In vivo bioimpedance changes during haemorrhagic and ischaemic stroke in rats: towards 3D stroke imaging using electrical impedance tomography

Electrical impedance tomography (EIT) could be used as a portable non-invasive means to image the development of ischaemic stroke or haemorrhage. The purpose of this study was to examine if this was possible using time difference imaging, in the anesthetised rat using 40 spring-loaded scalp electrod...

Full description

Saved in:
Bibliographic Details
Published inPhysiological measurement Vol. 37; no. 6; pp. 765 - 784
Main Authors Dowrick, T, Blochet, C, Holder, D
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.06.2016
Subjects
Online AccessGet full text
ISSN0967-3334
1361-6579
1361-6579
DOI10.1088/0967-3334/37/6/765

Cover

More Information
Summary:Electrical impedance tomography (EIT) could be used as a portable non-invasive means to image the development of ischaemic stroke or haemorrhage. The purpose of this study was to examine if this was possible using time difference imaging, in the anesthetised rat using 40 spring-loaded scalp electrodes with applied constant currents of 50-150 μA at 2 kHz. Impedance changes in the largest 10% of electrode combinations were  −12.8%  ±  12.0% over the first 10 min for haemorrhage and  +46.1%  ±  37.2% over one hour for ischaemic stroke (mean  ±  SD, n  =  7 in each group). The volume of the pathologies, assessed by tissue section and histology post-mortem, was 12.6 μl  ±  17.6 μl and 12.6 μl  ±  17.6 μl for haemorrhage and ischaemia respectively. In time difference EIT images, there was a correspondence with the pathology in 3/7 cases of haemorrhage and none of the ischaemic strokes. Although the net impedance changes were physiologically reasonable and consistent with expectations from the literature, it was disappointing that it was not possible to obtain reliable EIT images. The reason for this are not clear, but probably include confounding effects of secondary ischaemia for haemorrhage and tissue and cerebrospinal fluid shifts for the stroke model. With this method, it does not appear that EIT with scalp electrodes is yet ready for clinical use.
Bibliography:Institute of Physics and Engineering in Medicine
PMEA-101248.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0967-3334
1361-6579
1361-6579
DOI:10.1088/0967-3334/37/6/765