven analysis that combined clinical information with ECGI biomarkers increased the performance of conventional classification methods for AF treatment stratification.
ABSTRACT Background Atrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI) has arisen as a powerful tool for treatment efficacy prediction. Objective We developed an AI‐driven platform for the stratification of patients based on noninvasive Electrocardiographic Imaging (ECGI) biomarkers and clinical parameters to evaluate and predict optimal patient treatment. Methods We evaluated 204 patients treated according to clinical guidelines and characterized them at the electrophysiological level using ECGI recordings during AF. ECGI signals were calculated to obtain frequency and rotational biomarkers. Baseline clinical characteristics and treatment after inclusion were registered. Results A clustering algorithm was calibrated taking three different variables for 1 year outcome prediction: (1) AF type (paroxysmal or persistent); (2) ECGI complexity score (calculated based on highest dominant frequency, median dominant frequency, and mean rotor time); and (3) type of treatment: rhythm control (drugs, AF ablation) or rate control. The cluster analysis classified patients into five groups: Low electrophysiological complexity patterns were associated with an improved outcome after ablation, regardless of the time duration of the AF. Intermediate complexity scores in paroxysmal AF had a favourable outcome with rhythm control treatments, but not in persistent AF patients. Cluster patterns with higher electrophysiological complexity were associated with a higher probability of AF recurrence, both in paroxysmal and persistent groups. The performance of the algorithm predicting the outcome was (AUC: 0.73 (0.63–0.81)), increasing overall performance with respect to conventional persistent and paroxysmal classification (AUC: 0.58 (0.48–0.68); p < 0.05). This algorithm was evaluated on the 20% test set, obtaining 90% prediction success. Conclusions AI‐driven analysis that combined clinical information with ECGI biomarkers increased the performance of conventional classification methods for AF treatment stratification.
Atrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI) has arisen as a powerful tool for treatment efficacy prediction. We developed an AI-driven platform for the stratification of patients based on noninvasive Electrocardiographic Imaging (ECGI) biomarkers and clinical parameters to evaluate and predict optimal patient treatment. We evaluated 204 patients treated according to clinical guidelines and characterized them at the electrophysiological level using ECGI recordings during AF. ECGI signals were calculated to obtain frequency and rotational biomarkers. Baseline clinical characteristics and treatment after inclusion were registered. A clustering algorithm was calibrated taking three different variables for 1 year outcome prediction: (1) AF type (paroxysmal or persistent); (2) ECGI complexity score (calculated based on highest dominant frequency, median dominant frequency, and mean rotor time); and (3) type of treatment: rhythm control (drugs, AF ablation) or rate control. The cluster analysis classified patients into five groups: Low electrophysiological complexity patterns were associated with an improved outcome after ablation, regardless of the time duration of the AF. Intermediate complexity scores in paroxysmal AF had a favourable outcome with rhythm control treatments, but not in persistent AF patients. Cluster patterns with higher electrophysiological complexity were associated with a higher probability of AF recurrence, both in paroxysmal and persistent groups. The performance of the algorithm predicting the outcome was (AUC: 0.73 (0.63-0.81)), increasing overall performance with respect to conventional persistent and paroxysmal classification (AUC: 0.58 (0.48-0.68); p < 0.05). This algorithm was evaluated on the 20% test set, obtaining 90% prediction success. AI-driven analysis that combined clinical information with ECGI biomarkers increased the performance of conventional classification methods for AF treatment stratification.
Atrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI) has arisen as a powerful tool for treatment efficacy prediction.BACKGROUNDAtrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI) has arisen as a powerful tool for treatment efficacy prediction.We developed an AI-driven platform for the stratification of patients based on noninvasive Electrocardiographic Imaging (ECGI) biomarkers and clinical parameters to evaluate and predict optimal patient treatment.OBJECTIVEWe developed an AI-driven platform for the stratification of patients based on noninvasive Electrocardiographic Imaging (ECGI) biomarkers and clinical parameters to evaluate and predict optimal patient treatment.We evaluated 204 patients treated according to clinical guidelines and characterized them at the electrophysiological level using ECGI recordings during AF. ECGI signals were calculated to obtain frequency and rotational biomarkers. Baseline clinical characteristics and treatment after inclusion were registered.METHODSWe evaluated 204 patients treated according to clinical guidelines and characterized them at the electrophysiological level using ECGI recordings during AF. ECGI signals were calculated to obtain frequency and rotational biomarkers. Baseline clinical characteristics and treatment after inclusion were registered.A clustering algorithm was calibrated taking three different variables for 1 year outcome prediction: (1) AF type (paroxysmal or persistent); (2) ECGI complexity score (calculated based on highest dominant frequency, median dominant frequency, and mean rotor time); and (3) type of treatment: rhythm control (drugs, AF ablation) or rate control. The cluster analysis classified patients into five groups: Low electrophysiological complexity patterns were associated with an improved outcome after ablation, regardless of the time duration of the AF. Intermediate complexity scores in paroxysmal AF had a favourable outcome with rhythm control treatments, but not in persistent AF patients. Cluster patterns with higher electrophysiological complexity were associated with a higher probability of AF recurrence, both in paroxysmal and persistent groups. The performance of the algorithm predicting the outcome was (AUC: 0.73 (0.63-0.81)), increasing overall performance with respect to conventional persistent and paroxysmal classification (AUC: 0.58 (0.48-0.68); p < 0.05). This algorithm was evaluated on the 20% test set, obtaining 90% prediction success.RESULTSA clustering algorithm was calibrated taking three different variables for 1 year outcome prediction: (1) AF type (paroxysmal or persistent); (2) ECGI complexity score (calculated based on highest dominant frequency, median dominant frequency, and mean rotor time); and (3) type of treatment: rhythm control (drugs, AF ablation) or rate control. The cluster analysis classified patients into five groups: Low electrophysiological complexity patterns were associated with an improved outcome after ablation, regardless of the time duration of the AF. Intermediate complexity scores in paroxysmal AF had a favourable outcome with rhythm control treatments, but not in persistent AF patients. Cluster patterns with higher electrophysiological complexity were associated with a higher probability of AF recurrence, both in paroxysmal and persistent groups. The performance of the algorithm predicting the outcome was (AUC: 0.73 (0.63-0.81)), increasing overall performance with respect to conventional persistent and paroxysmal classification (AUC: 0.58 (0.48-0.68); p < 0.05). This algorithm was evaluated on the 20% test set, obtaining 90% prediction success.AI-driven analysis that combined clinical information with ECGI biomarkers increased the performance of conventional classification methods for AF treatment stratification.CONCLUSIONSAI-driven analysis that combined clinical information with ECGI biomarkers increased the performance of conventional classification methods for AF treatment stratification.
Author González‐Torrecilla, Esteban
Ros, Santiago
Atienza, Felipe
Guillem, María S.
Bermejo, Javier
Climent, Andreu M.
Arenal, Ángel
Nava, Ana María Sánchez
Carta, Alejandro
Mansilla, Ana González
AuthorAffiliation 1 Department of Cardiology Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón Madrid Spain
4 Facultad de Medicina Universidad Complutense de Madrid Madrid Spain
3 ITACA Universitat Politècnica de València Valencia Spain
2 CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares Spain
5 Corify Care SL Madrid Spain
AuthorAffiliation_xml – name: 1 Department of Cardiology Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón Madrid Spain
– name: 5 Corify Care SL Madrid Spain
– name: 4 Facultad de Medicina Universidad Complutense de Madrid Madrid Spain
– name: 2 CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares Spain
– name: 3 ITACA Universitat Politècnica de València Valencia Spain
Author_xml – sequence: 1
  givenname: Ana María Sánchez
  orcidid: 0000-0002-5383-1380
  surname: Nava
  fullname: Nava, Ana María Sánchez
  organization: Universitat Politècnica de València
– sequence: 2
  givenname: Santiago
  surname: Ros
  fullname: Ros, Santiago
  organization: Universitat Politècnica de València
– sequence: 3
  givenname: Alejandro
  orcidid: 0000-0003-4059-8230
  surname: Carta
  fullname: Carta, Alejandro
  organization: Universidad Complutense de Madrid
– sequence: 4
  givenname: Esteban
  orcidid: 0000-0003-0558-8854
  surname: González‐Torrecilla
  fullname: González‐Torrecilla, Esteban
  organization: Universidad Complutense de Madrid
– sequence: 5
  givenname: Ana González
  surname: Mansilla
  fullname: Mansilla, Ana González
  organization: Universidad Complutense de Madrid
– sequence: 6
  givenname: Javier
  surname: Bermejo
  fullname: Bermejo, Javier
  organization: Universidad Complutense de Madrid
– sequence: 7
  givenname: Ángel
  surname: Arenal
  fullname: Arenal, Ángel
  organization: Universidad Complutense de Madrid
– sequence: 8
  givenname: Andreu M.
  surname: Climent
  fullname: Climent, Andreu M.
  organization: Corify Care SL
– sequence: 9
  givenname: María S.
  surname: Guillem
  fullname: Guillem, María S.
  organization: Universitat Politècnica de València
– sequence: 10
  givenname: Felipe
  surname: Atienza
  fullname: Atienza, Felipe
  email: felipe.atienza@salud.madrid.org, esfatienza@ucm.es
  organization: Universidad Complutense de Madrid
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40468686$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URD_gwB9AkbgAUlo7jp3khJZlS4sqcaCcLSeZ7Hrl2KnttOTGiTO_kV-Ct2n5ksA-eDzzzKvx60O0Z6wBhJ4SfEziOtk2cEx4wfIH6ICwHKdlvO3FGOcspWVB99Gh91uMCeWYPUL7Oc55GfcB-roITkmdnKraKa1lUNYklw5k6MGE5GNwMdWpZi68kR7aJAYLd5vddZ6bAFqrNZgGvn_59tapa4iAkXryyie2S8IGkpWGJjg7bGLSaruOijpZ2n7Q8FmF6TF62Ent4cndeYQ-na4ul2fpxYd358vFRdrkmOdpDbwDWciMdLiVvMY861oGFZWElZLyoi7btiKs47zmRZlB2RZVk7VcSs4AKD1Cr2bd0QxyupFai8GpXrpJECx2Zopoprg1M8KvZ3gY6x7aJhri5K8GK5X4s2LURqzttSAZpQWnWVR4cafg7NUIPohe-SbaJQ3Y0QuaEVaVeZZXEX3-F7q1o4su7ihaZowXfCf47PeRfs5y_6EReDkDjbPeO-j--76Tmb1RGqZ_g-L9cjV3_ADGycO-
Cites_doi 10.1016/j.jelectrocard.2022.12.007
10.3389/fphys.2021.653013
10.1016/j.compbiomed.2021.104934
10.1016/j.compbiomed.2020.103904
10.1161/CIRCEP.122.010850
10.1093/eurheartj/ehaa612
10.1056/NEJMoa2019422
10.1016/j.ccep.2019.05.004
10.1016/j.hrthm.2024.03.017
10.1093/europace/eux265
10.3389/fcvm.2022.879139
10.3389/fphys.2018.00929
10.1161/CIRCEP.119.008213
10.1152/ajpheart.00764.2020
10.1161/CIRCULATIONAHA.111.019927
10.3389/fphys.2022.1025430
10.1161/CIRCEP.119.007700
10.1016/j.jacc.2013.03.021
10.1111/j.1540-8159.1997.tb03527.x
10.1161/CIRCEP.112.000167
10.1093/europace/eut263
10.1109/TMI.2017.2707413
10.1016/j.hrthm.2014.05.013
10.1161/CIRCEP.117.005008
10.1016/j.hrthm.2024.04.063
10.1001/jamacardio.2017.4665
10.1016/j.jacc.2017.01.014
10.1161/CIRCEP.115.003354
10.1016/j.jacc.2022.03.337
10.2307/2531595
10.3389/fphys.2023.1057700
10.1055/s-0040-1716408
10.1007/s00392-015-0856-x
10.1016/j.jacc.2009.01.081
10.1016/j.hrthm.2016.07.018
10.2196/29225
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC.
2025 The Author(s). Journal of Cardiovascular Electrophysiology published by Wiley Periodicals LLC.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC.
– notice: 2025 The Author(s). Journal of Cardiovascular Electrophysiology published by Wiley Periodicals LLC.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Other Members of the STRATIFY Study Group
CorporateAuthor_xml – name: Other Members of the STRATIFY Study Group
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1111/jce.16754
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Biology
EISSN 1540-8167
EndPage 1912
ExternalDocumentID 10.1111/jce.16754
PMC12337632
40468686
10_1111_jce_16754
JCE16754
Genre article
Journal Article
GrantInformation_xml – fundername: This study was funded by the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Ministerio de Ciencia e Innovación, European Regional Development Fund, and EIT Health.
– fundername: ;
GroupedDBID ---
.3N
.GA
.GJ
.Y3
04C
05W
0R~
10A
1OB
1OC
24P
29K
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOJX
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMSDO
BMXJE
BPMNR
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECF
ECT
ECV
EIHBH
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VVN
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQ9
WQJ
WVDHM
WXI
WXSBR
XG1
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4064-be6fea7a21f0da6b062fd5e93a158a367b8dd915f66b6782e8d79c2d6aa65ee33
IEDL.DBID DR2
ISSN 1045-3873
1540-8167
IngestDate Sun Oct 26 04:10:19 EDT 2025
Thu Aug 21 18:28:44 EDT 2025
Fri Jul 11 17:09:30 EDT 2025
Tue Oct 07 06:18:03 EDT 2025
Thu Aug 14 01:43:28 EDT 2025
Wed Oct 01 05:41:31 EDT 2025
Mon Aug 18 09:40:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords ECGI
atrial fibrillation
stratification
artificial intelligence
Language English
License Attribution
2025 The Author(s). Journal of Cardiovascular Electrophysiology published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4064-be6fea7a21f0da6b062fd5e93a158a367b8dd915f66b6782e8d79c2d6aa65ee33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5383-1380
0000-0003-0558-8854
0000-0003-4059-8230
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjce.16754
PMID 40468686
PQID 3238256762
PQPubID 1086397
PageCount 10
ParticipantIDs unpaywall_primary_10_1111_jce_16754
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12337632
proquest_miscellaneous_3215984249
proquest_journals_3238256762
pubmed_primary_40468686
crossref_primary_10_1111_jce_16754
wiley_primary_10_1111_jce_16754_JCE16754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2025
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cardiovascular electrophysiology
PublicationTitleAlternate J Cardiovasc Electrophysiol
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2021; 9
2021; 42
2023; 14
2023; 77
2015; 104
2020; 383
2017; 69
2019; 11
1997; 20
2013; 62
2020; 127
2020; 13
2021; 320
2021; 121
2012; 125
2013; 6
2018; 20
2016; 13
2018; 9
2018; 3
2021; 12
2009; 54
2022
2021; 139
2017; 10
2022; 9
2014; 16
2022; 13
1988; 44
2022; 79
2022; 15
2024; 21
2014; 11
2018; 37
2016; 9
e_1_2_13_25_1
e_1_2_13_24_1
e_1_2_13_27_1
e_1_2_13_26_1
e_1_2_13_21_1
e_1_2_13_20_1
e_1_2_13_23_1
e_1_2_13_22_1
e_1_2_13_9_1
e_1_2_13_8_1
e_1_2_13_7_1
e_1_2_13_6_1
e_1_2_13_17_1
e_1_2_13_18_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_32_1
e_1_2_13_31_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_30_1
Atienza F. (e_1_2_13_10_1) 2022
e_1_2_13_5_1
e_1_2_13_4_1
e_1_2_13_3_1
e_1_2_13_2_1
e_1_2_13_29_1
e_1_2_13_28_1
References_xml – volume: 104
  start-page: 871
  issue: 10
  year: 2015
  end-page: 876
  article-title: The APPLE Score: A Novel and Simple Score for the Prediction of Rhythm Outcomes After Catheter Ablation of Atrial Fibrillation
  publication-title: Clinical Research in Cardiology
– volume: 3
  start-page: 54
  issue: 1
  year: 2018
  end-page: 63
  article-title: Association of of Atrial Fibrillation Clinical Phenotypes With Treatment Patterns and Outcomes: A Multicenter Registry Study
  publication-title: JAMA Cardiology
– volume: 20
  start-page: f428
  year: 2018
  end-page: f435
  article-title: Development and Validation of a Risk Score for Predicting Atrial Fibrillation Recurrence After a First Catheter Ablation Procedure—ATLAS Score
  publication-title: EP Europace
– volume: 14
  year: 2023
  article-title: AF Driver Detection in Pulmonary Vein Area by Electropcardiographic Imaging: Relation With a Favorable Outcome of Pulmonary Vein Isolation
  publication-title: Frontiers in Physiology
– volume: 11
  start-page: 459
  issue: 3
  year: 2019
  end-page: 471
  article-title: Noninvasive Mapping and Electrocardiographic Imaging in Atrial and Ventricular Arrhythmias (CardioInsight)
  publication-title: Cardiac Electrophysiology Clinics
– volume: 69
  start-page: 1257
  issue: 10
  year: 2017
  end-page: 1269
  article-title: Complexity and Distribution of Drivers in Relation to Duration of Persistent Atrial Fibrillation
  publication-title: Journal of the American College of Cardiology
– volume: 125
  start-page: 381
  year: 2012
  end-page: 389
  article-title: Antiarrhythmic Drug Therapy for Atrial Fibrillation
  publication-title: Circulation
– volume: 121
  start-page: 270
  issue: 3
  year: 2021
  end-page: 278
  article-title: The 4S‐AF Scheme (Stroke Risk; Symptoms; Severity of Burden; Substrate): A Novel Approach to In‐Depth Characterization (Rather Than Classification) of Atrial Fibrillation
  publication-title: Thrombosis and Haemostasis
– start-page: 502
  year: 2022
  end-page: 505
– volume: 44
  start-page: 837
  issue: 3
  year: 1988
  end-page: 845
  article-title: Comparing the Areas Under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach
  publication-title: Biometrics
– volume: 20
  start-page: 1603
  issue: 6
  year: 1997
  end-page: 1605
  article-title: Classification of Atrial Fibrillation
  publication-title: Pacing and Clinical Electrophysiology
– volume: 13
  issue: 3
  year: 2020
  article-title: Noninvasive Assessment of Complexity of Atrial Fibrillation: Correlation With Contact Mapping and Impact of Ablation
  publication-title: Circulation: Arrhythmia and Electrophysiology
– volume: 10
  issue: 9
  year: 2017
  article-title: Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct‐ and Inverse‐Computed Electrograms
  publication-title: Circulation: Arrhythmia and Electrophysiology
– volume: 77
  start-page: 58
  year: 2023
  end-page: 61
  article-title: Robustness of Imageless Electrocardiographic Imaging Against Uncertainty in Atrial Morphology and Location
  publication-title: Journal of Electrocardiology
– volume: 54
  start-page: 788
  year: 2009
  end-page: 795
  article-title: Clinical Predictors of Termination and Clinical Outcome of Catheter Ablation for Persistent Atrial Fibrillation
  publication-title: Journal of the American College of Cardiology
– volume: 6
  start-page: 294
  issue: 2
  year: 2013
  end-page: 301
  article-title: Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping
  publication-title: Circulation: Arrhythmia and Electrophysiology
– volume: 9
  year: 2022
  article-title: Rationale and Design of the ISOLATION Study: A Multicenter Prospective Cohort Study Identifying Predictors for Successful Atrial Fibrillation Ablation in an Integrated Clinical Care and Research Pathway
  publication-title: Frontiers in Cardiovascular Medicine
– volume: 13
  issue: 7
  year: 2020
  article-title: Preprocedure Application of Machine Learning and Mechanistic Simulations Predicts Likelihood of Paroxysmal Atrial Fibrillation Recurrence Following Pulmonary Vein Isolation
  publication-title: Circulation: Arrhythmia and Electrophysiology
– volume: 11
  start-page: 1584
  issue: 9
  year: 2014
  end-page: 1591
  article-title: Body Surface Localization of Left and Right Atrial High‐Frequency Rotors in Atrial Fibrillation Patients: A Clinical‐Computational Study
  publication-title: Heart Rhythm
– volume: 13
  year: 2022
  article-title: Artificial Intelligence Analysis of the Impact of Fibrosis in Arrhythmogenesis and Drug Response
  publication-title: Frontiers in Physiology
– volume: 62
  start-page: 138
  issue: 2
  year: 2013
  end-page: 147
  article-title: Direct or Coincidental Elimination of Stable Rotors or Focal Sources May Explain Successful Atrial Fibrillation Ablation
  publication-title: Journal of the American College of Cardiology
– volume: 127
  year: 2020
  article-title: Characterization of Atrial Arrhythmias in Body Surface Potential Mapping: A Computational Study
  publication-title: Computers in Biology and Medicine
– volume: 9
  issue: 12
  year: 2021
  article-title: Machine Learning Methodologies for Prediction of Rhythm‐Control Strategy in Patients Diagnosed With Atrial Fibrillation: Observational, Retrospective, Case‐Control Study
  publication-title: JMIR Medical Informatics
– volume: 383
  start-page: 1305
  issue: 14
  year: 2020
  end-page: 1316
  article-title: Early Rhythm‐Control Therapy in Patients With Atrial Fibrillation
  publication-title: New England Journal of Medicine
– volume: 139
  year: 2021
  article-title: Higher Reproducibility of Phase Derived Metrics From Electrocardiographic Imaging During Atrial Fibrillation in Patients Remaining in Sinus Rhythm After Pulmonary Vein Isolation
  publication-title: Computers in Biology and Medicine
– volume: 79
  start-page: 1932
  issue: 19
  year: 2022
  end-page: 1948
  article-title: The Increasing Role of Rhythm Control in Patients With Atrial Fibrillation
  publication-title: Journal of the American College of Cardiology
– volume: 9
  start-page: 929
  year: 2018
  article-title: Noninvasive Assessment of Atrial Fibrillation Complexity in Relation to Ablation Characteristics and Outcome
  publication-title: Frontiers in Physiology
– volume: 42
  start-page: 373
  year: 2021
  end-page: 498
  article-title: 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration With the European Association of Cardio‐Thoracic Surgery (EACTS)
  publication-title: European Heart Journal
– volume: 21
  start-page: e31
  issue: 9
  year: 2024
  end-page: e149
  article-title: 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation
  publication-title: Heart Rhythm
– volume: 320
  start-page: H1337
  issue: 4
  year: 2021
  end-page: H1347
  article-title: Artificial Intelligence for a Personalized Diagnosis and Treatment of Atrial Fibrillation
  publication-title: American Journal of Physiology—Heart and Circulatory Physiology
– volume: 15
  start-page: 500
  year: 2022
  end-page: 509
  article-title: Machine Learning‐Enabled Multimodal Fusion of Intra‐Atrial and Body Surface Signals in Prediction of Atrial Fibrillation Ablation Outcomes
  publication-title: Circulation: Arrhythmia and Electrophysiology
– volume: 21
  year: 2024
  article-title: Regional Conduction Velocities Determined by Noninvasive Mapping Are Associated With Arrhythmia‐Free Survival After Atrial Fibrillation Ablation
  publication-title: Heart Rhythm
– volume: 16
  start-page: 6
  issue: 1
  year: 2014
  end-page: 14
  article-title: Management of Atrial Fibrillation in Seven European Countries After the Publication of the 2010 ESC Guidelines on Atrial Fibrillation: Primary Results of the PREvention oF Thromboemolic Events—European Registry in Atrial Fibrillation (PREFER in AF)
  publication-title: EP Europace
– volume: 13
  start-page: 2119
  issue: 11
  year: 2016
  end-page: 2125
  article-title: Predicting Atrial Fibrillation Ablation Outcome: The CAAP‐AF Score
  publication-title: Heart Rhythm
– volume: 37
  start-page: 733
  year: 2018
  end-page: 740
  article-title: Solving Inaccuracies in Anatomical Models for Electrocardiographic Inverse Problem Resolution by Maximizing Reconstruction Quality
  publication-title: IEEE Transactions on Medical Imaging
– volume: 9
  issue: 2
  year: 2016
  article-title: Atrial Fibrillation Complexity Parameters Derived From Surface ECGs Predict Procedural Outcome and Long‐Term Follow‐Up of Stepwise Catheter Ablation for Atrial Fibrillation
  publication-title: Circulation: Arrhythmia and Electrophysiology
– volume: 12
  year: 2021
  article-title: Electrocardiographic Imaging for Atrial Fibrillation: A Perspective From Computer Models and Animal Experiments to Clinical Value
  publication-title: Frontiers in Physiology
– ident: e_1_2_13_4_1
  doi: 10.1016/j.jelectrocard.2022.12.007
– ident: e_1_2_13_6_1
  doi: 10.3389/fphys.2021.653013
– ident: e_1_2_13_5_1
  doi: 10.1016/j.compbiomed.2021.104934
– ident: e_1_2_13_15_1
  doi: 10.1016/j.compbiomed.2020.103904
– ident: e_1_2_13_37_1
  doi: 10.1161/CIRCEP.122.010850
– ident: e_1_2_13_2_1
  doi: 10.1093/eurheartj/ehaa612
– ident: e_1_2_13_22_1
  doi: 10.1056/NEJMoa2019422
– ident: e_1_2_13_8_1
  doi: 10.1016/j.ccep.2019.05.004
– ident: e_1_2_13_3_1
  doi: 10.1016/j.hrthm.2024.03.017
– ident: e_1_2_13_18_1
  doi: 10.1093/europace/eux265
– ident: e_1_2_13_27_1
  doi: 10.3389/fcvm.2022.879139
– ident: e_1_2_13_33_1
  doi: 10.3389/fphys.2018.00929
– ident: e_1_2_13_35_1
  doi: 10.1161/CIRCEP.119.008213
– ident: e_1_2_13_9_1
  doi: 10.1152/ajpheart.00764.2020
– ident: e_1_2_13_21_1
  doi: 10.1161/CIRCULATIONAHA.111.019927
– ident: e_1_2_13_16_1
  doi: 10.3389/fphys.2022.1025430
– ident: e_1_2_13_11_1
  doi: 10.1161/CIRCEP.119.007700
– ident: e_1_2_13_28_1
  doi: 10.1016/j.jacc.2013.03.021
– ident: e_1_2_13_25_1
  doi: 10.1111/j.1540-8159.1997.tb03527.x
– ident: e_1_2_13_14_1
  doi: 10.1161/CIRCEP.112.000167
– ident: e_1_2_13_24_1
  doi: 10.1093/europace/eut263
– ident: e_1_2_13_12_1
  doi: 10.1109/TMI.2017.2707413
– ident: e_1_2_13_7_1
  doi: 10.1016/j.hrthm.2014.05.013
– ident: e_1_2_13_13_1
  doi: 10.1161/CIRCEP.117.005008
– ident: e_1_2_13_38_1
  doi: 10.1016/j.hrthm.2024.04.063
– ident: e_1_2_13_34_1
  doi: 10.1001/jamacardio.2017.4665
– ident: e_1_2_13_29_1
  doi: 10.1016/j.jacc.2017.01.014
– ident: e_1_2_13_31_1
  doi: 10.1161/CIRCEP.115.003354
– start-page: 502
  volume-title: Cardiac Electrophysiology: From Cell to Bedside
  year: 2022
  ident: e_1_2_13_10_1
– ident: e_1_2_13_23_1
  doi: 10.1016/j.jacc.2022.03.337
– ident: e_1_2_13_20_1
  doi: 10.2307/2531595
– ident: e_1_2_13_30_1
  doi: 10.3389/fphys.2023.1057700
– ident: e_1_2_13_26_1
  doi: 10.1055/s-0040-1716408
– ident: e_1_2_13_17_1
  doi: 10.1007/s00392-015-0856-x
– ident: e_1_2_13_32_1
  doi: 10.1016/j.jacc.2009.01.081
– ident: e_1_2_13_19_1
  doi: 10.1016/j.hrthm.2016.07.018
– ident: e_1_2_13_36_1
  doi: 10.2196/29225
SSID ssj0013605
Score 2.467186
Snippet ABSTRACT Background Atrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI)...
Atrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI) has arisen as a...
Background Atrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI) has arisen...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1903
SubjectTerms Ablation
Action Potentials
Aged
Algorithms
Anti-Arrhythmia Agents - adverse effects
Anti-Arrhythmia Agents - therapeutic use
Artificial Intelligence
atrial fibrillation
Atrial Fibrillation - diagnosis
Atrial Fibrillation - physiopathology
Atrial Fibrillation - therapy
Biomarkers
Cardiac arrhythmia
Catheter Ablation - adverse effects
Classification
Clinical Decision-Making
Cluster analysis
Decision Support Techniques
ECGI
Electrocardiography
Electrophysiologic Techniques, Cardiac
Female
Fibrillation
Heart Rate - drug effects
Humans
Male
Middle Aged
Original
Patients
Predictions
Predictive Value of Tests
Signal Processing, Computer-Assisted
stratification
Time Factors
Treatment Outcome
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH6CjlguLDMsgQGZRYhLSrPYcY6dodUw0ow4TKXhFJz4WSBKWg2tUDlx4sxv5JfwbCcRYQRCQr1Yslsn6Vs-x5-_B_DUKIwlJf5Q8SoJ0wp5WFogl4wkysSYHNEeTj46Fgez9PCUnzZ1Tu1ZGK8P0b1ws57h4rV18KU2Ps6_6Pg4FQ4jgrzpRdgSnMD4ALZmx6_Hb7wGAbfKsY5ib7f_JY1stIV63-1npHMw8zxb8sq6XqrNZzWf9xGtS0nT6_C2vRnPRPkwXK_KYfXlN53H_7jbG3Ctgats7O3rJlzAeht2xjUt1T9u2DPmCKTuzfw2XNprW5ePmh37Hfg2dnVB2NQeLZh74h07adntzInjWraS79ijnKoZNeyEXtuCvfpFNPTH1-8vz2x8Zq2YClsYRhiWTXw5n2V7Pdb2mA12VvBztbkFs-nkZP8gbGo_hBVBjDQsURhUmYojM9JKlCMRG80xT1TEpUpEVkqt84gbIUrKtzFKneVVrIVSgiMmyW0Y1Isa7wJLI5XROlxnsc7SHIXELDY2tKHhSapVAI_b_79YeomPolsaVVi4Rx7AbmsZRePln4qE8A5BRsonATzqusk_7aaLqnGxtmMIMMqUVrkB3PGG1M2SjlIh6ROA7JlYN8Bqf_d76vfvnAY4AQ6bGmjiJ501_u3qnzvj-vOI4nB_4hr3_ukH78PV2BZCdkzIXRisztb4gNDZqnzYeOBPSL89BQ
  priority: 102
  providerName: Unpaywall
Title Atrial Fibrillation Treatment Stratification Based on Artificial Intelligence‐Driven Analysis of the Electrophysiological Complexity
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjce.16754
https://www.ncbi.nlm.nih.gov/pubmed/40468686
https://www.proquest.com/docview/3238256762
https://www.proquest.com/docview/3215984249
https://pubmed.ncbi.nlm.nih.gov/PMC12337632
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jce.16754
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1045-3873
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1540-8167
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013605
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UitYXL62X0brEC-LLLDtJJpPBp23dpRZainShgjBkJidYXGeXdhdZn3zy2d_oLzGXnbFrUUTmJZAzJJk5J-c7yckXgOdGIZXW8ccqrVjMK0zj0gE51pMomTE5ojucfHAo9kZ8_yQ9WYNXzVmYwA_RLrg5y_DztTNwVZ5fNPIKu4mFu44LNGHCh1Nv6a8dhHAm0kYbqeOPZUtWIZ_F07y56osuAczLeZIb83qqFp_VeLyKZb0zGt6C980wQg7Kx-58VnarL78xPP7nOG_DzSVIJf2gVXdgDetN2OrXNkD_tCAviE8b9evxm3BtpyldP1ju02_Bt76_DYQM3YGCcUi3I8dNTjvxlLguRylU7FhPqoktuAYDowV5c4Eq9MfX76_P3KxMGgoVMjHEIlcyCJf4TJv-OI0jbopzNJ-zxV0YDQfHu3vx8saHuLLAgsclCoMqUzQxPa1E2RPU6BRzppJUKiayUmqdJ6kRorRelqLUWV5RLZQSKSJj92C9ntT4AAhPVGajb51RnfEchcSMGjehoUkZ1yqCp82_L6aB2KNoA6IKC__JI9hutKJY2vZ5wSzKsUDRepEInrTV1irdVouqcTJ3MhYmSm5j2wjuByVqW-E9LqR9IpAr6tUKOMbv1Zr69INn_rYwwzkE2_CzVhP_1vuXXrH-LFHs7w584eG_iz6CG9TdgeyTILdhfXY2x8cWmM3KDlyh_Kjj7bADV0eHR_13PwEHVzsC
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VIigXBC2PQAHzEOKyKLvr9XolLmlJlJam4pBKva2867FACpuoJEK5ceLMb-SXMON90KgCob1Y8qxsaTwz39jjzwCvnMFIU-APTFLGgSwxCQoGcnFfo46dyxD5cvLkVI3P5PF5cr4F79q7MDU_RLfhxpbh_TUbOG9IX7byEt-GhHflNbguFbWY11l-_HOGUN-KpHwjYQbZuOEV8nU87a-b0egKxLxaKbmzqhZm_c3MZpto1oej0R243eBIMagVfxe2sNqFvUFFOfSXtXgtfGWn3zLfhRsHbevmpDlK34MfA_9ghxhxzf-srogT07bsXHjWWi4jqjsOKNhZQQ0esCadEEeX2Dx_ff_5_oIdp2hZTsTcCQKXYli_s7No58OLQrAXYibO5foenI2G08Nx0DzKEJQU-2VQoHJoUhOFrm-NKvoqcjbBLDZhok2s0kJbm4WJU6qgQBihtmlWRlYZoxLEOL4P29W8wocgZGhSSpBtGtlUZqg0ppFjn4MuiaU1PXjRKidf1NwbeZezlJh7DfZgv1Vb3pjf1zwmIEJYjhx9D5533WQ4fBpiKpyvWIaQnJaUfvbgQa3lbhTZl0rT1wO9of9OgEm5N3uqz588OTchAfbZNPDLbqn8a_Zv_CL6u0R-fDj0jUf_L_oMdsbTyUl-cnT64THcivjJYl-zuA_by4sVPiEctSyeenP5DSgeG-4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH4qRRQuLC1LoIBZhLhkNBMvcSQu086M2kIrhFqpFxQ58bNaMWRGZUZoOHHizG_kl-AlCR0qEEK5WLIjZ3nP73v2588Az43CRNrAHyte0piVyOPCATnalSipMRmi25y8fyB2jtjeMT9egVfNXpigD9FOuDnP8OO1c3CcanPey0vs9CzeZZfgMuOZdIS-wbvk1xpC2BVp8w3uFGRprSvkeTzNrcvR6ALEvMiUvDqvpmrxWY3Hy2jWh6PRDXjfvEhgoXzozGdFp_zym8bj_77pTbhe41TSD4Z1C1awWoeNfmVz9I8L8oJ45qifkl-HK1tNaW2_XqrfgG99fyAIGbk9BePAuCOHDa2deFVcR1MKFVs2mGpiC67DIGpBds-phf74-n1w5gZm0qiokIkhFrySYTjHZ9o8jzM64kY5p_Q5W9yGo9HwcHsnrg99iEuLLVhcoDCoUpX0TFcrUXRFYjTHjKoel4qKtJBaZz1uhChsoE1Q6jQrEy2UEhyR0juwWk0qvAeE9VRqE3CdJjplGQqJaWLcmIaGU6ZVBE-bn59Pg7ZH3uZEJeb-k0ew2ZhFXrv3p5xaoGOxog0kETxpq61jutUWVeFk7tpYpCiZTW8juBusqO2FdZmQ9opALtlX28CJfi_XVKcnXvzbIg0XE2zHz1pT_NvTv_SW9ecW-d720Bfu_3vTx7D2djDK3-wevH4A1xJ3IrKnRG7C6uxsjg8tTJsVj7w3_gShXDwg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH6CjlguLDMsgQGZRYhLSrPYcY6dodUw0ow4TKXhFJz4WSBKWg2tUDlx4sxv5JfwbCcRYQRCQr1Yslsn6Vs-x5-_B_DUKIwlJf5Q8SoJ0wp5WFogl4wkysSYHNEeTj46Fgez9PCUnzZ1Tu1ZGK8P0b1ws57h4rV18KU2Ps6_6Pg4FQ4jgrzpRdgSnMD4ALZmx6_Hb7wGAbfKsY5ib7f_JY1stIV63-1npHMw8zxb8sq6XqrNZzWf9xGtS0nT6_C2vRnPRPkwXK_KYfXlN53H_7jbG3Ctgats7O3rJlzAeht2xjUt1T9u2DPmCKTuzfw2XNprW5ePmh37Hfg2dnVB2NQeLZh74h07adntzInjWraS79ijnKoZNeyEXtuCvfpFNPTH1-8vz2x8Zq2YClsYRhiWTXw5n2V7Pdb2mA12VvBztbkFs-nkZP8gbGo_hBVBjDQsURhUmYojM9JKlCMRG80xT1TEpUpEVkqt84gbIUrKtzFKneVVrIVSgiMmyW0Y1Isa7wJLI5XROlxnsc7SHIXELDY2tKHhSapVAI_b_79YeomPolsaVVi4Rx7AbmsZRePln4qE8A5BRsonATzqusk_7aaLqnGxtmMIMMqUVrkB3PGG1M2SjlIh6ROA7JlYN8Bqf_d76vfvnAY4AQ6bGmjiJ501_u3qnzvj-vOI4nB_4hr3_ukH78PV2BZCdkzIXRisztb4gNDZqnzYeOBPSL89BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atrial+Fibrillation+Treatment+Stratification+Based+on+Artificial+Intelligence%E2%80%90Driven+Analysis+of+the+Electrophysiological+Complexity&rft.jtitle=Journal+of+cardiovascular+electrophysiology&rft.au=Nava%2C+Ana+Mar%C3%ADa+S%C3%A1nchez&rft.au=Ros%2C+Santiago&rft.au=Carta%2C+Alejandro&rft.au=Gonz%C3%A1lez%E2%80%90Torrecilla%2C+Esteban&rft.date=2025-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1045-3873&rft.eissn=1540-8167&rft.volume=36&rft.issue=8&rft.spage=1903&rft.epage=1912&rft_id=info:doi/10.1111%2Fjce.16754&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-3873&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-3873&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-3873&client=summon