Testing a Hyperspectral, Bio‐Optical Approach to Identification of Phytoplankton Community Composition in the Chesapeake Bay Estuary

The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics...

Full description

Saved in:
Bibliographic Details
Published inEarth and space science (Hoboken, N.J.) Vol. 11; no. 5
Main Authors McKibben, S. M., Schollaert Uz, S., Palacios, Sherry L.
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.05.2024
American Geophysical Union (AGU)
Subjects
Online AccessGet full text
ISSN2333-5084
2333-5084
DOI10.1029/2023EA003244

Cover

Abstract The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax) approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms, dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed. Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data, cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐collected measurements, but validation‐quality data with broad temporospatial coverage are needed to determine whether the approach is robust enough for science applications. Key Points A hyperspectral, bio‐optical approach to identifying phytoplankton types from remote sensing reflectance is tested in a turbid estuary In field data, cyanophytes and cryptophytes were typically detected but diatom and dinoflagellate detection was not conclusive Work adds support to further testing this approach in optically complex waters to assess its potential for science applications
AbstractList The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax) approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms, dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed. Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data, cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐collected measurements, but validation‐quality data with broad temporospatial coverage are needed to determine whether the approach is robust enough for science applications. A hyperspectral, bio‐optical approach to identifying phytoplankton types from remote sensing reflectance is tested in a turbid estuary In field data, cyanophytes and cryptophytes were typically detected but diatom and dinoflagellate detection was not conclusive Work adds support to further testing this approach in optically complex waters to assess its potential for science applications
The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax) approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms, dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed. Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data, cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐collected measurements, but validation‐quality data with broad temporospatial coverage are needed to determine whether the approach is robust enough for science applications. Key Points A hyperspectral, bio‐optical approach to identifying phytoplankton types from remote sensing reflectance is tested in a turbid estuary In field data, cyanophytes and cryptophytes were typically detected but diatom and dinoflagellate detection was not conclusive Work adds support to further testing this approach in optically complex waters to assess its potential for science applications
The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax) approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms, dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed. Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data, cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐collected measurements, but validation‐quality data with broad temporospatial coverage are needed to determine whether the approach is robust enough for science applications.
Abstract The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax) approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms, dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed. Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data, cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐collected measurements, but validation‐quality data with broad temporospatial coverage are needed to determine whether the approach is robust enough for science applications.
Author Palacios, Sherry L.
Schollaert Uz, S.
McKibben, S. M.
Author_xml – sequence: 1
  givenname: S. M.
  orcidid: 0009-0001-9324-448X
  surname: McKibben
  fullname: McKibben, S. M.
  email: morgaine.mckibben@nasa.gov
  organization: University of Maryland, College of Computer, Mathematical, and Natural Sciences
– sequence: 2
  givenname: S.
  orcidid: 0000-0002-0937-1487
  surname: Schollaert Uz
  fullname: Schollaert Uz, S.
  organization: NASA Postdoctoral Program/NASA Goddard Space Flight Center
– sequence: 3
  givenname: Sherry L.
  surname: Palacios
  fullname: Palacios, Sherry L.
  organization: California State University Monterey Bay
BookMark eNp9kc1u1DAUhSNUJErpjgewxLYB_-VvOR1N6UiVitSythz7puNpxja2oyo7Vqx5Rp4ETwOIBWLlq6PvHuvc87o4sc5CUbwl-D3BtPtAMWWbFcaMcv6iOKWMsbLCLT_5a35VnMe4xxgTWtWY8tPi2z3EZOwDkuh69hCiB5WCHC_QpXE_vn6_9ckoOaKV98FJtUPJoa0Gm8yQ9WScRW5An3Zzcn6U9jFlYe0Oh8maNB8n76J5xoxFaQdovYMoPchHQJdyRpuYJhnmN8XLQY4Rzn-9Z8Xnq839-rq8uf24Xa9uSsVxjcseWkI4pU3bqgYrTTSvedPzumcDazlUqqJ1hVXTa9brDqjCoGWnKFV5r9XsrNguvtrJvfDBHPLnwkkjngUXHoQMOfEIoiZ9QytoW60bTgnuQANlugHOAfSAs1e5eE3Wy_lJjuMfQ4LFsRNx7ATk0knm3y18vuSXKZ9d7N0UbI4rWA7XVLRiXaYuFkoFF2OA4Z-mv4vOOF3wJzPC_F9WbO7uKGkoZj8BXCaq2g
Cites_doi 10.5067/SeaBASS/2009OCT_CHESAPEAKE/DATA001
10.3389/fmars.2020.00337
10.1117/12.266436
10.1016/j.rse.2011.09.011
10.4319/lo.2006.51.6.2646
10.1016/j.rse.2015.02.001
10.37421/jbmbs.2020.11.440
10.1364/ao.389189
10.4319/lo.2003.48.1_part_2.0547
10.1016/j.rse.2015.05.014
10.1016/j.hal.2016.01.008
10.1016/j.ecss.2005.11.030
10.1016/j.rse.2023.113964
10.5670/oceanog.2004.48
10.1007/BF02732761
10.1038/s41598‐019‐43036‐6
10.5067/SeaBASS/GEO‐CAPE/DATA001
10.25607/OBP‐106
10.3389/fmars.2017.00041
10.1016/j.rse.2021.112879
10.1016/S0378‐4347(00)00603‐4
10.1364/AO.38.003831
10.1029/2023JG007574
10.1002/lom3.10037
10.1016/j.ecss.2017.10.021
10.1016/j.dsr.2011.01.008
10.1007/698_2_003
10.1038/srep23773
10.1029/2003EO380001
10.1007/s12237‐013‐9692‐2
10.1002/lom3.10385
10.1016/j.rse.2017.07.029
10.1016/j.ecss.2006.09.018
10.1017/cbo9780511732263.009
10.1364/ao.33.000443
10.3389/feart.2019.00283
10.1016/j.ecss.2014.12.030
10.1364/ao.40.002929
10.1029/2019JC015604
10.3354/meps329013
10.1029/2021jg006471
10.1016/j.rse.2013.06.018
10.1016/j.ecss.2006.02.016
10.4319/lo.2006.51.1_part_2.0448
10.1175/BAMS‐D‐11‐00201.1
10.1175/BAMS‐D‐18‐0056.1
10.1093/plankt/fbi079
10.3389/fmars.2017.00055
10.1016/j.pocean.2021.102737
10.1002/lol2.10319
10.1002/2017JC012859
10.1029/2009JC005286
10.3354/meps144265
10.1038/s43705‐021‐00011‐5
ContentType Journal Article
Copyright 2024 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.1029/2023EA003244
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley_OA刊
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2333-5084
EndPage n/a
ExternalDocumentID oai_doaj_org_article_61b725e88dd742109ede23d7e44eedf0
10.1029/2023ea003244
10_1029_2023EA003244
ESS21720
Genre researchArticle
GeographicLocations Chesapeake Bay
GeographicLocations_xml – name: Chesapeake Bay
GrantInformation_xml – fundername: Oak Ridge Associated Universities
  funderid: 80HQTR21CA005
– fundername: Advanced Information Systems Technology
  funderid: NNH18ZDA001N‐AIST; NNH21ZDA001N‐AIST
GroupedDBID 0R~
1OC
24P
5VS
AAFWJ
AAHHS
AAZKR
ABDBF
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KQ8
M~E
O9-
OK1
PCBAR
PIMPY
WIN
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IEP
PHGZM
PHGZT
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
ID FETCH-LOGICAL-c4060-be811422788c70cd1d4647b46b3f384e5c52650c7bd3bd9e2c0eda9c22c1148d3
IEDL.DBID DOA
ISSN 2333-5084
IngestDate Tue Oct 14 14:43:06 EDT 2025
Sun Sep 07 11:25:16 EDT 2025
Thu Sep 11 12:10:22 EDT 2025
Wed Oct 01 05:31:46 EDT 2025
Wed Jan 22 17:20:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial-NoDerivs
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4060-be811422788c70cd1d4647b46b3f384e5c52650c7bd3bd9e2c0eda9c22c1148d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0937-1487
0009-0001-9324-448X
OpenAccessLink https://doaj.org/article/61b725e88dd742109ede23d7e44eedf0
PQID 3060752539
PQPubID 4368366
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_61b725e88dd742109ede23d7e44eedf0
unpaywall_primary_10_1029_2023ea003244
proquest_journals_3060752539
crossref_primary_10_1029_2023EA003244
wiley_primary_10_1029_2023EA003244_ESS21720
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
20240501
2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Earth and space science (Hoboken, N.J.)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2011; 115
2012; 2011
2017; 4
2024; 302
2023; 8
2018; 200
2020; 59
2019; 124
1996; 144
2007; 72
2020; 11
2011; 58
2005; 27
2005; 28
2001; 40
2009; 114
2020; 18
2020; 7
1997; 2963
2006; 67
2006; 68
1994; 33
2003; 48
2017; 122
2017; 200
2003; 84
2022; 201
2015; 13
2015; 162
2019; 7
2015; 160
2019; 9
2005; 212785
2022; 270
2006; 51
2012
2011
2006b
2006a
2015; 167
2023; 128
2009
1994
2003
2021; 1
2007; 329
2019; 100
2016; 55
2012; 93
2016; 6
2023
2004; 17
2013; 137
1999; 38
2014; 37
2017
2014
2001; 910
e_1_2_6_51_1
e_1_2_6_53_1
Hooker S. B. (e_1_2_6_23_1) 2005
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
Palacios S. L. (e_1_2_6_42_1) 2012
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Ben‐Israel A. (e_1_2_6_6_1) 2003
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Higgins H. W. (e_1_2_6_22_1) 2012
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
Mobley C. D. (e_1_2_6_37_1) 1994
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_58_1
Wright S. (e_1_2_6_61_1) 2017
e_1_2_6_63_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
Jeffrey S. W. (e_1_2_6_24_1) 2012
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – year: 2011
– volume: 27
  start-page: 1083
  issue: 11
  year: 2005
  end-page: 1102
  article-title: A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries
  publication-title: Journal of Plankton Research
– year: 2009
– volume: 18
  start-page: 570
  issue: 10
  year: 2020
  end-page: 584
  article-title: Evaluation of diagnostic pigments to estimate phytoplankton size classes
  publication-title: Limnology and Oceanography: Methods
– volume: 162
  start-page: 53
  year: 2015
  end-page: 68
  article-title: Climate effects on phytoplankton floral composition in Chesapeake Bay
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 200
  start-page: 154
  year: 2017
  end-page: 169
  article-title: A multi‐scale high‐resolution analysis of global sea surface temperature
  publication-title: Remote Sensing of Environment
– volume: 28
  start-page: 160
  issue: 1
  year: 2005
  end-page: 172
  article-title: Adapting the CHEMTAX method for assessing phytoplankton taxonomic composition in southeastern U.S. estuaries
  publication-title: Estuaries
– volume: 67
  start-page: 108
  issue: 1–2
  year: 2006
  end-page: 122
  article-title: Environmental forcing of phytoplankton floral composition, biomass, and primary productivity in Chesapeake Bay, USA
  publication-title: Estuarine, Coastal and Shelf Science
– year: 2014
  article-title: Phytoplankton functional types from space
  publication-title: Reports of the International Ocean‐Colour Coordinating Group. Dartmouth, Canada
– start-page: 257
  year: 2012
  end-page: 313
– volume: 144
  start-page: 265
  year: 1996
  end-page: 283
  article-title: CHEMTAX ‐ A program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton
  publication-title: Marine Ecology Progress Series
– volume: 8
  start-page: 603
  issue: 4
  year: 2023
  end-page: 610
  article-title: How many independent quantities can be extracted from ocean color?
  publication-title: Limnology and Oceanography Letters
– volume: 33
  start-page: 443
  issue: 3
  year: 1994
  end-page: 452
  article-title: Retrieval of water‐leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm
  publication-title: Applied Optics
– volume: 115
  start-page: 3731
  issue: 12
  year: 2011
  end-page: 3747
  article-title: Remote sensing of phytoplankton community composition along the northeast coast of the United States
  publication-title: Remote Sensing of Environment
– year: 1994
– volume: 100
  start-page: 1775
  issue: 9
  year: 2019
  end-page: 1794
  article-title: The Plankton, Aerosol, Cloud, ocean Ecosystem mission status, science, advances
  publication-title: Bulletin of the American Meteorological Society
– volume: 37
  start-page: 279
  issue: 2
  year: 2014
  end-page: 298
  article-title: Turbidity maximum entrapment of phytoplankton in the Chesapeake Bay
  publication-title: Estuaries and Coasts
– volume: 93
  start-page: 1547
  issue: 10
  year: 2012
  end-page: 1566
  article-title: The United States' next generation of atmospheric composition and coastal ecosystem measurements: NASA's geostationary coastal and air pollution events (GEO‐CAPE) mission
  publication-title: Bulletin of the American Meteorological Society
– volume: 51
  start-page: 2646
  issue: 6
  year: 2006
  end-page: 2659
  article-title: Red and black tides: Quantitative analysis of water‐leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments
  publication-title: Limnology & Oceanography
– start-page: 195
  year: 2012
  end-page: 256
  article-title: The importance of a quality assurance plan for method validation and minimizing uncertainties in the HPLC analysis of phytoplankton pigments
  publication-title: Phytoplankton Pigments
– volume: 58
  start-page: 350
  issue: 4
  year: 2011
  end-page: 364
  article-title: An evaluation of the application of CHEMTAX to Antarctic coastal pigment data
  publication-title: Deep Sea Res 1 Oceanogr Res Pap
– volume: 2963
  start-page: 160
  year: 1997
  end-page: 166
– volume: 51
  start-page: 448
  issue: 1part2
  year: 2006
  end-page: 462
  article-title: Anthropogenic and climatic influences on the eutrophication of large estuarine ecosystems
  publication-title: Limnology & Oceanography
– volume: 124
  start-page: 7557
  issue: 11
  year: 2019
  end-page: 7574
  article-title: How can phytoplankton pigments be best used to characterize surface ocean phytoplankton groups for ocean color remote sensing algorithms?
  publication-title: Journal of Geophysical Research: Oceans
– volume: 160
  start-page: 15
  year: 2015
  end-page: 30
  article-title: Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions
  publication-title: Remote Sensing of Environment
– volume: 84
  start-page: 377
  issue: 38
  year: 2003
  end-page: 387
  article-title: Unique data repository facilitates ocean color satellite validation
  publication-title: Eos
– volume: 212785
  year: 2005
– volume: 55
  start-page: 25
  year: 2016
  end-page: 30
  article-title: Margalef revisited: A new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology
  publication-title: Harmful Algae
– volume: 302
  year: 2024
  article-title: Phytoplankton composition from sPACE: Requirements, opportunities, and challenges
  publication-title: Remote Sensing of Environment
– volume: 4
  year: 2017
  article-title: A consumer's guide to satellite remote sensing of multiple phytoplankton groups in the global ocean
  publication-title: Frontiers in Marine Science
– start-page: 71
  year: 2006b
  end-page: 104
– volume: 910
  start-page: 31
  issue: 1
  year: 2001
  end-page: 49
  article-title: Computer‐assisted HPLC method development with applications to the isolation and analysis of marine phytoplankton pigments
  publication-title: Journal of Chromatography, A
– volume: 4
  start-page: 1
  year: 2017
  end-page: 15
  article-title: Obtaining phytoplankton diversity from ocean color: A scientific roadmap for future development
  publication-title: Frontiers in Marine Science
– volume: 9
  start-page: 1
  year: 2019
  end-page: 19
  article-title: Long‐term trends, current status, and transitions of water quality in Chesapeake Bay
  publication-title: Scientific Reports
– year: 2003
– volume: 11
  start-page: 5
  year: 2020
  end-page: 11
  article-title: Sample size charts for Spearman and Kendall coefficients methods for sample size determination
  publication-title: Biometrics & Biostatistics
– volume: 128
  issue: 10
  year: 2023
  article-title: Synergies between NASA's hyperspectral aquatic missions PACE, GLIMR, and SBG: Opportunities for new science and applications
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 270
  year: 2022
  article-title: Modeling surface ocean phytoplankton pigments from hyperspectral remote sensing reflectance on global scales
  publication-title: Remote Sensing of Environment
– volume: 1
  start-page: 1
  year: 2021
  end-page: 8
  article-title: Phytoplankton community structuring and succession in a competition‐neutral resource landscape
  publication-title: ISME Communications
– volume: 7
  start-page: 1
  year: 2019
  end-page: 13
  article-title: Developing a community of practice for applied uses of future PACE data to address marine food security challenges
  publication-title: Frontiers of Earth Science
– volume: 200
  start-page: 181
  year: 2018
  end-page: 193
  article-title: Diurnal changes of remote sensing reflectance over Chesapeake bay: Observations from the airborne Compact atmospheric mapper
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 68
  start-page: 348
  issue: 1–2
  year: 2006
  end-page: 362
  article-title: Bio‐optics of the Chesapeake Bay from measurements and radiative transfer closure
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 137
  start-page: 212
  year: 2013
  end-page: 225
  article-title: Spatially resolving ocean color and sediment dispersion in river plumes, coastal systems, and continental shelf waters
  publication-title: Remote Sensing of Environment
– year: 2012
– volume: 59
  start-page: 3971
  issue: 13
  year: 2020
  end-page: 3984
  article-title: Information content of absorption spectra and implications for ocean color inversion
  publication-title: Applied Optics
– volume: 72
  start-page: 16
  issue: 1–2
  year: 2007
  end-page: 32
  article-title: Remote sensing reflectance and inherent optical properties in the mid Chesapeake Bay
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 6
  start-page: 1
  year: 2016
  end-page: 16
  article-title: Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay
  publication-title: Scientific Reports
– volume: 40
  issue: 18
  year: 2001
  article-title: Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community
  publication-title: Applied Optics
– volume: 7
  start-page: 1
  year: 2020
  end-page: 16
  article-title: Current and future remote sensing of harmful algal blooms in the Chesapeake Bay to support the shellfish Industry
  publication-title: Frontiers in Marine Science
– year: 2023
– volume: 38
  start-page: 3831
  issue: 18
  year: 1999
  end-page: 3843
  article-title: Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization
  publication-title: Applied Optics
– volume: 167
  start-page: 269
  year: 2015
  end-page: 280
  article-title: Remote sensing of phytoplankton functional types in the coastal ocean from the HyspIRI Preparatory Flight Campaign
  publication-title: Remote Sensing of Environment
– volume: 13
  start-page: 425
  issue: 8
  year: 2015
  end-page: 437
  article-title: A new approach to testing the agreement of two phytoplankton quantification techniques: Microscopy and CHEMTAX
  publication-title: Limnology and Oceanography: Methods
– volume: 17
  start-page: 60
  issue: 2
  year: 2004
  end-page: 67
  article-title: Optical modeling of ocean water
  publication-title: Oceanography
– start-page: 71
  year: 2006a
  end-page: 104
  article-title: Marine organic matter: Biomarkers, isotopes and DNA
  publication-title: The Handbook of Marine Chemistry
– volume: 201
  year: 2022
  article-title: Dynamics of phytoplankton groups in three contrasting situations of the open NW Mediterranean Sea revealed by pigment, microscopy, and flow cytometry analyses
  publication-title: Progress in Oceanography
– volume: 329
  start-page: 13
  year: 2007
  end-page: 21
  article-title: Improving estimations of phytoplankton class abundances using CHEMTAX
  publication-title: Marine Ecology Progress Series
– volume: 122
  start-page: 9725
  issue: 12
  year: 2017
  end-page: 9743
  article-title: Estimation of phytoplankton accessory pigments from hyperspectral reflectance spectra: Toward a global algorithm
  publication-title: Journal of Geophysical Research: Oceans
– volume: 2011
  start-page: 257
  year: 2012
  end-page: 313
– year: 2017
– volume: 128
  start-page: 1
  year: 2023
  end-page: 18
  article-title: Designing an observing system to study the surface Biology and Geology (SBG) of the Earth in the 2020s
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 114
  issue: C10
  year: 2009
  article-title: Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications
  publication-title: Journal of Geophysical Research
– volume: 48
  start-page: 547
  issue: 1part2
  year: 2003
  end-page: 556
  article-title: Determination of water depth with high‐resolution satellite imagery over variable bottom types
  publication-title: Limnology & Oceanography
– start-page: 257
  volume-title: Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography. Cambridge environmental chemistry series
  year: 2012
  ident: e_1_2_6_22_1
– ident: e_1_2_6_48_1
  doi: 10.5067/SeaBASS/2009OCT_CHESAPEAKE/DATA001
– ident: e_1_2_6_60_1
  doi: 10.3389/fmars.2020.00337
– ident: e_1_2_6_32_1
  doi: 10.1117/12.266436
– ident: e_1_2_6_45_1
  doi: 10.1016/j.rse.2011.09.011
– ident: e_1_2_6_15_1
  doi: 10.4319/lo.2006.51.6.2646
– ident: e_1_2_6_39_1
  doi: 10.1016/j.rse.2015.02.001
– ident: e_1_2_6_36_1
  doi: 10.37421/jbmbs.2020.11.440
– volume-title: Second SeaWiFS HPLC analysis round‐robin experiment (SeaHARRE‐2)
  year: 2005
  ident: e_1_2_6_23_1
– ident: e_1_2_6_8_1
  doi: 10.1364/ao.389189
– volume-title: Light and water: Radiative transfer in natural waters
  year: 1994
  ident: e_1_2_6_37_1
– volume-title: Identifying and tracking evolving water masses in optically complex aquatic environments
  year: 2012
  ident: e_1_2_6_42_1
– ident: e_1_2_6_52_1
  doi: 10.4319/lo.2003.48.1_part_2.0547
– ident: e_1_2_6_43_1
  doi: 10.1016/j.rse.2015.05.014
– ident: e_1_2_6_17_1
  doi: 10.1016/j.hal.2016.01.008
– ident: e_1_2_6_2_1
  doi: 10.1016/j.ecss.2005.11.030
– ident: e_1_2_6_10_1
  doi: 10.1016/j.rse.2023.113964
– ident: e_1_2_6_44_1
– ident: e_1_2_6_38_1
  doi: 10.5670/oceanog.2004.48
– start-page: 257
  volume-title: Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography. Cambridge environmental chemistry series
  year: 2012
  ident: e_1_2_6_24_1
– ident: e_1_2_6_33_1
  doi: 10.1007/BF02732761
– ident: e_1_2_6_21_1
  doi: 10.1038/s41598‐019‐43036‐6
– ident: e_1_2_6_49_1
  doi: 10.5067/SeaBASS/GEO‐CAPE/DATA001
– ident: e_1_2_6_46_1
  doi: 10.25607/OBP‐106
– ident: e_1_2_6_40_1
  doi: 10.3389/fmars.2017.00041
– ident: e_1_2_6_28_1
  doi: 10.1016/j.rse.2021.112879
– ident: e_1_2_6_56_1
  doi: 10.1016/S0378‐4347(00)00603‐4
– ident: e_1_2_6_31_1
  doi: 10.1364/AO.38.003831
– ident: e_1_2_6_14_1
  doi: 10.1029/2023JG007574
– ident: e_1_2_6_3_1
  doi: 10.1002/lom3.10037
– ident: e_1_2_6_64_1
  doi: 10.1016/j.ecss.2017.10.021
– ident: e_1_2_6_26_1
  doi: 10.1016/j.dsr.2011.01.008
– ident: e_1_2_6_62_1
  doi: 10.1007/698_2_003
– ident: e_1_2_6_20_1
  doi: 10.1038/srep23773
– ident: e_1_2_6_58_1
  doi: 10.1029/2003EO380001
– ident: e_1_2_6_25_1
  doi: 10.1007/s12237‐013‐9692‐2
– ident: e_1_2_6_12_1
  doi: 10.1002/lom3.10385
– ident: e_1_2_6_13_1
  doi: 10.1016/j.rse.2017.07.029
– ident: e_1_2_6_54_1
  doi: 10.1016/j.ecss.2006.09.018
– volume-title: Generalized inverses: Theory and applications
  year: 2003
  ident: e_1_2_6_6_1
– ident: e_1_2_6_55_1
  doi: 10.1017/cbo9780511732263.009
– ident: e_1_2_6_18_1
  doi: 10.1364/ao.33.000443
– ident: e_1_2_6_47_1
  doi: 10.3389/feart.2019.00283
– ident: e_1_2_6_63_1
  doi: 10.1007/698_2_003
– ident: e_1_2_6_19_1
  doi: 10.1016/j.ecss.2014.12.030
– ident: e_1_2_6_51_1
  doi: 10.1364/ao.40.002929
– ident: e_1_2_6_27_1
  doi: 10.1029/2019JC015604
– ident: e_1_2_6_29_1
  doi: 10.3354/meps329013
– volume-title: CHEMTAX for calculating the taxonomic composition of phytoplankton populations, Ver. 1.95
  year: 2017
  ident: e_1_2_6_61_1
– ident: e_1_2_6_50_1
  doi: 10.1029/2021jg006471
– ident: e_1_2_6_4_1
  doi: 10.1016/j.rse.2013.06.018
– ident: e_1_2_6_53_1
  doi: 10.1016/j.ecss.2006.02.016
– ident: e_1_2_6_41_1
  doi: 10.4319/lo.2006.51.1_part_2.0448
– ident: e_1_2_6_16_1
  doi: 10.1175/BAMS‐D‐11‐00201.1
– ident: e_1_2_6_59_1
  doi: 10.1175/BAMS‐D‐18‐0056.1
– ident: e_1_2_6_35_1
  doi: 10.1093/plankt/fbi079
– ident: e_1_2_6_7_1
  doi: 10.3389/fmars.2017.00055
– ident: e_1_2_6_30_1
  doi: 10.1016/j.pocean.2021.102737
– ident: e_1_2_6_9_1
  doi: 10.1002/lol2.10319
– ident: e_1_2_6_11_1
  doi: 10.1002/2017JC012859
– ident: e_1_2_6_57_1
  doi: 10.1029/2009JC005286
– ident: e_1_2_6_34_1
  doi: 10.3354/meps144265
– ident: e_1_2_6_5_1
  doi: 10.1038/s43705‐021‐00011‐5
SSID ssj0001256024
Score 2.2642357
Snippet The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a...
Abstract The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algae
Algorithms
Aquatic ecosystems
Biogeochemistry
Community composition
Cyanobacteria
Dissolved organic matter
Ecological function
Estuaries
hyperspectral
Libraries
Marine ecosystems
Microorganisms
ocean color
optically complex
Optics
Performance assessment
Phytoplankton
phytoplankton community composition
phytoplankton diversity
Pigments
Plankton
Remote sensing
remote sensing reflectance
Sensors
Taxonomy
Upper ocean
Water quality
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbphtJeSvqi2yZFh7aX1tTWw49DCbth06XQbSgJ5GYka5yELLa761B866nn_sb-koxkOc1CycUYY2OhGWm-Gc18Q8gbHplYAcggUSIJBMQmyIRMgySVOpNccp3aeuevi3h-Ir6cytMtshhqYWxa5bAnuo3a1IWNkX9EaIvWjUme7Tc_Ats1yp6uDi00lG-tYD45irF7ZJtZZqwR2Z7OFkffb0Vd0MIz4TPgQ5ZZ55_PJqjbaOc2bJOj8N_AnQ-uqkZ1P9VyuYlknSk63CGPPIakk17oj8kWVE_I_c-uR2_3lPw-tswZ1RlVdI5eZl9MuVLLD3R6Uf_99edb4-LXdOLpxGlb075et_QBPFqX9Oi8a-tmqapLRIfU15G0nb0bEr3oRUURP9KDc1irBtQl0Knq6Gzdot51z8jJ4ez4YB74dgtBgVY9DDSkrrAWneIiCQsTGRGLRItY85KnAmRhqfTDItGGa5MBK0IwKisYK6xTZfhzMqrqCl4QqkttdBQprtADMzLO8JJEUEqBvruUakzeDhOdNz2rRu5Ow1mW3xbImEytFG7esVzY7kG9Osv90srjSCdMQpoag35-FGZggHGTgBAIAMpwTHYHGeZ-ga7zf-o0Ju9u5PrfwYAaBvPeCf3OEee4bGzPr_Dl3X99RR7iZ6JPndwlo3Z1BXsIb1r92uvsNZSj-Do
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrRAnvhFBBflQuECqJLbj5LhbbVkhUXroSuUU2fGEVrtKom5WKJw4ceY38ksY56PSVgi4RFGURCPPs-Y92zMDcMhDG2tE6SstlC8wtn4qZOKrRJpUcslN4vKdP57Gi6X4cCEv9uBwzIXZ2b-PUqfNOWqCHoWhO7AfS2LcE9hfnp5NP3d94zj3iWOI4Uz77U92ok1XlH-HSd7blrVuv-r1epebdsHl5AHMR7P6MyWro21jjvJvtyo2_svuh3B_YJds2sPhEexh-Rjuvu-697ZP4Me5q6lRfmGaLUh_9mmW13r9js2uql_ff36qu5VtNh0KjbOmYn0mbzEs7bGqYGeXbVPVa12uiDeyIcOkad3deASMXZWMmCU7vsSNrlGvkM10y-abhhDZPoXlyfz8eOEPjRj8nOJ94BtMupRbksu5CnIbWhELZURseMETgTJ3RfaDXBnLjU0xygO0Os2jKHdyy_JnMCmrEp8DM4WxJgw116TNrIxTuqgQCylI1UupPXg9Oiyr-3obWbdPHqWZG9P5tB9TD2bOmzfvuCrZ3QNyQjZMuiwOjYokJom1SpC2TdFixK1CIYgaFIEHByMWsmHqbjLSUESjIslTD97c4OOPxowO9uBtB56_WpzRhHLdwIIX__vbA5g011t8SaynMa8G0P8GB6X8vQ
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBVpQmkvpUlbum1adGhzaU1tfVj2cTdssgTS5pBAbkayxknIYptdh-JbTz33N_aXdCRrl10ohV6MEUIIz4znzUjzhpAPPLGpBpCR0kJFAlIb5UJmkcqkySWX3GSu3vn8azq7EmfX8jok3FwtzMAPsU64Ocvw_2tn4NosA9mA48h0fb-nY1RKdFCPyF6CUMZpOBMXGzkW9Oe-ry3jnEeIRUS4-45LfNlcYMsrefL-LcT55KFudf9dz-fbGNY7oZPn5FlAj3Q8iHuf7EB9QB6f-u68_Qvy89JxZtQ3VNMZxpdDGeVCzz_TyV3z-8evb63PXNNxIBKnXUOHSt0qpO5oU9GL275r2rmu7xEX0lBB0vXubXXFi97VFJEjPb6FpW5B3wOd6J5Olx1qXP-SXJ1ML49nUWi0EJXoz-PIQOZLajEcLlVc2sSKVCgjUsMrngmQpSPRj0tlLDc2B1bGYHVeMla6cMryV2S3bmp4TaipjDVJornG2MvKNMeHSqCSAqN2KfWIfFx96KId-DQKfw7O8mJTICMycVJYz3Es2H6gWdwUwaiKNDGKScgyazHCT-IcLDBuFQiBrr-KR-RwJcMimOaywBgJYRKTPB-Ro7Vc_7oZ0KvNfPJC_-eOCzQY1-0rfvNfs9-SpzguhjuUh2S3WzzAO8Q5nXnvlfkPBLLznw
  priority: 102
  providerName: Wiley-Blackwell
Title Testing a Hyperspectral, Bio‐Optical Approach to Identification of Phytoplankton Community Composition in the Chesapeake Bay Estuary
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023EA003244
https://www.proquest.com/docview/3060752539
https://doi.org/10.1029/2023ea003244
https://doaj.org/article/61b725e88dd742109ede23d7e44eedf0
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: ABDBF
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: AVUZU
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley_OA刊
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG50RfQiPnF0HfqgXjSY9COdPs4ssw6C4yA7sJ5Cd7riLjskYSeL5ObJs7_RX2J1J7PMgOjFS0hCCEVXder7KvUg5CVPXGoAZKSMUJGA1EVayCxSmbRacslt5uudPy7S-Up8OJWnO6O-fE5Y3x64X7h3aWIVk5BlziGLS2INDhh3CoTAz3sZ2Hqc6R0y1UdX0JMzMWS6x0x7ks9nE7Rh9Gd7Pii06t_Dl3euqsZ038x6vY9Yg8s5vk_uDViRTnoZH5AbUD0kt9-HWbzdI_LjxHfIqL5SQ-fIJvuiyUuzfkun5_Wv7z8_NSFOTSdD23Da1rSvyy2HQB2tS7o869q6WZvqAlEgHepF2s6fbRO66HlFESfSozPYmAbMBdCp6ehs06J9dY_J6nh2cjSPhrEKUYHeO44sZKGAFslvoeLCJU6kQlmRWl7yTIAsfMv8uFDWces0sCIGZ3TBWOHJk-NPyEFVV_CUUFtaZ5PEcINMy8lU40ElUEqBHF1KMyKvtgudN333jDz89WY631XIiEy9Fq6f8T2vww20hHywhPxfljAih1sd5sNG3OTIiBAUMcn1iLy-1usfhQGzFeZNUPpfJc5xe_jZXvGz_yH6c3IXXy76RMpDctBeXsELBDutHZObTCzH5NZ0tlh-Hgcrx6vVYjn58hsoRP7m
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1QuiKdYKOAD5QIRiR95HCq0W7ZsabtUqJV6S-140lZdJWE3VZUbJ878In4Mv4Rx1ildCfXWSxRFlmN5ZjzfjOdByBsemFABSC9SIvIEhMZLhIy9KJY6kVxyHdt8571xODoUX47k0RL53eXC2LDK7kxsD2pTZtZH_gGhLWo3Jnnysfru2a5R9na1a6GhXGsFs9GWGHOJHTvQXKIJN9vY_oT0Xmdsa3iwOfJclwEvQ2XmexriNp8UbcEs8jMTGBGKSItQ85zHAmRmK8j7WaQN1yYBlvlgVJIxlllbwnCc9w5ZEVwkaPytDIbj_W_XvDyIKJhwEfc-S6yzgQ_7KEuoVxd0YdsyYAHnrl4UlWou1WSyiJxb1bf1gNx3mJX250z2kCxB8Yjc_dz2BG4ek58HtlJHcUIVHaFVO0_enKrJezo4K__8-PW1av3ltO_Kl9O6pPP84Nw5DGmZ0_3Tpi6riSrOEY1Sl7dSN_atCyyjZwVFvEo3T2GmKlDnQAeqocNZjXzePCGHt7LxT8lyURbwjFCda6ODQHGFFp-RYYKPKIBcCtAIqFSPrHcbnVbzKh5pe_vOkvQ6QXpkYKlwNcbW3m4_lNOT1IlyGgY6YhLi2JhIoMWcgAHGTQRCIODI_R5Z62iYugNhlv5j3x55e0XX_y4GVLeYdy3Rb1xximJqe4z5z2_-62uyOjrY2013t8c7L8g9nELMwzbXyHI9vYCXCK1q_crxLyXHty0yfwGtHjRn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKK5YLYhUDBXygXCBq4iVODhWaaWeYUhhGqJV6S-3YaauOkjCTqsqNE2d-Fz-DX8Jz4pSOhHrrJYqiKLH8tu89vwWhNzTQoTSGe0Iy4TETai9mPPJExFXMKacqsvXOXybh-IB9OuSHK-h3Vwtj0yo7ndgoal2kNka-CdAWrBvhNN7MXFrEdGf0ofzu2QlS9qS1G6ch3ZgFvdW0G3NFHnumvgB3brG1uwO03yBkNNzfHntu4oCXgmHzPWWiprYU_MJU-KkONAuZUCxUNKMRMzy13eT9VChNlY4NSX2jZZwSklq_QlP47i20Zg-_QEmsDYaT6bcrER9AF4S57HufxDbwQId9kCuwsUt2sRkfsIR5757npawv5Gy2jKIbMzh6gO47_Ir7LcM9RCsmf4Ruf2zmA9eP0c9927UjP8YSj8HDbQs553L2Hg9Oiz8_fn0tm9g57rtW5rgqcFsrnLngIS4yPD2pq6KcyfwMkCl2NSxVbe-6JDN8mmPArnj7xCxkaeSZwQNZ4-GiAp6vn6CDG9n4p2g1L3LzDGGVKa2CQFIJ3p_mYQwXEZiMM6MAXMke2ug2Oinbjh5JcxJP4uQqQXpoYKlw-Y7tw908KObHiRPrJAyUINxEkdaCgfccG20I1cIwBuAj83tovaNh4pTDIvnHyj309pKu_12Mkd1i3jVEv3bFCYisnTfmP7_-r6_RHRCd5PPuZO8FugdfYG0G5zparebn5iWgrEq9cuyL0dFNS8xf9rU4lg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrRAnvhFBBflQuECqJLbj5LhbbVkhUXroSuUU2fGEVrtKom5WKJw4ceY38ksY56PSVgi4RFGURCPPs-Y92zMDcMhDG2tE6SstlC8wtn4qZOKrRJpUcslN4vKdP57Gi6X4cCEv9uBwzIXZ2b-PUqfNOWqCHoWhO7AfS2LcE9hfnp5NP3d94zj3iWOI4Uz77U92ok1XlH-HSd7blrVuv-r1epebdsHl5AHMR7P6MyWro21jjvJvtyo2_svuh3B_YJds2sPhEexh-Rjuvu-697ZP4Me5q6lRfmGaLUh_9mmW13r9js2uql_ff36qu5VtNh0KjbOmYn0mbzEs7bGqYGeXbVPVa12uiDeyIcOkad3deASMXZWMmCU7vsSNrlGvkM10y-abhhDZPoXlyfz8eOEPjRj8nOJ94BtMupRbksu5CnIbWhELZURseMETgTJ3RfaDXBnLjU0xygO0Os2jKHdyy_JnMCmrEp8DM4WxJgw116TNrIxTuqgQCylI1UupPXg9Oiyr-3obWbdPHqWZG9P5tB9TD2bOmzfvuCrZ3QNyQjZMuiwOjYokJom1SpC2TdFixK1CIYgaFIEHByMWsmHqbjLSUESjIslTD97c4OOPxowO9uBtB56_WpzRhHLdwIIX__vbA5g011t8SaynMa8G0P8GB6X8vQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+a+Hyperspectral%2C+Bio%E2%80%90Optical+Approach+to+Identification+of+Phytoplankton+Community+Composition+in+the+Chesapeake+Bay+Estuary&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=McKibben%2C+S.+M.&rft.au=Schollaert+Uz%2C+S.&rft.au=Palacios%2C+Sherry+L.&rft.date=2024-05-01&rft.issn=2333-5084&rft.eissn=2333-5084&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1029%2F2023EA003244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023EA003244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon