Supervised process monitoring and fault diagnosis based on machine learning methods
Data-driven techniques have been receiving considerable attention in the industrial process monitoring field due to their major advantages of easy implementation and less requirement for the prior knowledge and process mechanism. Principal component analysis (PCA) method is known as a popular method...
Saved in:
| Published in | International journal of advanced manufacturing technology Vol. 102; no. 5-8; pp. 2321 - 2337 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.06.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0268-3768 1433-3015 |
| DOI | 10.1007/s00170-019-03306-z |
Cover
| Abstract | Data-driven techniques have been receiving considerable attention in the industrial process monitoring field due to their major advantages of easy implementation and less requirement for the prior knowledge and process mechanism. Principal component analysis (PCA) method is known as a popular method for monitoring and fault detection in industrial systems but as it is basically a linear method. However, most practical systems are nonlinear. To make the extension to nonlinear systems, kernel PCA (KPCA) method has been proposed for process modeling and monitoring. We present in this paper an online reduced rank optimized KPCA (RR-KPCA) technique for fault detection in order to extend the advantages of the KPCA models to online processes. Following the fault detection, the identification of the variables correlated to the fault occurred is of great importance. For this purpose, it is proposed to extend the approaches of localization by partial PCA and by elimination in the linear case to the nonlinear case, by exploiting the solution of reduction of the dimension of the kernel matrix in the feature space. The partial RR-KPCA and the elimination sensor identification (ESI-RRKPCA) are generated based on the static RR-KPCA and the online RR-KPCA methods. The idea of these approaches is to generate partial RR-KPCA models with reduced sets of variables. In other words, their goal is to generate indices of fault detection sensitive to certain faults and insensitive to others. The proposed fault isolation methods are applied for monitoring an air quality monitoring network (AIRLOR) data. |
|---|---|
| AbstractList | Data-driven techniques have been receiving considerable attention in the industrial process monitoring field due to their major advantages of easy implementation and less requirement for the prior knowledge and process mechanism. Principal component analysis (PCA) method is known as a popular method for monitoring and fault detection in industrial systems but as it is basically a linear method. However, most practical systems are nonlinear. To make the extension to nonlinear systems, kernel PCA (KPCA) method has been proposed for process modeling and monitoring. We present in this paper an online reduced rank optimized KPCA (RR-KPCA) technique for fault detection in order to extend the advantages of the KPCA models to online processes. Following the fault detection, the identification of the variables correlated to the fault occurred is of great importance. For this purpose, it is proposed to extend the approaches of localization by partial PCA and by elimination in the linear case to the nonlinear case, by exploiting the solution of reduction of the dimension of the kernel matrix in the feature space. The partial RR-KPCA and the elimination sensor identification (ESI-RRKPCA) are generated based on the static RR-KPCA and the online RR-KPCA methods. The idea of these approaches is to generate partial RR-KPCA models with reduced sets of variables. In other words, their goal is to generate indices of fault detection sensitive to certain faults and insensitive to others. The proposed fault isolation methods are applied for monitoring an air quality monitoring network (AIRLOR) data. |
| Author | Harkat, Mohamed Faouzi Taouali, Okba Lahdhiri, Hajer Said, Maroua Abdellafou, Khaoula Ben |
| Author_xml | – sequence: 1 givenname: Hajer surname: Lahdhiri fullname: Lahdhiri, Hajer organization: National Engineering School of Monastir, University of Monastir – sequence: 2 givenname: Maroua surname: Said fullname: Said, Maroua organization: National Engineering School of Sousse, MARS Research Laboratory, LR17ES05, University of Sousse – sequence: 3 givenname: Khaoula Ben surname: Abdellafou fullname: Abdellafou, Khaoula Ben organization: ISITCom, MARS Research Laboratory, LR17ES05, University of Sousse, Faculty of Computers and Information Technology, University of Tabuk – sequence: 4 givenname: Okba surname: Taouali fullname: Taouali, Okba email: taoualiok@gmail.com organization: National Engineering School of Monastir, University of Monastir, Faculty of Computers and Information Technology, University of Tabuk – sequence: 5 givenname: Mohamed Faouzi surname: Harkat fullname: Harkat, Mohamed Faouzi organization: Department of Electronics, University Badji Mokhtar |
| BookMark | eNp9kE9LwzAYh4NMcJt-AU8Fz9E3TZsmRxn-A8HD9BzSNt0y2qQmmeA-ve0qCB52yuV53vx4FmhmndUIXRO4JQDFXQAgBWAgAgOlwPDhDM1JRimmQPIZmkPKOKYF4xdoEcJuwBlhfI7W632v_ZcJuk567yodQtI5a6Lzxm4SZeukUfs2JrVRG-uCCUmpRtjZpFPV1lidtFp5O9KdjltXh0t03qg26Kvfd4k-Hh_eV8_49e3pZXX_iqsM8ohVLcphtK6IKqniqWKK1SUDlfOciTLPOKPAM50yzXjTsKqgooa0KXiTgygKukQ3091h-Odehyh3bu_t8KVMMzGomeD0JJWmQlCSHW_xiaq8C8HrRlYmqmicjV6ZVhKQY2g5hZZDaHkMLQ-Dmv5Te2865b9PS3SSQj-G1v5v1QnrB-smkq0 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3083544 crossref_primary_10_1007_s00170_019_03520_9 crossref_primary_10_1007_s00521_024_10551_1 crossref_primary_10_1016_j_psep_2024_05_070 crossref_primary_10_1007_s00170_024_14175_6 crossref_primary_10_1051_jnwpu_20234130546 crossref_primary_10_1155_2023_1091276 crossref_primary_10_1080_0951192X_2020_1858509 crossref_primary_10_1109_JSEN_2023_3349296 crossref_primary_10_1016_j_measurement_2020_108342 crossref_primary_10_1016_j_solener_2023_112155 crossref_primary_10_3390_en14165072 crossref_primary_10_1016_j_asoc_2022_109570 crossref_primary_10_1016_j_measurement_2020_108776 crossref_primary_10_1007_s00521_024_09847_z crossref_primary_10_1016_j_isatra_2021_08_040 crossref_primary_10_1007_s00170_019_03912_x crossref_primary_10_3390_pr8010024 crossref_primary_10_54021_seesv5n2_613 crossref_primary_10_1016_j_energy_2023_128874 crossref_primary_10_1155_2021_2154258 crossref_primary_10_1155_2022_5580774 crossref_primary_10_1016_j_measurement_2021_110064 |
| Cites_doi | 10.1007/s00477-017-1467-z 10.1016/j.jprocont.2004.04.001 10.1109/72.788640 10.1016/j.ces.2004.07.019 10.1090/S0002-9947-1950-0051437-7 10.1016/0098-1354(94)00057-U 10.1016/j.ces.2008.01.022 10.1016/j.apenergy.2012.12.043 10.1016/j.ces.2010.10.008 10.1016/j.isatra.2015.02.003 10.1016/j.ces.2008.10.012 10.1016/j.chemolab.2009.01.002 10.1080/10789669.2014.938006 10.1016/j.psep.2013.11.003 10.1016/j.jprocont.2003.09.004 10.1093/imamci/dnt025 10.1016/0098-1354(95)00003-K 10.1016/j.automatica.2009.10.030 10.1016/j.psep.2017.01.017 10.1016/j.chemolab.2004.05.001 10.2478/v10006-008-0038-3 10.1109/TPAMI.2011.270 10.1016/j.compeleceng.2014.11.003 10.1016/j.ces.2003.09.012 10.1016/j.psep.2016.03.016 10.1016/j.jprocont.2018.02.002 10.1007/s00477-016-1246-2 10.1016/0098-1354(93)80018-I 10.1016/j.psep.2016.01.015 10.1002/aic.690490414 10.1007/s00170-016-8745-7 10.1016/j.jprocont.2017.10.010 10.1007/s00477-007-0123-4 10.1016/j.jprocont.2005.09.007 10.1080/00401706.1995.10485888 10.1007/s00477-013-0700-7 10.1016/j.ces.2004.08.007 10.1016/j.jprocont.2017.03.004 10.1021/ac9704366 10.1007/s00170-018-2526-4 10.1504/IJAIS.2010.034804 10.1016/j.ces.2011.12.026 10.1007/s00170-015-8059-1 10.1007/s00521-010-0461-x 10.1162/089976698300017467 10.1016/j.isatra.2016.06.002 10.1088/1742-6596/570/7/072004 10.1007/s00170-016-8987-4 10.1016/S1474-6670(17)42503-1 10.1177/0142331218807271 10.1007/s00170-016-9887-3 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 Springer-Verlag London Ltd., part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 – notice: Springer-Verlag London Ltd., part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00170-019-03306-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1433-3015 |
| EndPage | 2337 |
| ExternalDocumentID | 10_1007_s00170_019_03306_z |
| GroupedDBID | -5B -5G -BR -EM -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- ML~ N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR _50 ~8M ~A9 ~EX -XW -XX -Y2 1SB 28- 2P1 2VQ 5QI 9M8 AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADQRH ADRFC AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ARCEE ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- PHGZM PHGZT PQGLB PUEGO R4E RNI RZK S1Z S26 S28 SCLPG SCV T16 ZY4 DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c405t-ad9b170ec1ab3a82a6a6db60a58569b54863084e26e68ff6c739d02f78f509773 |
| IEDL.DBID | U2A |
| ISSN | 0268-3768 |
| IngestDate | Fri Jul 25 11:01:16 EDT 2025 Fri Jul 25 11:07:39 EDT 2025 Wed Oct 01 00:53:04 EDT 2025 Thu Apr 24 23:16:20 EDT 2025 Fri Feb 21 02:35:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5-8 |
| Keywords | Nonlinear process monitoring Fault isolation Air quality monitoring Fault detection Reduced rank KPCA Tabu search algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-ad9b170ec1ab3a82a6a6db60a58569b54863084e26e68ff6c739d02f78f509773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2490844983 |
| PQPubID | 2044010 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2490844983 proquest_journals_2229931477 crossref_citationtrail_10_1007_s00170_019_03306_z crossref_primary_10_1007_s00170_019_03306_z springer_journals_10_1007_s00170_019_03306_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | International journal of advanced manufacturing technology |
| PublicationTitleAbbrev | Int J Adv Manuf Technol |
| PublicationYear | 2019 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Harkat, Mourot, Ragot (CR58) 2006; 16 Vapnik (CR47) 1999; 10 Zhao, Wang, Xiao (CR25) 2013; 112 Sheriff, Mansouric, Nazmul Karima, Nounouc, Nounou (CR38) 2017; 54 Schölkopf, Smola, Müller (CR4) 1998; 10 Dong, McAvoy (CR27) 1996; 20 CR37 Mercer (CR48) 1909; 209 Aronszajn (CR5) 1950; 68 Harrou, Kadri, Khadraoui, Sun (CR32) 2016; 100 Jaffel, Taouali, Elaissi, Messaoud (CR1) 2014; 31 Fezaia, Mansourib, Taoualia, Harkatc, Bouguilaa (CR18) 2017; 61 Cho, Lee, Choi, Lee, Lee (CR36) 2005; 60 Liu, Kruger, Littler, Xie, Wang (CR45) 2009; 96 Lee, Yoo, Lee (CR9) 2004; 14 Navi, Meskin, Davoodi (CR44) 2018; 64 Lahdhiri, Elaissi, Taouali, Harakat, Messaoud (CR55) 2017; 32 Jaffel, Taouali, Harkat, Messaoud (CR17) 2016; 64 Mika, Schölkopf, Smola, Müller, Scholz, Rätsch (CR3) 1998 Kazor, Holloway, Cath, Hering (CR8) 2016; 30 CR49 Chetouani (CR26) 2008; 22 Choi, Lee, Lee, Park, Lee (CR53) 2005; 75 Li, Qin, Zhou (CR30) 2010; 46 Zhang, Li, Teng (CR50) 2012; 72 Stork, Veltkamp, Kowalski (CR57) 1997; 69 Zhang (CR41) 2009; 64 Said, Fazai, Adellafou, Taouali (CR21) 2018; 99 Taouali, Elaissi, Messaoud (CR12) 2015; 57 Lyman, Georgakis (CR23) 1995; 19 Dhillon (CR16) 2004; 78712 Cristóvão, Pinto, Gonçalves, Martins, Loureiro, Boaventura (CR29) 2016; 102 CR19 Patan, Parisini (CR28) 2005; 15 Jicong Fan, Qin, Wang (CR40) 2014; 22 Aizerman, Braverman, Rozonoer (CR10) 1964; 25 Harkat, Tharrault, Mourot, Ragot (CR59) 2010; 1 CR56 Honeine (CR7) 2012; 34 Kano, Tanaka, Hasebe, Hashimoto, Ohno (CR31) 2003; 49 Cai, Tian (CR34) 2014; 92 CR51 Choi, Lee (CR42) 2004; 59 Lee, Yoo, Choi, Vanrolleghem, Lee (CR54) 2004; 59 Huang, Gertler (CR20) 1999 Taouali, Jaffel, Lahdhiri, Harkat, Messaoud (CR13) 2016; 85 Chouaib, Mohamed-Faouzi, Messaoud (CR11) 2015; 9 Tharrault, Mourot, Ragot, Maquin (CR2) 2008; 18 Downs, Vogel (CR22) 1993; 17 Zhang, Ma (CR39) 2011; 66 Li, Zhang (CR46) 2013; 27 Ding (CR15) 2004 Taouali, Elaissi, Messaoud (CR14) 2012; 21 Choi, Morris, Lee (CR35) 2008; 63 Zhao, Xiao, Wen, Lu, Wang (CR24) 2014; 20 Nomikos, MacGregor (CR52) 1995; 37 Fazai, Taouali, Harkat, Bouguila (CR6) 2016; 87 Zhang, Tian, Cai, Deng (CR43) 2015; 41 Madakyaru, Harrou, Sun (CR33) 2017; 107 RO Cristóvão (3306_CR29) 2016; 102 S Mika (3306_CR3) 1998 K Patan (3306_CR28) 2005; 15 B Schölkopf (3306_CR4) 1998; 10 H Lahdhiri (3306_CR55) 2017; 32 SW Choi (3306_CR53) 2005; 75 M Said (3306_CR21) 2018; 99 O Taouali (3306_CR12) 2015; 57 Y Zhao (3306_CR25) 2013; 112 G Li (3306_CR30) 2010; 46 O Taouali (3306_CR14) 2012; 21 I Jaffel (3306_CR17) 2016; 64 3306_CR56 D Dong (3306_CR27) 1996; 20 MZ Sheriff (3306_CR38) 2017; 54 M Aizerman (3306_CR10) 1964; 25 N Zhang (3306_CR43) 2015; 41 V Vapnik (3306_CR47) 1999; 10 JJ Downs (3306_CR22) 1993; 17 3306_CR51 C Chouaib (3306_CR11) 2015; 9 R Fazai (3306_CR6) 2016; 87 JM Lee (3306_CR9) 2004; 14 K Kazor (3306_CR8) 2016; 30 S Choi (3306_CR42) 2004; 59 Y Zhao (3306_CR24) 2014; 20 M Kano (3306_CR31) 2003; 49 3306_CR19 JM Lee (3306_CR54) 2004; 59 P Honeine (3306_CR7) 2012; 34 MF Harkat (3306_CR59) 2010; 1 S Jicong Fan (3306_CR40) 2014; 22 3306_CR49 N Aronszajn (3306_CR5) 1950; 68 CL Stork (3306_CR57) 1997; 69 MF Harkat (3306_CR58) 2006; 16 C Ding (3306_CR15) 2004 S Choi (3306_CR35) 2008; 63 IS Dhillon (3306_CR16) 2004; 78712 Y Chetouani (3306_CR26) 2008; 22 JH Cho (3306_CR36) 2005; 60 J Mercer (3306_CR48) 1909; 209 L Cai (3306_CR34) 2014; 92 Y Huang (3306_CR20) 1999 PR Lyman (3306_CR23) 1995; 19 M Navi (3306_CR44) 2018; 64 X Liu (3306_CR45) 2009; 96 I Jaffel (3306_CR1) 2014; 31 R Fezaia (3306_CR18) 2017; 61 P Nomikos (3306_CR52) 1995; 37 Y Tharrault (3306_CR2) 2008; 18 Y Zhang (3306_CR41) 2009; 64 3306_CR37 Y Zhang (3306_CR39) 2011; 66 H Li (3306_CR46) 2013; 27 F Harrou (3306_CR32) 2016; 100 O Taouali (3306_CR13) 2016; 85 M Madakyaru (3306_CR33) 2017; 107 Y Zhang (3306_CR50) 2012; 72 |
| References_xml | – year: 2004 ident: CR15 publication-title: K -means clustering via principal component analysis, in the 21st Int Conf Mach Learn – volume: 32 start-page: 1833 issue: 6 year: 2017 end-page: 1848 ident: CR55 article-title: Nonlinear process monitoring based on new reduced rank-KPCA method publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-017-1467-z – volume: 15 start-page: 67 year: 2005 end-page: 79 ident: CR28 article-title: Identication of neural dynamic models for fault detection and isolation: the case of a real sugar evaporation process publication-title: J Process Control doi: 10.1016/j.jprocont.2004.04.001 – volume: 10 start-page: 988 issue: 5 year: 1999 end-page: 999 ident: CR47 article-title: An overview of statistical learning theory publication-title: IEEE Trans Neural Netw doi: 10.1109/72.788640 – volume: 25 start-page: 821 year: 1964 end-page: 837 ident: CR10 article-title: Theoretical foundations of the potential function method in pattern recognition learning publication-title: Autom Remote Control – volume: 59 start-page: 5897 issue: 24 year: 2004 end-page: 5908 ident: CR42 article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA publication-title: Chem Eng Sci doi: 10.1016/j.ces.2004.07.019 – ident: CR49 – volume: 68 start-page: 337 issue: 3 year: 1950 end-page: 404 ident: CR5 article-title: Theory of reproducing kernels publication-title: Trans Am Math Soc doi: 10.1090/S0002-9947-1950-0051437-7 – volume: 19 start-page: 321 year: 1995 end-page: 331 ident: CR23 article-title: Plant-wide control of the Tennessee Eastmanproblem publication-title: Comput Chem Eng doi: 10.1016/0098-1354(94)00057-U – ident: CR51 – volume: 63 start-page: 2252 issue: 8 year: 2008 end-page: 2266 ident: CR35 article-title: Nonlinear multiscale modelling for fault detection and identification publication-title: Chem Eng Sci doi: 10.1016/j.ces.2008.01.022 – start-page: 536 year: 1998 end-page: 542 ident: CR3 article-title: Kernel PCA and de-noising in feature spaces publication-title: NIPS – volume: 112 start-page: 1041 year: 2013 end-page: 1048 ident: CR25 article-title: Pattern recognition-based chillers fault detection method using support vector data description (SVDD) publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.043 – volume: 66 start-page: 64 issue: 1 year: 2011 end-page: 72 ident: CR39 article-title: Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS publication-title: Chem Eng Sci doi: 10.1016/j.ces.2010.10.008 – volume: 57 start-page: 205 year: 2015 end-page: 210 ident: CR12 article-title: Dimensionality reduction of RKHS model parameters publication-title: ISA Trans doi: 10.1016/j.isatra.2015.02.003 – volume: 64 start-page: 801 issue: 5 year: 2009 end-page: 811 ident: CR41 article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM publication-title: Chem Eng Sci doi: 10.1016/j.ces.2008.10.012 – volume: 96 start-page: 132 issue: 2 year: 2009 end-page: 143 ident: CR45 article-title: Moving window kernel PCA for adaptive monitoring of nonlinear processes publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2009.01.002 – volume: 20 start-page: 798 year: 2014 end-page: 809 ident: CR24 article-title: A robust pattern recognition-based fault detection and diagnosis (FDD) method for chillers publication-title: HVAC&R RESEARCH doi: 10.1080/10789669.2014.938006 – volume: 92 start-page: 645 issue: 6 year: 2014 end-page: 658 ident: CR34 article-title: A new fault detection method for non-Gaussian process based on robust independent component analysis publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2013.11.003 – volume: 14 start-page: 467 issue: 5 year: 2004 end-page: 485 ident: CR9 article-title: Statistical process monitoring with independent component analysis publication-title: J Process Control doi: 10.1016/j.jprocont.2003.09.004 – ident: CR19 – volume: 31 start-page: 487 issue: 4 year: 2014 end-page: 499 ident: CR1 article-title: A new online fault detection method based on PCA technique publication-title: IMA J Math Control Inf doi: 10.1093/imamci/dnt025 – start-page: 545 year: 1999 end-page: 550 ident: CR20 publication-title: Fault isolation by partial PCA and partial NLPCA.. IFAC’99, 14th triennial world congress – volume: 20 start-page: 65 issue: 1 year: 1996 end-page: 78 ident: CR27 article-title: Nonlinear principal component analysis based on principal curves and neural networks publication-title: Comput Chem Eng doi: 10.1016/0098-1354(95)00003-K – volume: 46 start-page: 204 issue: 1 year: 2010 end-page: 210 ident: CR30 article-title: Geometric properties of partial least squares for process monitoring publication-title: Automatica doi: 10.1016/j.automatica.2009.10.030 – volume: 107 start-page: 22 year: 2017 end-page: 34 ident: CR33 article-title: Improved data-based fault detection strategy and application to distillation columns publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2017.01.017 – volume: 75 start-page: 55 issue: 1 year: 2005 end-page: 67 ident: CR53 article-title: Fault detection and identification of nonlinear processes based on kernel PCA publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2004.05.001 – volume: 18 start-page: 429 issue: 4 year: 2008 end-page: 442 ident: CR2 article-title: Fault detection and isolation with robust principal component analysis publication-title: Int J Appl Math Comput Sci doi: 10.2478/v10006-008-0038-3 – volume: 34 start-page: 1814 issue: 9 year: 2012 end-page: 1826 ident: CR7 article-title: Online kernel principal component analysis: a reduced-order model publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.270 – volume: 41 start-page: 9 year: 2015 end-page: 17 ident: CR43 article-title: Process fault detection based on dynamic kernel slow feature analysis publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2014.11.003 – volume: 59 start-page: 223 issue: 1 year: 2004 end-page: 234 ident: CR54 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chem Eng Sci doi: 10.1016/j.ces.2003.09.012 – volume: 102 start-page: 263 year: 2016 end-page: 276 ident: CR29 article-title: Fish canning industry wastewater variability assessment using multivariate statistical methods publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2016.03.016 – volume: 22 start-page: 205 issue: 2014 year: 2014 end-page: 216 ident: CR40 article-title: Online monitoring of nonlinear multivariate industrial processes using filtering KICA–PCA publication-title: Control Eng Pract – volume: 64 start-page: 37 year: 2018 end-page: 48 ident: CR44 article-title: Sensor fault detection and isolation of an industrial gas turbine using partial adaptive KPCA publication-title: J Process Control doi: 10.1016/j.jprocont.2018.02.002 – volume: 30 start-page: 1527 issue: 5 year: 2016 end-page: 1544 ident: CR8 article-title: Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-016-1246-2 – volume: 17 start-page: 245 year: 1993 end-page: 255 ident: CR22 article-title: A plant-wide industrial process control problem publication-title: Comput Chem Eng doi: 10.1016/0098-1354(93)80018-I – volume: 100 start-page: 220 year: 2016 end-page: 231 ident: CR32 article-title: Ozone measurements monitoring using data-based approach publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2016.01.015 – volume: 49 start-page: 969 issue: 4 year: 2003 end-page: 976 ident: CR31 article-title: Monitoring independent components for fault detection publication-title: AICHE J doi: 10.1002/aic.690490414 – volume: 87 start-page: 3425 issue: 9–12 year: 2016 end-page: 3436 ident: CR6 article-title: A new fault detection method for nonlinear process monitoring publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-8745-7 – volume: 61 start-page: 1 year: 2017 end-page: 11 ident: CR18 article-title: Online reduced kernel principal component analysis for process monitoring publication-title: J Process Control doi: 10.1016/j.jprocont.2017.10.010 – volume: 22 start-page: 339 issue: 3 year: 2008 end-page: 349 ident: CR26 article-title: A neural network approach for the real-time detection of faults publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-007-0123-4 – volume: 16 start-page: 625 issue: 6 year: 2006 end-page: 634 ident: CR58 article-title: An improved PCA scheme for sensor FDI: application to an air quality monitoring network publication-title: J Process Control doi: 10.1016/j.jprocont.2005.09.007 – ident: CR37 – volume: 37 start-page: 41 issue: 1 year: 1995 end-page: 59 ident: CR52 article-title: Multivariate SPC charts for monitoring batch processes publication-title: Technometrics doi: 10.1080/00401706.1995.10485888 – ident: CR56 – volume: 27 start-page: 1621 issue: 7 year: 2013 end-page: 1635 ident: CR46 article-title: Stochastic representation and dimension reduction for non-Gaussian random fields: review and reflection publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-013-0700-7 – volume: 60 start-page: 279 issue: 1 year: 2005 end-page: 288 ident: CR36 article-title: Fault identification for process monitoring using kernel principal component analysis publication-title: Chem Eng Sci doi: 10.1016/j.ces.2004.08.007 – volume: 54 start-page: 47 year: 2017 end-page: 64 ident: CR38 article-title: Fault detection using multiscale PCA-based moving window GLRT publication-title: J Process Control doi: 10.1016/j.jprocont.2017.03.004 – volume: 69 start-page: 5031 issue: 24 year: 1997 end-page: 5036 ident: CR57 article-title: Identification of multiple sensor disturbances during process monitoring publication-title: Anal Chem doi: 10.1021/ac9704366 – volume: 99 start-page: 1 year: 2018 end-page: 13 ident: CR21 article-title: Decentralized fault detection and isolation using bond graph and PCA methods publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2526-4 – volume: 78712 start-page: 551 year: 2004 end-page: 556 ident: CR16 article-title: Kernel k-means, spectral clustering and normalized cuts publication-title: Compute – volume: 1 start-page: 267 issue: 3–4 year: 2010 end-page: 284 ident: CR59 article-title: Multiple sensor fault detection and isolation of an air quality monitoring network using RBF-NLPCA model publication-title: Int J Adapt Innov Syst doi: 10.1504/IJAIS.2010.034804 – volume: 72 start-page: 78 year: 2012 end-page: 86 ident: CR50 article-title: Dynamic processes monitoring using recursive kernel principal component analysis publication-title: Chem Eng Sci doi: 10.1016/j.ces.2011.12.026 – volume: 9 start-page: 1833 issue: 4 year: 2015 end-page: 1845 ident: CR11 article-title: New adaptive kernel principal component analysis for nonlinear dynamic process monitoring publication-title: Appl Math Inf Sci – volume: 85 start-page: 1547 issue: 5–8 year: 2016 end-page: 1552 ident: CR13 article-title: New fault detection method based on reduced kernel principal component analysis (RKPCA) publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-8059-1 – volume: 21 start-page: 161 issue: 1 year: 2012 end-page: 169 ident: CR14 article-title: Online identification of nonlinear system using reduced kernel principal component analysis publication-title: Neural Comput & Applic doi: 10.1007/s00521-010-0461-x – volume: 10 start-page: 1299 issue: 5 year: 1998 end-page: 1319 ident: CR4 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput doi: 10.1162/089976698300017467 – volume: 64 start-page: 184 year: 2016 end-page: 192 ident: CR17 article-title: Moving window KPCA with reduced complexity for nonlinear dynamic process monitoring publication-title: ISA Trans doi: 10.1016/j.isatra.2016.06.002 – volume: 209 start-page: 415 year: 1909 end-page: 446 ident: CR48 article-title: Functions of positive and negative type and their connection with the theory of integral equations. Philosophical transactions of the royal society of London publication-title: Series A, containing papers of a mathematical or physical character – volume: 209 start-page: 415 year: 1909 ident: 3306_CR48 publication-title: Series A, containing papers of a mathematical or physical character – volume: 10 start-page: 988 issue: 5 year: 1999 ident: 3306_CR47 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.788640 – start-page: 536 volume-title: NIPS year: 1998 ident: 3306_CR3 – volume: 64 start-page: 184 year: 2016 ident: 3306_CR17 publication-title: ISA Trans doi: 10.1016/j.isatra.2016.06.002 – volume: 46 start-page: 204 issue: 1 year: 2010 ident: 3306_CR30 publication-title: Automatica doi: 10.1016/j.automatica.2009.10.030 – volume: 96 start-page: 132 issue: 2 year: 2009 ident: 3306_CR45 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2009.01.002 – ident: 3306_CR37 doi: 10.1088/1742-6596/570/7/072004 – volume: 112 start-page: 1041 year: 2013 ident: 3306_CR25 publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.043 – volume: 19 start-page: 321 year: 1995 ident: 3306_CR23 publication-title: Comput Chem Eng doi: 10.1016/0098-1354(94)00057-U – volume: 49 start-page: 969 issue: 4 year: 2003 ident: 3306_CR31 publication-title: AICHE J doi: 10.1002/aic.690490414 – volume: 78712 start-page: 551 year: 2004 ident: 3306_CR16 publication-title: Compute – volume: 54 start-page: 47 year: 2017 ident: 3306_CR38 publication-title: J Process Control doi: 10.1016/j.jprocont.2017.03.004 – volume: 21 start-page: 161 issue: 1 year: 2012 ident: 3306_CR14 publication-title: Neural Comput & Applic doi: 10.1007/s00521-010-0461-x – volume: 61 start-page: 1 year: 2017 ident: 3306_CR18 publication-title: J Process Control doi: 10.1016/j.jprocont.2017.10.010 – start-page: 545 volume-title: Fault isolation by partial PCA and partial NLPCA.. IFAC’99, 14th triennial world congress year: 1999 ident: 3306_CR20 – volume: 34 start-page: 1814 issue: 9 year: 2012 ident: 3306_CR7 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.270 – volume: 27 start-page: 1621 issue: 7 year: 2013 ident: 3306_CR46 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-013-0700-7 – volume: 18 start-page: 429 issue: 4 year: 2008 ident: 3306_CR2 publication-title: Int J Appl Math Comput Sci doi: 10.2478/v10006-008-0038-3 – volume: 99 start-page: 1 year: 2018 ident: 3306_CR21 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2526-4 – volume: 9 start-page: 1833 issue: 4 year: 2015 ident: 3306_CR11 publication-title: Appl Math Inf Sci – volume: 102 start-page: 263 year: 2016 ident: 3306_CR29 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2016.03.016 – ident: 3306_CR49 doi: 10.1007/s00170-016-8987-4 – volume: 37 start-page: 41 issue: 1 year: 1995 ident: 3306_CR52 publication-title: Technometrics doi: 10.1080/00401706.1995.10485888 – volume: 22 start-page: 339 issue: 3 year: 2008 ident: 3306_CR26 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-007-0123-4 – volume: 20 start-page: 798 year: 2014 ident: 3306_CR24 publication-title: HVAC&R RESEARCH doi: 10.1080/10789669.2014.938006 – volume: 14 start-page: 467 issue: 5 year: 2004 ident: 3306_CR9 publication-title: J Process Control doi: 10.1016/j.jprocont.2003.09.004 – volume: 57 start-page: 205 year: 2015 ident: 3306_CR12 publication-title: ISA Trans doi: 10.1016/j.isatra.2015.02.003 – volume: 66 start-page: 64 issue: 1 year: 2011 ident: 3306_CR39 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2010.10.008 – volume: 41 start-page: 9 year: 2015 ident: 3306_CR43 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2014.11.003 – ident: 3306_CR19 doi: 10.1016/S1474-6670(17)42503-1 – volume: 63 start-page: 2252 issue: 8 year: 2008 ident: 3306_CR35 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2008.01.022 – volume: 17 start-page: 245 year: 1993 ident: 3306_CR22 publication-title: Comput Chem Eng doi: 10.1016/0098-1354(93)80018-I – volume: 15 start-page: 67 year: 2005 ident: 3306_CR28 publication-title: J Process Control doi: 10.1016/j.jprocont.2004.04.001 – volume: 72 start-page: 78 year: 2012 ident: 3306_CR50 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2011.12.026 – volume: 60 start-page: 279 issue: 1 year: 2005 ident: 3306_CR36 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2004.08.007 – volume: 10 start-page: 1299 issue: 5 year: 1998 ident: 3306_CR4 publication-title: Neural Comput doi: 10.1162/089976698300017467 – volume: 107 start-page: 22 year: 2017 ident: 3306_CR33 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2017.01.017 – volume: 64 start-page: 801 issue: 5 year: 2009 ident: 3306_CR41 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2008.10.012 – ident: 3306_CR56 doi: 10.1177/0142331218807271 – volume: 25 start-page: 821 year: 1964 ident: 3306_CR10 publication-title: Autom Remote Control – volume: 16 start-page: 625 issue: 6 year: 2006 ident: 3306_CR58 publication-title: J Process Control doi: 10.1016/j.jprocont.2005.09.007 – volume: 87 start-page: 3425 issue: 9–12 year: 2016 ident: 3306_CR6 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-8745-7 – volume: 31 start-page: 487 issue: 4 year: 2014 ident: 3306_CR1 publication-title: IMA J Math Control Inf doi: 10.1093/imamci/dnt025 – volume: 59 start-page: 5897 issue: 24 year: 2004 ident: 3306_CR42 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2004.07.019 – volume: 22 start-page: 205 issue: 2014 year: 2014 ident: 3306_CR40 publication-title: Control Eng Pract – volume: 20 start-page: 65 issue: 1 year: 1996 ident: 3306_CR27 publication-title: Comput Chem Eng doi: 10.1016/0098-1354(95)00003-K – volume: 92 start-page: 645 issue: 6 year: 2014 ident: 3306_CR34 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2013.11.003 – ident: 3306_CR51 doi: 10.1007/s00170-016-9887-3 – volume: 75 start-page: 55 issue: 1 year: 2005 ident: 3306_CR53 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2004.05.001 – volume: 69 start-page: 5031 issue: 24 year: 1997 ident: 3306_CR57 publication-title: Anal Chem doi: 10.1021/ac9704366 – volume: 64 start-page: 37 year: 2018 ident: 3306_CR44 publication-title: J Process Control doi: 10.1016/j.jprocont.2018.02.002 – volume: 59 start-page: 223 issue: 1 year: 2004 ident: 3306_CR54 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2003.09.012 – volume: 68 start-page: 337 issue: 3 year: 1950 ident: 3306_CR5 publication-title: Trans Am Math Soc doi: 10.1090/S0002-9947-1950-0051437-7 – volume: 30 start-page: 1527 issue: 5 year: 2016 ident: 3306_CR8 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-016-1246-2 – volume-title: K -means clustering via principal component analysis, in the 21st Int Conf Mach Learn year: 2004 ident: 3306_CR15 – volume: 100 start-page: 220 year: 2016 ident: 3306_CR32 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2016.01.015 – volume: 85 start-page: 1547 issue: 5–8 year: 2016 ident: 3306_CR13 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-8059-1 – volume: 32 start-page: 1833 issue: 6 year: 2017 ident: 3306_CR55 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-017-1467-z – volume: 1 start-page: 267 issue: 3–4 year: 2010 ident: 3306_CR59 publication-title: Int J Adapt Innov Syst doi: 10.1504/IJAIS.2010.034804 |
| SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
| Score | 2.3548195 |
| Snippet | Data-driven techniques have been receiving considerable attention in the industrial process monitoring field due to their major advantages of easy... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2321 |
| SubjectTerms | Air monitoring Air quality CAE) and Design Computer-Aided Engineering (CAD Engineering Environmental monitoring Fault detection Fault diagnosis Industrial and Production Engineering Kernels Machine learning Mechanical Engineering Media Management Methods Nonlinear systems Original Article Principal components analysis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RcGkPiEerhpd84NZa7NqOHweEAIEQEhGqisRt5bW9VSXYBBIu_Ho8Xm_SVoWzsxvt-LNnxuP5PoCDRssYdAhNC6stFaXitA68pMFJ1RSusKzGc8jrsby8FVd3o7sVGPe9MHitst8T00btJw7PyA8ZVqiEMJofTx8pqkZhdbWX0LBZWsEfJYqxD7DKkBlrAKun5-ObHz3CSqNQJXOBQGZQmn6JcC5GvKt75TqELFMzXUxUNC5FndtuUvNdop6JqbihBY-BN33527Ut49V_SqzJc12sw1oOOclJh5ENWAntJnz6g4hwC1DcEzeNWfBk2rUOkIe02nGc2NaTxj7fz4nvbub9nhF0f55MWvKQrmMGkvUnfpFOlHr2GW4vzn-eXdIst0BdjNrm1HpTxy8KrrQ1t5pZaaWvZWFjRiFNHVMbyeMUBCaD1E0jneLGF6xRuolRh1L8CwzaSRu-AomJr9PSsdIGI0J0ea6RweqRClh1NWIIZW-pymUucpTEuK8WLMrJulW0bpWsW70M4dvimWnHxPHur3f7CajyqpxVqF1ueCmU-v_wAmJD-N7P2XL47T_bfv9tO_CRJZjg2c0uDOZPz2EvhjLzej_j8xVf5el8 priority: 102 providerName: ProQuest |
| Title | Supervised process monitoring and fault diagnosis based on machine learning methods |
| URI | https://link.springer.com/article/10.1007/s00170-019-03306-z https://www.proquest.com/docview/2229931477 https://www.proquest.com/docview/2490844983 |
| Volume | 102 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3015 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3015 dateEnd: 20241028 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ADMLS dateStart: 19850901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3015 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3015 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RWGBAPEV5VB7YwFISu36MBVoQLyGgUpkix3EQEqQVaZf-emwnaQEBEpMHO7Jy_uy78_nuAzjMBLNGBxU4UEJhGnKCE0NCbDTjWaADFSXuHvLmll306eWgPaiSwor6tXsdkvQn9SzZzZd6sa6vxIF1whmeNmCp7cp5WRT3o06NolByx4Q5Q1kkHf38HMWEtkkZ26piDSz0CXPWGRFuu4kqtebnOb-qr7lN-i2M6rVTbw1WK7MSdUocrMOCyTdg5VOxwU1wBJ7uYChMikZlegB68zva9SOVpyhTk9cxSsvXdy8FciouRcMcvfknlwZVHBPPqCSeLrag3-s-nl7gilIBa2uZjbFKZWL_yOhQJUSJSDHF0oQFynoNTCbWfWEkENREzDCRZUxzItMgyrjIrGXBOdmGxXyYmx1A1rnVgukoVEZSY9WazphRos2Ni6xK2oSwllSsq3rjjvbiNZ5VSvbSja10Yy_deNqEo9k3o7Laxp-j9-sFiKudV8SOn1ySkHL-c7cLdFIqBWnCcb1m8-7fJ9v93_A9WI48bNx9zT4sjt8n5sCaL-OkBQ3RO2_BUufs5vrBtedPV13bnnRv7-5bHssfkYnl7A |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE-xUMAHOIFFYnv9OFSIR6stbVcItVJvwbEdhNRmF7IVoj-O38bYcXYBQW89O7Gl8XjmG49nPoCnjZYIOoSmhdWWilJxWgde0uCkagpXWFbHe8iDqZwciffH4-M1-DnUwsRnlYNNTIbaz1y8I3_JYoZKCKP5q_lXGlmjYnZ1oNCwmVrBb6UWY7mwYy_8-I4hXLe1-w73-xljO9uHbyc0swxQh2BlQa03damK4Epbc6uZlVb6WhYWgbQ0NSJ6yXHlwGSQummkU9z4gjVKN-hsleI47xXYEFwYDP423mxPP3wcNLo0KrJyLjWeGQQ4anWiuBjzPs-W8x6yTMV7GBjpePR1LvNJxX6p1Q2G_oYWHIE-Pf_Tla7w8V8p3eQpd27CjQxxyeteJ2_BWmhvw_XfGh_egUgmGo1UFzyZ96UK5DRZlzhObOtJY89OFsT3LwG_dCS6W09mLTlNzz8DyXwXn0lPgt3dhaNLEfw9WG9nbbgPBANtp6VjpQ1GBHSxrpHB6rEKMctrxAjKQVKVy73PIwXHSbXs2pykW6F0qyTd6nwEz5f_zPvOHxd-vTlsQJWtQFdFrnTDS6HUv4eXKj2CF8OerYb_v9iDi2d7Alcnhwf71f7udO8hXGNJZeK90SasL76dhUcIoxb146yrBD5d9vH4BQN9Ja8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86QfQgfuJ0ag7eNKxtsnwchzr8HB4c7FbSNBFh64brLvvrTdJ2mzIFz0kJff2l7728vN8PgEvDqQ06CEeB5BKRkGGUaBwirSgzgQpklLhzyJcuve-Rx36rv9TF72-7VyXJoqfBsTRleXOcmua88c3Tvtg0WKDAJuQUzdbBBnFECRbRvahdISoUzKlizhEXCSdFv0A0Ji1c1LnKugMNffOcTUy423q8bLNZveZ3V7aIT3-UVL2n6uyCnTLEhO0CE3tgTWf7YHuJePAAODFP95OY6BSOi1YBOPS7241DmaXQyOkgh2lxE-9jAp27S-Eog0N__VLDUm_iHRYi1JND0Ovcvd3co1JeASkbpeVIpiKxb6RVKBMseSSppGlCA2kzCCoSm8pQHHCiI6opN4YqhkUaRIZxY6MMxvARqGWjTB8DaBNdxamKQqkF0dbFKUO15C2mXZVVkDoIK0vFquQedxIYg3jOmuytG1vrxt668awOrubPjAvmjT9nN6oPEJe7cBI7rXKBQ8LY6mFX9CREcFwH19U3Wwz_vtjJ_6ZfgM3X2078_NB9OgVbkUeQO8ZpgFr-OdVnNqrJk3MP3C8cSeds |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+process+monitoring+and+fault+diagnosis+based+on+machine+learning+methods&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Lahdhiri%2C+Hajer&rft.au=Maroua+Said&rft.au=Khaoula+Ben+Abdellafou&rft.au=Taouali%2C+Okba&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=102&rft.issue=5&rft.spage=2321&rft.epage=2337&rft_id=info:doi/10.1007%2Fs00170-019-03306-z&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |