Recuperated power cycle analysis model: Investigation and optimisation of low-to-moderate resource temperature Organic Rankine Cycles
A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and results for a wide range of working fluids and operating point conditions are presented. Here, the model is applied to subcritical and transc...
        Saved in:
      
    
          | Published in | Energy (Oxford) Vol. 93; pp. 484 - 494 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        15.12.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0360-5442 | 
| DOI | 10.1016/j.energy.2015.09.055 | 
Cover
| Abstract | A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and results for a wide range of working fluids and operating point conditions are presented. Here, the model is applied to subcritical and transcritical Rankine cycles. It comprises a brute-force search algorithm that covers a wide parametric study combining working fluid, resource and cooling temperatures as well as high-side pressures in order to ascertain the best working fluid for a given resource temperature and operating point. The present study determined the fluids that maximise the specific energy production from a hot stream for a range of low-to-medium temperature (100–250 °C) resources. This study shows that for the following resource temperatures: 100 °C, 120 °C, 150 °C, 180 °C and 210 °C, R125, R143a, RC318, R236ea and R152a were found to maximise specific energy production, respectively. In general, the inclusion of a recuperator within the power cycle results in greater specific energy production for a given operating temperature. However, it was found that for all fluids there was a threshold pressure above which the inclusion of a recuperator did not enhance system performance. This may have design and economic ramifications when designing next-generation transcritical and supercritical power cycles.
•We investigated recuperated cycle configurations for 21 working fluids.•We performed a parametric analysis on resource temperature and operating pressure.•We report the rank of various working fluids for the cycle conditions specified.•Using a recuperator allows for greater performance at lower high-side pressures.•Some fluids are more tolerant to resource temperature variations than others. | 
    
|---|---|
| AbstractList | A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and results for a wide range of working fluids and operating point conditions are presented. Here, the model is applied to subcritical and transcritical Rankine cycles. It comprises a brute-force search algorithm that covers a wide parametric study combining working fluid, resource and cooling temperatures as well as high-side pressures in order to ascertain the best working fluid for a given resource temperature and operating point. The present study determined the fluids that maximise the specific energy production from a hot stream for a range of low-to-medium temperature (100–250 °C) resources. This study shows that for the following resource temperatures: 100 °C, 120 °C, 150 °C, 180 °C and 210 °C, R125, R143a, RC318, R236ea and R152a were found to maximise specific energy production, respectively. In general, the inclusion of a recuperator within the power cycle results in greater specific energy production for a given operating temperature. However, it was found that for all fluids there was a threshold pressure above which the inclusion of a recuperator did not enhance system performance. This may have design and economic ramifications when designing next-generation transcritical and supercritical power cycles. A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and results for a wide range of working fluids and operating point conditions are presented. Here, the model is applied to subcritical and transcritical Rankine cycles. It comprises a brute-force search algorithm that covers a wide parametric study combining working fluid, resource and cooling temperatures as well as high-side pressures in order to ascertain the best working fluid for a given resource temperature and operating point. The present study determined the fluids that maximise the specific energy production from a hot stream for a range of low-to-medium temperature (100-250 degree C) resources. This study shows that for the following resource temperatures: 100 degree C, 120 degree C, 150 degree C, 180 degree C and 210 degree C, R125, R143a, RC318, R236ea and R152a were found to maximise specific energy production, respectively. In general, the inclusion of a recuperator within the power cycle results in greater specific energy production for a given operating temperature. However, it was found that for all fluids there was a threshold pressure above which the inclusion of a recuperator did not enhance system performance. This may have design and economic ramifications when designing next-generation transcritical and supercritical power cycles. A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and results for a wide range of working fluids and operating point conditions are presented. Here, the model is applied to subcritical and transcritical Rankine cycles. It comprises a brute-force search algorithm that covers a wide parametric study combining working fluid, resource and cooling temperatures as well as high-side pressures in order to ascertain the best working fluid for a given resource temperature and operating point. The present study determined the fluids that maximise the specific energy production from a hot stream for a range of low-to-medium temperature (100–250 °C) resources. This study shows that for the following resource temperatures: 100 °C, 120 °C, 150 °C, 180 °C and 210 °C, R125, R143a, RC318, R236ea and R152a were found to maximise specific energy production, respectively. In general, the inclusion of a recuperator within the power cycle results in greater specific energy production for a given operating temperature. However, it was found that for all fluids there was a threshold pressure above which the inclusion of a recuperator did not enhance system performance. This may have design and economic ramifications when designing next-generation transcritical and supercritical power cycles. •We investigated recuperated cycle configurations for 21 working fluids.•We performed a parametric analysis on resource temperature and operating pressure.•We report the rank of various working fluids for the cycle conditions specified.•Using a recuperator allows for greater performance at lower high-side pressures.•Some fluids are more tolerant to resource temperature variations than others.  | 
    
| Author | de M. Ventura, Carlos A. Rowlands, Andrew S.  | 
    
| Author_xml | – sequence: 1 givenname: Carlos A. surname: de M. Ventura fullname: de M. Ventura, Carlos A. email: cad69@cam.ac.uk – sequence: 2 givenname: Andrew S. surname: Rowlands fullname: Rowlands, Andrew S. email: a.rowlands@vortechnik.com  | 
    
| BookMark | eNqNkc1u1TAQhb0oEm3hDVh4ySZhYsf56QIJXfFTqVKlCtaWO5lc-ZJrB9tpdR-g743TsGJB8caS_Z0zmnMu2Jnzjhh7V0FZQdV8OJTkKOxPpYBKldCXoNQZOwfZQKHqWrxmFzEeAEB1fX_Onu4Il5mCSTTw2T9S4HjCibhxZjpFG_nRDzRd8Wv3QDHZvUnWu_w7cD8ne7Rxe_Ajn_xjkXyx8qsdDxT9EpB4ouPzhCUQvw174yzyO-N-Wkd8tw6Lb9ir0UyR3v65L9mPL5-_774VN7dfr3efbgqsQaViaAikJNm2UINBVSsB0CqBYz4KpcJGCdMgqY5UNXRKDU2Hsh9BmPv7sZeX7P3mOwf_a8n76LwA0jQZR36JWqy5CCkq-SJaddBlVsB_oG0PfdvIrslovaEYfIyBRj0HezThpCvQa3_6oLf-9Nqfhl7n_rLs6i8Z2vQcfArGTi-JP25iysk-WAo6oiWHNNhAmPTg7b8NfgM-Nr_H | 
    
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2018_09_022 crossref_primary_10_1007_s11630_021_1521_5 crossref_primary_10_15377_2409_5818_2023_10_1 crossref_primary_10_3389_fenrg_2020_00006 crossref_primary_10_1016_j_applthermaleng_2017_10_077 crossref_primary_10_1016_j_renene_2020_06_037 crossref_primary_10_1007_s11265_019_01468_3 crossref_primary_10_1007_s00231_017_1992_9 crossref_primary_10_1088_1757_899X_180_1_012035 crossref_primary_10_1016_j_energy_2018_06_177 crossref_primary_10_1016_j_enconman_2017_08_065 crossref_primary_10_1016_j_energy_2016_04_063 crossref_primary_10_1016_j_energy_2023_127936  | 
    
| Cites_doi | 10.1016/j.energy.2009.11.025 10.1016/j.enconman.2006.10.020 10.1016/j.energy.2011.03.041 10.1016/j.energy.2012.11.009 10.1016/j.applthermaleng.2008.12.025 10.1016/j.rser.2012.03.022 10.1016/j.enconman.2008.10.018 10.1016/j.geothermics.2009.08.001 10.1016/j.rser.2013.01.028 10.1016/j.energy.2013.12.027 10.1016/j.energy.2013.11.057 10.1016/j.fuproc.2011.09.017 10.1016/j.energy.2013.11.056 10.1016/j.applthermaleng.2006.04.024  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2015 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7ST C1K SOI 7SP 7TB 8FD F28 FR3 KR7 L7M 7S9 L.6  | 
    
| DOI | 10.1016/j.energy.2015.09.055 | 
    
| DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts Environment Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Environmental Sciences  | 
    
| EndPage | 494 | 
    
| ExternalDocumentID | 10_1016_j_energy_2015_09_055 S0360544215012657  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7ST C1K SOI 7SP 7TB 8FD F28 FR3 KR7 L7M 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c405t-d6e033e377040ac545200752cffff5c35c652a6ce58e51d855d68c39f02abbf93 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0360-5442 | 
    
| IngestDate | Wed Oct 01 17:20:53 EDT 2025 Sun Sep 28 10:20:19 EDT 2025 Tue Oct 07 09:19:26 EDT 2025 Wed Oct 01 01:34:28 EDT 2025 Thu Apr 24 22:59:25 EDT 2025 Fri Feb 23 02:20:59 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Renewable power generation applications Recuperated power cycle ORC (Organic Rankine Cycle) Power cycle design and optimisation  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c405t-d6e033e377040ac545200752cffff5c35c652a6ce58e51d855d68c39f02abbf93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1790976386 | 
    
| PQPubID | 23462 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_2000523213 proquest_miscellaneous_1808052203 proquest_miscellaneous_1790976386 crossref_primary_10_1016_j_energy_2015_09_055 crossref_citationtrail_10_1016_j_energy_2015_09_055 elsevier_sciencedirect_doi_10_1016_j_energy_2015_09_055  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-12-15 | 
    
| PublicationDateYYYYMMDD | 2015-12-15 | 
    
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Energy (Oxford) | 
    
| PublicationYear | 2015 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Guo, Wang, Zhang (bib19) 2010 Astolfi, Romano, Bombarda, Macchi (bib10) 2014; 66 Vélez, Segovia, Martín, Antolín, Chejne, Quijano (bib7) 2012; 103 Dai, Wang, Gao (bib2) 2009; 50 Marcuccilli, Thiolet (bib15) 2010 Franco, Villani (bib18) 2009; 38 Ventura (bib14) 2012 Wei, Lu, Lu, Gu (bib5) 2007; 48 Dixon, Hall (bib17) 2010 Wang, Zhang, Fan, Ouyang, Zhao, Mu (bib3) 2011; 36 Drescher, Brüggemann (bib1) 2007; 27 Hung, Wang, Kuo, Pei, Tsai (bib4) 2010; 35 Tchanche, Papadakis, Lambrinos, Frangoudakis (bib6) 2009; 29 Quoilin, Van Den Broek, Declaye, Dewallef, Lemort (bib12) 2013; 22 Wang, Yan, Wang, Ma, Dai (bib9) 2013; 49 Lemmon, Huber, McLinden (bib16) 2007 Long Le, Feidt, Kheiri, Pelloux-Prayer (bib8) 2014; 67 Astolfi, Romano, Bombarda, Macchi (bib13) 2014; 66 Vélez, Segovia, Martín, Antolín, Chejne, Quijano (bib11) 2012; 16 Long Le (10.1016/j.energy.2015.09.055_bib8) 2014; 67 Vélez (10.1016/j.energy.2015.09.055_bib7) 2012; 103 Astolfi (10.1016/j.energy.2015.09.055_bib13) 2014; 66 Drescher (10.1016/j.energy.2015.09.055_bib1) 2007; 27 Quoilin (10.1016/j.energy.2015.09.055_bib12) 2013; 22 Hung (10.1016/j.energy.2015.09.055_bib4) 2010; 35 Lemmon (10.1016/j.energy.2015.09.055_bib16) 2007 Wei (10.1016/j.energy.2015.09.055_bib5) 2007; 48 Dixon (10.1016/j.energy.2015.09.055_bib17) 2010 Dai (10.1016/j.energy.2015.09.055_bib2) 2009; 50 Tchanche (10.1016/j.energy.2015.09.055_bib6) 2009; 29 Vélez (10.1016/j.energy.2015.09.055_bib11) 2012; 16 Astolfi (10.1016/j.energy.2015.09.055_bib10) 2014; 66 Wang (10.1016/j.energy.2015.09.055_bib9) 2013; 49 Wang (10.1016/j.energy.2015.09.055_bib3) 2011; 36 Ventura (10.1016/j.energy.2015.09.055_bib14) 2012 Guo (10.1016/j.energy.2015.09.055_bib19) 2010 Franco (10.1016/j.energy.2015.09.055_bib18) 2009; 38 Marcuccilli (10.1016/j.energy.2015.09.055_bib15) 2010  | 
    
| References_xml | – volume: 48 start-page: 1113 year: 2007 end-page: 1119 ident: bib5 article-title: Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery publication-title: Energy Convers Manag – volume: 29 start-page: 2468 year: 2009 end-page: 2476 ident: bib6 article-title: Fluid selection for a low-temperature solar organic Rankine cycle publication-title: Appl Therm Eng – volume: 49 start-page: 356 year: 2013 end-page: 365 ident: bib9 article-title: Thermodynamic analysis and optimization of an (Organic Rankine cycle) ORC using low grade heat source publication-title: Energy – year: 2007 ident: bib16 article-title: Nist standard reference database 23: reference fluid thermodynamic and transport properties-refprop, Version 8.0, National Institute of Standards and Technology, Standard reference data program – volume: 16 start-page: 4175 year: 2012 end-page: 4189 ident: bib11 article-title: A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation publication-title: Renew Sustain Energy Rev – volume: 36 start-page: 3406 year: 2011 end-page: 3418 ident: bib3 article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery publication-title: Energy – volume: 66 start-page: 435 year: 2014 end-page: 446 ident: bib13 article-title: Binary ORC (Organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources – Part B: techno-economic optimization publication-title: Energy – start-page: 1 year: 2010 end-page: 5 ident: bib19 article-title: Fluid selection for a low-temperature geothermal organic Rankine cycle by energy and exergy publication-title: Asia-Pacific power and energy engineering Conference, APPEEC, Chengdu, China, March 28–31 – volume: 27 start-page: 223 year: 2007 end-page: 228 ident: bib1 article-title: Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants publication-title: Appl Therm Eng – volume: 50 start-page: 576 year: 2009 end-page: 582 ident: bib2 article-title: Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery publication-title: Energy Convers Manag – start-page: 1 year: 2010 end-page: 9 ident: bib15 article-title: Optimizing binary cycles thanks to radial inflow turbines publication-title: Proceedings World Geothermal Congress 2010, Bali, Indonesia, April 25–29 – year: 2012 ident: bib14 article-title: Aerodynamic design and performance estimation of radial inflow turbines for renewable power generation applications – volume: 38 start-page: 379 year: 2009 end-page: 391 ident: bib18 article-title: Optimal design of binary cycle power plants for water-dominated, medium-temperature geothermal Fields publication-title: Geothermics – volume: 35 start-page: 1403 year: 2010 end-page: 1411 ident: bib4 article-title: A study of organic working fluids on system efficiency of an ORC using low-grade energy sources publication-title: Energy – volume: 103 start-page: 71 year: 2012 end-page: 77 ident: bib7 article-title: Comparative study of working fluids for a Rankine cycle operating at low temperature publication-title: Fuel Process Technol – volume: 67 start-page: 513 year: 2014 end-page: 526 ident: bib8 article-title: Performance optimization of low-temperature power generation by supercritical ORCS (Organic Rankine cycles) using low gwp (Global warming potential) working fluids publication-title: Energy – volume: 66 start-page: 423 year: 2014 end-page: 434 ident: bib10 article-title: Binary ORC (Organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources – Part A: thermodynamic optimization publication-title: Energy – volume: 22 start-page: 168 year: 2013 end-page: 186 ident: bib12 article-title: Techno-economic survey of organic Rankine cycle (ORC) systems publication-title: Renew Sustain Energy Rev – year: 2010 ident: bib17 article-title: Fluid mechanics and thermodynamics of turbomachinery – volume: 35 start-page: 1403 issue: 3 year: 2010 ident: 10.1016/j.energy.2015.09.055_bib4 article-title: A study of organic working fluids on system efficiency of an ORC using low-grade energy sources publication-title: Energy doi: 10.1016/j.energy.2009.11.025 – volume: 48 start-page: 1113 issue: 4 year: 2007 ident: 10.1016/j.energy.2015.09.055_bib5 article-title: Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2006.10.020 – volume: 36 start-page: 3406 issue: 5 year: 2011 ident: 10.1016/j.energy.2015.09.055_bib3 article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2011.03.041 – volume: 49 start-page: 356 year: 2013 ident: 10.1016/j.energy.2015.09.055_bib9 article-title: Thermodynamic analysis and optimization of an (Organic Rankine cycle) ORC using low grade heat source publication-title: Energy doi: 10.1016/j.energy.2012.11.009 – year: 2010 ident: 10.1016/j.energy.2015.09.055_bib17 – volume: 29 start-page: 2468 issue: 11–12 year: 2009 ident: 10.1016/j.energy.2015.09.055_bib6 article-title: Fluid selection for a low-temperature solar organic Rankine cycle publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2008.12.025 – volume: 16 start-page: 4175 issue: 6 year: 2012 ident: 10.1016/j.energy.2015.09.055_bib11 article-title: A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.03.022 – volume: 50 start-page: 576 issue: 3 year: 2009 ident: 10.1016/j.energy.2015.09.055_bib2 article-title: Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2008.10.018 – volume: 38 start-page: 379 issue: 4 year: 2009 ident: 10.1016/j.energy.2015.09.055_bib18 article-title: Optimal design of binary cycle power plants for water-dominated, medium-temperature geothermal Fields publication-title: Geothermics doi: 10.1016/j.geothermics.2009.08.001 – year: 2007 ident: 10.1016/j.energy.2015.09.055_bib16 – volume: 22 start-page: 168 year: 2013 ident: 10.1016/j.energy.2015.09.055_bib12 article-title: Techno-economic survey of organic Rankine cycle (ORC) systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.01.028 – year: 2012 ident: 10.1016/j.energy.2015.09.055_bib14 – volume: 67 start-page: 513 year: 2014 ident: 10.1016/j.energy.2015.09.055_bib8 article-title: Performance optimization of low-temperature power generation by supercritical ORCS (Organic Rankine cycles) using low gwp (Global warming potential) working fluids publication-title: Energy doi: 10.1016/j.energy.2013.12.027 – volume: 66 start-page: 435 year: 2014 ident: 10.1016/j.energy.2015.09.055_bib13 article-title: Binary ORC (Organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources – Part B: techno-economic optimization publication-title: Energy doi: 10.1016/j.energy.2013.11.057 – volume: 103 start-page: 71 year: 2012 ident: 10.1016/j.energy.2015.09.055_bib7 article-title: Comparative study of working fluids for a Rankine cycle operating at low temperature publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2011.09.017 – volume: 66 start-page: 423 year: 2014 ident: 10.1016/j.energy.2015.09.055_bib10 article-title: Binary ORC (Organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources – Part A: thermodynamic optimization publication-title: Energy doi: 10.1016/j.energy.2013.11.056 – volume: 27 start-page: 223 issue: 1 year: 2007 ident: 10.1016/j.energy.2015.09.055_bib1 article-title: Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.04.024 – start-page: 1 year: 2010 ident: 10.1016/j.energy.2015.09.055_bib19 article-title: Fluid selection for a low-temperature geothermal organic Rankine cycle by energy and exergy – start-page: 1 year: 2010 ident: 10.1016/j.energy.2015.09.055_bib15 article-title: Optimizing binary cycles thanks to radial inflow turbines  | 
    
| SSID | ssj0005899 | 
    
| Score | 2.2499647 | 
    
| Snippet | A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 484 | 
    
| SubjectTerms | algorithms Computational fluid dynamics Fluid flow Fluids Inclusions Mathematical models Operating temperature ORC (Organic Rankine Cycle) Power cycle design and optimisation Recuperated power cycle Recuperators Renewable power generation applications specific energy temperature Working fluids  | 
    
| Title | Recuperated power cycle analysis model: Investigation and optimisation of low-to-moderate resource temperature Organic Rankine Cycles | 
    
| URI | https://dx.doi.org/10.1016/j.energy.2015.09.055 https://www.proquest.com/docview/1790976386 https://www.proquest.com/docview/1808052203 https://www.proquest.com/docview/2000523213  | 
    
| Volume | 93 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQHOil4lNA25WRuJpN4thJuKHVogUEB1okbpbt2BIVTVbsriouvfV_M-M4QCsKUnNLMnYsTzzzZM-8IeTAFyax0hmmXSDVLg0rZeIZl9wUtgQE4XFD_-JSTq7zsxtxs0RGfS4MhlVG29_Z9GCt45NhnM3h9PZ2-BVsL-CNHHwWGFkpMKM8zwusYnD460WYRxlqSKIwQ-k-fS7EeLmQX4cBXiKwnWLC3-vu6S9DHbzPyRr5GGEjPe5Gtk6WXLNBVvus4tkG2R4_Z6yBYFyys03yG4DhYorUya6mU6yJRu0D9EF1pCOhoRjOEX3BuNE28LamLZiTHzHch7ae3rU_2bxlKI_d0fu49U-R3yqSM9MuudPSK41FGRwd4cdmW-T6ZPxtNGGx9gKzAOHmrJYu4dzxooBVri1WIkd0kVkPl7BcWCkyLa0TpRNpXQpRy9LyyieZNsZXfJssN23jdgg1uU5B61VViyy3PtHe5GlVmAqwQpZ5sUt4P-XKRmJyrI9xp_oItO-qU5RCRamkUqCoXcKeWk07Yo535Item-qPH0yB73in5X6vfAWTjgcqunHtYqaQ3QzgHC_lGzJI3AkgN-H_lsnCgSvPUr7336P8RD7gHUbapOIzWZ7fL9wXwEtzMwgLYkBWjk_PJ5ePbjcZBg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHOilorSo9EGN1Ku7iR07SW9oBdqWx4GCxM2yHVuiosmK3RXi0hv_mxnHKVC1RSLHZOxYnnjmiz3zDSGfQmkzp7xlxkdS7cqySmWBCSVs6SpAEAE39A-P1OS0-HYmz5bIeMiFwbDKZPt7mx6tdbozSrM5mp6fj76D7QW8UYDPAiOrZPmMrBSSl_gH9vnXvTiPKhaRRGmG4kP-XAzy8jHBDiO8ZKQ7xYy_v_unPyx1dD97a-RFwo10px_aS7Lk23WyOqQVz9bJxu5dyhoIpjU7e0VuABkupsid7Bs6xaJo1F1DH9QkPhIaq-F8ofcoN7oWnja0A3vyM8X70C7Qi-6KzTuG8tgdvUx7_xQJrhI7M-2zOx09NliVwdMxvmz2mpzu7Z6MJywVX2AOMNycNcpnQnhRlrDMjcNS5AgvuAtwSSekU5Ib5bysvMybSspGVU7UIePG2lCLDbLcdq1_Q6gtTA5qr-tG8sKFzARb5HVpawALnAe5ScQw5dolZnIskHGhhxC0H7pXlEZF6azWoKhNwn63mvbMHI_Il4M29YMvTIPzeKTl9qB8DZOOJyqm9d1ippHeDPCcqNR_ZJC5E1BuJv4tw-OJq-C5ePvkUX4kq5OTwwN98PVo_x15jk8w7CaX78ny_HLhPwB4mtutuDhuAb63Gps | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recuperated+power+cycle+analysis+model%3A+Investigation+and+optimisation+of+low-to-moderate+resource+temperature+Organic+Rankine+Cycles&rft.jtitle=Energy+%28Oxford%29&rft.au=de+M.+Ventura%2C+Carlos+A.&rft.au=Rowlands%2C+Andrew+S.&rft.date=2015-12-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=93&rft.spage=484&rft.epage=494&rft_id=info:doi/10.1016%2Fj.energy.2015.09.055&rft.externalDocID=S0360544215012657 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |