Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium

Volume averaged equations governing unsteady, laminar, mixed convection flow in an enclosure filled with a Darcian fluid-saturated uniform porous medium in the presence of internal heat generation is formulated. The two vertical walls of the enclosure are insulated while the horizontal walls are kep...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 42; no. 13; pp. 2465 - 2481
Main Authors Khanafer, Khalil M., Chamkha, Ali J.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.1999
Elsevier
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
DOI10.1016/S0017-9310(98)00227-0

Cover

Abstract Volume averaged equations governing unsteady, laminar, mixed convection flow in an enclosure filled with a Darcian fluid-saturated uniform porous medium in the presence of internal heat generation is formulated. The two vertical walls of the enclosure are insulated while the horizontal walls are kept at constant temperatures with the top surface is moving at a constant speed. The developed equations are nondimensionalized and then solved numerically subject the appropriate initial and boundary conditions by the finite-volume approach along with the Alternating Direct Implicit (ADI) procedure. Comparisons with previously published work are performed and found to be in excellent agreement. A parametric study is conducted and a set of graphical results is presented and discussed to elucidate interesting features of the solution.
AbstractList Volume averaged equations governing unsteady, laminar, mixed convection flow in an enclosure filled with a Darcian fluid-saturated uniform porous medium in the presence of internal heat generation is formulated. The two vertical walls of the enclosure are insulated while the horizontal walls are kept at constant temperatures with the top surface is moving at a constant speed. The developed equations are nondimensionalized and then solved numerically subject to appropriate initial and boundary conditions by the finite-volume approach along with the alternating direct implicit (ADI) procedure. Comparisons with previously published work are performed and found to be in excellent agreement. A parametric study is conducted and a set of graphical results is presented and discussed to elucidate interesting features of the solution.
Volume averaged equations governing unsteady, laminar, mixed convection flow in an enclosure filled with a Darcian fluid-saturated uniform porous medium in the presence of internal heat generation is formulated. The two vertical walls of the enclosure are insulated while the horizontal walls are kept at constant temperatures with the top surface is moving at a constant speed. The developed equations are nondimensionalized and then solved numerically subject the appropriate initial and boundary conditions by the finite-volume approach along with the Alternating Direct Implicit (ADI) procedure. Comparisons with previously published work are performed and found to be in excellent agreement. A parametric study is conducted and a set of graphical results is presented and discussed to elucidate interesting features of the solution.
Author Khanafer, Khalil M.
Chamkha, Ali J.
Author_xml – sequence: 1
  givenname: Khalil M.
  surname: Khanafer
  fullname: Khanafer, Khalil M.
– sequence: 2
  givenname: Ali J.
  surname: Chamkha
  fullname: Chamkha, Ali J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1693073$$DView record in Pascal Francis
BookMark eNqFkcFuFSEUhompibfVRzCZhYm6GD0wzABxYZpGW5M2XVRXLgjDHCKGC1eYubVvL9PbdOGmKwL5_p_DxzE5iikiIa8pfKBAh483AFS0qqPwTsn3AIyJFp6RDZVCtYxKdUQ2j8gLclzK73ULfNiQn1f-L06NTXGPdvYpNi6k28bHxjTBT-2U_R5jg9GGVJaMjfMh1MCtn39VxIWlQsXMSzZzPd6lnJbSbHHyy_Ylee5MKPjqYT0hP75--X520V5en387O71sLYd-bicYTIeS91J1TKgBGZdi6PtRuvqUYRKj425UwMZOTtwJxqxByiWMzPVIbXdC3h56dzn9WbDMeuuLxRBMxDqNFpwLUIxDJd88kKZYE1w20fqid9lvTb7TdFAdiK5inw6YzamUjE5bP5vVzpyND5qCXsXre_F6taqV1Pfi9XpJ_1_6sf-J3OdDDqurvcesi_VVfHWZ69_oKfknGv4BA6ScdQ
CODEN IJHMAK
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2023_106854
crossref_primary_10_1016_j_icheatmasstransfer_2006_02_003
crossref_primary_10_1016_j_ijheatmasstransfer_2015_11_040
crossref_primary_10_1016_j_proeng_2015_05_031
crossref_primary_10_1115_1_4044389
crossref_primary_10_1016_j_ijthermalsci_2015_01_022
crossref_primary_10_1007_s10910_014_0448_4
crossref_primary_10_1016_j_icheatmasstransfer_2014_07_013
crossref_primary_10_1108_HFF_10_2014_0305
crossref_primary_10_2514_1_T5369
crossref_primary_10_1016_j_icheatmasstransfer_2022_106226
crossref_primary_10_1016_j_ijthermalsci_2013_01_013
crossref_primary_10_1016_j_compfluid_2013_10_045
crossref_primary_10_1002_mma_7280
crossref_primary_10_1051_meca_2016026
crossref_primary_10_1016_j_ijft_2021_100105
crossref_primary_10_4028_www_scientific_net_AMM_789_790_282
crossref_primary_10_1080_10407780802084439
crossref_primary_10_1016_j_ijheatmasstransfer_2010_08_006
crossref_primary_10_1016_j_icheatmasstransfer_2022_106111
crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_071
crossref_primary_10_1016_j_molliq_2021_118046
crossref_primary_10_1016_j_applthermaleng_2006_03_004
crossref_primary_10_1016_j_icheatmasstransfer_2017_10_009
crossref_primary_10_1007_s10973_023_12485_7
crossref_primary_10_2514_1_T4744
crossref_primary_10_1016_j_icheatmasstransfer_2022_106439
crossref_primary_10_1002_htj_21908
crossref_primary_10_1016_j_euromechflu_2016_04_011
crossref_primary_10_1016_j_heliyon_2021_e05933
crossref_primary_10_1515_nleng_2017_0053
crossref_primary_10_1016_j_icheatmasstransfer_2017_05_025
crossref_primary_10_1108_HFF_01_2015_0037
crossref_primary_10_1080_10407782_2013_811955
crossref_primary_10_1016_j_ijheatmasstransfer_2010_01_007
crossref_primary_10_1007_s10596_017_9670_z
crossref_primary_10_1016_j_icheatmasstransfer_2014_12_016
crossref_primary_10_1016_j_ijheatmasstransfer_2006_11_048
crossref_primary_10_1016_j_heliyon_2022_e12079
crossref_primary_10_1016_j_rineng_2023_101360
crossref_primary_10_1063_5_0214033
crossref_primary_10_1007_s00231_015_1516_4
crossref_primary_10_26634_jfet_6_1_1290
crossref_primary_10_1016_j_aej_2021_07_045
crossref_primary_10_1016_j_jestch_2015_03_003
crossref_primary_10_1080_00986445_2014_912634
crossref_primary_10_1080_10407780903424674
crossref_primary_10_1016_j_jtice_2015_01_006
crossref_primary_10_1007_s10973_021_11193_4
crossref_primary_10_1088_0253_6102_56_1_25
crossref_primary_10_1002_htj_22683
crossref_primary_10_29121_granthaalayah_v5_i7_2017_2143
crossref_primary_10_23939_mmc2021_04_807
crossref_primary_10_32604_fdmp_2021_015422
crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_103
crossref_primary_10_1108_HFF_02_2021_0124
crossref_primary_10_1108_HFF_11_2014_0344
crossref_primary_10_1007_s42452_022_05260_0
crossref_primary_10_1007_s10973_017_6918_8
crossref_primary_10_1007_s11242_011_9893_8
crossref_primary_10_1016_j_ijheatmasstransfer_2011_04_047
crossref_primary_10_1016_j_icheatmasstransfer_2021_105202
crossref_primary_10_1016_j_camwa_2015_12_037
crossref_primary_10_2298_TSCI230916057B
crossref_primary_10_1002_htj_21207
crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_083
crossref_primary_10_1007_s42452_020_03815_7
crossref_primary_10_1016_j_applthermaleng_2020_115209
crossref_primary_10_1108_HFF_04_2019_0317
crossref_primary_10_1002_htj_22530
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_059
crossref_primary_10_1080_10407782_2010_516684
crossref_primary_10_1088_1757_899X_1080_1_012025
crossref_primary_10_1016_j_powtec_2015_04_057
crossref_primary_10_1088_1402_4896_abebff
crossref_primary_10_1093_jcde_qwac033
crossref_primary_10_1007_s00231_003_0455_7
crossref_primary_10_1016_j_ijheatmasstransfer_2006_10_008
crossref_primary_10_1016_j_icheatmasstransfer_2024_107910
crossref_primary_10_1016_j_ijheatmasstransfer_2013_07_023
crossref_primary_10_1016_S0017_9310_01_00008_4
crossref_primary_10_1080_10407782_2014_986001
crossref_primary_10_1002_htj_21336
crossref_primary_10_1515_ijnsns_2017_0258
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_078
crossref_primary_10_1016_j_icheatmasstransfer_2020_104732
crossref_primary_10_1080_00319104_2016_1253087
crossref_primary_10_1007_s40819_016_0180_9
crossref_primary_10_1007_s10973_023_12690_4
crossref_primary_10_1016_j_ijft_2024_100980
crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_096
crossref_primary_10_3389_fmech_2018_00015
crossref_primary_10_1016_j_ijheatmasstransfer_2009_05_011
crossref_primary_10_1007_BF02736231
crossref_primary_10_1016_j_apt_2015_01_005
crossref_primary_10_1007_s11242_020_01402_3
crossref_primary_10_1002_htj_22993
crossref_primary_10_1016_j_renene_2022_06_089
crossref_primary_10_1016_j_apm_2008_05_010
crossref_primary_10_1016_j_euromechflu_2010_06_008
crossref_primary_10_1016_j_ijthermalsci_2014_03_007
crossref_primary_10_2514_1_T5983
crossref_primary_10_1088_1742_6596_1153_1_012115
crossref_primary_10_1515_nleng_2017_0001
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_136
crossref_primary_10_1166_jon_2020_1748
crossref_primary_10_1016_j_aej_2021_01_031
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_018
crossref_primary_10_1016_j_ijmecsci_2021_106667
crossref_primary_10_1016_j_aej_2020_04_045
crossref_primary_10_1016_S0196_8904_00_00141_2
crossref_primary_10_1016_j_apt_2017_11_032
crossref_primary_10_1002_htj_21670
crossref_primary_10_1080_10407782_2023_2233144
crossref_primary_10_1016_j_ijheatmasstransfer_2016_09_061
crossref_primary_10_1115_1_4046060
crossref_primary_10_1080_10407780902821508
crossref_primary_10_1108_EC_11_2015_0368
crossref_primary_10_2478_ijame_2020_0020
crossref_primary_10_1016_j_aej_2021_05_003
crossref_primary_10_1016_j_rineng_2024_103316
crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_065
crossref_primary_10_1016_j_est_2020_101702
crossref_primary_10_1016_j_cjche_2017_03_009
crossref_primary_10_3390_en17205220
crossref_primary_10_3390_en16052338
crossref_primary_10_1016_j_ijmecsci_2022_107448
crossref_primary_10_12693_APhysPolA_124_665
crossref_primary_10_1002_htj_22174
crossref_primary_10_1016_j_aej_2020_04_039
crossref_primary_10_1016_j_icheatmasstransfer_2024_107951
crossref_primary_10_1371_journal_pone_0304826
crossref_primary_10_1002_num_22820
crossref_primary_10_1080_17455030_2022_2071503
crossref_primary_10_1515_ijcre_2016_0184
crossref_primary_10_1016_j_scient_2012_06_015
crossref_primary_10_1016_j_applthermaleng_2025_125616
crossref_primary_10_1016_j_aej_2021_09_029
crossref_primary_10_1016_j_ijthermalsci_2021_106948
crossref_primary_10_1007_s11242_009_9429_7
crossref_primary_10_1007_s10973_019_08204_w
crossref_primary_10_1115_1_4042352
crossref_primary_10_1142_S0129183121500583
crossref_primary_10_1007_s40819_017_0305_9
crossref_primary_10_1016_j_ijheatmasstransfer_2011_01_015
crossref_primary_10_1108_HFF_08_2021_0555
crossref_primary_10_1155_2016_5405939
crossref_primary_10_1016_j_jestch_2015_08_005
crossref_primary_10_1007_s10973_018_7377_6
crossref_primary_10_2514_1_T4102
crossref_primary_10_1016_j_jtice_2014_05_026
crossref_primary_10_1063_1_4981911
crossref_primary_10_1016_j_nucengdes_2013_06_023
crossref_primary_10_1080_17455030_2022_2083718
crossref_primary_10_1016_j_proeng_2015_11_369
crossref_primary_10_1016_j_powtec_2014_06_040
crossref_primary_10_54021_seesv5n2_721
crossref_primary_10_1016_j_csite_2025_105947
crossref_primary_10_1080_17455030_2022_2092661
crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_109
crossref_primary_10_1016_j_tsep_2021_100922
crossref_primary_10_1007_s00542_019_04690_y
crossref_primary_10_1007_s13369_015_1998_x
crossref_primary_10_1016_j_amc_2015_05_145
crossref_primary_10_1016_j_powtec_2017_12_030
crossref_primary_10_1007_s10483_018_2397_9
crossref_primary_10_1016_j_camwa_2021_05_030
crossref_primary_10_1016_j_ijmecsci_2021_107030
crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_114
crossref_primary_10_1016_j_physa_2019_01_044
crossref_primary_10_1016_S1290_0729_02_01337_6
crossref_primary_10_1016_j_commatsci_2007_07_004
crossref_primary_10_1016_j_icheatmasstransfer_2021_105603
crossref_primary_10_1080_01457632_2020_1792622
crossref_primary_10_1007_s40819_024_01770_0
crossref_primary_10_1002_htj_21287
crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_046
crossref_primary_10_1063_5_0196344
crossref_primary_10_1016_j_jare_2020_09_008
crossref_primary_10_1016_j_tsep_2023_101998
crossref_primary_10_1108_EC_10_2015_0300
crossref_primary_10_1088_1402_4896_abd1b0
crossref_primary_10_1108_09615530910938317
crossref_primary_10_1080_10407782_2014_949178
crossref_primary_10_1016_j_ijheatmasstransfer_2012_04_058
crossref_primary_10_1007_s00231_019_02698_8
crossref_primary_10_1080_17415977_2021_2016737
crossref_primary_10_1002_htj_20402
crossref_primary_10_1016_j_amc_2021_126232
crossref_primary_10_1016_j_ijmecsci_2019_04_014
crossref_primary_10_1515_jnet_2022_0070
crossref_primary_10_1080_01430750_2018_1537935
crossref_primary_10_1016_j_camwa_2024_03_005
crossref_primary_10_1016_j_icheatmasstransfer_2019_104457
crossref_primary_10_1080_10407782_2019_1690351
crossref_primary_10_1108_HFF_07_2020_0399
crossref_primary_10_1016_j_compfluid_2014_04_007
crossref_primary_10_1016_j_ijthermalsci_2015_03_018
crossref_primary_10_1016_j_euromechflu_2012_03_005
crossref_primary_10_1080_07373937_2012_718304
crossref_primary_10_1140_epjp_s13360_022_03009_7
crossref_primary_10_1002_htj_21029
crossref_primary_10_1088_1402_4896_aca56c
crossref_primary_10_1140_epjp_s13360_021_02040_4
crossref_primary_10_1615_JPorMedia_2023045345
crossref_primary_10_1016_j_ijthermalsci_2022_107732
crossref_primary_10_1142_S0129183121500091
crossref_primary_10_1140_epjp_i2016_16095_5
crossref_primary_10_1016_j_jmmm_2022_169549
crossref_primary_10_1016_j_heliyon_2024_e38303
crossref_primary_10_1080_10407780701454006
crossref_primary_10_1016_j_molliq_2014_07_024
crossref_primary_10_1080_10407780802603246
crossref_primary_10_1002_eng2_12151
crossref_primary_10_1016_j_proeng_2015_11_333
crossref_primary_10_1007_s10973_024_13228_y
crossref_primary_10_1016_j_ijheatmasstransfer_2015_10_010
crossref_primary_10_1002_htj_22003
crossref_primary_10_1080_10407780290059657
crossref_primary_10_1080_104077802753570356
crossref_primary_10_1140_epjst_e2019_900085_0
Cites_doi 10.1061/JMCEA3.0002176
10.1016/S0017-9310(05)80059-6
10.1016/0021-9991(89)90037-5
10.1016/S0017-9310(05)80069-9
10.1016/0021-9991(83)90129-8
10.1115/1.3243136
10.1016/0021-9991(82)90058-4
10.1146/annurev.fl.14.010182.001101
10.1017/S0022112072001181
10.1016/0017-9310(81)90027-2
10.1080/10407789508913766
10.1080/01495728508961859
10.1098/rspa.1969.0212
10.1243/JMES_JOUR_1980_022_054_02
10.1016/0017-9310(84)90162-5
10.1016/0017-9310(92)90191-T
10.1115/1.3449641
10.1080/10407789208944778
10.1080/10407788808910004
10.1016/0735-1933(96)00070-X
ContentType Journal Article
Copyright 1998 Elsevier Science Ltd
1999 INIST-CNRS
Copyright_xml – notice: 1998 Elsevier Science Ltd
– notice: 1999 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0017-9310(98)00227-0
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 2481
ExternalDocumentID 1693073
10_1016_S0017_9310_98_00227_0
S0017931098002270
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c405t-d06a3e8458932796e2487655b8f0226d7bf4fb902b38d4f722cae1480b2f5e1c3
IEDL.DBID AIKHN
ISSN 0017-9310
IngestDate Thu Oct 02 11:02:19 EDT 2025
Mon Jul 21 09:14:52 EDT 2025
Wed Oct 01 05:01:16 EDT 2025
Thu Apr 24 23:03:50 EDT 2025
Fri Feb 23 02:14:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords mixed convection
porous medium
heat generation
Internal source
Temperature distribution
Digital simulation
Boundary conditions
Finite volume method
Velocity distribution
Unsteady flow
Cavity flow
Moving wall
Combined convection
Porous medium flow
Correlations
Heat transfer
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-d06a3e8458932796e2487655b8f0226d7bf4fb902b38d4f722cae1480b2f5e1c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 744709240
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_744709240
pascalfrancis_primary_1693073
crossref_citationtrail_10_1016_S0017_9310_98_00227_0
crossref_primary_10_1016_S0017_9310_98_00227_0
elsevier_sciencedirect_doi_10_1016_S0017_9310_98_00227_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-07-01
PublicationDateYYYYMMDD 1999-07-01
PublicationDate_xml – month: 07
  year: 1999
  text: 1999-07-01
  day: 01
PublicationDecade 1990
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 1999
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Agarwal (BIB5) 1981
Torrance, Davis, Elike, Gill, Gutman, Hsui, Lyons, Zien (BIB12) 1972; 51
Imberger, Hamblin (BIB2) 1982; 14
Kakac, Aung, Viskanta (BIB16) 1985
Minkowycz, Cheng, Cheng (BIB22) 1985; 8
Young, Liggett, Gallagher (BIB6) 1976; 102
Lai, Kulacki (BIB23) 1991; 113
Nield, Bejan (BIB19) 1992
Lage (BIB26) 1992; 22
Aldoss, Al-Nimr, Jarrah, Al-Shaer (BIB21) 1995; 28
Hsieh, Chen, Armaly (BIB24) 1993; 36
Cha, Jaluria (BIB1) 1984; 27
Ghia, Ghia, Shin (BIB9) 1982; 43
Pilkington (BIB4) 1969; IA 314
Morzynski, Popiel (BIB7) 1988; 13
Cheng (BIB18) 1978; 4
Moallemi, Jang (BIB14) 1992; 35
Prasad, Koseff (BIB13) 1989
Bejan (BIB17) 1984
Chamkha (BIB25) 1996; 23
Patankar (BIB28) 1980
Thompson, Ferziger (BIB8) 1989; 82
Vafai, Tien (BIB20) 1981; 24
Iwatsu, Hyun, Kuwahara (BIB15) 1993; 36
Ideriah (BIB3) 1980; 22
Schreiber, Keller (BIB10) 1983; 49
Kosef, Street (BIB11) 1984; 106
Chan, Ivey, Barry (BIB27) 1970; 2
Bejan (10.1016/S0017-9310(98)00227-0_BIB17) 1984
Iwatsu (10.1016/S0017-9310(98)00227-0_BIB15) 1993; 36
Schreiber (10.1016/S0017-9310(98)00227-0_BIB10) 1983; 49
Hsieh (10.1016/S0017-9310(98)00227-0_BIB24) 1993; 36
Chan (10.1016/S0017-9310(98)00227-0_BIB27) 1970; 2
Ideriah (10.1016/S0017-9310(98)00227-0_BIB3) 1980; 22
Young (10.1016/S0017-9310(98)00227-0_BIB6) 1976; 102
Prasad (10.1016/S0017-9310(98)00227-0_BIB13) 1989
Aldoss (10.1016/S0017-9310(98)00227-0_BIB21) 1995; 28
Ghia (10.1016/S0017-9310(98)00227-0_BIB9) 1982; 43
Vafai (10.1016/S0017-9310(98)00227-0_BIB20) 1981; 24
Morzynski (10.1016/S0017-9310(98)00227-0_BIB7) 1988; 13
Pilkington (10.1016/S0017-9310(98)00227-0_BIB4) 1969; IA 314
Lai (10.1016/S0017-9310(98)00227-0_BIB23) 1991; 113
Thompson (10.1016/S0017-9310(98)00227-0_BIB8) 1989; 82
Kosef (10.1016/S0017-9310(98)00227-0_BIB11) 1984; 106
Kakac (10.1016/S0017-9310(98)00227-0_BIB16) 1985
Moallemi (10.1016/S0017-9310(98)00227-0_BIB14) 1992; 35
Patankar (10.1016/S0017-9310(98)00227-0_BIB28) 1980
Cha (10.1016/S0017-9310(98)00227-0_BIB1) 1984; 27
Agarwal (10.1016/S0017-9310(98)00227-0_BIB5) 1981
Chamkha (10.1016/S0017-9310(98)00227-0_BIB25) 1996; 23
Torrance (10.1016/S0017-9310(98)00227-0_BIB12) 1972; 51
Lage (10.1016/S0017-9310(98)00227-0_BIB26) 1992; 22
Imberger (10.1016/S0017-9310(98)00227-0_BIB2) 1982; 14
Cheng (10.1016/S0017-9310(98)00227-0_BIB18) 1978; 4
Minkowycz (10.1016/S0017-9310(98)00227-0_BIB22) 1985; 8
Nield (10.1016/S0017-9310(98)00227-0_BIB19) 1992
References_xml – volume: 51
  start-page: 221
  year: 1972
  end-page: 231
  ident: BIB12
  article-title: Cavity flows driven by buoyancy and shear
  publication-title: J. Fluid Mech.
– volume: 82
  start-page: 94
  year: 1989
  end-page: 121
  ident: BIB8
  article-title: An adaptive multigrid technique for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
– volume: 22
  start-page: 469
  year: 1992
  end-page: 485
  ident: BIB26
  article-title: Effect of the convective inertia term on Benard convection in a porous medium
  publication-title: Numerical Heat Transfer
– volume: 14
  start-page: 153
  year: 1982
  end-page: 187
  ident: BIB2
  article-title: Dynamics of lakes, reservoirs, and cooling ponds
  publication-title: A Rev. Fluid Mech.
– volume: 43
  start-page: 387
  year: 1982
  end-page: 411
  ident: BIB9
  article-title: High-
  publication-title: J. Comput. Phys.
– volume: 2
  start-page: 21
  year: 1970
  ident: BIB27
  article-title: Natural convection in enclosed porous media with rectangular boundaries
  publication-title: ASME J. Heat Transfer
– volume: 27
  start-page: 1801
  year: 1984
  end-page: 1810
  ident: BIB1
  article-title: Recirculating mixed convection flow for energy extraction
  publication-title: Int. J. Heat Mass Transfer
– volume: 35
  start-page: 1881
  year: 1992
  end-page: 1892
  ident: BIB14
  article-title: Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity
  publication-title: Int. J. Heat Mass Transfer
– volume: 102
  start-page: 1009
  year: 1976
  end-page: 1023
  ident: BIB6
  article-title: Unsteady stratified circulation in a cavity
  publication-title: ASCE J. The Engineering Mechanics Division
– volume: 22
  start-page: 287
  year: 1980
  end-page: 295
  ident: BIB3
  article-title: Prediction of turbulent cavity flow driven by buoyancy and shear
  publication-title: J. Mech. Engng Sci.
– volume: 106
  start-page: 390
  year: 1984
  end-page: 398
  ident: BIB11
  article-title: The lid-driven cavity flow: a synthesis of qualitative and quantitative observations
  publication-title: ASME J. Fluids Engng
– year: 1984
  ident: BIB17
  article-title: Convective Heat Transfer
– volume: 8
  start-page: 349
  year: 1985
  end-page: 359
  ident: BIB22
  article-title: Mixed convection about a nonisothermal cylinder and sphere in a porous medium
  publication-title: Numerical Heat Transfer
– start-page: 475
  year: 1985
  end-page: 611
  ident: BIB16
  publication-title: Natural Convection: Fundamentals and Applications
– volume: 4
  start-page: 1
  year: 1978
  end-page: 105
  ident: BIB18
  article-title: Heat Transfer in Geothermal Systems
  publication-title: Advances in Heat Transfer
– year: 1992
  ident: BIB19
  article-title: Convection in Porous Media
– volume: 24
  start-page: 195
  year: 1981
  end-page: 203
  ident: BIB20
  article-title: Boundary and inertia effects on flow and heat transfer in porous media
  publication-title: Int. J. Heat Mass Transfer
– volume: 23
  start-page: 875
  year: 1996
  end-page: 887
  ident: BIB25
  article-title: Non-Darcy hydromagnetic free convection from a cone and a wedge in porous medium
  publication-title: Int. Commun. Heat Mass Transfer
– year: 1980
  ident: BIB28
  article-title: Numerical Heat Transfer and Fluid Flow
– start-page: 155
  year: 1989
  end-page: 162
  ident: BIB13
  article-title: Combined forced and natural convection heat transfer in a deep lid-driven cavity flow
  publication-title: Heat Transfer in Convective Flows, HTD-107
– volume: 36
  start-page: 1485
  year: 1993
  end-page: 1493
  ident: BIB24
  article-title: Nonsimilarity solutions for mixed convection from vertical surface in a porous medium–variable surface temperature of heat flux
  publication-title: Int. J. Heat Mass Transfer
– volume: 113
  start-page: 252
  year: 1991
  end-page: 255
  ident: BIB23
  article-title: Non-Darcy mixed convection along a vertical wall in a saturated porous medium
  publication-title: Int. J. Heat Mass Transfer
– volume: 36
  start-page: 1601
  year: 1993
  end-page: 1608
  ident: BIB15
  article-title: Mixed convection in a driven cavity with a stable vertical temperature gradient
  publication-title: Int. J. Heat Mass Transfer
– volume: IA 314
  start-page: 1
  year: 1969
  end-page: 25
  ident: BIB4
  article-title: Review Lecture: The float glass process
  publication-title: Proc. R. Soc. Lond.
– volume: 49
  start-page: 310
  year: 1983
  end-page: 333
  ident: BIB10
  article-title: Driven cavity flows by efficient numerical techniques
  publication-title: J. Comput. Phys.
– volume: 28
  start-page: 635
  year: 1995
  end-page: 645
  ident: BIB21
  article-title: Magnetohydrodynamic mixed convection from a plate embedded in a porous medium
  publication-title: Numerical Heat Transfer
– year: 1981
  ident: BIB5
  article-title: A third-order-accurate upwind scheme for Navier–Stokes solutions at high Reynolds numbers, AIAA-81-0112
  publication-title: Proc. 19th AIAA Aerospace Sciences Meeting, St Louis, MI, January
– volume: 13
  start-page: 265
  year: 1988
  end-page: 273
  ident: BIB7
  article-title: Laminar heat transfer in a two-dimensional cavity covered by a moving wall
  publication-title: Numer. Heat Transfer
– volume: 102
  start-page: 1009
  issue: EM6
  year: 1976
  ident: 10.1016/S0017-9310(98)00227-0_BIB6
  article-title: Unsteady stratified circulation in a cavity
  publication-title: ASCE J. The Engineering Mechanics Division
  doi: 10.1061/JMCEA3.0002176
– volume: 36
  start-page: 1485
  year: 1993
  ident: 10.1016/S0017-9310(98)00227-0_BIB24
  article-title: Nonsimilarity solutions for mixed convection from vertical surface in a porous medium–variable surface temperature of heat flux
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(05)80059-6
– volume: 82
  start-page: 94
  year: 1989
  ident: 10.1016/S0017-9310(98)00227-0_BIB8
  article-title: An adaptive multigrid technique for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90037-5
– volume: 36
  start-page: 1601
  year: 1993
  ident: 10.1016/S0017-9310(98)00227-0_BIB15
  article-title: Mixed convection in a driven cavity with a stable vertical temperature gradient
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(05)80069-9
– volume: 49
  start-page: 310
  year: 1983
  ident: 10.1016/S0017-9310(98)00227-0_BIB10
  article-title: Driven cavity flows by efficient numerical techniques
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(83)90129-8
– volume: 106
  start-page: 390
  year: 1984
  ident: 10.1016/S0017-9310(98)00227-0_BIB11
  article-title: The lid-driven cavity flow: a synthesis of qualitative and quantitative observations
  publication-title: ASME J. Fluids Engng
  doi: 10.1115/1.3243136
– volume: 43
  start-page: 387
  year: 1982
  ident: 10.1016/S0017-9310(98)00227-0_BIB9
  article-title: High-Re solutions for incompressible flow using Navier–Stokes equations and a multigrid method
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(82)90058-4
– volume: 113
  start-page: 252
  year: 1991
  ident: 10.1016/S0017-9310(98)00227-0_BIB23
  article-title: Non-Darcy mixed convection along a vertical wall in a saturated porous medium
  publication-title: Int. J. Heat Mass Transfer
– volume: 14
  start-page: 153
  year: 1982
  ident: 10.1016/S0017-9310(98)00227-0_BIB2
  article-title: Dynamics of lakes, reservoirs, and cooling ponds
  publication-title: A Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.14.010182.001101
– year: 1984
  ident: 10.1016/S0017-9310(98)00227-0_BIB17
– volume: 51
  start-page: 221
  year: 1972
  ident: 10.1016/S0017-9310(98)00227-0_BIB12
  article-title: Cavity flows driven by buoyancy and shear
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112072001181
– volume: 4
  start-page: 1
  year: 1978
  ident: 10.1016/S0017-9310(98)00227-0_BIB18
  article-title: Heat Transfer in Geothermal Systems
  publication-title: Advances in Heat Transfer
– volume: 24
  start-page: 195
  year: 1981
  ident: 10.1016/S0017-9310(98)00227-0_BIB20
  article-title: Boundary and inertia effects on flow and heat transfer in porous media
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(81)90027-2
– volume: 28
  start-page: 635
  year: 1995
  ident: 10.1016/S0017-9310(98)00227-0_BIB21
  article-title: Magnetohydrodynamic mixed convection from a plate embedded in a porous medium
  publication-title: Numerical Heat Transfer
  doi: 10.1080/10407789508913766
– volume: 8
  start-page: 349
  year: 1985
  ident: 10.1016/S0017-9310(98)00227-0_BIB22
  article-title: Mixed convection about a nonisothermal cylinder and sphere in a porous medium
  publication-title: Numerical Heat Transfer
  doi: 10.1080/01495728508961859
– start-page: 155
  year: 1989
  ident: 10.1016/S0017-9310(98)00227-0_BIB13
  article-title: Combined forced and natural convection heat transfer in a deep lid-driven cavity flow
– year: 1981
  ident: 10.1016/S0017-9310(98)00227-0_BIB5
  article-title: A third-order-accurate upwind scheme for Navier–Stokes solutions at high Reynolds numbers, AIAA-81-0112
– volume: IA 314
  start-page: 1
  year: 1969
  ident: 10.1016/S0017-9310(98)00227-0_BIB4
  article-title: Review Lecture: The float glass process
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspa.1969.0212
– volume: 22
  start-page: 287
  year: 1980
  ident: 10.1016/S0017-9310(98)00227-0_BIB3
  article-title: Prediction of turbulent cavity flow driven by buoyancy and shear
  publication-title: J. Mech. Engng Sci.
  doi: 10.1243/JMES_JOUR_1980_022_054_02
– volume: 27
  start-page: 1801
  year: 1984
  ident: 10.1016/S0017-9310(98)00227-0_BIB1
  article-title: Recirculating mixed convection flow for energy extraction
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(84)90162-5
– volume: 35
  start-page: 1881
  year: 1992
  ident: 10.1016/S0017-9310(98)00227-0_BIB14
  article-title: Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(92)90191-T
– year: 1980
  ident: 10.1016/S0017-9310(98)00227-0_BIB28
– volume: 2
  start-page: 21
  year: 1970
  ident: 10.1016/S0017-9310(98)00227-0_BIB27
  article-title: Natural convection in enclosed porous media with rectangular boundaries
  publication-title: ASME J. Heat Transfer
  doi: 10.1115/1.3449641
– volume: 22
  start-page: 469
  year: 1992
  ident: 10.1016/S0017-9310(98)00227-0_BIB26
  article-title: Effect of the convective inertia term on Benard convection in a porous medium
  publication-title: Numerical Heat Transfer
  doi: 10.1080/10407789208944778
– year: 1992
  ident: 10.1016/S0017-9310(98)00227-0_BIB19
– volume: 13
  start-page: 265
  year: 1988
  ident: 10.1016/S0017-9310(98)00227-0_BIB7
  article-title: Laminar heat transfer in a two-dimensional cavity covered by a moving wall
  publication-title: Numer. Heat Transfer
  doi: 10.1080/10407788808910004
– start-page: 475
  year: 1985
  ident: 10.1016/S0017-9310(98)00227-0_BIB16
– volume: 23
  start-page: 875
  year: 1996
  ident: 10.1016/S0017-9310(98)00227-0_BIB25
  article-title: Non-Darcy hydromagnetic free convection from a cone and a wedge in porous medium
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/0735-1933(96)00070-X
SSID ssj0017046
Score 2.1028118
Snippet Volume averaged equations governing unsteady, laminar, mixed convection flow in an enclosure filled with a Darcian fluid-saturated uniform porous medium in the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2465
SubjectTerms Boundary conditions
Convection and heat transfer
Enclosures
Exact sciences and technology
Finite volume method
Flows through porous media
Fluid dynamics
Fundamental areas of phenomenology (including applications)
heat generation
Laminar flow
Laminar flows
Laminar flows in cavities
mixed convection
Nonhomogeneous flows
Physics
Porous materials
porous medium
Turbulent flows, convection, and heat transfer
Wall flow
Title Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium
URI https://dx.doi.org/10.1016/S0017-9310(98)00227-0
https://www.proquest.com/docview/744709240
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AKRWK
  dateStart: 19600601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_0pCCItLbFqx_kwQd9WM1-JnkUqVx76IMoCj6EzSaBhXXv8O5on_q3O5Pd85BShD4thJ1kM8nO_CbzEYAjkytXOGkiZ5RBA8XE5N-No9iiNimVQ1ROucNX18XoLvv5kD-swcUyF4bCKnvZ38n0IK37lrOem2fTuqYcX9pcMVcy1MFDu30D9Y-UA9g4_zEeXb86EwTv8nVIIBPBKpGn6yQ0Hit5EvqJ-L9U1Na0nCHjfHfjxV_CO2iky4-w3UNJdt597SdYc-0OfAghndXsMzxe1b-dZSGsPCQvMN9MfrG6ZSVrahvZZxJ0DGfcTOiYkHlKC7SMTmbxFd8s8KUZ1f1EOGoZ4vTJYsbIF794-gJ3l99vL0ZRf5VCVCEim0eWF2XqZJYjPEmEKlyChkqR50Z6nHNhhfGZN4onJpU28yJJqtKhpcRN4nMXV-lXGLST1u0Cy4WSPkEYKCq0Lbktk7iSpioKmXKLaGYI2ZJ7uurrjNN1F41eBZQh0zUxXSupA9M1H8LpK9m0K7TxHoFcLo1-s2M0KoP3SA_eLOVqQLoYUqRDYMul1fi3kQulbB0yWYssExxNVv7t_0ffg82u9gPF_O7DYP68cAeIbObmENZP_8SH_f6l5_jmfvwCHpnyBA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA7isqwgi_sQx9U1Bw-7h9Z0-pHkKKLMquNpBgb2EDqdBBranmEe6MnfvlXpHgdZZMBryKNTSVd9lXoRcmoy5XInTeSMMqCgmBjtu3EUW5AmhXKAyjF2eHCf90fpzTgbb5HLVSwMulV2vL_l6YFbdy3nHTXPp1WFMb54uWKmZMiDB3r7hzTjAjWws-cXP49YsDZaB9kxdl-H8bRThMZfSv4Os0TsLQG1Oy3mQDbf1rv4j3UHeXS9Rz53QJJetN_6hWy55iv5GBw6y_k38ndQPTlLg1N5CF2gvp480qqhBa0rG9kZsjkK-60n-EhIPQYFWorvstDF10voNMesnwBGLQWUPlnOKVrilw_fyej6anjZj7pCClEJeGwRWZYXiZNpBuCEC5U7DmpKnmVGethzboXxqTeKcZNIm3rBeVk40JOY4T5zcZnsk-1m0rgDQjOhpOcAAkUJmiWzBY9Laco8lwmzgGV6JF1RT5ddlnEsdlHrtTsZEF0j0bWSOhBdsx45exk2bdNsbBogV0ejX90XDaJg09DjV0e5XhDLQoqkR-jqaDX8a2hAKRoHRNYiTQUDhZUdvn_1E_KpPxzc6bs_97c_yE6bBQK9f4_I9mK2dMeAcRbmZ7jD_wCHdfEp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+convection+flow+in+a+lid-driven+enclosure+filled+with+a+fluid-saturated+porous+medium&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=KHANAFER%2C+K.+M&rft.au=CHAMKHA%2C+A.+J&rft.date=1999-07-01&rft.pub=Elsevier&rft.issn=0017-9310&rft.volume=42&rft.issue=13&rft.spage=2465&rft.epage=2481&rft_id=info:doi/10.1016%2FS0017-9310%2898%2900227-0&rft.externalDBID=n%2Fa&rft.externalDocID=1693073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon