Learning and non-learning algorithms for cuffless blood pressure measurement: a review

The machine learning approach has gained a significant attention in the healthcare sector because of the prospect of developing new techniques for medical devices and handling the critical database of chronic diseases. The learning approach has potential to analyze complex medical data, disease diag...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 59; no. 6; pp. 1201 - 1222
Main Authors Agham, Nishigandha Dnyaneshwar, Chaskar, Uttam M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-021-02362-6

Cover

Abstract The machine learning approach has gained a significant attention in the healthcare sector because of the prospect of developing new techniques for medical devices and handling the critical database of chronic diseases. The learning approach has potential to analyze complex medical data, disease diagnosis, and patient monitoring system, and to monitor e-health record. Non-invasive cuffless blood pressure (CLBP) measurement secured a significant position in the patient monitoring system. From a few recent decades, the importance of cuffless technology has been perceived towards continuous monitoring of blood pressure (BP) and supplementary efforts have been made towards its continuous monitoring. However, the optimal method that measures BP unambiguously and continuously has not yet emerged along with issues like calibration time, accuracy and long-term estimation of BP with miniaturizing hardware. The present study provides an insight into several learning algorithms along with their feature selection models. Various challenges and future improvements towards the current state of machine learning in healthcare industries are discussed in the present review. The bottom line of this study is to provide a comprehensive perspective of the machine learning approach of CLBP for the generation of highly precise predictive models for continuous BP measurement.
AbstractList The machine learning approach has gained a significant attention in the healthcare sector because of the prospect of developing new techniques for medical devices and handling the critical database of chronic diseases. The learning approach has potential to analyze complex medical data, disease diagnosis, and patient monitoring system, and to monitor e-health record. Non-invasive cuffless blood pressure (CLBP) measurement secured a significant position in the patient monitoring system. From a few recent decades, the importance of cuffless technology has been perceived towards continuous monitoring of blood pressure (BP) and supplementary efforts have been made towards its continuous monitoring. However, the optimal method that measures BP unambiguously and continuously has not yet emerged along with issues like calibration time, accuracy and long-term estimation of BP with miniaturizing hardware. The present study provides an insight into several learning algorithms along with their feature selection models. Various challenges and future improvements towards the current state of machine learning in healthcare industries are discussed in the present review. The bottom line of this study is to provide a comprehensive perspective of the machine learning approach of CLBP for the generation of highly precise predictive models for continuous BP measurement.
The machine learning approach has gained a significant attention in the healthcare sector because of the prospect of developing new techniques for medical devices and handling the critical database of chronic diseases. The learning approach has potential to analyze complex medical data, disease diagnosis, and patient monitoring system, and to monitor e-health record. Non-invasive cuffless blood pressure (CLBP) measurement secured a significant position in the patient monitoring system. From a few recent decades, the importance of cuffless technology has been perceived towards continuous monitoring of blood pressure (BP) and supplementary efforts have been made towards its continuous monitoring. However, the optimal method that measures BP unambiguously and continuously has not yet emerged along with issues like calibration time, accuracy and long-term estimation of BP with miniaturizing hardware. The present study provides an insight into several learning algorithms along with their feature selection models. Various challenges and future improvements towards the current state of machine learning in healthcare industries are discussed in the present review. The bottom line of this study is to provide a comprehensive perspective of the machine learning approach of CLBP for the generation of highly precise predictive models for continuous BP measurement.The machine learning approach has gained a significant attention in the healthcare sector because of the prospect of developing new techniques for medical devices and handling the critical database of chronic diseases. The learning approach has potential to analyze complex medical data, disease diagnosis, and patient monitoring system, and to monitor e-health record. Non-invasive cuffless blood pressure (CLBP) measurement secured a significant position in the patient monitoring system. From a few recent decades, the importance of cuffless technology has been perceived towards continuous monitoring of blood pressure (BP) and supplementary efforts have been made towards its continuous monitoring. However, the optimal method that measures BP unambiguously and continuously has not yet emerged along with issues like calibration time, accuracy and long-term estimation of BP with miniaturizing hardware. The present study provides an insight into several learning algorithms along with their feature selection models. Various challenges and future improvements towards the current state of machine learning in healthcare industries are discussed in the present review. The bottom line of this study is to provide a comprehensive perspective of the machine learning approach of CLBP for the generation of highly precise predictive models for continuous BP measurement.
Author Agham, Nishigandha Dnyaneshwar
Chaskar, Uttam M.
Author_xml – sequence: 1
  givenname: Nishigandha Dnyaneshwar
  orcidid: 0000-0001-6224-9619
  surname: Agham
  fullname: Agham, Nishigandha Dnyaneshwar
  email: nishi1012@gmail.com
  organization: College of Engineering Pune
– sequence: 2
  givenname: Uttam M.
  surname: Chaskar
  fullname: Chaskar, Uttam M.
  organization: College of Engineering Pune
BookMark eNp9kE1LxDAQhoMouK7-AU8BL16qM2madL2J-AULXtRryKbJWmmTNWkV_73RFYU97CFMZuZ5Z4b3gOz64C0hxwhnCCDPE2KFsgCG-ZWCFWKHTFDynHLOd8kEkEMBiPU-OUjpFTJZMT4hz3Oro2_9kmrf0Dy16P4K3TLEdnjpE3UhUjM619mU6KILoaGrmP9jtLS3-jv21g8XVNNo31v7cUj2nO6SPfqNU_J0c_14dVfMH27vry7nheFQDYURtZgxmFW1a6SbGYbMCo1MSlEuBDipa3B8ZjF3DBi-wFpXutGaMyehbsopOV3PXcXwNto0qL5Nxnad9jaMSbGqlCKvwjKjJxvoaxijz9dlioPAskLIFFtTJoaUonVqFdtex0-FoL6tVmurVTZQ_VitRBbVGyLTDnpogx-ibrvt0nItTXmPX9r4f9UW1RfjwZR5
CitedBy_id crossref_primary_10_1097_HJH_0000000000003224
crossref_primary_10_1109_TBME_2024_3434344
crossref_primary_10_2196_64349
crossref_primary_10_1021_acsnano_4c04291
crossref_primary_10_1007_s12530_024_09591_8
crossref_primary_10_1155_2022_5916040
crossref_primary_10_1016_j_bspc_2023_105862
crossref_primary_10_1109_JSEN_2023_3272921
crossref_primary_10_3390_mi14040804
crossref_primary_10_3389_fphys_2023_1172150
crossref_primary_10_1159_000522660
Cites_doi 10.1213/ANE.0b013e318270a6d9
10.1159/000493478
10.1109/HISTELCON.2017.8535736
10.1109/TSMCB.2002.999807
10.1109/ICIAFS.2014.7069529
10.1016/j.bspc.2019.101682
10.1109/ISCAS.2015.7168806
10.1007/s11517-019-02007-9
10.1109/ICIST.2015.7288952
10.1109/EMBC.2018.8512829
10.1097/HJH.0b013e3282f25b5a
10.1007/s10916-018-0942-5
10.1080/07853890.2019.1694170
10.1109/ACCESS.2019.2902217
10.1155/2018/1548647
10.1007/s10439-011-0467-2
10.1007/s10916-019-1479-y
10.1109/TENCON.2018.8650069
10.1109/EMBC.2013.6610446
10.1007/s10439-013-0854-y
10.1152/japplphysiol.00980.2011
10.1109/JBHI.2018.2825020
10.1109/EMBC.2016.7592189
10.1109/SMC.2018.00371
10.1109/TBME.2014.2318779
10.1109/TII.2019.2962546
10.1155/2018/5396030
10.1088/1361-6579/aaa454
10.1155/2017/1803485
10.1109/RBME.2019.2931587
10.1097/ANA.0000000000000245
10.1007/BF02345755
10.1109/MeMeA.2019.8802170
10.1177/016173467900100406
10.1145/3055635.3056634
10.1109/TIM.2019.2941037
10.1007/s11517-018-01948-x
10.1016/j.apacoust.2020.107279
10.1109/JBHI.2017.2691715
10.1088/0967-3334/37/12/2154
10.1109/EMBC.2017.8036930
10.3390/s17051176
10.1109/TBME.2016.2580904
10.1299/jamdsm.4.179
10.1007/978-3-030-24701-0
10.1109/ACCESS.2019.2933498
10.1109/ISMSIT.2018.8567071
10.1016/j.irbm.2014.07.002
10.1109/TBME.2011.2180019
10.1007/BF02347553
10.1109/ACCESS.2017.2707472
10.1109/TBME.2018.2865751
10.1109/ICSENS.2016.7808908
10.1109/TBME.2016.2612639
10.1007/s10916-020-01551-4
10.1016/j.bspc.2018.08.022
10.1109/EMBC.2014.6944640
10.1109/ISMS.2011.27
10.3758/BF03205360
10.1016/j.jacc.2015.02.038
10.1186/s12938-017-0317-z
10.3390/diagnostics8030065
10.3233/THC-174568
10.1109/ICASSP.2018.8461959
10.1007/s00134-013-2964-2
10.1109/TIM.2017.2745081
10.1155/2018/7804243
10.1109/I2MTC.2013.6555424
10.1109/ISSNIP.2007.4496910
10.3906/elk-1712-215
10.3390/s19153420
10.1007/s10439-017-1864-y
10.1109/ACCESS.2017.2787980
10.1364/BOE.7.003007
10.1109/ISPAN-FCST-ISCC.2017.42
10.1109/IEMBS.2005.1615827
10.1007/s10558-009-9077-0
10.3390/s19112585
10.1109/JSTQE.2018.2871604
10.3390/technologies5020021
10.1109/ICEECCOT.2017.8284610
10.1109/BHI.2018.8333434
10.1109/TIM.2013.2273612
10.1109/SMARTCOMP.2016.7501681
10.1109/BSN.2016.7516258
10.1109/TIM.2019.2947103
10.1109/ICC.2016.7511599
10.1109/FUZZ-IEEE.2013.6622434
10.1109/EMBC.2016.7590814
10.1109/ISBB.2015.7344952
10.1186/s12859-019-2667-y
10.1109/ICASSP.2016.7471783
10.1109/ACCESS.2017.2701800
10.1109/TCE.2012.6227468
10.1109/BioCAS.2015.7348425
10.1016/j.bspc.2019.02.028
10.3390/s18041160
10.1080/23311916.2018.1497114
10.1111/j.1469-8986.1981.tb01545.x
10.1016/S0933-3657(00)00072-5
10.1109/TII.2018.2832081
10.1109/SAS.2013.6493568
10.1109/HSI.2018.8430971
10.1109/EMBC.2016.7590775
10.3390/app9020304
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2021
International Federation for Medical and Biological Engineering 2021.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2021
– notice: International Federation for Medical and Biological Engineering 2021.
DBID AAYXX
CITATION
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-021-02362-6
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database (subscription)
ProQuest Biological Science Database (NC LIVE)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 1222
ExternalDocumentID 10_1007_s11517_021_02362_6
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c405t-c686920958fd7f9c212e6a127763b60f7a80f49e1c21c0c4b18a5adaa42f708d3
IEDL.DBID AGYKE
ISSN 0140-0118
1741-0444
IngestDate Thu Oct 02 12:08:30 EDT 2025
Tue Oct 07 05:51:45 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Wed Oct 01 03:38:00 EDT 2025
Fri Feb 21 02:48:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Blood pressure
Learning algorithm
Non-learning algorithm
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-c686920958fd7f9c212e6a127763b60f7a80f49e1c21c0c4b18a5adaa42f708d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6224-9619
PQID 2540613510
PQPubID 54161
PageCount 22
ParticipantIDs proquest_miscellaneous_2537640513
proquest_journals_2540613510
crossref_primary_10_1007_s11517_021_02362_6
crossref_citationtrail_10_1007_s11517_021_02362_6
springer_journals_10_1007_s11517_021_02362_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BoleaJLázaroJGilERoviraERemartínezJMLagunaPPueyoENavarroABailónRPulse rate and transit time analysis to predict hypotension events after spinal anesthesia during programmed cesarean laborAnnals Biomed Eng20171;459225363
Wang L, Zhou W, Xing Y, Zhou X (2018) A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram. J Healthcare Eng 2018
FujitaDSuzukiARyuKPPG-Based systolic blood pressure estimation method using PLS and level-crossing featureAppl Sci201992304
SuzukiARyuKFeature selection method for estimating systolic blood pressure using the Taguchi methodIEEE Trans Indust Inform20134;102107785
LanKCRaknimPKaoWFHuangJHToward hypertension prediction based on PPG-derived HRV signals: A feasibility studyJ Med Syst20181;426103
ZhangBRenHHuangGChengYHuCPredicting blood pressure from physiological index data using the SVR algorithmBMC bioinformatics20191;201109
Datta S, Banerjee R, Choudhury AD, Sinha A, Pal A (2016) Blood pressure estimation from photoplethysmogram using latent parameters. In: 2016 IEEE International conference on communications (ICC), pp 1–7
SharmaMBarbosaKHoVGriggsDGhirmaiTKrishnanSKHsiaiTKChiaoJCCaoHCuff-less and continuous blood pressure monitoring: A methodological reviewTechnologies20175221
SanninoGDe FalcoIDe PietroGA continuous noninvasive arterial pressure (CNAP) approach for health 4.0 systemsIEEE Trans Indust Informat20181;151498506
WangJJLinCTLiuSHWenZCModel-based synthetic fuzzy logic controller for indirect blood pressure measurementIEEE Trans Syst Man Cybern Part B (Cybernetics)20027;32330615
Xuan FW (2011) An exploration on real-time cuffless blood pressure estimation for e-home healthcare, Doctoral dissertation, University of Macau
Poliñski A, Czuszyñski K, Kocejko T (2018) Blood pressure estimation based on blood flow, ECG and respiratory signals using recurrent neural networks. In: 2018 11th international conference on human system interaction (HSI). IEEE, pp 86–92
ZhangQZhouDZengXHighly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signalsBiomed Eng Online201716123281667745294811
LopezGShuzoMUshidaHHidakaKYanagimotoSImaiYKosakaADelaunayJJYamadaIContinuous blood pressure monitoring in daily lifeJ Adv Mechani Design Syst Manufact20104117986
Das S, Ghosh PK, Kar S (2013) Hypertension diagnosis: A comparative study using fuzzy expert system and neuro fuzzy system. In: 2013 IEEE International conference on fuzzy systems (FUZZ-IEEE), pp 1–7
KaoYHChaoPCWeyCLDesign and validation of a new ppg module to acquire high-quality physiological signals for high-accuracy biomedical sensingIEEE J Select Topics Quantum Electron201824;25110
Morsi I, El Gawad YZ (2013) Fuzzy logic in heart rate and blood pressure measuring system. In: 2013 IEEE sensors applications symposium proceedings, pp 113–117
LiuSHChengDCSuCHA cuffless blood pressure measurement based on the Impedance plethysmography techniqueSensors20171751176
Li J, Sawanoi Y (2017) The history and innovation of home blood pressure monitors. IEEE HISTory of ELectrotechnolgy CONference (HISTELCON) 82–86
PanFanHePeiyuChenFeiXiaoboPuZhaoQijunZhengDingchangDeep learning-based automatic blood pressure measurement: evaluation of the effect of deep breathing, talking and arm movementAnnals Med201951:7-8397403
MahfoufMAbbodMFLinkensDAA survey of fuzzy logic monitoring and control utilisation in medicineArtif Intell Med20011;211-32742
ChenWKobayashiTIchikawaSTakeuchiYTogawaTContinuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibrationMed Biol Eng Comput2000385569741:STN:280:DC%2BD3M%2Fks1Kkuw%3D%3D11094816
ErtuğrulÖFSezginNA noninvasive time-frequency-based approach to estimate cuffless arterial blood pressureTurkish J Electric Eng Comput Sci201828;265226074
Su P, Ding X, Zhang Y, Miao F, Zhao N (2017) Learning to Predict Blood Pressure with Deep Bidirectional LSTM Network. arXiv:1705.04524
Duan K, Qian Z, Atef M, Wang G (2016) A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 6385-6388
AlghamdiASPolatKAlghosonAAlshdadiAAAbd El-LatifAAA novel blood pressure estimation method based on the classification of oscillometric waveforms using machine-learning methodsAppl Acoust20201:164107279
Khalid SG, Zhang J, Chen F, Zheng D (2018) Blood pressure estimation using photoplethysmography only: comparison between different machine learning approaches. Journal of Healthcare Engineering
Di LascioNGemignaniVBrunoRMBianchiniESteaFGhiadoniLFaitaFNoninvasive assessment of carotid pulse pressure values: an accelerometric-based approachIEEE Trans Biomed Eng201510;63486975
ZhangBWeiZRenJChengYZhengZAn empirical study on predicting blood pressure using classification and regression treesIEEE Access201810;62175868
GavishBBen DovIZBursztynMLinear relationship between systolic and diastolic blood pressure monitored over 24 h: assessment and correlatesJ Hypertens20081;262199209
KachueeMKianiMMMohammadzadeHShabanyMCuffless blood pressure estimation algorithms for continuous health-care monitoringIEEE Trans Biomed Eng201614;64485969
Jain M, Kumar N, Deb S, Majumdar A (2016) A sparse regression based approach for cuff-less blood pressure measurement. In: Acoustics, speech and signal processing (ICASSP), 2016 IEEE international conference on. IEEE, pp 789–93
XingXSunMOptical blood pressure estimation with photoplethysmography and FFT-based neural networksBiomed Opt Express20161;78300720
TanveerMSHasanMKCuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM networkBiomed Signal Process Control20191;5138292
LeeSLeeGEnsemble methodology for confidence interval in oscillometric blood pressure measurementsJ Med Syst2020445191:CAS:528:DC%2BB3cXotFOjsrs%3D
RosendorffCLacklandDTAllisonMAronowWSBlackHRBlumenthalRSCannonCPDe LemosJAElliottWJFindeissLGershBJTreatment of hypertension in patients with coronary artery disease: A scientific statement from the American Heart Association, American College of Cardiology, and American Society of HypertensionJ Amer College of Cardiol201512;651819982038
ArghaACellerBGBlood pressure estimation from time-domain features of oscillometric waveforms using long short-term memory recurrent neural networksIEEE Trans Instrument Measure201912;696361422
PeterLNouryNCernyMA review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?Irbm20141;35527182
Fan X, Wang H, Xu F, Zhao Y, Tsui KL (2019) Homecare-oriented intelligent long-term monitoring of blood pressure using electrocardiogram signals. IEEE Transactions on Industrial Informatics
Garcia CarreteroRVigil-MedinaLBarquero-PerezORamos-LopezJPulse wave velocity and machine learning to predict cardiovascular outcomes in prediabetic and diabetic populationsJ Med Syst20201;44116
Fang YF, Huang PW, Chung ML, Wu BFA (2018) Feature selection method for Vision-Based blood pressure measurement. In: 2018 IEEE international conference on systems man, and cybernetics (SMC), pp 2158–2163
Su P, Ding XR, Zhang YT, Liu J, Miao F, Zhao N (2018) Long-term blood pressure prediction with deep recurrent neural networks. In: 2018 IEEE EMBS International conference on biomedical & health informatics (BHI), pp 323-328
Şentürk Ü, Yücedağ I, Polat K (2018) Repetitive neural network (RNN) based blood pressure estimation using PPG and ECG signals. In: 2018 2Nd international symposium on multidisciplinary studies and innovative technologies (ISMSIT), pp 1-4
Nimmala S, Ramadevi Y, Sahith R, Cheruku R (2018) High blood pressure prediction based on AAA++ using machine-learning algorithms, vol 1;5, p 1497114
SoukupLHruskovaJJurakPHalamekJZavodnaEViscorIMatejkovaMVondraVComparison Of noninvasive pulse transit time determined from Doppler aortic flow and multichannel bioimpedance plethysmographyMed Biolog Eng Comput201957511511158
MiaoFFuNZhangYTDingXRHongXHeQLiYA novel continuous blood pressure estimation approach based on data mining techniquesIEEE J Biomed Health Inform201728;216173040
Kurylyak Y, Lamonaca F, Grimaldi D (2013) A Neural Network-based method for continuous blood pressure estimation from a PPG signal. In: 2013 IEEE International instrumentation and measurement technology conference (i2MTC), pp 280-283
Kim JY, Cho BH, Im SM, Jeon MJ, Kim IY, Kim SI (2005) Comparative study on artificial neural network with multiple regressions for continuous estimation of blood pressure. In: Engineering in medicine and biology society, 2005. IEEE-EMBS 2005. 27th annual international conference of the IEEE, pp 6942–5
Shen Z, Miao F, Meng Q, Li Y (2015) Cuffless and continuous blood pressure estimation based on multiple regression analysis. In: 2015 5th international conference on information science and technology (ICIST), pp 117-120
Nye R, Zhang Z, Fang Q (2015) Continuous non-invasive blood pressure monitoring using photoplethysmography: a review. International Symposium on Bioelectronics and Bioinformatics (ISBB) 176–179
Mahmood U, Al-jumaily A (2007) Type-2 fuzzy classification of blood pressure parameters. In: 2007 3rd international conference on intelligent sensors sensor networks and information, pp 595–600
Solà i Carós JM (2011) Continuous non-invasive blood pressure estimation. Doctoral dissertation, ETH Zurich
Wu TH, Pang GK, Kwong EW (2014) Predicting systolic blood pressure using machine learning. In: 7th international conference on information and automation for sustainability, pp 1–6
Solà J, Delgado Gonzalo R (eds) (2019) The Handbook of Cuffless Blood Pressure monitoring: A Practical Guide for Clinicians, Researchers, and Engineers. Springer Nature , Basingstoke
ZhangQZengXHuWZhouDA machine learning-empowered system for long-term motion-tolerant wearable monitoring of blood pressure and heart rate with ear-ECG/PPGIEEE Access2017
VR Ripoll (2362_CR97) 2019; 5
2362_CR48
2362_CR46
A Suzuki (2362_CR86) 2013; 4;10
2362_CR44
Fan Pan (2362_CR98) 2019; 51:7-8
TH Huynh (2362_CR28) 2018; 17;66
K Matsumura (2362_CR95) 2018; 8;8
J Bolea (2362_CR40) 2017; 1;45
B Zhang (2362_CR61) 2019; 1;20
C Rosendorff (2362_CR3) 2015; 12;65
2362_CR111
2362_CR32
2362_CR33
Q Zhang (2362_CR37) 2017; 16
R Garcia Carretero (2362_CR64) 2020; 1;44
X Xing (2362_CR91) 2016; 1;7
M Kachuee (2362_CR50) 2016; 14;64
G Slapničar (2362_CR100) 2019; 2019
2362_CR30
MR Mohebbian (2362_CR102) 2020; 1;57
SS Mousavi (2362_CR51) 2019; 47
2362_CR103
2362_CR25
R Garcia-Carretero (2362_CR118) 2019; 57
2362_CR107
2362_CR106
2362_CR105
PR Taleyarkhan (2362_CR116) 2009; 1;9
YL Zheng (2362_CR113) 2014; 18;61
F Miao (2362_CR52) 2017; 28;21
2362_CR29
PA Obrist (2362_CR31) 1978; 1;10
A Argha (2362_CR74) 2019; 12;69
JJ Wang (2362_CR8) 2002; 7;32
2362_CR20
2362_CR110
B Zhang (2362_CR60) 2019; 7;7
2362_CR17
2362_CR14
2362_CR12
AS Alghamdi (2362_CR45) 2020; 1:164
SH Liu (2362_CR38) 2017; 17
2362_CR99
S Sun (2362_CR117) 2016; 37
G Zhang (2362_CR42) 2011; 111
WH Lin (2362_CR5) 2018; 39
2362_CR18
2362_CR19
S Ahmad (2362_CR39) 2012; 10;59
M Mahfouf (2362_CR108) 2001; 1;21
A Argha (2362_CR75) 2019; 6;7
2362_CR96
G Lopez (2362_CR112) 2010; 4
S Lee (2362_CR94) 2017; 6;5
2362_CR92
MS Tanveer (2362_CR2) 2019; 1;51
2362_CR93
2362_CR90
DJ Hughes (2362_CR23) 1979; 1;1
ÖF Ertuğrul (2362_CR77) 2018; 28;26
2362_CR89
2362_CR87
2362_CR88
M Takano (2362_CR115) 2018; 7;23
N Watanabe (2362_CR11) 2017; 25;2
D Fujita (2362_CR55) 2019; 9
B Zhang (2362_CR65) 2018; 10;6
JC Ruiz-Rodríguez (2362_CR15) 2013; 1;39
CH Hung (2362_CR114) 2012; 5;58
2362_CR85
WQ Lin (2362_CR13) 2017; 1;29
2362_CR84
2362_CR81
S Lee (2362_CR76) 2020; 44
2362_CR82
Y Liang (2362_CR4) 2018; 8
2362_CR80
2362_CR79
Y Chen (2362_CR26) 2012; 40
B Gavish (2362_CR47) 2008; 1;26
L Peter (2362_CR109) 2014; 1;35
Y Liang (2362_CR24) 2018; 8
L Soukup (2362_CR36) 2019; 57
KC Lan (2362_CR21) 2018; 1;42
M Simjanoska (2362_CR63) 2018; 18
2362_CR72
SH Kim (2362_CR83) 2013; 1;116
W Chen (2362_CR43) 2000; 38
2362_CR70
2362_CR71
A Esmaili (2362_CR34) 2017; 12;66
2362_CR9
YH Kao (2362_CR16) 2018; 24;25
2362_CR67
S Lee (2362_CR78) 2013; 29;62
2362_CR68
2362_CR66
2362_CR1
N Di Lascio (2362_CR22) 2015; 10;63
2362_CR7
2362_CR6
S Lee (2362_CR73) 2016; 26;13
2362_CR62
LA Geddes (2362_CR27) 1981; 18
2362_CR58
2362_CR59
2362_CR56
2362_CR54
S Chen (2362_CR101) 2019; 19
NR Gaddum (2362_CR57) 2013; 1;41
M Gao (2362_CR10) 2016; 22;64
M Sharma (2362_CR35) 2017; 5
X Tan (2362_CR69) 2018; 26
2362_CR53
W Zong (2362_CR104) 2004; 1;42
Q Zhang (2362_CR41) 2017; 24;5
G Sannino (2362_CR49) 2018; 1;15
References_xml – reference: LinWQWuHHSuCSYangJTXiaoJRCaiYPWuXZChenGZComparison of continuous noninvasive blood pressure monitoring by TL-300 with standard invasive blood pressure measurement in patients undergoing elective neurosurgeryJ Neurosurg Anesthesiol20171;29117
– reference: LopezGShuzoMUshidaHHidakaKYanagimotoSImaiYKosakaADelaunayJJYamadaIContinuous blood pressure monitoring in daily lifeJ Adv Mechani Design Syst Manufact20104117986
– reference: ZhangBRenHHuangGChengYHuCPredicting blood pressure from physiological index data using the SVR algorithmBMC bioinformatics20191;201109
– reference: Kachuee M, Kiani MM, Mohammadzade H, Shabany M (2015) Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time. In: 2015 IEEE International symposium on circuits and systems (ISCAS), pp 1006-1009
– reference: Duan K, Qian Z, Atef M, Wang G (2016) A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 6385-6388
– reference: HungCHBaiYWTsaiRYDesign of blood pressure measurement with a health management system for the agedIEEE Trans Consumer Electron20125;58261925
– reference: Kim JY, Cho BH, Im SM, Jeon MJ, Kim IY, Kim SI (2005) Comparative study on artificial neural network with multiple regressions for continuous estimation of blood pressure. In: Engineering in medicine and biology society, 2005. IEEE-EMBS 2005. 27th annual international conference of the IEEE, pp 6942–5
– reference: ZhangQZengXHuWZhouDA machine learning-empowered system for long-term motion-tolerant wearable monitoring of blood pressure and heart rate with ear-ECG/PPGIEEE Access201724;51054761
– reference: LanKCRaknimPKaoWFHuangJHToward hypertension prediction based on PPG-derived HRV signals: A feasibility studyJ Med Syst20181;426103
– reference: XingXSunMOptical blood pressure estimation with photoplethysmography and FFT-based neural networksBiomed Opt Express20161;78300720
– reference: Di LascioNGemignaniVBrunoRMBianchiniESteaFGhiadoniLFaitaFNoninvasive assessment of carotid pulse pressure values: an accelerometric-based approachIEEE Trans Biomed Eng201510;63486975
– reference: AhmadSChenSSoueidanKBatkinIBolicMDajaniHGrozaVElectrocardiogram-assisted blood pressure estimationIEEE Trans Biomed Eng201210;59360818
– reference: Töreyin H, Javaid AQ, Ashouri H, Ode O, Inan OT (2015) Towards ubiquitous blood pressure monitoring in an armband using pulse transit time. IEEE Biomed Circ Syst Conf (BioCAS) 1–4
– reference: LeeSChangJHDeep belief networks ensemble for blood pressure estimationIEEE Access20176;5996272
– reference: Baek J, Kim J, Kim N, Lee D, Park SM (2018) Validation of cuffless blood pressure monitoring using wearable device. TENCON IEEE 0416–0419
– reference: Abdullah AA, Zakaria Z, Mohamad NF (2011) Design and development of fuzzy expert system for diagnosis of hypertension. In: 2011 Second international conference on intelligent systems, modelling and simulation, pp 113-117
– reference: GaoMChengHMSungSHChenCHOlivierNBMukkamalaREstimation of pulse transit time as a function of blood pressure using a nonlinear arterial tube-load modelIEEE Trans Biomed Eng201622;647152434
– reference: Su P, Ding XR, Zhang YT, Liu J, Miao F, Zhao N (2018) Long-term blood pressure prediction with deep recurrent neural networks. In: 2018 IEEE EMBS International conference on biomedical & health informatics (BHI), pp 323-328
– reference: LiangYChenZWardRElgendiMHypertension assessment via ECG and PPG signals: An evaluation using MIMIC databaseDiagnostics201883656163274
– reference: Xuan FW (2011) An exploration on real-time cuffless blood pressure estimation for e-home healthcare, Doctoral dissertation, University of Macau
– reference: ObristPALightKCMcCubbinJAHutchesonJSHofferJLPulse transit time: Relationship to blood pressureBehav Res Methods Instrument19781;1056236
– reference: RosendorffCLacklandDTAllisonMAronowWSBlackHRBlumenthalRSCannonCPDe LemosJAElliottWJFindeissLGershBJTreatment of hypertension in patients with coronary artery disease: A scientific statement from the American Heart Association, American College of Cardiology, and American Society of HypertensionJ Amer College of Cardiol201512;651819982038
– reference: Solà J, Proença M, Chételat O, Wearable PWV (2013) Technologies to measure Blood Pressure: eliminating brachial cuffs. In: 2013 35th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 4098–4101
– reference: Pauly O (2012) Random forests for medical applications. Doctoral dissertation, Technische Universität München
– reference: Wu TH, Pang GK, Kwong EW (2014) Predicting systolic blood pressure using machine learning. In: 7th international conference on information and automation for sustainability, pp 1–6
– reference: Nabeel PM, Raj VK, Joseph J, Abhidev VV, Sivaprakasam M (2019) Local pulse wave velocity: Theory, methods, advancements, and clinical applications. IEEE reviews in biomedical engineering. Jul 29
– reference: GaddumNRAlastrueyJBeerbaumPChowienczykPSchaeffterTA technical assessment of pulse wave velocity algorithms applied to non-invasive arterial waveformsAnnals Biomed Eng20131;4112261729
– reference: Khalid SG, Zhang J, Chen F, Zheng D (2018) Blood pressure estimation using photoplethysmography only: comparison between different machine learning approaches. Journal of Healthcare Engineering
– reference: Li J, Sawanoi Y (2017) The history and innovation of home blood pressure monitors. IEEE HISTory of ELectrotechnolgy CONference (HISTELCON) 82–86
– reference: MohebbianMRDinhAWahidKAlamMSBlind, Cuff-less, calibration-free and continuous blood pressure estimation using optimized inductive group method of data handlingBiomed Signal Process Control20201;57101682
– reference: Fang YF, Huang PW, Chung ML, Wu BFA (2018) Feature selection method for Vision-Based blood pressure measurement. In: 2018 IEEE international conference on systems man, and cybernetics (SMC), pp 2158–2163
– reference: SlapničarGMlakarNLuštrekMBlood pressure estimation from photoplethysmogram using a Spectro-Temporal deep neural networkSensors20192019153420
– reference: Choudhury AD, Banerjee R, Sinha A, Kundu S (2014) Estimating blood pressure using Windkessel model on photoplethysmogram. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, pp 4567–4570
– reference: PeterLNouryNCernyMA review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?Irbm20141;35527182
– reference: SoukupLHruskovaJJurakPHalamekJZavodnaEViscorIMatejkovaMVondraVComparison Of noninvasive pulse transit time determined from Doppler aortic flow and multichannel bioimpedance plethysmographyMed Biolog Eng Comput201957511511158
– reference: Poon CC, Zhang YT (2005) Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. IEEE engineering in medicine and biology 27th annual conference 5877–5880
– reference: SharmaMBarbosaKHoVGriggsDGhirmaiTKrishnanSKHsiaiTKChiaoJCCaoHCuff-less and continuous blood pressure monitoring: A methodological reviewTechnologies20175221
– reference: Mahmood U, Al-jumaily A (2007) Type-2 fuzzy classification of blood pressure parameters. In: 2007 3rd international conference on intelligent sensors sensor networks and information, pp 595–600
– reference: KaoYHChaoPCWeyCLDesign and validation of a new ppg module to acquire high-quality physiological signals for high-accuracy biomedical sensingIEEE J Select Topics Quantum Electron201824;25110
– reference: Nimmala S, Ramadevi Y, Sahith R, Cheruku R (2018) High blood pressure prediction based on AAA++ using machine-learning algorithms, vol 1;5, p 1497114
– reference: Ghosh S, Banerjee A, Ray N, Wood PW, Boulanger P, Padwal R (2018) Using accelerometric and gyroscopic data to improve blood pressure prediction from pulse transit time using recurrent neural network. In: 2018 IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 935–9
– reference: WangJJLinCTLiuSHWenZCModel-based synthetic fuzzy logic controller for indirect blood pressure measurementIEEE Trans Syst Man Cybern Part B (Cybernetics)20027;32330615
– reference: Shen Z, Miao F, Meng Q, Li Y (2015) Cuffless and continuous blood pressure estimation based on multiple regression analysis. In: 2015 5th international conference on information science and technology (ICIST), pp 117-120
– reference: PanFanHePeiyuChenFeiXiaoboPuZhaoQijunZhengDingchangDeep learning-based automatic blood pressure measurement: evaluation of the effect of deep breathing, talking and arm movementAnnals Med201951:7-8397403
– reference: MahfoufMAbbodMFLinkensDAA survey of fuzzy logic monitoring and control utilisation in medicineArtif Intell Med20011;211-32742
– reference: Atomi K, Kawanaka H, Bhuiyan M, Oguri K (2017) Cuffless blood pressure estimation based on data-oriented continuous health monitoring system. Computational and Mathematical Methods in Medicine
– reference: Das S, Ghosh PK, Kar S (2013) Hypertension diagnosis: A comparative study using fuzzy expert system and neuro fuzzy system. In: 2013 IEEE International conference on fuzzy systems (FUZZ-IEEE), pp 1–7
– reference: Agham N, Chaskar U (2019) Prevalent Approach of Learning Based Cuffless Blood Pressure Measurement System for Continuous Health-care Monitoring. In: IEEE International symposium on medical measurements and applications (memea), pp 1-5
– reference: FujitaDSuzukiARyuKPPG-Based systolic blood pressure estimation method using PLS and level-crossing featureAppl Sci201992304
– reference: WatanabeNBandoYKKawachiTYamakitaHFutatsuyamaKHondaYYasuiHNishimuraKKamiharaTOkumuraTIshiiHDevelopment and validation of a novel cuff-less blood pressure monitoring deviceJACC: Basic Translat Sci201725;2663142
– reference: ZhangBWeiZRenJChengYZhengZAn empirical study on predicting blood pressure using classification and regression treesIEEE Access201810;62175868
– reference: MatsumuraKRolfePTodaSYamakoshiTCuffless blood pressure estimation using only a smartphoneScientif Rep20188;8119
– reference: TanXJiZZhangYNon-invasive continuous blood pressure measurement based on mean impact value method, BP neural network, and genetic algorithmTechnol Health Care201826S187101297589576004949
– reference: LinWHWangHSamuelOWLiuGHuangZLiGNew photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracyPhysiol Meas201839202500529319536
– reference: Nye R, Zhang Z, Fang Q (2015) Continuous non-invasive blood pressure monitoring using photoplethysmography: a review. International Symposium on Bioelectronics and Bioinformatics (ISBB) 176–179
– reference: LeeSChangJHNamSWLimCRajanSDajaniHRGrozaVZOscillometric blood pressure estimation based on maximum amplitude algorithm employing Gaussian mixture regressionIEEE Trans Instrument Measure201329;621233879
– reference: LiuSHChengDCSuCHA cuffless blood pressure measurement based on the Impedance plethysmography techniqueSensors20171751176
– reference: Sideris C, Kalantarian H, Nemati E, Sarrafzadeh M (2016) Building continuous arterial blood pressure prediction models using recurrent networks. In: 16 IEEE International conference on smart computing (SMARTCOMP), pp 1–5
– reference: Gaurav A, Maheedhar M, Tiwari VN, Narayanan R (2016) Cuff-less PPG based continuous blood pressure monitoring - a smartphone based approach. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 607-610
– reference: Lin WH, Wang H, Samuel OW, Li G (2017) Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 738-741
– reference: SunSBezemerRLongXMuehlsteffJAartsRSystolic blood pressure estimation using PPG and ECG during physical exercisePhysiol Meas2016371221541:STN:280:DC%2BC2snlsl2luw%3D%3D27841157
– reference: TanveerMSHasanMKCuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM networkBiomed Signal Process Control20191;5138292
– reference: SuzukiARyuKFeature selection method for estimating systolic blood pressure using the Taguchi methodIEEE Trans Indust Inform20134;102107785
– reference: Morsi I, El Gawad YZ (2013) Fuzzy logic in heart rate and blood pressure measuring system. In: 2013 IEEE sensors applications symposium proceedings, pp 113–117
– reference: Griggs D, Sharma M, Naghibi A, Wallin C, Ho V, Barbosa K, Ghirmai T, Cao H, Krishnan SK (2016) Design and development of continuous cuff-less blood pressure monitoring devices. In: 2016 IEEE Sensors, pp 1–3
– reference: Zhang Y, Feng Z (2017) A SVM method for continuous blood pressure estimation from a PPG signal. In: Proceedings of the 9th international conference on machine learning and computing, pp 128–132
– reference: Solà J, Delgado Gonzalo R (eds) (2019) The Handbook of Cuffless Blood Pressure monitoring: A Practical Guide for Clinicians, Researchers, and Engineers. Springer Nature , Basingstoke
– reference: LeeSLeeGEnsemble methodology for confidence interval in oscillometric blood pressure measurementsJ Med Syst2020445191:CAS:528:DC%2BB3cXotFOjsrs%3D
– reference: BoleaJLázaroJGilERoviraERemartínezJMLagunaPPueyoENavarroABailónRPulse rate and transit time analysis to predict hypotension events after spinal anesthesia during programmed cesarean laborAnnals Biomed Eng20171;459225363
– reference: HuynhTHJafariRChungWYNoninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmographyIEEE Trans Biomed Eng201817;66496776
– reference: ZongWMoodyGBMarkRGReduction of false arterial blood pressure alarms using signal quality assessement and relationships between the electrocardiogram and arterial blood pressureMed Biol Eng Comput20041;425698706
– reference: MiaoFFuNZhangYTDingXRHongXHeQLiYA novel continuous blood pressure estimation approach based on data mining techniquesIEEE J Biomed Health Inform201728;216173040
– reference: Radha M et al (2018) Wrist-worn blood pressure tracking in healthy free-living individuals using neural networks. arXiv:1805.09121
– reference: TakanoMUenoANoncontact in-bed measurements of physiological and behavioral signals using an integrated fabric-sheet sensing schemeIEEE J Biomed Health Inform20187;23261830
– reference: He R, Huang ZP, Ji LY, Wu JK, Li H, Zhang ZQ (2016) Beat-to-beat ambulatory blood pressure estimation based on random forest. In: Wearable and implantable body sensor networks (BSN), 2016 IEEE 13th international conference on. IEEE, pp 194–8
– reference: Su P, Ding X, Zhang Y, Miao F, Zhao N (2017) Learning to Predict Blood Pressure with Deep Bidirectional LSTM Network. arXiv:1705.04524
– reference: ErtuğrulÖFSezginNA noninvasive time-frequency-based approach to estimate cuffless arterial blood pressureTurkish J Electric Eng Comput Sci201828;265226074
– reference: ZhengYLYanBPZhangYTPoonCCAn armband wearable device for overnight and cuff-less blood pressure measurementIEEE Trans Biomed Eng201418;61721798
– reference: Kurylyak Y, Lamonaca F, Grimaldi D (2013) A Neural Network-based method for continuous blood pressure estimation from a PPG signal. In: 2013 IEEE International instrumentation and measurement technology conference (i2MTC), pp 280-283
– reference: Shimazaki S, Bhuiyan S, Kawanaka H, Oguri K (2018) Features extraction for cuffless blood pressure estimation by autoencoder from photoplethysmography. In: 2018 40Th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 2857–2860
– reference: Jain M, Kumar N, Deb S, Majumdar A (2016) A sparse regression based approach for cuff-less blood pressure measurement. In: Acoustics, speech and signal processing (ICASSP), 2016 IEEE international conference on. IEEE, pp 789–93
– reference: EsmailiAKachueeMShabanyMNonlinear cuffless blood pressure estimation of healthy subjects using pulse transit time and arrival timeIEEE Trans Instrument Measure201712;66123299308
– reference: SanninoGDe FalcoIDe PietroGA continuous noninvasive arterial pressure (CNAP) approach for health 4.0 systemsIEEE Trans Indust Informat20181;151498506
– reference: KachueeMKianiMMMohammadzadeHShabanyMCuffless blood pressure estimation algorithms for continuous health-care monitoringIEEE Trans Biomed Eng201614;64485969
– reference: Şentürk Ü, Yücedağ I, Polat K (2018) Repetitive neural network (RNN) based blood pressure estimation using PPG and ECG signals. In: 2018 2Nd international symposium on multidisciplinary studies and innovative technologies (ISMSIT), pp 1-4
– reference: ZhangBRenJChengYWangBWeiZHealth data driven on continuous blood pressure prediction based on gradient boosting decision tree algorithmIEEE Access20197;73242333
– reference: Shobitha S, Amita P, Krupa BN, Beng GK (2017) Cuffless blood pressure prediction from PPG using relevance vector machine. In: Electrical, electronics, communication, computer, and optimization techniques (ICEECCOT), 2017 international conference on. IEEE, pp 75–8
– reference: Xu Y, Ping P, Wang D, Zhang W Analysis for the influence of abr sensitivity on PTT-based cuff-less blood pressure estimation before and after exercise. J Healthcare Eng 2018
– reference: Song K, Chung KY, Chang JH (2019) Cuff-less deep learning-based blood pressure estimation for smart wristwatches. IEEE Transactions on Instrumentation and Measurement
– reference: SimjanoskaMGjoreskiMGamsMMadevska BogdanovaANon-invasive blood pressure estimation from ECG using machine learning techniquesSensors20181841160
– reference: ArghaAWuJSuSWCellerBGBlood Pressure Estimation From Beat-by-Beat Time-Domain Features of Oscillometric Waveforms Using Deep-Neural-Network Classification ModelsIEEE Access20196;711342739
– reference: ArghaACellerBGBlood pressure estimation from time-domain features of oscillometric waveforms using long short-term memory recurrent neural networksIEEE Trans Instrument Measure201912;696361422
– reference: TaleyarkhanPRGeddesLAKemenyAEVitterJSLoose cuff hypertensionCardiovascular Eng20091;931138
– reference: Garcia-CarreteroRBarquero-PerezOMora-JimenezISoguero-RuizCGoya-EstebanRRamos-LopezJIdentification Of clinically relevant features in hypertensive patients using penalized regression: A case study of cardiovascular eventsMed Biol Eng Comput20195792011202631346948
– reference: HughesDJBabbsCFGeddesLABourlandJDMeasurements of Young’s modulus of elasticity of the canine aorta with ultrasoundUltrasonic Imag19791;1435667
– reference: ChenYWenCTaoGBiMContinuous and noninvasive measurement of systolic and diastolic blood pressure by one mathematical model with the same model parameters and two separate pulse wave velocitiesAnn Biomed Eng20124048718222101758
– reference: AlghamdiASPolatKAlghosonAAlshdadiAAAbd El-LatifAAA novel blood pressure estimation method based on the classification of oscillometric waveforms using machine-learning methodsAppl Acoust20201:164107279
– reference: Pan J, Zhang Y (2017) Improved blood pressure estimation using photoplethysmography based on ensemble method. In: Pervasive systems, algorithms and networks & 2017 11th international conference on frontier of computer science and technology & 2017 third international symposium of creative computing (ISPAN-FCST-ISCC), 2017 14th international symposium on. IEEE, pp 105–11
– reference: Nabeel PM, Chilaka V, Joseph J, Sivaprakasam M (2019) Deep Learning for Blood Pressure estimation: an Approach using Local Measure of Arterial Dual Diameter Waveforms. In: 2019 IEEE International symposium on medical measurements and applications (memea), pp 1–6
– reference: ChenWKobayashiTIchikawaSTakeuchiYTogawaTContinuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibrationMed Biol Eng Comput2000385569741:STN:280:DC%2BD3M%2Fks1Kkuw%3D%3D11094816
– reference: ZhangGGaoMXuDOlivierNBMukkamalaRPulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressureJ Appl physiol201111161681621960657
– reference: KimSHSongJGParkJHKimJWParkYSHwangGSBeat-to-beat tracking of systolic blood pressure using noninvasive pulse transit time during anesthesia induction in hypertensive patientsAnesthes Analges20131;116194100
– reference: GeddesLAVoelzMHBabbsCFBourlandJDTackerWAPulse transit time as an indicator of arterial blood pressurePsychophysiology19811817141:STN:280:DyaL3M7isFShtw%3D%3D7465731
– reference: Poliñski A, Czuszyñski K, Kocejko T (2018) Blood pressure estimation based on blood flow, ECG and respiratory signals using recurrent neural networks. In: 2018 11th international conference on human system interaction (HSI). IEEE, pp 86–92
– reference: Wang L, Zhou W, Xing Y, Zhou X (2018) A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram. J Healthcare Eng 2018
– reference: Ruiz-RodríguezJCRuiz-SanmartínARibasVCaballeroJGarcía-RocheARieraJNuvialsXde NadalMde Sola-MoralesOSerraJRelloJInnovative continuous non-invasive cuffless blood pressure monitoring based on photoplethysmography technologyIntensive Care Med20131;399161825
– reference: ChenSJiZWuHXuYA Non-Invasive continuous blood pressure estimation approach based on machine learningSensors201919112585
– reference: LeeSChangJHOscillometric blood pressure estimation based on deep learningIEEE Trans Indust Inform201626;13246172
– reference: Fan X, Wang H, Xu F, Zhao Y, Tsui KL (2019) Homecare-oriented intelligent long-term monitoring of blood pressure using electrocardiogram signals. IEEE Transactions on Industrial Informatics
– reference: GavishBBen DovIZBursztynMLinear relationship between systolic and diastolic blood pressure monitored over 24 h: assessment and correlatesJ Hypertens20081;262199209
– reference: Gao SC, Wittek P, Zhao L, Jiang WJ (2016) Data-driven estimation of blood pressure using photoplethysmographic signals. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 766-769
– reference: Solà i Carós JM (2011) Continuous non-invasive blood pressure estimation. Doctoral dissertation, ETH Zurich
– reference: ZhangQZhouDZengXHighly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signalsBiomed Eng Online201716123281667745294811
– reference: RipollVRVellidoABlood pressure assessment with differential pulse transit time and deep learning: A proof of conceptKidney Dis201951237
– reference: Garcia CarreteroRVigil-MedinaLBarquero-PerezORamos-LopezJPulse wave velocity and machine learning to predict cardiovascular outcomes in prediabetic and diabetic populationsJ Med Syst20201;44116
– reference: Datta S, Banerjee R, Choudhury AD, Sinha A, Pal A (2016) Blood pressure estimation from photoplethysmogram using latent parameters. In: 2016 IEEE International conference on communications (ICC), pp 1–7
– reference: MousaviSSFirouzmandMCharmiMHemmatiMMoghadamMGhorbaniYBlood pressure estimation from appropriate and inappropriate PPG signals using a whole-based methodBiomed Signal Process Control201947196206
– volume: 1;116
  start-page: 94
  issue: 1
  year: 2013
  ident: 2362_CR83
  publication-title: Anesthes Analges
  doi: 10.1213/ANE.0b013e318270a6d9
– volume: 5
  start-page: 23
  issue: 1
  year: 2019
  ident: 2362_CR97
  publication-title: Kidney Dis
  doi: 10.1159/000493478
– ident: 2362_CR111
  doi: 10.1109/HISTELCON.2017.8535736
– volume: 7;32
  start-page: 306
  issue: 3
  year: 2002
  ident: 2362_CR8
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybernetics)
  doi: 10.1109/TSMCB.2002.999807
– ident: 2362_CR71
  doi: 10.1109/ICIAFS.2014.7069529
– volume: 1;57
  start-page: 101682
  year: 2020
  ident: 2362_CR102
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.101682
– ident: 2362_CR30
  doi: 10.1109/ISCAS.2015.7168806
– volume: 57
  start-page: 2011
  issue: 9
  year: 2019
  ident: 2362_CR118
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-019-02007-9
– ident: 2362_CR20
  doi: 10.1109/ICIST.2015.7288952
– ident: 2362_CR6
  doi: 10.1109/EMBC.2018.8512829
– volume: 1;26
  start-page: 199
  issue: 2
  year: 2008
  ident: 2362_CR47
  publication-title: J Hypertens
  doi: 10.1097/HJH.0b013e3282f25b5a
– volume: 1;42
  start-page: 103
  issue: 6
  year: 2018
  ident: 2362_CR21
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-0942-5
– volume: 51:7-8
  start-page: 397
  year: 2019
  ident: 2362_CR98
  publication-title: Annals Med
  doi: 10.1080/07853890.2019.1694170
– volume: 7;7
  start-page: 32423
  year: 2019
  ident: 2362_CR60
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902217
– ident: 2362_CR82
– ident: 2362_CR17
  doi: 10.1155/2018/1548647
– volume: 40
  start-page: 871
  issue: 4
  year: 2012
  ident: 2362_CR26
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-011-0467-2
– volume: 1;44
  start-page: 16
  issue: 1
  year: 2020
  ident: 2362_CR64
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1479-y
– ident: 2362_CR12
  doi: 10.1109/TENCON.2018.8650069
– ident: 2362_CR44
  doi: 10.1109/EMBC.2013.6610446
– volume: 1;41
  start-page: 2617
  issue: 12
  year: 2013
  ident: 2362_CR57
  publication-title: Annals Biomed Eng
  doi: 10.1007/s10439-013-0854-y
– volume: 111
  start-page: 1681
  issue: 6
  year: 2011
  ident: 2362_CR42
  publication-title: J Appl physiol
  doi: 10.1152/japplphysiol.00980.2011
– volume: 7;23
  start-page: 618
  issue: 2
  year: 2018
  ident: 2362_CR115
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2825020
– ident: 2362_CR87
  doi: 10.1109/EMBC.2016.7592189
– ident: 2362_CR72
  doi: 10.1109/SMC.2018.00371
– volume: 18;61
  start-page: 2179
  issue: 7
  year: 2014
  ident: 2362_CR113
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2318779
– ident: 2362_CR99
  doi: 10.1109/TII.2019.2962546
– ident: 2362_CR59
  doi: 10.1155/2018/5396030
– volume: 26;13
  start-page: 461
  issue: 2
  year: 2016
  ident: 2362_CR73
  publication-title: IEEE Trans Indust Inform
– volume: 39
  start-page: 025005
  issue: 2
  year: 2018
  ident: 2362_CR5
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aaa454
– ident: 2362_CR93
  doi: 10.1155/2017/1803485
– ident: 2362_CR32
  doi: 10.1109/RBME.2019.2931587
– volume: 1;29
  start-page: 1
  issue: 1
  year: 2017
  ident: 2362_CR13
  publication-title: J Neurosurg Anesthesiol
  doi: 10.1097/ANA.0000000000000245
– volume: 38
  start-page: 569
  issue: 5
  year: 2000
  ident: 2362_CR43
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02345755
– ident: 2362_CR48
  doi: 10.1109/MeMeA.2019.8802170
– volume: 1;1
  start-page: 356
  issue: 4
  year: 1979
  ident: 2362_CR23
  publication-title: Ultrasonic Imag
  doi: 10.1177/016173467900100406
– ident: 2362_CR62
  doi: 10.1145/3055635.3056634
– volume: 12;69
  start-page: 3614
  issue: 6
  year: 2019
  ident: 2362_CR74
  publication-title: IEEE Trans Instrument Measure
  doi: 10.1109/TIM.2019.2941037
– volume: 57
  start-page: 1151
  issue: 5
  year: 2019
  ident: 2362_CR36
  publication-title: Med Biolog Eng Comput
  doi: 10.1007/s11517-018-01948-x
– volume: 1:164
  start-page: 107279
  year: 2020
  ident: 2362_CR45
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2020.107279
– volume: 28;21
  start-page: 1730
  issue: 6
  year: 2017
  ident: 2362_CR52
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2691715
– volume: 37
  start-page: 2154
  issue: 12
  year: 2016
  ident: 2362_CR117
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/37/12/2154
– ident: 2362_CR56
  doi: 10.1109/EMBC.2017.8036930
– volume: 17
  start-page: 1176
  issue: 5
  year: 2017
  ident: 2362_CR38
  publication-title: Sensors
  doi: 10.3390/s17051176
– volume: 14;64
  start-page: 859
  issue: 4
  year: 2016
  ident: 2362_CR50
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2580904
– volume: 4
  start-page: 179
  issue: 1
  year: 2010
  ident: 2362_CR112
  publication-title: J Adv Mechani Design Syst Manufact
  doi: 10.1299/jamdsm.4.179
– ident: 2362_CR46
  doi: 10.1007/978-3-030-24701-0
– volume: 6;7
  start-page: 113427
  year: 2019
  ident: 2362_CR75
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933498
– ident: 2362_CR18
  doi: 10.1109/ISMSIT.2018.8567071
– volume: 1;35
  start-page: 271
  issue: 5
  year: 2014
  ident: 2362_CR109
  publication-title: Irbm
  doi: 10.1016/j.irbm.2014.07.002
– volume: 10;59
  start-page: 608
  issue: 3
  year: 2012
  ident: 2362_CR39
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2180019
– volume: 1;42
  start-page: 698
  issue: 5
  year: 2004
  ident: 2362_CR104
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02347553
– volume: 24;5
  start-page: 10547
  year: 2017
  ident: 2362_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2707472
– volume: 17;66
  start-page: 967
  issue: 4
  year: 2018
  ident: 2362_CR28
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2865751
– ident: 2362_CR1
  doi: 10.1109/ICSENS.2016.7808908
– volume: 22;64
  start-page: 1524
  issue: 7
  year: 2016
  ident: 2362_CR10
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2612639
– volume: 44
  start-page: 1
  issue: 5
  year: 2020
  ident: 2362_CR76
  publication-title: J Med Syst
  doi: 10.1007/s10916-020-01551-4
– volume: 47
  start-page: 196
  year: 2019
  ident: 2362_CR51
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.08.022
– ident: 2362_CR85
  doi: 10.1109/EMBC.2014.6944640
– ident: 2362_CR105
  doi: 10.1109/ISMS.2011.27
– volume: 1;10
  start-page: 623
  issue: 5
  year: 1978
  ident: 2362_CR31
  publication-title: Behav Res Methods Instrument
  doi: 10.3758/BF03205360
– volume: 12;65
  start-page: 1998
  issue: 18
  year: 2015
  ident: 2362_CR3
  publication-title: J Amer College of Cardiol
  doi: 10.1016/j.jacc.2015.02.038
– volume: 16
  start-page: 23
  issue: 1
  year: 2017
  ident: 2362_CR37
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-017-0317-z
– volume: 8
  start-page: 65
  issue: 3
  year: 2018
  ident: 2362_CR24
  publication-title: Diagnostics
  doi: 10.3390/diagnostics8030065
– volume: 26
  start-page: 87
  issue: S1
  year: 2018
  ident: 2362_CR69
  publication-title: Technol Health Care
  doi: 10.3233/THC-174568
– volume: 8
  start-page: 65
  issue: 3
  year: 2018
  ident: 2362_CR4
  publication-title: Diagnostics
  doi: 10.3390/diagnostics8030065
– volume: 25;2
  start-page: 631
  issue: 6
  year: 2017
  ident: 2362_CR11
  publication-title: JACC: Basic Translat Sci
– ident: 2362_CR80
  doi: 10.1109/ICASSP.2018.8461959
– volume: 1;39
  start-page: 1618
  issue: 9
  year: 2013
  ident: 2362_CR15
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-013-2964-2
– volume: 12;66
  start-page: 3299
  issue: 12
  year: 2017
  ident: 2362_CR34
  publication-title: IEEE Trans Instrument Measure
  doi: 10.1109/TIM.2017.2745081
– ident: 2362_CR70
  doi: 10.1155/2018/7804243
– ident: 2362_CR84
  doi: 10.1109/I2MTC.2013.6555424
– ident: 2362_CR103
  doi: 10.1109/ISSNIP.2007.4496910
– volume: 28;26
  start-page: 2260
  issue: 5
  year: 2018
  ident: 2362_CR77
  publication-title: Turkish J Electric Eng Comput Sci
  doi: 10.3906/elk-1712-215
– volume: 2019
  start-page: 3420
  issue: 15
  year: 2019
  ident: 2362_CR100
  publication-title: Sensors
  doi: 10.3390/s19153420
– volume: 1;45
  start-page: 2253
  issue: 9
  year: 2017
  ident: 2362_CR40
  publication-title: Annals Biomed Eng
  doi: 10.1007/s10439-017-1864-y
– volume: 10;6
  start-page: 21758
  year: 2018
  ident: 2362_CR65
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2787980
– volume: 1;7
  start-page: 3007
  issue: 8
  year: 2016
  ident: 2362_CR91
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.7.003007
– ident: 2362_CR54
  doi: 10.1109/ISPAN-FCST-ISCC.2017.42
– ident: 2362_CR29
  doi: 10.1109/IEMBS.2005.1615827
– volume: 4;10
  start-page: 1077
  issue: 2
  year: 2013
  ident: 2362_CR86
  publication-title: IEEE Trans Indust Inform
– volume: 1;9
  start-page: 113
  issue: 3
  year: 2009
  ident: 2362_CR116
  publication-title: Cardiovascular Eng
  doi: 10.1007/s10558-009-9077-0
– volume: 19
  start-page: 2585
  issue: 11
  year: 2019
  ident: 2362_CR101
  publication-title: Sensors
  doi: 10.3390/s19112585
– volume: 24;25
  start-page: 1
  issue: 1
  year: 2018
  ident: 2362_CR16
  publication-title: IEEE J Select Topics Quantum Electron
  doi: 10.1109/JSTQE.2018.2871604
– volume: 5
  start-page: 21
  issue: 2
  year: 2017
  ident: 2362_CR35
  publication-title: Technologies
  doi: 10.3390/technologies5020021
– ident: 2362_CR58
  doi: 10.1109/ICEECCOT.2017.8284610
– ident: 2362_CR96
  doi: 10.1109/BHI.2018.8333434
– volume: 29;62
  start-page: 3387
  issue: 12
  year: 2013
  ident: 2362_CR78
  publication-title: IEEE Trans Instrument Measure
  doi: 10.1109/TIM.2013.2273612
– ident: 2362_CR90
  doi: 10.1109/SMARTCOMP.2016.7501681
– ident: 2362_CR66
  doi: 10.1109/BSN.2016.7516258
– ident: 2362_CR7
  doi: 10.1109/TIM.2019.2947103
– ident: 2362_CR89
  doi: 10.1109/ICC.2016.7511599
– ident: 2362_CR33
– ident: 2362_CR107
  doi: 10.1109/FUZZ-IEEE.2013.6622434
– ident: 2362_CR81
– volume: 10;63
  start-page: 869
  issue: 4
  year: 2015
  ident: 2362_CR22
  publication-title: IEEE Trans Biomed Eng
– ident: 2362_CR14
– ident: 2362_CR92
  doi: 10.1109/EMBC.2016.7590814
– ident: 2362_CR19
  doi: 10.1109/ISBB.2015.7344952
– volume: 1;20
  start-page: 109
  issue: 1
  year: 2019
  ident: 2362_CR61
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-019-2667-y
– ident: 2362_CR53
  doi: 10.1109/ICASSP.2016.7471783
– volume: 6;5
  start-page: 9962
  year: 2017
  ident: 2362_CR94
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2701800
– volume: 8;8
  start-page: 1
  issue: 1
  year: 2018
  ident: 2362_CR95
  publication-title: Scientif Rep
– volume: 5;58
  start-page: 619
  issue: 2
  year: 2012
  ident: 2362_CR114
  publication-title: IEEE Trans Consumer Electron
  doi: 10.1109/TCE.2012.6227468
– ident: 2362_CR110
  doi: 10.1109/BioCAS.2015.7348425
– volume: 1;51
  start-page: 382
  year: 2019
  ident: 2362_CR2
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.02.028
– volume: 18
  start-page: 1160
  issue: 4
  year: 2018
  ident: 2362_CR63
  publication-title: Sensors
  doi: 10.3390/s18041160
– ident: 2362_CR9
– ident: 2362_CR68
  doi: 10.1080/23311916.2018.1497114
– volume: 18
  start-page: 71
  issue: 1
  year: 1981
  ident: 2362_CR27
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1981.tb01545.x
– ident: 2362_CR67
– volume: 1;21
  start-page: 27
  issue: 1-3
  year: 2001
  ident: 2362_CR108
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(00)00072-5
– volume: 1;15
  start-page: 498
  issue: 1
  year: 2018
  ident: 2362_CR49
  publication-title: IEEE Trans Indust Informat
  doi: 10.1109/TII.2018.2832081
– ident: 2362_CR106
  doi: 10.1109/SAS.2013.6493568
– ident: 2362_CR79
  doi: 10.1109/HSI.2018.8430971
– ident: 2362_CR88
  doi: 10.1109/EMBC.2016.7590775
– ident: 2362_CR25
– volume: 9
  start-page: 304
  issue: 2
  year: 2019
  ident: 2362_CR55
  publication-title: Appl Sci
  doi: 10.3390/app9020304
SSID ssj0021524
Score 2.3778453
SecondaryResourceType review_article
Snippet The machine learning approach has gained a significant attention in the healthcare sector because of the prospect of developing new techniques for medical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1201
SubjectTerms Algorithms
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Blood pressure
Chronic illnesses
Computer Applications
Health care
Human Physiology
Imaging
Learning algorithms
Machine learning
Medical electronics
Medical equipment
Miniaturization
Monitoring systems
Position measurement
Prediction models
Pressure measurement
Radiology
Review Article
Telemedicine
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_mBuKL-InVKRF802C_lmaCiMrGEDZEnPhW0qSZD_ty6_5_L13aouBem7ZpL5e7X-4T4Eow1lK-FFS1WyENVaApR1hLXR34biA16kxj0O8PWG8Yvny2PmswKHJhTFhlIRNzQa1m0tjIb_EgY1QPstDD_JuarlHGu1q00BC2tYK6z0uMbUHDN5Wx6tB46gxe38ojGGqrsAxqRGxt02jWyXSo_CJqQhZMVXWfst-qqsKff1ymuSbq7sGuhZDkcb3m-1BLpwew3bdO8kP4sDVTR0RMFcHjPR2XF8Yj_Kfsa7IkCFaJXGk9RlFH8vB1ksfErhYpmVSGwzsiyDq95QiG3c77c4_a9glUIgrLqGSctX2EUFyrSLclUiRlwvMjFCkJc3UkuKvDdurhiHRlmHhctIQSIvR15HIVHEMdvzE9AYJnPjeJEhYgnjH1ZBLOQqFTpljCE1d7DngFpWJpa4ubFhfjuKqKbKgbI3XjnLoxc-C6fGa-rqyx8e5msQCx3WXLuOIJBy7LYdwfxukhpulsZe5BEYr08AIHboqFq17x_4ynm2c8gx0_5xVjkGlCPVus0nPEJ1lyYZnuB9u73so
  priority: 102
  providerName: ProQuest
Title Learning and non-learning algorithms for cuffless blood pressure measurement: a review
URI https://link.springer.com/article/10.1007/s11517-021-02362-6
https://www.proquest.com/docview/2540613510
https://www.proquest.com/docview/2537640513
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ADMLS
  dateStart: 19770101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BKyFeBmNDFFhlJN42V_mq4_LWTi0IRDVNK-qeItuJy7SSTm3ywl_POXUSUcGkviRS7DjO-Xz3s-_DAJeCsW7sKUHjXjegQexryhHWUkf7nuMrjTrTbOjfj9nNJLiddqc2KGxVeruXJslCUtfBbqicQmpcCkzWc4-yXWgW-bYa0Oxf_74bVgst1ElB5bqICNoGy7zdymuFVKPMDcNooW9GBzApe7p2M_nbyTPZUc8bSRy3_ZVD-GABKOmvOeYj7CTpEezdWxP7J3iwGVdnRKQxSRcpnVcP5rPF8k_2-LQiCHWJyrWeo6AkhfM7KTxq82VCnuptxysiyDo45jNMRsNf32-oPXyBKsRwGVWMs56HAIzrONQ9hSouYcL1QhRIkjk6FNzRQS9xsUQ5KpAuF10RCxF4OnR47B9DA_uYnADBFaMjQ8l8REMmG43kLBA6YTGTXDrabYFbjkCkbGZyc0DGPKpzKhuCRUiwqCBYxFrwtXrn3zovx39rn5cDG9k5uopwaWzADAqlFlxUxTi7jMlEpMkiN3VQACM9XL8F38qxrJt4_4un21U_g32vYAezvXMOjWyZJ18Q7WSyDbvhNMQrH123kdFHg8G4bRke74Ph-MdPLJ14_Rd-CPgC
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkCiXqrzEFgquBCdqkTheJ6mEEE8tj12hChC34PhBD0sW2F1V_XP8NsZZJ1ErlRvXOLGj8Xjmm_E8ADalEG3NlKQ6bXPKdWRpgrCWBjZiQaQs6kzn0O_2ROean922b6fgpcqFcWGVlUwsBbUeKOcj30FDxqkeZKG9xyfquka529WqhYb0rRX0bllizCd2nJs_v9GEG-6eHuF-bzF2cnx12KG-ywBVCFZGVIlEpAyRRmJ1bFOFstwIGbIYT14uAhvLJLA8NSGOqEDxPExkW2opObNxkOgI5_0AMzziKRp_MwfHvcuftcmH2pHXQZSI5X3aziR5D5VtTF2IhKvizqj4WzU2ePefK9pS8518hk8espL9CY_Nw5QpFmC26y_lF-HG12i9J7LQpBgUtF8_6N8jDUe_HoYEwTFRY2v7KFpJGS5Pyhjc8bMhD42j8geRZJJOswTX70LIZZjGfzQrQNDGDPI4FxHiJ1e_Jk8El9YILfIkD2zYgrCiVKZ8LXPXUqOfNVWYHXUzpG5WUjcTLdiuv3mcVPJ48-21agMyf6qHWcODLfhWD-N5dJcssjCDsXsHRTbSI4xa8L3auGaK_6_45e0VN-Bj56p7kV2c9s5XYY6VfOOcQWswPXoem6-IjUb5umdAAnfvzfOvdQsbLw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8QwEB48QHwRT1zPCPqkwTbtpq0gIq6L14oPKvtW0xz6sHbXPRD_mr_OSY8tCvrma9MmZTKZ-SZzAewKzuuKSUFVVPeprzxDQ4S11DEeczxpUGfaC_3WLb948K_a9fYEfJa5MDasspSJmaBWXWnvyA_RkLGqB1no0BRhEXeN5knvjdoOUtbTWrbTyFnkWn-8o_k2OL5s4F7vMdY8vz-7oEWHASoRqAyp5CGPGKKM0KjARBLluObCZQGeuoQ7JhChY_xIuzgiHeknbijqQgnhMxM4ofJw3kmYDjwvsuGEQbsy9lAv-uPwSUTxRcJOnraHajagNjjC1m9nlH9XihXS_eGczXRecx7mCrBKTnPuWoAJnS7CTKtwxy_BY1Gd9ZmIVJG0m9LO-EHnGSk2fHkdEITFRI6M6aBQJVmgPMmib0d9TV6rK8ojIkieSLMMD_9CxhWYwn_Uq0DQunSSIOEeIidbuSYJuS-M5oonYeIYtwZuSalYFlXMbTONTlzVX7bUjZG6cUbdmNdgf_xNL6_h8efbG-UGxMV5HsQV99VgZzyMJ9G6V0SquyP7DgprpIfr1eCg3Lhqit9XXPt7xW2YQU6Pby5vr9dhlmVsY2-BNmBq2B_pTQRFw2Qr4z4CT__N7l-ekRjJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+and+non-learning+algorithms+for+cuffless+blood+pressure+measurement%3A+a+review&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Agham%2C+Nishigandha+Dnyaneshwar&rft.au=Chaskar%2C+Uttam+M&rft.date=2021-06-01&rft.issn=1741-0444&rft.eissn=1741-0444&rft.volume=59&rft.issue=6&rft.spage=1201&rft_id=info:doi/10.1007%2Fs11517-021-02362-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon