Recuperated power cycle analysis model: Investigation and optimisation of low-to-moderate resource temperature Organic Rankine Cycles

A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and results for a wide range of working fluids and operating point conditions are presented. Here, the model is applied to subcritical and transc...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 93; pp. 484 - 494
Main Authors de M. Ventura, Carlos A., Rowlands, Andrew S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2015
Subjects
Online AccessGet full text
ISSN0360-5442
DOI10.1016/j.energy.2015.09.055

Cover

Abstract A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and results for a wide range of working fluids and operating point conditions are presented. Here, the model is applied to subcritical and transcritical Rankine cycles. It comprises a brute-force search algorithm that covers a wide parametric study combining working fluid, resource and cooling temperatures as well as high-side pressures in order to ascertain the best working fluid for a given resource temperature and operating point. The present study determined the fluids that maximise the specific energy production from a hot stream for a range of low-to-medium temperature (100–250 °C) resources. This study shows that for the following resource temperatures: 100 °C, 120 °C, 150 °C, 180 °C and 210 °C, R125, R143a, RC318, R236ea and R152a were found to maximise specific energy production, respectively. In general, the inclusion of a recuperator within the power cycle results in greater specific energy production for a given operating temperature. However, it was found that for all fluids there was a threshold pressure above which the inclusion of a recuperator did not enhance system performance. This may have design and economic ramifications when designing next-generation transcritical and supercritical power cycles. •We investigated recuperated cycle configurations for 21 working fluids.•We performed a parametric analysis on resource temperature and operating pressure.•We report the rank of various working fluids for the cycle conditions specified.•Using a recuperator allows for greater performance at lower high-side pressures.•Some fluids are more tolerant to resource temperature variations than others.
AbstractList A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and results for a wide range of working fluids and operating point conditions are presented. Here, the model is applied to subcritical and transcritical Rankine cycles. It comprises a brute-force search algorithm that covers a wide parametric study combining working fluid, resource and cooling temperatures as well as high-side pressures in order to ascertain the best working fluid for a given resource temperature and operating point. The present study determined the fluids that maximise the specific energy production from a hot stream for a range of low-to-medium temperature (100–250 °C) resources. This study shows that for the following resource temperatures: 100 °C, 120 °C, 150 °C, 180 °C and 210 °C, R125, R143a, RC318, R236ea and R152a were found to maximise specific energy production, respectively. In general, the inclusion of a recuperator within the power cycle results in greater specific energy production for a given operating temperature. However, it was found that for all fluids there was a threshold pressure above which the inclusion of a recuperator did not enhance system performance. This may have design and economic ramifications when designing next-generation transcritical and supercritical power cycles.
A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and results for a wide range of working fluids and operating point conditions are presented. Here, the model is applied to subcritical and transcritical Rankine cycles. It comprises a brute-force search algorithm that covers a wide parametric study combining working fluid, resource and cooling temperatures as well as high-side pressures in order to ascertain the best working fluid for a given resource temperature and operating point. The present study determined the fluids that maximise the specific energy production from a hot stream for a range of low-to-medium temperature (100-250 degree C) resources. This study shows that for the following resource temperatures: 100 degree C, 120 degree C, 150 degree C, 180 degree C and 210 degree C, R125, R143a, RC318, R236ea and R152a were found to maximise specific energy production, respectively. In general, the inclusion of a recuperator within the power cycle results in greater specific energy production for a given operating temperature. However, it was found that for all fluids there was a threshold pressure above which the inclusion of a recuperator did not enhance system performance. This may have design and economic ramifications when designing next-generation transcritical and supercritical power cycles.
A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and results for a wide range of working fluids and operating point conditions are presented. Here, the model is applied to subcritical and transcritical Rankine cycles. It comprises a brute-force search algorithm that covers a wide parametric study combining working fluid, resource and cooling temperatures as well as high-side pressures in order to ascertain the best working fluid for a given resource temperature and operating point. The present study determined the fluids that maximise the specific energy production from a hot stream for a range of low-to-medium temperature (100–250 °C) resources. This study shows that for the following resource temperatures: 100 °C, 120 °C, 150 °C, 180 °C and 210 °C, R125, R143a, RC318, R236ea and R152a were found to maximise specific energy production, respectively. In general, the inclusion of a recuperator within the power cycle results in greater specific energy production for a given operating temperature. However, it was found that for all fluids there was a threshold pressure above which the inclusion of a recuperator did not enhance system performance. This may have design and economic ramifications when designing next-generation transcritical and supercritical power cycles. •We investigated recuperated cycle configurations for 21 working fluids.•We performed a parametric analysis on resource temperature and operating pressure.•We report the rank of various working fluids for the cycle conditions specified.•Using a recuperator allows for greater performance at lower high-side pressures.•Some fluids are more tolerant to resource temperature variations than others.
Author de M. Ventura, Carlos A.
Rowlands, Andrew S.
Author_xml – sequence: 1
  givenname: Carlos A.
  surname: de M. Ventura
  fullname: de M. Ventura, Carlos A.
  email: cad69@cam.ac.uk
– sequence: 2
  givenname: Andrew S.
  surname: Rowlands
  fullname: Rowlands, Andrew S.
  email: a.rowlands@vortechnik.com
BookMark eNqNkc1u1TAQhb0oEm3hDVh4ySZhYsf56QIJXfFTqVKlCtaWO5lc-ZJrB9tpdR-g743TsGJB8caS_Z0zmnMu2Jnzjhh7V0FZQdV8OJTkKOxPpYBKldCXoNQZOwfZQKHqWrxmFzEeAEB1fX_Onu4Il5mCSTTw2T9S4HjCibhxZjpFG_nRDzRd8Wv3QDHZvUnWu_w7cD8ne7Rxe_Ajn_xjkXyx8qsdDxT9EpB4ouPzhCUQvw174yzyO-N-Wkd8tw6Lb9ir0UyR3v65L9mPL5-_774VN7dfr3efbgqsQaViaAikJNm2UINBVSsB0CqBYz4KpcJGCdMgqY5UNXRKDU2Hsh9BmPv7sZeX7P3mOwf_a8n76LwA0jQZR36JWqy5CCkq-SJaddBlVsB_oG0PfdvIrslovaEYfIyBRj0HezThpCvQa3_6oLf-9Nqfhl7n_rLs6i8Z2vQcfArGTi-JP25iysk-WAo6oiWHNNhAmPTg7b8NfgM-Nr_H
CitedBy_id crossref_primary_10_1016_j_apenergy_2018_09_022
crossref_primary_10_1007_s11630_021_1521_5
crossref_primary_10_15377_2409_5818_2023_10_1
crossref_primary_10_3389_fenrg_2020_00006
crossref_primary_10_1016_j_applthermaleng_2017_10_077
crossref_primary_10_1016_j_renene_2020_06_037
crossref_primary_10_1007_s11265_019_01468_3
crossref_primary_10_1007_s00231_017_1992_9
crossref_primary_10_1088_1757_899X_180_1_012035
crossref_primary_10_1016_j_energy_2018_06_177
crossref_primary_10_1016_j_enconman_2017_08_065
crossref_primary_10_1016_j_energy_2016_04_063
crossref_primary_10_1016_j_energy_2023_127936
Cites_doi 10.1016/j.energy.2009.11.025
10.1016/j.enconman.2006.10.020
10.1016/j.energy.2011.03.041
10.1016/j.energy.2012.11.009
10.1016/j.applthermaleng.2008.12.025
10.1016/j.rser.2012.03.022
10.1016/j.enconman.2008.10.018
10.1016/j.geothermics.2009.08.001
10.1016/j.rser.2013.01.028
10.1016/j.energy.2013.12.027
10.1016/j.energy.2013.11.057
10.1016/j.fuproc.2011.09.017
10.1016/j.energy.2013.11.056
10.1016/j.applthermaleng.2006.04.024
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7ST
C1K
SOI
7SP
7TB
8FD
F28
FR3
KR7
L7M
7S9
L.6
DOI 10.1016/j.energy.2015.09.055
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 494
ExternalDocumentID 10_1016_j_energy_2015_09_055
S0360544215012657
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7ST
C1K
SOI
7SP
7TB
8FD
F28
FR3
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c405t-d6e033e377040ac545200752cffff5c35c652a6ce58e51d855d68c39f02abbf93
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Wed Oct 01 17:20:53 EDT 2025
Sun Sep 28 10:20:19 EDT 2025
Tue Oct 07 09:19:26 EDT 2025
Wed Oct 01 01:34:28 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Fri Feb 23 02:20:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Renewable power generation applications
Recuperated power cycle
ORC (Organic Rankine Cycle)
Power cycle design and optimisation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-d6e033e377040ac545200752cffff5c35c652a6ce58e51d855d68c39f02abbf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1790976386
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_2000523213
proquest_miscellaneous_1808052203
proquest_miscellaneous_1790976386
crossref_primary_10_1016_j_energy_2015_09_055
crossref_citationtrail_10_1016_j_energy_2015_09_055
elsevier_sciencedirect_doi_10_1016_j_energy_2015_09_055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-15
PublicationDateYYYYMMDD 2015-12-15
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Energy (Oxford)
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Wang, Zhang (bib19) 2010
Astolfi, Romano, Bombarda, Macchi (bib10) 2014; 66
Vélez, Segovia, Martín, Antolín, Chejne, Quijano (bib7) 2012; 103
Dai, Wang, Gao (bib2) 2009; 50
Marcuccilli, Thiolet (bib15) 2010
Franco, Villani (bib18) 2009; 38
Ventura (bib14) 2012
Wei, Lu, Lu, Gu (bib5) 2007; 48
Dixon, Hall (bib17) 2010
Wang, Zhang, Fan, Ouyang, Zhao, Mu (bib3) 2011; 36
Drescher, Brüggemann (bib1) 2007; 27
Hung, Wang, Kuo, Pei, Tsai (bib4) 2010; 35
Tchanche, Papadakis, Lambrinos, Frangoudakis (bib6) 2009; 29
Quoilin, Van Den Broek, Declaye, Dewallef, Lemort (bib12) 2013; 22
Wang, Yan, Wang, Ma, Dai (bib9) 2013; 49
Lemmon, Huber, McLinden (bib16) 2007
Long Le, Feidt, Kheiri, Pelloux-Prayer (bib8) 2014; 67
Astolfi, Romano, Bombarda, Macchi (bib13) 2014; 66
Vélez, Segovia, Martín, Antolín, Chejne, Quijano (bib11) 2012; 16
Long Le (10.1016/j.energy.2015.09.055_bib8) 2014; 67
Vélez (10.1016/j.energy.2015.09.055_bib7) 2012; 103
Astolfi (10.1016/j.energy.2015.09.055_bib13) 2014; 66
Drescher (10.1016/j.energy.2015.09.055_bib1) 2007; 27
Quoilin (10.1016/j.energy.2015.09.055_bib12) 2013; 22
Hung (10.1016/j.energy.2015.09.055_bib4) 2010; 35
Lemmon (10.1016/j.energy.2015.09.055_bib16) 2007
Wei (10.1016/j.energy.2015.09.055_bib5) 2007; 48
Dixon (10.1016/j.energy.2015.09.055_bib17) 2010
Dai (10.1016/j.energy.2015.09.055_bib2) 2009; 50
Tchanche (10.1016/j.energy.2015.09.055_bib6) 2009; 29
Vélez (10.1016/j.energy.2015.09.055_bib11) 2012; 16
Astolfi (10.1016/j.energy.2015.09.055_bib10) 2014; 66
Wang (10.1016/j.energy.2015.09.055_bib9) 2013; 49
Wang (10.1016/j.energy.2015.09.055_bib3) 2011; 36
Ventura (10.1016/j.energy.2015.09.055_bib14) 2012
Guo (10.1016/j.energy.2015.09.055_bib19) 2010
Franco (10.1016/j.energy.2015.09.055_bib18) 2009; 38
Marcuccilli (10.1016/j.energy.2015.09.055_bib15) 2010
References_xml – volume: 48
  start-page: 1113
  year: 2007
  end-page: 1119
  ident: bib5
  article-title: Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery
  publication-title: Energy Convers Manag
– volume: 29
  start-page: 2468
  year: 2009
  end-page: 2476
  ident: bib6
  article-title: Fluid selection for a low-temperature solar organic Rankine cycle
  publication-title: Appl Therm Eng
– volume: 49
  start-page: 356
  year: 2013
  end-page: 365
  ident: bib9
  article-title: Thermodynamic analysis and optimization of an (Organic Rankine cycle) ORC using low grade heat source
  publication-title: Energy
– year: 2007
  ident: bib16
  article-title: Nist standard reference database 23: reference fluid thermodynamic and transport properties-refprop, Version 8.0, National Institute of Standards and Technology, Standard reference data program
– volume: 16
  start-page: 4175
  year: 2012
  end-page: 4189
  ident: bib11
  article-title: A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation
  publication-title: Renew Sustain Energy Rev
– volume: 36
  start-page: 3406
  year: 2011
  end-page: 3418
  ident: bib3
  article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery
  publication-title: Energy
– volume: 66
  start-page: 435
  year: 2014
  end-page: 446
  ident: bib13
  article-title: Binary ORC (Organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources – Part B: techno-economic optimization
  publication-title: Energy
– start-page: 1
  year: 2010
  end-page: 5
  ident: bib19
  article-title: Fluid selection for a low-temperature geothermal organic Rankine cycle by energy and exergy
  publication-title: Asia-Pacific power and energy engineering Conference, APPEEC, Chengdu, China, March 28–31
– volume: 27
  start-page: 223
  year: 2007
  end-page: 228
  ident: bib1
  article-title: Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants
  publication-title: Appl Therm Eng
– volume: 50
  start-page: 576
  year: 2009
  end-page: 582
  ident: bib2
  article-title: Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery
  publication-title: Energy Convers Manag
– start-page: 1
  year: 2010
  end-page: 9
  ident: bib15
  article-title: Optimizing binary cycles thanks to radial inflow turbines
  publication-title: Proceedings World Geothermal Congress 2010, Bali, Indonesia, April 25–29
– year: 2012
  ident: bib14
  article-title: Aerodynamic design and performance estimation of radial inflow turbines for renewable power generation applications
– volume: 38
  start-page: 379
  year: 2009
  end-page: 391
  ident: bib18
  article-title: Optimal design of binary cycle power plants for water-dominated, medium-temperature geothermal Fields
  publication-title: Geothermics
– volume: 35
  start-page: 1403
  year: 2010
  end-page: 1411
  ident: bib4
  article-title: A study of organic working fluids on system efficiency of an ORC using low-grade energy sources
  publication-title: Energy
– volume: 103
  start-page: 71
  year: 2012
  end-page: 77
  ident: bib7
  article-title: Comparative study of working fluids for a Rankine cycle operating at low temperature
  publication-title: Fuel Process Technol
– volume: 67
  start-page: 513
  year: 2014
  end-page: 526
  ident: bib8
  article-title: Performance optimization of low-temperature power generation by supercritical ORCS (Organic Rankine cycles) using low gwp (Global warming potential) working fluids
  publication-title: Energy
– volume: 66
  start-page: 423
  year: 2014
  end-page: 434
  ident: bib10
  article-title: Binary ORC (Organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources – Part A: thermodynamic optimization
  publication-title: Energy
– volume: 22
  start-page: 168
  year: 2013
  end-page: 186
  ident: bib12
  article-title: Techno-economic survey of organic Rankine cycle (ORC) systems
  publication-title: Renew Sustain Energy Rev
– year: 2010
  ident: bib17
  article-title: Fluid mechanics and thermodynamics of turbomachinery
– volume: 35
  start-page: 1403
  issue: 3
  year: 2010
  ident: 10.1016/j.energy.2015.09.055_bib4
  article-title: A study of organic working fluids on system efficiency of an ORC using low-grade energy sources
  publication-title: Energy
  doi: 10.1016/j.energy.2009.11.025
– volume: 48
  start-page: 1113
  issue: 4
  year: 2007
  ident: 10.1016/j.energy.2015.09.055_bib5
  article-title: Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2006.10.020
– volume: 36
  start-page: 3406
  issue: 5
  year: 2011
  ident: 10.1016/j.energy.2015.09.055_bib3
  article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.041
– volume: 49
  start-page: 356
  year: 2013
  ident: 10.1016/j.energy.2015.09.055_bib9
  article-title: Thermodynamic analysis and optimization of an (Organic Rankine cycle) ORC using low grade heat source
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.009
– year: 2010
  ident: 10.1016/j.energy.2015.09.055_bib17
– volume: 29
  start-page: 2468
  issue: 11–12
  year: 2009
  ident: 10.1016/j.energy.2015.09.055_bib6
  article-title: Fluid selection for a low-temperature solar organic Rankine cycle
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2008.12.025
– volume: 16
  start-page: 4175
  issue: 6
  year: 2012
  ident: 10.1016/j.energy.2015.09.055_bib11
  article-title: A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.03.022
– volume: 50
  start-page: 576
  issue: 3
  year: 2009
  ident: 10.1016/j.energy.2015.09.055_bib2
  article-title: Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2008.10.018
– volume: 38
  start-page: 379
  issue: 4
  year: 2009
  ident: 10.1016/j.energy.2015.09.055_bib18
  article-title: Optimal design of binary cycle power plants for water-dominated, medium-temperature geothermal Fields
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2009.08.001
– year: 2007
  ident: 10.1016/j.energy.2015.09.055_bib16
– volume: 22
  start-page: 168
  year: 2013
  ident: 10.1016/j.energy.2015.09.055_bib12
  article-title: Techno-economic survey of organic Rankine cycle (ORC) systems
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.01.028
– year: 2012
  ident: 10.1016/j.energy.2015.09.055_bib14
– volume: 67
  start-page: 513
  year: 2014
  ident: 10.1016/j.energy.2015.09.055_bib8
  article-title: Performance optimization of low-temperature power generation by supercritical ORCS (Organic Rankine cycles) using low gwp (Global warming potential) working fluids
  publication-title: Energy
  doi: 10.1016/j.energy.2013.12.027
– volume: 66
  start-page: 435
  year: 2014
  ident: 10.1016/j.energy.2015.09.055_bib13
  article-title: Binary ORC (Organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources – Part B: techno-economic optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2013.11.057
– volume: 103
  start-page: 71
  year: 2012
  ident: 10.1016/j.energy.2015.09.055_bib7
  article-title: Comparative study of working fluids for a Rankine cycle operating at low temperature
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2011.09.017
– volume: 66
  start-page: 423
  year: 2014
  ident: 10.1016/j.energy.2015.09.055_bib10
  article-title: Binary ORC (Organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources – Part A: thermodynamic optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2013.11.056
– volume: 27
  start-page: 223
  issue: 1
  year: 2007
  ident: 10.1016/j.energy.2015.09.055_bib1
  article-title: Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.04.024
– start-page: 1
  year: 2010
  ident: 10.1016/j.energy.2015.09.055_bib19
  article-title: Fluid selection for a low-temperature geothermal organic Rankine cycle by energy and exergy
– start-page: 1
  year: 2010
  ident: 10.1016/j.energy.2015.09.055_bib15
  article-title: Optimizing binary cycles thanks to radial inflow turbines
SSID ssj0005899
Score 2.2499647
Snippet A numerical model for recuperated power cycles for renewable power applications is described in the present paper. The original code was written in Python and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 484
SubjectTerms algorithms
Computational fluid dynamics
Fluid flow
Fluids
Inclusions
Mathematical models
Operating temperature
ORC (Organic Rankine Cycle)
Power cycle design and optimisation
Recuperated power cycle
Recuperators
Renewable power generation applications
specific energy
temperature
Working fluids
Title Recuperated power cycle analysis model: Investigation and optimisation of low-to-moderate resource temperature Organic Rankine Cycles
URI https://dx.doi.org/10.1016/j.energy.2015.09.055
https://www.proquest.com/docview/1790976386
https://www.proquest.com/docview/1808052203
https://www.proquest.com/docview/2000523213
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQHOil4lNA25WRuJpN4thJuKHVogUEB1okbpbt2BIVTVbsriouvfV_M-M4QCsKUnNLMnYsTzzzZM-8IeTAFyax0hmmXSDVLg0rZeIZl9wUtgQE4XFD_-JSTq7zsxtxs0RGfS4MhlVG29_Z9GCt45NhnM3h9PZ2-BVsL-CNHHwWGFkpMKM8zwusYnD460WYRxlqSKIwQ-k-fS7EeLmQX4cBXiKwnWLC3-vu6S9DHbzPyRr5GGEjPe5Gtk6WXLNBVvus4tkG2R4_Z6yBYFyys03yG4DhYorUya6mU6yJRu0D9EF1pCOhoRjOEX3BuNE28LamLZiTHzHch7ae3rU_2bxlKI_d0fu49U-R3yqSM9MuudPSK41FGRwd4cdmW-T6ZPxtNGGx9gKzAOHmrJYu4dzxooBVri1WIkd0kVkPl7BcWCkyLa0TpRNpXQpRy9LyyieZNsZXfJssN23jdgg1uU5B61VViyy3PtHe5GlVmAqwQpZ5sUt4P-XKRmJyrI9xp_oItO-qU5RCRamkUqCoXcKeWk07Yo535Item-qPH0yB73in5X6vfAWTjgcqunHtYqaQ3QzgHC_lGzJI3AkgN-H_lsnCgSvPUr7336P8RD7gHUbapOIzWZ7fL9wXwEtzMwgLYkBWjk_PJ5ePbjcZBg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHOilorSo9EGN1Ku7iR07SW9oBdqWx4GCxM2yHVuiosmK3RXi0hv_mxnHKVC1RSLHZOxYnnjmiz3zDSGfQmkzp7xlxkdS7cqySmWBCSVs6SpAEAE39A-P1OS0-HYmz5bIeMiFwbDKZPt7mx6tdbozSrM5mp6fj76D7QW8UYDPAiOrZPmMrBSSl_gH9vnXvTiPKhaRRGmG4kP-XAzy8jHBDiO8ZKQ7xYy_v_unPyx1dD97a-RFwo10px_aS7Lk23WyOqQVz9bJxu5dyhoIpjU7e0VuABkupsid7Bs6xaJo1F1DH9QkPhIaq-F8ofcoN7oWnja0A3vyM8X70C7Qi-6KzTuG8tgdvUx7_xQJrhI7M-2zOx09NliVwdMxvmz2mpzu7Z6MJywVX2AOMNycNcpnQnhRlrDMjcNS5AgvuAtwSSekU5Ib5bysvMybSspGVU7UIePG2lCLDbLcdq1_Q6gtTA5qr-tG8sKFzARb5HVpawALnAe5ScQw5dolZnIskHGhhxC0H7pXlEZF6azWoKhNwn63mvbMHI_Il4M29YMvTIPzeKTl9qB8DZOOJyqm9d1ippHeDPCcqNR_ZJC5E1BuJv4tw-OJq-C5ePvkUX4kq5OTwwN98PVo_x15jk8w7CaX78ny_HLhPwB4mtutuDhuAb63Gps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recuperated+power+cycle+analysis+model%3A+Investigation+and+optimisation+of+low-to-moderate+resource+temperature+Organic+Rankine+Cycles&rft.jtitle=Energy+%28Oxford%29&rft.au=de+M.+Ventura%2C+Carlos+A.&rft.au=Rowlands%2C+Andrew+S.&rft.date=2015-12-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=93&rft.spage=484&rft.epage=494&rft_id=info:doi/10.1016%2Fj.energy.2015.09.055&rft.externalDocID=S0360544215012657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon