Group Classification for the Search and Identification of Related Patterns Using a Variety of Multivariate Techniques
Recently, many methods and algorithms have been developed that can be quickly adapted to different situations within a population of interest, especially in the health sector. Success has been achieved by generating better models and higher-quality results to facilitate decision making, as well as t...
Saved in:
| Published in | Computation Vol. 12; no. 3; p. 55 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-3197 2079-3197 |
| DOI | 10.3390/computation12030055 |
Cover
| Abstract | Recently, many methods and algorithms have been developed that can be quickly adapted to different situations within a population of interest, especially in the health sector. Success has been achieved by generating better models and higher-quality results to facilitate decision making, as well as to propose new diagnostic procedures and treatments adapted to each patient. These models can also improve people’s quality of life, dissuade bad health habits, reinforce good habits, and modify the pre-existing ones. In this sense, the objective of this study was to apply supervised and unsupervised classification techniques, where the clustering algorithm was the key factor for grouping. This led to the development of three optimal groups of clinical pattern based on their characteristics. The supervised classification methods used in this study were Correspondence (CA) and Decision Trees (DT), which served as visual aids to identify the possible groups. At the same time, they were used as exploratory mechanisms to confirm the results for the existing information, which enhanced the value of the final results. In conclusion, this multi-technique approach was found to be a feasible method that can be used in different situations when there are sufficient data. It was thus necessary to reduce the dimensional space, provide missing values for high-quality information, and apply classification models to search for patterns in the clinical profiles, with a view to grouping the patients efficiently and accurately so that the clinical results can be applied in other research studies. |
|---|---|
| AbstractList | Recently, many methods and algorithms have been developed that can be quickly adapted to different situations within a population of interest, especially in the health sector. Success has been achieved by generating better models and higher-quality results to facilitate decision making, as well as to propose new diagnostic procedures and treatments adapted to each patient. These models can also improve people’s quality of life, dissuade bad health habits, reinforce good habits, and modify the pre-existing ones. In this sense, the objective of this study was to apply supervised and unsupervised classification techniques, where the clustering algorithm was the key factor for grouping. This led to the development of three optimal groups of clinical pattern based on their characteristics. The supervised classification methods used in this study were Correspondence (CA) and Decision Trees (DT), which served as visual aids to identify the possible groups. At the same time, they were used as exploratory mechanisms to confirm the results for the existing information, which enhanced the value of the final results. In conclusion, this multi-technique approach was found to be a feasible method that can be used in different situations when there are sufficient data. It was thus necessary to reduce the dimensional space, provide missing values for high-quality information, and apply classification models to search for patterns in the clinical profiles, with a view to grouping the patients efficiently and accurately so that the clinical results can be applied in other research studies. |
| Audience | Academic |
| Author | Muñoz-García, Alberto Montero-Alonso, Miguel Ángel Boukichou-Abdelkader, Nisa |
| Author_xml | – sequence: 1 givenname: Nisa orcidid: 0000-0002-7427-531X surname: Boukichou-Abdelkader fullname: Boukichou-Abdelkader, Nisa – sequence: 2 givenname: Miguel Ángel orcidid: 0000-0002-1214-9035 surname: Montero-Alonso fullname: Montero-Alonso, Miguel Ángel – sequence: 3 givenname: Alberto surname: Muñoz-García fullname: Muñoz-García, Alberto |
| BookMark | eNqNkt9rFDEQxxepYK39C3wJ-Hw1Pze7j-XQelCpaOtrmGYndzn2kjXJKvffm-uJrdAHE8gkw-f7ZYbJ6-YkxIBN85bRCyF6-t7G3TQXKD4GxqmgVKkXzSmnul8I1uuTJ_dXzXnOW1pXz0TH6WkzX6U4T2Q5Qs7eeftgQ1xMpGyQfENIdkMgDGQ1YCiPRHTkK45QcCBfoBRMIZO77MOaAPkOyWPZH5jP81j8z_quJLlFuwn-x4z5TfPSwZjx_E88a-4-frhdflpc31ytlpfXCyupKvWUrbZtb5GrHpnUHaMDs_eSKcGBceB9y1CCYwMXrO0AOR-suwdOea91K86a1dF3iLA1U_I7SHsTwZuHRExrA6l4O6IBrZByJRGRSqp1xx2Atk4Iq7GVsnrJo9ccJtj_gnH8a8ioOUzCPDOJKnt3lE0pHlovZhvnFGrXhvd9LbTjqn2k1lBr8cHFksDufLbmUncdl0pRXqmLZ6i6B9x5W3-F8zX_j0AcBTbFnBO6_yr5N5y5uqI |
| Cites_doi | 10.1186/s12911-019-0840-x 10.1016/j.arbres.2021.08.002 10.1007/978-1-0716-1839-4_9 10.3390/math10050696 10.1007/s10260-020-00546-2 10.1093/bib/6.4.331 10.31557/APJCP.2019.20.12.3777 10.1016/j.aprim.2009.05.003 10.1007/BF00436033 10.1016/j.gaceta.2017.10.016 10.17116/sudmed2020630119 10.7705/biomedica.5072 10.1097/GME.0000000000001798 10.1109/TCBB.2020.3025486 10.26719/2020.26.2.143 10.1109/TITB.2009.2018115 10.3390/ani10010086 10.1016/j.jbi.2007.12.003 10.1016/j.csda.2008.05.028 10.1177/03000605211053232 10.1016/j.prevetmed.2021.105469 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/computation12030055 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 2079-3197 |
| ExternalDocumentID | oai_doaj_org_article_a75e0254eee0407782faa7cf33c7e644 10.3390/computation12030055 A788245502 10_3390_computation12030055 |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c405t-c4467c69ce259e147810d1cb41532a12a2961e4af1d23168ae22dcfba20297763 |
| IEDL.DBID | UNPAY |
| ISSN | 2079-3197 |
| IngestDate | Fri Oct 03 12:48:22 EDT 2025 Sun Oct 26 04:05:30 EDT 2025 Sat Jul 26 00:11:48 EDT 2025 Mon Oct 20 22:58:37 EDT 2025 Mon Oct 20 17:05:28 EDT 2025 Thu Oct 16 04:44:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-c4467c69ce259e147810d1cb41532a12a2961e4af1d23168ae22dcfba20297763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7427-531X 0000-0002-1214-9035 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-3197/12/3/55/pdf?version=1709968592 |
| PQID | 2992028256 |
| PQPubID | 2032414 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a75e0254eee0407782faa7cf33c7e644 unpaywall_primary_10_3390_computation12030055 proquest_journals_2992028256 gale_infotracmisc_A788245502 gale_infotracacademiconefile_A788245502 crossref_primary_10_3390_computation12030055 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Computation |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Fratello (ref_4) 2022; 2401 DeSarbo (ref_11) 1991; 2 Almagro (ref_1) 2022; 58 ref_14 Rajaguru (ref_7) 2019; 20 ref_35 ref_33 ref_10 Freitas (ref_13) 2021; 30 ref_31 Ardila (ref_18) 2021; 86 ref_30 Im (ref_36) 2021; 28 Liu (ref_17) 2008; 41 ref_39 ref_16 ref_15 Vichi (ref_12) 2009; 53 (ref_32) 2010; 42 Mirzal (ref_3) 2022; 19 Pedregosa (ref_2) 2011; 12 Rokach (ref_6) 2007; 69 ref_23 ref_22 ref_21 Boutros (ref_20) 2005; 6 Karacan (ref_38) 2020; 26 Wang (ref_34) 2021; 49 (ref_25) 2011; 25 ref_40 Nenadic (ref_29) 2007; 20 ref_28 ref_27 ref_9 ref_8 Zheng (ref_19) 2009; 13 Franchuk (ref_37) 2020; 63 (ref_26) 2018; 32 Rueda (ref_5) 2020; 40 Lowie (ref_24) 2021; 196 |
| References_xml | – ident: ref_28 – ident: ref_39 doi: 10.1186/s12911-019-0840-x – volume: 58 start-page: 334 year: 2022 ident: ref_1 article-title: Actualización de la Guía Española de la EPOC (GesEPOC): Comorbilidades, automanejo y cuidados paliativos publication-title: Arch. Bronconeumol. doi: 10.1016/j.arbres.2021.08.002 – volume: 2401 start-page: 121 year: 2022 ident: ref_4 article-title: Unsupervised Algorithms for Microarray Sample Stratification publication-title: Microarray Data Anal. Methods Mol. Biol. doi: 10.1007/978-1-0716-1839-4_9 – ident: ref_9 – ident: ref_14 doi: 10.3390/math10050696 – ident: ref_30 – volume: 30 start-page: 1007 year: 2021 ident: ref_13 article-title: An empirical comparison of two approaches for CDPCA in high-dimensional data publication-title: Stat. Methods Appl. doi: 10.1007/s10260-020-00546-2 – volume: 6 start-page: 331 year: 2005 ident: ref_20 article-title: Unsupervised pattern recognition: An introduction to the whys and wherefores of clustering microarray data publication-title: Brief. Bioinform. doi: 10.1093/bib/6.4.331 – volume: 20 start-page: 3777 year: 2019 ident: ref_7 article-title: Analysis of Decision Tree and K-Nearest Neighbor Algorithm in the Classification of Breast Cancer publication-title: Asian Pac. J. Cancer Prev. doi: 10.31557/APJCP.2019.20.12.3777 – volume: 42 start-page: 86 year: 2010 ident: ref_32 article-title: Análisis de las alternativas terapéuticas del trastorno de pánico en atención primaria mediante un árbol de decisión [Tree decision analysis of the therapeutic alternatives for Panic Disorders in Primary Care] publication-title: Aten. Primaria doi: 10.1016/j.aprim.2009.05.003 – volume: 2 start-page: 129 year: 1991 ident: ref_11 article-title: Simultaneous multidimensional unfolding and cluster analysis: An investigation of strategic groups publication-title: Mark. Lett. doi: 10.1007/BF00436033 – ident: ref_16 – ident: ref_40 – volume: 32 start-page: 346 year: 2018 ident: ref_26 article-title: Tipologías de los madrileños ante la etapa final de la vida mediante un análisis de clusters [Typologies of Madrid’s citizens (Spain) at the end-of-life: Cluster analysis] publication-title: Spanish. Gac Sanit. doi: 10.1016/j.gaceta.2017.10.016 – ident: ref_35 – volume: 12 start-page: 2825 year: 2011 ident: ref_2 article-title: Scikit-learn: Machine Learning in Python. Unsupervised learning publication-title: JMLR – ident: ref_23 – ident: ref_21 – volume: 63 start-page: 9 year: 2020 ident: ref_37 article-title: Primenenie metoda dereva resheniĭ v sudebno-meditsinskoĭ ékspertnoĭ praktike pri analize ‘vrachebnykh del’ [Application of the decision tree method in forensic-medical practice in the analysis of ‘doctors proceedings’] publication-title: Sud. Meditsinskaia Ekspertiza doi: 10.17116/sudmed2020630119 – volume: 40 start-page: 616 year: 2020 ident: ref_5 article-title: Adverse treatment outcomes in multidrug resistant tuberculosis go beyond the microbe-drug interaction: Results of a multiple correspondence analysis publication-title: Biomedica doi: 10.7705/biomedica.5072 – volume: 28 start-page: 772 year: 2021 ident: ref_36 article-title: A decision tree analysis on multiple factors related to menopausal symptoms publication-title: Menopause doi: 10.1097/GME.0000000000001798 – volume: 86 start-page: 356 year: 2021 ident: ref_18 article-title: Reducing the heterogeneity in hepatocellular carcinoma. A cluster analysis based on clinical variables in patients treated at a quaternary care hospital publication-title: Rev. Gastroenterol. Mex. (Engl. Ed.) – ident: ref_8 – ident: ref_33 – volume: 19 start-page: 1173 year: 2022 ident: ref_3 article-title: Statistical Analysis of Microarray Data Clustering using NMF, Spectral Clustering, Kmeans and GMM publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2020.3025486 – ident: ref_27 – ident: ref_10 – volume: 26 start-page: 143 year: 2020 ident: ref_38 article-title: Analysis of life expectancy across countries using a decision tree publication-title: East. Mediterr. Health J. doi: 10.26719/2020.26.2.143 – volume: 13 start-page: 599 year: 2009 ident: ref_19 article-title: Tumor clustering using nonnegative matrix factorization with gene selection publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2018115 – volume: 69 start-page: 264 year: 2007 ident: ref_6 article-title: Minería de datos con árboles de decisión. Teoría y Aplicaciones publication-title: Ser. Percepción Máquinas Intel. Artificial. Chapters 1, 6 10 – ident: ref_15 – ident: ref_31 doi: 10.3390/ani10010086 – volume: 41 start-page: 602 year: 2008 ident: ref_17 article-title: Reducing microarray data via nonnegative matrix factorization for visualization and clustering analysis publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2007.12.003 – volume: 25 start-page: 337 year: 2011 ident: ref_25 article-title: Una encuesta de algoritmos de conjunto de agrupación en clústeres publication-title: Rev. Int. Reconoc. Patrones Intel. Artif. – volume: 20 start-page: 1 year: 2007 ident: ref_29 article-title: Correspondence Analysis in R, with two-and three-dimensional graphics: The ca package publication-title: J. Stat. Softw. – ident: ref_22 – volume: 53 start-page: 3194 year: 2009 ident: ref_12 article-title: Clustering and disjoint principal component analysis publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2008.05.028 – volume: 49 start-page: 3000605211053232 year: 2021 ident: ref_34 article-title: Decision tree analysis for evaluating disease activity in patients with rheumatoid arthritis publication-title: J. Int. Med. Res. doi: 10.1177/03000605211053232 – volume: 196 start-page: 105469 year: 2021 ident: ref_24 article-title: Decision tree analysis for pathogen identification based on circumstantial factors in outbreaks of bovine respiratory disease in calves publication-title: Prev. Vet. Med. doi: 10.1016/j.prevetmed.2021.105469 |
| SSID | ssj0000913820 |
| Score | 2.250962 |
| Snippet | Recently, many methods and algorithms have been developed that can be quickly adapted to different situations within a population of interest, especially in... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 55 |
| SubjectTerms | Algorithms Analysis Artificial intelligence Automatic classification Chronic illnesses Chronic obstructive pulmonary disease Classification cluster Cluster analysis Clustering Computer-aided medical diagnosis COPD correspondences Data mining Datasets Decision making Decision tree Decision trees Machine learning Methods PCA Variables Visual aids |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ei3oQ1wfWFzkIKlhs0pc9qriIoHhQ8RamaXKSKrar-O-dSbvLLgp68FJoO6VJ511mvgHYJ5-ASRqbsJTOUYLi0hCjyIYuk0ZJKwtnuFH45ja7ekiun9KnqVFfXBPWwQN3H-4E89Ryx7a1luQtJ4fmEHPj4tjklpw5W9_otJhKprwNLhhbL-pghmLK60-MH5LgdytVxCDt6Ywr8oj93-3yEiyM6lf8_MDn5ynHM1yB5T5iFGfdSgcwZ-tVWLqZwK02qzDoNbQRhz2M9NEajPxvJeGnXnI9kF-UoBhV0JOiKzMWWFei69WdULw44SvkbCXuPPhm3QhfWCBQPHJm3X4yje_cfadzohT3YyTYZh0ehpf3F1dhP2QhNBSrtXQkU2mywlhKhKzkztOokqYkJsYKpUJVZNIm6GSleMgVWqUq40pUPPaKrNMGzNcvtd0EoUrilSoNRW1RYin3zZRExwhhJiuLUgZwPP7e-rXD0tCUgzB79A_sCeCceTIhZSBsf4HEQ_fioX8TjwAOmKOa1bV9Q4N91wGtmIGv9FlOKQZ3dqsAdmYoSc3M7O2xTOhezRtNvlz57t8sgHAiJ3_Z3NZ_bG4bFun1SVcStwPz7dvI7lKM1JZ7Xh2-AA7lD7Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_q9UH7UNqqmH7IPggqGJrdfHEPIq20FKFHkVb6tkw2u30pufOSU_rfd2aziR6K-BIul7l8zc7szN78fgPwhuYEzPLUxJV0jhIUl8eYJDZ2hTRKWjl1hoHCl7Pi4ib7cpvfbsBswMJwWeXgE72jrueG18iPyW0qD7QsPi2-x9w1iv9dHVpoYGitUH_0FGNPYFMxM9YENk_PZldfx1UXZsGkOa-nH0op3z82vnmCfwtSJUzenq9NUZ7J_09_vQVPV80CH37i_f1vE9L5DmyHSFKc9KrfhQ3b7MHW5UjD2u7BbrDcVrwL9NLvn8PKLzcJ3w2T64T8TQmKXQX9UvTlxwKbWvQY3lFi7oSvnLO1uPKknE0rfMGBQPGNM-7ugWU8ovcH7ZOkuB4YYtsXcHN-dv35Ig7NF2JDMVxHW3KhppgaSwmSlYxITWppKlJuqlAqVNNC2gydrBU3v0KrVG1chYrbYZHXegmTZt7YVyBUVeZWVYaiuSSzlBMXSqJj5jBTVNNKRvBheN960XNsaMpNWD36L-qJ4JR1MooyQbb_Yr6808HeNNIlGehvrSU3VVIc5BBL49LUlJZiwAjeskY1m3G3RIMBjUB3zIRY-qSk1IMR3yqCwzVJMj-zfngYEzqYf6t_DdYI4nGc_M_D7f_7dAfwjD5lfRHcIUy65coeUVTUVa_DUH8EJ7YNoQ priority: 102 providerName: ProQuest |
| Title | Group Classification for the Search and Identification of Related Patterns Using a Variety of Multivariate Techniques |
| URI | https://www.proquest.com/docview/2992028256 https://www.mdpi.com/2079-3197/12/3/55/pdf?version=1709968592 https://doaj.org/article/a75e0254eee0407782faa7cf33c7e644 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-3197 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2079-3197 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-3197 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-3197 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-3197 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-3197 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B-wB7YGwwERiVH5AAiSyx82t5mrppZUJaVaEVjafIcWyEmNKqSTdtfz13jltRxgPwEqnpRYnl8-fvrLvvAN7gniDjJFJ-yY3BAMUkvgxD7ZuUK8E1z42iQuHzcXo2jT9dJpcuN6dxaZUYin-3IC3CLEeQyLOAiyAKkiSYV-bo2h0k8QzZTXqY5IjA_TRBKt6D_nQ8GX6lhnKrRzuloQhD-0DZPgl2wFyEpNOebOxGVrT_PjRvwaNlPZe3N_Lq6pe9Z7TdNVhtrGQhpZz8OFi25YG6-03Q8b-H9RSeOFbKhp0b7cADXe_C1vla0rXZhR2HAg1756Sq3z-DpT26YrazJuUc2VEz5MEMn2RdKjOTdcW6euC1xcwwm4WnKzaxAp91w2zyApPsC0Xv7S3Z2Orga_yNluxipTbbPIfp6PTi5Mx3jRx8hXywxSvCsUpzpTHY0pyqW8OKqxIdJRKSCynylOtYGl4JaqQltRCVMqUU1FoLEXAPevWs1i-AiTJLtCgVMsMw1hhfp4JLQypkKi3zknvwYTWhxbzT6ygwzqH5L_4w_x4c06SvTUls296YLb4Vbu0WEl9JogFaa4S8DDmVkTJTJopUppFPevCWXKYgSGgXUklX2YBfTOJaxTDDMIaqx4UH-xuWuJTV5t8rpysclDQF8gVhK4xTD_y1I_7N4F7-o_0reIxvirsMu33otYulfo2Uqy0H8PBw9HEA_ePT8eTzwB5cDNxi-wlwxitW |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLSAMBTYAwiQsOpdv-RDhVpoldImqlCKetuu17tcKifEDlX-HL-NmfU6EIEQl14ixZk4tmfntZn5PoCXGBNUksY6LLm1WKDYNFRRZEKbcS244YXVNCg8HGWDi-TTZXq5Bj_6WRhqq-x9onPU1UTTHvkeuk3hBi2z99NvIbFG0b-rPYWG8tQK1b6DGPODHadmcYMlXLN_8hH1_UqI46Pxh0HoWQZCjclKi6_oK3RWaIOVgOE0ehlVXJd4F7FQXChRZNwkyvJKEMuTMkJU2pZKEO8Tmiee9w5sJHFSYPG3cXg0Ov-83OUh1E2MsR3cURwX0Z52ZA3uqXMREVh8uhISHXPAn_FhCzbn9VQtbtT19W8B8Pg-3POZKzvolto2rJl6B7aGS9jXZge2vado2BsPZ_32Aczd9hZz7JvUl-QuimGuzPCbrGt3ZqquWDczvJSYWOY69UzFzh0IaN0w1-DAFPtCFX67IBk3Qfwd36MkG_eItM1DuLgVNTyC9XpSm8fARJmnRpQas8coMViDZ4IrS0hlOiuLkgfwrn_ectphekishUg98i_qCeCQdLIUJUBud2Ay-yq9fUuFP0nAAsYYdIs55l1WqVzbONa5wZwzgNekUUluo50prfz0A14xAXDJgxxLHZowFwHsrkiiuevVj_s1Ib27aeQv4wggXK6T_7m5J_8-3QvYHIyHZ_LsZHT6FO7i0aRrwNuF9XY2N88wI2vL537ZM7i6bUv7CXVRSQ8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH9BTFQORFBCFXUOGiWx2c70Kz0Qg-LKhxAOQLgN0-mMF9Jdt13J_mv8dbw3_cCNhHjhssm2b9tp3_fse78H8B59goriUPs5txYTFBv7KgiMbxOuBTc8s5oahQ-Pkt3TaP88Pl-A664XhsoqO5voDHUx0rRHPkCzKVyjZTKwbVnE8c7wy_i3TxOk6J_WbpxGIyIHZnaF6Vu1tbeDvP4gxPD7ybddv50w4GsMVGr8RDuhk0wbzAIMp7bLoOA6xycIheJCiSzhJlKWF4ImPCkjRKFtrgTNfELVxOs-gscpobhTl_rwR7-_Q3ib6F0boKMwzIKBdmMa3PvmIiCY-HjOGbqZAf96hiV4Oi3HanalLi__cn3D57DcxqxsuxGyFVgw5SosHfaAr9UqrLQ2omKfWiDrzRcwdRtbzM3dpIoktyiGUTLDX7Km0JmpsmBNt3BPMbLM1eiZgh07-M-yYq60gSl2Rrl9PSMa1zv8B78jJTvpsGirl3D6IExYg8VyVJp1YCJPYyNyjXFjEBnMvhPBlSWMMp3kWc49-Ny9bzlu0DwkZkHEHnkHezz4SjzpSQmK2x0YTX7JVrOlwlsSpIAxBg1iihGXVSrVNgx1ajDa9OAjcVSSwagnSqu27wFXTNBbcjvFJId6y4UHG3OUqOh6_nQnE7I1NJW8VQsP_F5O_ufhXt1_uXfwBPVL_tw7OngNz_Bg1FTebcBiPZmaNxiK1flbJ_MMLh5ayW4AdP9GqQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2h7QF6AFpABAryAQmQSBM7iUNOaEFUFVKrHrqonCzbsRGiyq422aLy9cw43hULHIBLpCQTJZbHz2-imTcAz3BP0GVV2NRw7zFA8VWq89ylXnIruOONt1QofHIqj2flh4vqIubm9DGtEkPxLwGkRV43CBJNnXGRFVlVZYvWv7mKP5J4jexGvq4aROAdWSEVn8DO7PRs-okayq0fHZWGCgztMxv6JIQBc5GTTnu1tRsF0f7foXkXbq66hb7-pi8vf9p7ju6MDVb7IFlIKSdfD1eDObTffxF0_O9h3YXbkZWy6ehGe3DDdfuwe7KRdO33YS-iQM9eRKnql_dgFX5dsdBZk3KOwqgZ8mCGT7IxlZnprmVjPfDGYu5ZyMJzLTsLAp9dz0LyAtPsI0XvwzXZhOrgKzxHS3a-Vpvt78Ps6P35u-M0NnJILfLBAY8Ix1Y21mGw5ThVt-YttwYdpRCaCy0ayV2pPW8FNdLSTojWeqMFtdZCBHwAk27euYfAhKkrJ4xFZpiXDuNrKbj2pEJmpWkMT-DVekLVYtTrUBjn0PyrP8x_Am9p0jemJLYdLsyXn1Vcu0rjK0k0wDmHkFcjp_Ja19YXha0d8skEnpPLKIKEYamtjpUN-MUkrqWmNYYxVD0uEjjYssSlbLdvr51ORSjpFfIFESqMZQLpxhH_ZnCP_tH-MdzCN5Vjht0BTIblyj1ByjWYp3Fh_QA4_yfh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+Classification+for+the+Search+and+Identification+of+Related+Patterns+Using+a+Variety+of+Multivariate+Techniques&rft.jtitle=Computation&rft.au=Boukichou-Abdelkader%2C+Nisa&rft.au=Montero-Alonso%2C+Miguel+%C3%81ngel&rft.au=Mu%C3%B1oz-Garc%C3%ADa%2C+Alberto&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.issn=2079-3197&rft.eissn=2079-3197&rft.volume=12&rft.issue=3&rft_id=info:doi/10.3390%2Fcomputation12030055&rft.externalDocID=A788245502 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-3197&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-3197&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-3197&client=summon |