Testing a Hyperspectral, Bio‐Optical Approach to Identification of Phytoplankton Community Composition in the Chesapeake Bay Estuary
The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics...
        Saved in:
      
    
          | Published in | Earth and space science (Hoboken, N.J.) Vol. 11; no. 5 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken
          John Wiley & Sons, Inc
    
        01.05.2024
     American Geophysical Union (AGU)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2333-5084 2333-5084  | 
| DOI | 10.1029/2023EA003244 | 
Cover
| Abstract | The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax) approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms, dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed. Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data, cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐collected measurements, but validation‐quality data with broad temporospatial coverage are needed to determine whether the approach is robust enough for science applications.
Key Points
A hyperspectral, bio‐optical approach to identifying phytoplankton types from remote sensing reflectance is tested in a turbid estuary
In field data, cyanophytes and cryptophytes were typically detected but diatom and dinoflagellate detection was not conclusive
Work adds support to further testing this approach in optically complex waters to assess its potential for science applications | 
    
|---|---|
| AbstractList | The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax) approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms, dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed. Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data, cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐collected measurements, but validation‐quality data with broad temporospatial coverage are needed to determine whether the approach is robust enough for science applications.
A hyperspectral, bio‐optical approach to identifying phytoplankton types from remote sensing reflectance is tested in a turbid estuary In field data, cyanophytes and cryptophytes were typically detected but diatom and dinoflagellate detection was not conclusive Work adds support to further testing this approach in optically complex waters to assess its potential for science applications The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax) approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms, dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed. Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data, cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐collected measurements, but validation‐quality data with broad temporospatial coverage are needed to determine whether the approach is robust enough for science applications. Key Points A hyperspectral, bio‐optical approach to identifying phytoplankton types from remote sensing reflectance is tested in a turbid estuary In field data, cyanophytes and cryptophytes were typically detected but diatom and dinoflagellate detection was not conclusive Work adds support to further testing this approach in optically complex waters to assess its potential for science applications The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax) approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms, dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed. Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data, cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐collected measurements, but validation‐quality data with broad temporospatial coverage are needed to determine whether the approach is robust enough for science applications. Abstract The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax) approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms, dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed. Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data, cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐collected measurements, but validation‐quality data with broad temporospatial coverage are needed to determine whether the approach is robust enough for science applications.  | 
    
| Author | Palacios, Sherry L. Schollaert Uz, S. McKibben, S. M.  | 
    
| Author_xml | – sequence: 1 givenname: S. M. orcidid: 0009-0001-9324-448X surname: McKibben fullname: McKibben, S. M. email: morgaine.mckibben@nasa.gov organization: University of Maryland, College of Computer, Mathematical, and Natural Sciences – sequence: 2 givenname: S. orcidid: 0000-0002-0937-1487 surname: Schollaert Uz fullname: Schollaert Uz, S. organization: NASA Postdoctoral Program/NASA Goddard Space Flight Center – sequence: 3 givenname: Sherry L. surname: Palacios fullname: Palacios, Sherry L. organization: California State University Monterey Bay  | 
    
| BookMark | eNp9kc1u1DAUhSNUJErpjgewxLYB_-VvOR1N6UiVitSythz7puNpxja2oyo7Vqx5Rp4ETwOIBWLlq6PvHuvc87o4sc5CUbwl-D3BtPtAMWWbFcaMcv6iOKWMsbLCLT_5a35VnMe4xxgTWtWY8tPi2z3EZOwDkuh69hCiB5WCHC_QpXE_vn6_9ckoOaKV98FJtUPJoa0Gm8yQ9WScRW5An3Zzcn6U9jFlYe0Oh8maNB8n76J5xoxFaQdovYMoPchHQJdyRpuYJhnmN8XLQY4Rzn-9Z8Xnq839-rq8uf24Xa9uSsVxjcseWkI4pU3bqgYrTTSvedPzumcDazlUqqJ1hVXTa9brDqjCoGWnKFV5r9XsrNguvtrJvfDBHPLnwkkjngUXHoQMOfEIoiZ9QytoW60bTgnuQANlugHOAfSAs1e5eE3Wy_lJjuMfQ4LFsRNx7ATk0knm3y18vuSXKZ9d7N0UbI4rWA7XVLRiXaYuFkoFF2OA4Z-mv4vOOF3wJzPC_F9WbO7uKGkoZj8BXCaq2g | 
    
| Cites_doi | 10.5067/SeaBASS/2009OCT_CHESAPEAKE/DATA001 10.3389/fmars.2020.00337 10.1117/12.266436 10.1016/j.rse.2011.09.011 10.4319/lo.2006.51.6.2646 10.1016/j.rse.2015.02.001 10.37421/jbmbs.2020.11.440 10.1364/ao.389189 10.4319/lo.2003.48.1_part_2.0547 10.1016/j.rse.2015.05.014 10.1016/j.hal.2016.01.008 10.1016/j.ecss.2005.11.030 10.1016/j.rse.2023.113964 10.5670/oceanog.2004.48 10.1007/BF02732761 10.1038/s41598‐019‐43036‐6 10.5067/SeaBASS/GEO‐CAPE/DATA001 10.25607/OBP‐106 10.3389/fmars.2017.00041 10.1016/j.rse.2021.112879 10.1016/S0378‐4347(00)00603‐4 10.1364/AO.38.003831 10.1029/2023JG007574 10.1002/lom3.10037 10.1016/j.ecss.2017.10.021 10.1016/j.dsr.2011.01.008 10.1007/698_2_003 10.1038/srep23773 10.1029/2003EO380001 10.1007/s12237‐013‐9692‐2 10.1002/lom3.10385 10.1016/j.rse.2017.07.029 10.1016/j.ecss.2006.09.018 10.1017/cbo9780511732263.009 10.1364/ao.33.000443 10.3389/feart.2019.00283 10.1016/j.ecss.2014.12.030 10.1364/ao.40.002929 10.1029/2019JC015604 10.3354/meps329013 10.1029/2021jg006471 10.1016/j.rse.2013.06.018 10.1016/j.ecss.2006.02.016 10.4319/lo.2006.51.1_part_2.0448 10.1175/BAMS‐D‐11‐00201.1 10.1175/BAMS‐D‐18‐0056.1 10.1093/plankt/fbi079 10.3389/fmars.2017.00055 10.1016/j.pocean.2021.102737 10.1002/lol2.10319 10.1002/2017JC012859 10.1029/2009JC005286 10.3354/meps144265 10.1038/s43705‐021‐00011‐5  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union. 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2024 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA  | 
    
| DOI | 10.1029/2023EA003244 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley_OA刊 url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology | 
    
| EISSN | 2333-5084 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | oai_doaj_org_article_61b725e88dd742109ede23d7e44eedf0 10.1029/2023ea003244 10_1029_2023EA003244 ESS21720  | 
    
| Genre | researchArticle | 
    
| GeographicLocations | Chesapeake Bay | 
    
| GeographicLocations_xml | – name: Chesapeake Bay | 
    
| GrantInformation_xml | – fundername: Oak Ridge Associated Universities funderid: 80HQTR21CA005 – fundername: Advanced Information Systems Technology funderid: NNH18ZDA001N‐AIST; NNH21ZDA001N‐AIST  | 
    
| GroupedDBID | 0R~ 1OC 24P 5VS AAFWJ AAHHS AAZKR ABDBF ACCFJ ACCMX ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BHPHI BKSAR CCPQU EBS EJD GODZA GROUPED_DOAJ HCIFZ IAO IGS ITC KQ8 M~E O9- OK1 PCBAR PIMPY WIN AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IEP PHGZM PHGZT PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4060-be811422788c70cd1d4647b46b3f384e5c52650c7bd3bd9e2c0eda9c22c1148d3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2333-5084 | 
    
| IngestDate | Tue Oct 14 14:43:06 EDT 2025 Sun Sep 07 11:25:16 EDT 2025 Thu Sep 11 12:10:22 EDT 2025 Wed Oct 01 05:31:46 EDT 2025 Wed Jan 22 17:20:30 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| License | Attribution-NonCommercial-NoDerivs cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4060-be811422788c70cd1d4647b46b3f384e5c52650c7bd3bd9e2c0eda9c22c1148d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0937-1487 0009-0001-9324-448X  | 
    
| OpenAccessLink | https://doaj.org/article/61b725e88dd742109ede23d7e44eedf0 | 
    
| PQID | 3060752539 | 
    
| PQPubID | 4368366 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_61b725e88dd742109ede23d7e44eedf0 unpaywall_primary_10_1029_2023ea003244 proquest_journals_3060752539 crossref_primary_10_1029_2023EA003244 wiley_primary_10_1029_2023EA003244_ESS21720  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | May 2024 2024-05-00 20240501 2024-05-01  | 
    
| PublicationDateYYYYMMDD | 2024-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken | 
    
| PublicationPlace_xml | – name: Hoboken | 
    
| PublicationTitle | Earth and space science (Hoboken, N.J.) | 
    
| PublicationYear | 2024 | 
    
| Publisher | John Wiley & Sons, Inc American Geophysical Union (AGU)  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union (AGU)  | 
    
| References | 2011; 115 2012; 2011 2017; 4 2024; 302 2023; 8 2018; 200 2020; 59 2019; 124 1996; 144 2007; 72 2020; 11 2011; 58 2005; 27 2005; 28 2001; 40 2009; 114 2020; 18 2020; 7 1997; 2963 2006; 67 2006; 68 1994; 33 2003; 48 2017; 122 2017; 200 2003; 84 2022; 201 2015; 13 2015; 162 2019; 7 2015; 160 2019; 9 2005; 212785 2022; 270 2006; 51 2012 2011 2006b 2006a 2015; 167 2023; 128 2009 1994 2003 2021; 1 2007; 329 2019; 100 2016; 55 2012; 93 2016; 6 2023 2004; 17 2013; 137 1999; 38 2014; 37 2017 2014 2001; 910 e_1_2_6_51_1 e_1_2_6_53_1 Hooker S. B. (e_1_2_6_23_1) 2005 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 Palacios S. L. (e_1_2_6_42_1) 2012 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Ben‐Israel A. (e_1_2_6_6_1) 2003 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Higgins H. W. (e_1_2_6_22_1) 2012 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 Mobley C. D. (e_1_2_6_37_1) 1994 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_58_1 Wright S. (e_1_2_6_61_1) 2017 e_1_2_6_63_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 Jeffrey S. W. (e_1_2_6_24_1) 2012 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1  | 
    
| References_xml | – year: 2011 – volume: 27 start-page: 1083 issue: 11 year: 2005 end-page: 1102 article-title: A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries publication-title: Journal of Plankton Research – year: 2009 – volume: 18 start-page: 570 issue: 10 year: 2020 end-page: 584 article-title: Evaluation of diagnostic pigments to estimate phytoplankton size classes publication-title: Limnology and Oceanography: Methods – volume: 162 start-page: 53 year: 2015 end-page: 68 article-title: Climate effects on phytoplankton floral composition in Chesapeake Bay publication-title: Estuarine, Coastal and Shelf Science – volume: 200 start-page: 154 year: 2017 end-page: 169 article-title: A multi‐scale high‐resolution analysis of global sea surface temperature publication-title: Remote Sensing of Environment – volume: 28 start-page: 160 issue: 1 year: 2005 end-page: 172 article-title: Adapting the CHEMTAX method for assessing phytoplankton taxonomic composition in southeastern U.S. estuaries publication-title: Estuaries – volume: 67 start-page: 108 issue: 1–2 year: 2006 end-page: 122 article-title: Environmental forcing of phytoplankton floral composition, biomass, and primary productivity in Chesapeake Bay, USA publication-title: Estuarine, Coastal and Shelf Science – year: 2014 article-title: Phytoplankton functional types from space publication-title: Reports of the International Ocean‐Colour Coordinating Group. Dartmouth, Canada – start-page: 257 year: 2012 end-page: 313 – volume: 144 start-page: 265 year: 1996 end-page: 283 article-title: CHEMTAX ‐ A program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton publication-title: Marine Ecology Progress Series – volume: 8 start-page: 603 issue: 4 year: 2023 end-page: 610 article-title: How many independent quantities can be extracted from ocean color? publication-title: Limnology and Oceanography Letters – volume: 33 start-page: 443 issue: 3 year: 1994 end-page: 452 article-title: Retrieval of water‐leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm publication-title: Applied Optics – volume: 115 start-page: 3731 issue: 12 year: 2011 end-page: 3747 article-title: Remote sensing of phytoplankton community composition along the northeast coast of the United States publication-title: Remote Sensing of Environment – year: 1994 – volume: 100 start-page: 1775 issue: 9 year: 2019 end-page: 1794 article-title: The Plankton, Aerosol, Cloud, ocean Ecosystem mission status, science, advances publication-title: Bulletin of the American Meteorological Society – volume: 37 start-page: 279 issue: 2 year: 2014 end-page: 298 article-title: Turbidity maximum entrapment of phytoplankton in the Chesapeake Bay publication-title: Estuaries and Coasts – volume: 93 start-page: 1547 issue: 10 year: 2012 end-page: 1566 article-title: The United States' next generation of atmospheric composition and coastal ecosystem measurements: NASA's geostationary coastal and air pollution events (GEO‐CAPE) mission publication-title: Bulletin of the American Meteorological Society – volume: 51 start-page: 2646 issue: 6 year: 2006 end-page: 2659 article-title: Red and black tides: Quantitative analysis of water‐leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments publication-title: Limnology & Oceanography – start-page: 195 year: 2012 end-page: 256 article-title: The importance of a quality assurance plan for method validation and minimizing uncertainties in the HPLC analysis of phytoplankton pigments publication-title: Phytoplankton Pigments – volume: 58 start-page: 350 issue: 4 year: 2011 end-page: 364 article-title: An evaluation of the application of CHEMTAX to Antarctic coastal pigment data publication-title: Deep Sea Res 1 Oceanogr Res Pap – volume: 2963 start-page: 160 year: 1997 end-page: 166 – volume: 51 start-page: 448 issue: 1part2 year: 2006 end-page: 462 article-title: Anthropogenic and climatic influences on the eutrophication of large estuarine ecosystems publication-title: Limnology & Oceanography – volume: 124 start-page: 7557 issue: 11 year: 2019 end-page: 7574 article-title: How can phytoplankton pigments be best used to characterize surface ocean phytoplankton groups for ocean color remote sensing algorithms? publication-title: Journal of Geophysical Research: Oceans – volume: 160 start-page: 15 year: 2015 end-page: 30 article-title: Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions publication-title: Remote Sensing of Environment – volume: 84 start-page: 377 issue: 38 year: 2003 end-page: 387 article-title: Unique data repository facilitates ocean color satellite validation publication-title: Eos – volume: 212785 year: 2005 – volume: 55 start-page: 25 year: 2016 end-page: 30 article-title: Margalef revisited: A new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology publication-title: Harmful Algae – volume: 302 year: 2024 article-title: Phytoplankton composition from sPACE: Requirements, opportunities, and challenges publication-title: Remote Sensing of Environment – volume: 4 year: 2017 article-title: A consumer's guide to satellite remote sensing of multiple phytoplankton groups in the global ocean publication-title: Frontiers in Marine Science – start-page: 71 year: 2006b end-page: 104 – volume: 910 start-page: 31 issue: 1 year: 2001 end-page: 49 article-title: Computer‐assisted HPLC method development with applications to the isolation and analysis of marine phytoplankton pigments publication-title: Journal of Chromatography, A – volume: 4 start-page: 1 year: 2017 end-page: 15 article-title: Obtaining phytoplankton diversity from ocean color: A scientific roadmap for future development publication-title: Frontiers in Marine Science – volume: 9 start-page: 1 year: 2019 end-page: 19 article-title: Long‐term trends, current status, and transitions of water quality in Chesapeake Bay publication-title: Scientific Reports – year: 2003 – volume: 11 start-page: 5 year: 2020 end-page: 11 article-title: Sample size charts for Spearman and Kendall coefficients methods for sample size determination publication-title: Biometrics & Biostatistics – volume: 128 issue: 10 year: 2023 article-title: Synergies between NASA's hyperspectral aquatic missions PACE, GLIMR, and SBG: Opportunities for new science and applications publication-title: Journal of Geophysical Research: Biogeosciences – volume: 270 year: 2022 article-title: Modeling surface ocean phytoplankton pigments from hyperspectral remote sensing reflectance on global scales publication-title: Remote Sensing of Environment – volume: 1 start-page: 1 year: 2021 end-page: 8 article-title: Phytoplankton community structuring and succession in a competition‐neutral resource landscape publication-title: ISME Communications – volume: 7 start-page: 1 year: 2019 end-page: 13 article-title: Developing a community of practice for applied uses of future PACE data to address marine food security challenges publication-title: Frontiers of Earth Science – volume: 200 start-page: 181 year: 2018 end-page: 193 article-title: Diurnal changes of remote sensing reflectance over Chesapeake bay: Observations from the airborne Compact atmospheric mapper publication-title: Estuarine, Coastal and Shelf Science – volume: 68 start-page: 348 issue: 1–2 year: 2006 end-page: 362 article-title: Bio‐optics of the Chesapeake Bay from measurements and radiative transfer closure publication-title: Estuarine, Coastal and Shelf Science – volume: 137 start-page: 212 year: 2013 end-page: 225 article-title: Spatially resolving ocean color and sediment dispersion in river plumes, coastal systems, and continental shelf waters publication-title: Remote Sensing of Environment – year: 2012 – volume: 59 start-page: 3971 issue: 13 year: 2020 end-page: 3984 article-title: Information content of absorption spectra and implications for ocean color inversion publication-title: Applied Optics – volume: 72 start-page: 16 issue: 1–2 year: 2007 end-page: 32 article-title: Remote sensing reflectance and inherent optical properties in the mid Chesapeake Bay publication-title: Estuarine, Coastal and Shelf Science – volume: 6 start-page: 1 year: 2016 end-page: 16 article-title: Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay publication-title: Scientific Reports – volume: 40 issue: 18 year: 2001 article-title: Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community publication-title: Applied Optics – volume: 7 start-page: 1 year: 2020 end-page: 16 article-title: Current and future remote sensing of harmful algal blooms in the Chesapeake Bay to support the shellfish Industry publication-title: Frontiers in Marine Science – year: 2023 – volume: 38 start-page: 3831 issue: 18 year: 1999 end-page: 3843 article-title: Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization publication-title: Applied Optics – volume: 167 start-page: 269 year: 2015 end-page: 280 article-title: Remote sensing of phytoplankton functional types in the coastal ocean from the HyspIRI Preparatory Flight Campaign publication-title: Remote Sensing of Environment – volume: 13 start-page: 425 issue: 8 year: 2015 end-page: 437 article-title: A new approach to testing the agreement of two phytoplankton quantification techniques: Microscopy and CHEMTAX publication-title: Limnology and Oceanography: Methods – volume: 17 start-page: 60 issue: 2 year: 2004 end-page: 67 article-title: Optical modeling of ocean water publication-title: Oceanography – start-page: 71 year: 2006a end-page: 104 article-title: Marine organic matter: Biomarkers, isotopes and DNA publication-title: The Handbook of Marine Chemistry – volume: 201 year: 2022 article-title: Dynamics of phytoplankton groups in three contrasting situations of the open NW Mediterranean Sea revealed by pigment, microscopy, and flow cytometry analyses publication-title: Progress in Oceanography – volume: 329 start-page: 13 year: 2007 end-page: 21 article-title: Improving estimations of phytoplankton class abundances using CHEMTAX publication-title: Marine Ecology Progress Series – volume: 122 start-page: 9725 issue: 12 year: 2017 end-page: 9743 article-title: Estimation of phytoplankton accessory pigments from hyperspectral reflectance spectra: Toward a global algorithm publication-title: Journal of Geophysical Research: Oceans – volume: 2011 start-page: 257 year: 2012 end-page: 313 – year: 2017 – volume: 128 start-page: 1 year: 2023 end-page: 18 article-title: Designing an observing system to study the surface Biology and Geology (SBG) of the Earth in the 2020s publication-title: Journal of Geophysical Research: Biogeosciences – volume: 114 issue: C10 year: 2009 article-title: Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications publication-title: Journal of Geophysical Research – volume: 48 start-page: 547 issue: 1part2 year: 2003 end-page: 556 article-title: Determination of water depth with high‐resolution satellite imagery over variable bottom types publication-title: Limnology & Oceanography – start-page: 257 volume-title: Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography. Cambridge environmental chemistry series year: 2012 ident: e_1_2_6_22_1 – ident: e_1_2_6_48_1 doi: 10.5067/SeaBASS/2009OCT_CHESAPEAKE/DATA001 – ident: e_1_2_6_60_1 doi: 10.3389/fmars.2020.00337 – ident: e_1_2_6_32_1 doi: 10.1117/12.266436 – ident: e_1_2_6_45_1 doi: 10.1016/j.rse.2011.09.011 – ident: e_1_2_6_15_1 doi: 10.4319/lo.2006.51.6.2646 – ident: e_1_2_6_39_1 doi: 10.1016/j.rse.2015.02.001 – ident: e_1_2_6_36_1 doi: 10.37421/jbmbs.2020.11.440 – volume-title: Second SeaWiFS HPLC analysis round‐robin experiment (SeaHARRE‐2) year: 2005 ident: e_1_2_6_23_1 – ident: e_1_2_6_8_1 doi: 10.1364/ao.389189 – volume-title: Light and water: Radiative transfer in natural waters year: 1994 ident: e_1_2_6_37_1 – volume-title: Identifying and tracking evolving water masses in optically complex aquatic environments year: 2012 ident: e_1_2_6_42_1 – ident: e_1_2_6_52_1 doi: 10.4319/lo.2003.48.1_part_2.0547 – ident: e_1_2_6_43_1 doi: 10.1016/j.rse.2015.05.014 – ident: e_1_2_6_17_1 doi: 10.1016/j.hal.2016.01.008 – ident: e_1_2_6_2_1 doi: 10.1016/j.ecss.2005.11.030 – ident: e_1_2_6_10_1 doi: 10.1016/j.rse.2023.113964 – ident: e_1_2_6_44_1 – ident: e_1_2_6_38_1 doi: 10.5670/oceanog.2004.48 – start-page: 257 volume-title: Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography. Cambridge environmental chemistry series year: 2012 ident: e_1_2_6_24_1 – ident: e_1_2_6_33_1 doi: 10.1007/BF02732761 – ident: e_1_2_6_21_1 doi: 10.1038/s41598‐019‐43036‐6 – ident: e_1_2_6_49_1 doi: 10.5067/SeaBASS/GEO‐CAPE/DATA001 – ident: e_1_2_6_46_1 doi: 10.25607/OBP‐106 – ident: e_1_2_6_40_1 doi: 10.3389/fmars.2017.00041 – ident: e_1_2_6_28_1 doi: 10.1016/j.rse.2021.112879 – ident: e_1_2_6_56_1 doi: 10.1016/S0378‐4347(00)00603‐4 – ident: e_1_2_6_31_1 doi: 10.1364/AO.38.003831 – ident: e_1_2_6_14_1 doi: 10.1029/2023JG007574 – ident: e_1_2_6_3_1 doi: 10.1002/lom3.10037 – ident: e_1_2_6_64_1 doi: 10.1016/j.ecss.2017.10.021 – ident: e_1_2_6_26_1 doi: 10.1016/j.dsr.2011.01.008 – ident: e_1_2_6_62_1 doi: 10.1007/698_2_003 – ident: e_1_2_6_20_1 doi: 10.1038/srep23773 – ident: e_1_2_6_58_1 doi: 10.1029/2003EO380001 – ident: e_1_2_6_25_1 doi: 10.1007/s12237‐013‐9692‐2 – ident: e_1_2_6_12_1 doi: 10.1002/lom3.10385 – ident: e_1_2_6_13_1 doi: 10.1016/j.rse.2017.07.029 – ident: e_1_2_6_54_1 doi: 10.1016/j.ecss.2006.09.018 – volume-title: Generalized inverses: Theory and applications year: 2003 ident: e_1_2_6_6_1 – ident: e_1_2_6_55_1 doi: 10.1017/cbo9780511732263.009 – ident: e_1_2_6_18_1 doi: 10.1364/ao.33.000443 – ident: e_1_2_6_47_1 doi: 10.3389/feart.2019.00283 – ident: e_1_2_6_63_1 doi: 10.1007/698_2_003 – ident: e_1_2_6_19_1 doi: 10.1016/j.ecss.2014.12.030 – ident: e_1_2_6_51_1 doi: 10.1364/ao.40.002929 – ident: e_1_2_6_27_1 doi: 10.1029/2019JC015604 – ident: e_1_2_6_29_1 doi: 10.3354/meps329013 – volume-title: CHEMTAX for calculating the taxonomic composition of phytoplankton populations, Ver. 1.95 year: 2017 ident: e_1_2_6_61_1 – ident: e_1_2_6_50_1 doi: 10.1029/2021jg006471 – ident: e_1_2_6_4_1 doi: 10.1016/j.rse.2013.06.018 – ident: e_1_2_6_53_1 doi: 10.1016/j.ecss.2006.02.016 – ident: e_1_2_6_41_1 doi: 10.4319/lo.2006.51.1_part_2.0448 – ident: e_1_2_6_16_1 doi: 10.1175/BAMS‐D‐11‐00201.1 – ident: e_1_2_6_59_1 doi: 10.1175/BAMS‐D‐18‐0056.1 – ident: e_1_2_6_35_1 doi: 10.1093/plankt/fbi079 – ident: e_1_2_6_7_1 doi: 10.3389/fmars.2017.00055 – ident: e_1_2_6_30_1 doi: 10.1016/j.pocean.2021.102737 – ident: e_1_2_6_9_1 doi: 10.1002/lol2.10319 – ident: e_1_2_6_11_1 doi: 10.1002/2017JC012859 – ident: e_1_2_6_57_1 doi: 10.1029/2009JC005286 – ident: e_1_2_6_34_1 doi: 10.3354/meps144265 – ident: e_1_2_6_5_1 doi: 10.1038/s43705‐021‐00011‐5  | 
    
| SSID | ssj0001256024 | 
    
| Score | 2.2642357 | 
    
| Snippet | The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a... Abstract The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton...  | 
    
| SourceID | doaj unpaywall proquest crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| SubjectTerms | Algae Algorithms Aquatic ecosystems Biogeochemistry Community composition Cyanobacteria Dissolved organic matter Ecological function Estuaries hyperspectral Libraries Marine ecosystems Microorganisms ocean color optically complex Optics Performance assessment Phytoplankton phytoplankton community composition phytoplankton diversity Pigments Plankton Remote sensing remote sensing reflectance Sensors Taxonomy Upper ocean Water quality  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbphtJeSvqi2yZFh7aX1tTWw49DCbth06XQbSgJ5GYka5yELLa761B866nn_sb-koxkOc1CycUYY2OhGWm-Gc18Q8gbHplYAcggUSIJBMQmyIRMgySVOpNccp3aeuevi3h-Ir6cytMtshhqYWxa5bAnuo3a1IWNkX9EaIvWjUme7Tc_Ats1yp6uDi00lG-tYD45irF7ZJtZZqwR2Z7OFkffb0Vd0MIz4TPgQ5ZZ55_PJqjbaOc2bJOj8N_AnQ-uqkZ1P9VyuYlknSk63CGPPIakk17oj8kWVE_I_c-uR2_3lPw-tswZ1RlVdI5eZl9MuVLLD3R6Uf_99edb4-LXdOLpxGlb075et_QBPFqX9Oi8a-tmqapLRIfU15G0nb0bEr3oRUURP9KDc1irBtQl0Knq6Gzdot51z8jJ4ez4YB74dgtBgVY9DDSkrrAWneIiCQsTGRGLRItY85KnAmRhqfTDItGGa5MBK0IwKisYK6xTZfhzMqrqCl4QqkttdBQprtADMzLO8JJEUEqBvruUakzeDhOdNz2rRu5Ow1mW3xbImEytFG7esVzY7kG9Osv90srjSCdMQpoag35-FGZggHGTgBAIAMpwTHYHGeZ-ga7zf-o0Ju9u5PrfwYAaBvPeCf3OEee4bGzPr_Dl3X99RR7iZ6JPndwlo3Z1BXsIb1r92uvsNZSj-Do priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrRAnvhFBBflQuECqJLbj5LhbbVkhUXroSuUU2fGEVrtKom5WKJw4ceY38ksY56PSVgi4RFGURCPPs-Y92zMDcMhDG2tE6SstlC8wtn4qZOKrRJpUcslN4vKdP57Gi6X4cCEv9uBwzIXZ2b-PUqfNOWqCHoWhO7AfS2LcE9hfnp5NP3d94zj3iWOI4Uz77U92ok1XlH-HSd7blrVuv-r1epebdsHl5AHMR7P6MyWro21jjvJvtyo2_svuh3B_YJds2sPhEexh-Rjuvu-697ZP4Me5q6lRfmGaLUh_9mmW13r9js2uql_ff36qu5VtNh0KjbOmYn0mbzEs7bGqYGeXbVPVa12uiDeyIcOkad3deASMXZWMmCU7vsSNrlGvkM10y-abhhDZPoXlyfz8eOEPjRj8nOJ94BtMupRbksu5CnIbWhELZURseMETgTJ3RfaDXBnLjU0xygO0Os2jKHdyy_JnMCmrEp8DM4WxJgw116TNrIxTuqgQCylI1UupPXg9Oiyr-3obWbdPHqWZG9P5tB9TD2bOmzfvuCrZ3QNyQjZMuiwOjYokJom1SpC2TdFixK1CIYgaFIEHByMWsmHqbjLSUESjIslTD97c4OOPxowO9uBtB56_WpzRhHLdwIIX__vbA5g011t8SaynMa8G0P8GB6X8vQ priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBVpQmkvpUlbum1adGhzaU1tfVj2cTdssgTS5pBAbkayxknIYptdh-JbTz33N_aXdCRrl10ohV6MEUIIz4znzUjzhpAPPLGpBpCR0kJFAlIb5UJmkcqkySWX3GSu3vn8azq7EmfX8jok3FwtzMAPsU64Ocvw_2tn4NosA9mA48h0fb-nY1RKdFCPyF6CUMZpOBMXGzkW9Oe-ry3jnEeIRUS4-45LfNlcYMsrefL-LcT55KFudf9dz-fbGNY7oZPn5FlAj3Q8iHuf7EB9QB6f-u68_Qvy89JxZtQ3VNMZxpdDGeVCzz_TyV3z-8evb63PXNNxIBKnXUOHSt0qpO5oU9GL275r2rmu7xEX0lBB0vXubXXFi97VFJEjPb6FpW5B3wOd6J5Olx1qXP-SXJ1ML49nUWi0EJXoz-PIQOZLajEcLlVc2sSKVCgjUsMrngmQpSPRj0tlLDc2B1bGYHVeMla6cMryV2S3bmp4TaipjDVJornG2MvKNMeHSqCSAqN2KfWIfFx96KId-DQKfw7O8mJTICMycVJYz3Es2H6gWdwUwaiKNDGKScgyazHCT-IcLDBuFQiBrr-KR-RwJcMimOaywBgJYRKTPB-Ro7Vc_7oZ0KvNfPJC_-eOCzQY1-0rfvNfs9-SpzguhjuUh2S3WzzAO8Q5nXnvlfkPBLLznw priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Testing a Hyperspectral, Bio‐Optical Approach to Identification of Phytoplankton Community Composition in the Chesapeake Bay Estuary | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023EA003244 https://www.proquest.com/docview/3060752539 https://doi.org/10.1029/2023ea003244 https://doaj.org/article/61b725e88dd742109ede23d7e44eedf0  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: ABDBF dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: AVUZU dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley_OA刊 customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG50RfQiPnF0HfqgXjSY9COdPs4ssw6C4yA7sJ5Cd7riLjskYSeL5ObJs7_RX2J1J7PMgOjFS0hCCEVXder7KvUg5CVPXGoAZKSMUJGA1EVayCxSmbRacslt5uudPy7S-Up8OJWnO6O-fE5Y3x64X7h3aWIVk5BlziGLS2INDhh3CoTAz3sZ2Hqc6R0y1UdX0JMzMWS6x0x7ks9nE7Rh9Gd7Pii06t_Dl3euqsZ038x6vY9Yg8s5vk_uDViRTnoZH5AbUD0kt9-HWbzdI_LjxHfIqL5SQ-fIJvuiyUuzfkun5_Wv7z8_NSFOTSdD23Da1rSvyy2HQB2tS7o869q6WZvqAlEgHepF2s6fbRO66HlFESfSozPYmAbMBdCp6ehs06J9dY_J6nh2cjSPhrEKUYHeO44sZKGAFslvoeLCJU6kQlmRWl7yTIAsfMv8uFDWces0sCIGZ3TBWOHJk-NPyEFVV_CUUFtaZ5PEcINMy8lU40ElUEqBHF1KMyKvtgudN333jDz89WY631XIiEy9Fq6f8T2vww20hHywhPxfljAih1sd5sNG3OTIiBAUMcn1iLy-1usfhQGzFeZNUPpfJc5xe_jZXvGz_yH6c3IXXy76RMpDctBeXsELBDutHZObTCzH5NZ0tlh-Hgcrx6vVYjn58hsoRP7m | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1QuiKdYKOAD5QIRiR95HCq0W7ZsabtUqJV6S-140lZdJWE3VZUbJ878In4Mv4Rx1ildCfXWSxRFlmN5ZjzfjOdByBsemFABSC9SIvIEhMZLhIy9KJY6kVxyHdt8571xODoUX47k0RL53eXC2LDK7kxsD2pTZtZH_gGhLWo3Jnnysfru2a5R9na1a6GhXGsFs9GWGHOJHTvQXKIJN9vY_oT0Xmdsa3iwOfJclwEvQ2XmexriNp8UbcEs8jMTGBGKSItQ85zHAmRmK8j7WaQN1yYBlvlgVJIxlllbwnCc9w5ZEVwkaPytDIbj_W_XvDyIKJhwEfc-S6yzgQ_7KEuoVxd0YdsyYAHnrl4UlWou1WSyiJxb1bf1gNx3mJX250z2kCxB8Yjc_dz2BG4ek58HtlJHcUIVHaFVO0_enKrJezo4K__8-PW1av3ltO_Kl9O6pPP84Nw5DGmZ0_3Tpi6riSrOEY1Sl7dSN_atCyyjZwVFvEo3T2GmKlDnQAeqocNZjXzePCGHt7LxT8lyURbwjFCda6ODQHGFFp-RYYKPKIBcCtAIqFSPrHcbnVbzKh5pe_vOkvQ6QXpkYKlwNcbW3m4_lNOT1IlyGgY6YhLi2JhIoMWcgAHGTQRCIODI_R5Z62iYugNhlv5j3x55e0XX_y4GVLeYdy3Rb1xximJqe4z5z2_-62uyOjrY2013t8c7L8g9nELMwzbXyHI9vYCXCK1q_crxLyXHty0yfwGtHjRn | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKK5YLYhUDBXygXCBq4iVODhWaaWeYUhhGqJV6S-3YaauOkjCTqsqNE2d-Fz-DX8Jz4pSOhHrrJYqiKLH8tu89vwWhNzTQoTSGe0Iy4TETai9mPPJExFXMKacqsvXOXybh-IB9OuSHK-h3Vwtj0yo7ndgoal2kNka-CdAWrBvhNN7MXFrEdGf0ofzu2QlS9qS1G6ch3ZgFvdW0G3NFHnumvgB3brG1uwO03yBkNNzfHntu4oCXgmHzPWWiprYU_MJU-KkONAuZUCxUNKMRMzy13eT9VChNlY4NSX2jZZwSklq_QlP47i20Zg-_QEmsDYaT6bcrER9AF4S57HufxDbwQId9kCuwsUt2sRkfsIR5757npawv5Gy2jKIbMzh6gO47_Ir7LcM9RCsmf4Ruf2zmA9eP0c9927UjP8YSj8HDbQs553L2Hg9Oiz8_fn0tm9g57rtW5rgqcFsrnLngIS4yPD2pq6KcyfwMkCl2NSxVbe-6JDN8mmPArnj7xCxkaeSZwQNZ4-GiAp6vn6CDG9n4p2g1L3LzDGGVKa2CQFIJ3p_mYQwXEZiMM6MAXMke2ug2Oinbjh5JcxJP4uQqQXpoYKlw-Y7tw908KObHiRPrJAyUINxEkdaCgfccG20I1cIwBuAj83tovaNh4pTDIvnHyj309pKu_12Mkd1i3jVEv3bFCYisnTfmP7_-r6_RHRCd5PPuZO8FugdfYG0G5zparebn5iWgrEq9cuyL0dFNS8xf9rU4lg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrRAnvhFBBflQuECqJLbj5LhbbVkhUXroSuUU2fGEVrtKom5WKJw4ceY38ksY56PSVgi4RFGURCPPs-Y92zMDcMhDG2tE6SstlC8wtn4qZOKrRJpUcslN4vKdP57Gi6X4cCEv9uBwzIXZ2b-PUqfNOWqCHoWhO7AfS2LcE9hfnp5NP3d94zj3iWOI4Uz77U92ok1XlH-HSd7blrVuv-r1epebdsHl5AHMR7P6MyWro21jjvJvtyo2_svuh3B_YJds2sPhEexh-Rjuvu-697ZP4Me5q6lRfmGaLUh_9mmW13r9js2uql_ff36qu5VtNh0KjbOmYn0mbzEs7bGqYGeXbVPVa12uiDeyIcOkad3deASMXZWMmCU7vsSNrlGvkM10y-abhhDZPoXlyfz8eOEPjRj8nOJ94BtMupRbksu5CnIbWhELZURseMETgTJ3RfaDXBnLjU0xygO0Os2jKHdyy_JnMCmrEp8DM4WxJgw116TNrIxTuqgQCylI1UupPXg9Oiyr-3obWbdPHqWZG9P5tB9TD2bOmzfvuCrZ3QNyQjZMuiwOjYokJom1SpC2TdFixK1CIYgaFIEHByMWsmHqbjLSUESjIslTD97c4OOPxowO9uBtB56_WpzRhHLdwIIX__vbA5g011t8SaynMa8G0P8GB6X8vQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+a+Hyperspectral%2C+Bio%E2%80%90Optical+Approach+to+Identification+of+Phytoplankton+Community+Composition+in+the+Chesapeake+Bay+Estuary&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=McKibben%2C+S.+M.&rft.au=Schollaert+Uz%2C+S.&rft.au=Palacios%2C+Sherry+L.&rft.date=2024-05-01&rft.issn=2333-5084&rft.eissn=2333-5084&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1029%2F2023EA003244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023EA003244 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon |