Supervised process monitoring and fault diagnosis based on machine learning methods

Data-driven techniques have been receiving considerable attention in the industrial process monitoring field due to their major advantages of easy implementation and less requirement for the prior knowledge and process mechanism. Principal component analysis (PCA) method is known as a popular method...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 102; no. 5-8; pp. 2321 - 2337
Main Authors Lahdhiri, Hajer, Said, Maroua, Abdellafou, Khaoula Ben, Taouali, Okba, Harkat, Mohamed Faouzi
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
DOI10.1007/s00170-019-03306-z

Cover

Abstract Data-driven techniques have been receiving considerable attention in the industrial process monitoring field due to their major advantages of easy implementation and less requirement for the prior knowledge and process mechanism. Principal component analysis (PCA) method is known as a popular method for monitoring and fault detection in industrial systems but as it is basically a linear method. However, most practical systems are nonlinear. To make the extension to nonlinear systems, kernel PCA (KPCA) method has been proposed for process modeling and monitoring. We present in this paper an online reduced rank optimized KPCA (RR-KPCA) technique for fault detection in order to extend the advantages of the KPCA models to online processes. Following the fault detection, the identification of the variables correlated to the fault occurred is of great importance. For this purpose, it is proposed to extend the approaches of localization by partial PCA and by elimination in the linear case to the nonlinear case, by exploiting the solution of reduction of the dimension of the kernel matrix in the feature space. The partial RR-KPCA and the elimination sensor identification (ESI-RRKPCA) are generated based on the static RR-KPCA and the online RR-KPCA methods. The idea of these approaches is to generate partial RR-KPCA models with reduced sets of variables. In other words, their goal is to generate indices of fault detection sensitive to certain faults and insensitive to others. The proposed fault isolation methods are applied for monitoring an air quality monitoring network (AIRLOR) data.
AbstractList Data-driven techniques have been receiving considerable attention in the industrial process monitoring field due to their major advantages of easy implementation and less requirement for the prior knowledge and process mechanism. Principal component analysis (PCA) method is known as a popular method for monitoring and fault detection in industrial systems but as it is basically a linear method. However, most practical systems are nonlinear. To make the extension to nonlinear systems, kernel PCA (KPCA) method has been proposed for process modeling and monitoring. We present in this paper an online reduced rank optimized KPCA (RR-KPCA) technique for fault detection in order to extend the advantages of the KPCA models to online processes. Following the fault detection, the identification of the variables correlated to the fault occurred is of great importance. For this purpose, it is proposed to extend the approaches of localization by partial PCA and by elimination in the linear case to the nonlinear case, by exploiting the solution of reduction of the dimension of the kernel matrix in the feature space. The partial RR-KPCA and the elimination sensor identification (ESI-RRKPCA) are generated based on the static RR-KPCA and the online RR-KPCA methods. The idea of these approaches is to generate partial RR-KPCA models with reduced sets of variables. In other words, their goal is to generate indices of fault detection sensitive to certain faults and insensitive to others. The proposed fault isolation methods are applied for monitoring an air quality monitoring network (AIRLOR) data.
Author Harkat, Mohamed Faouzi
Taouali, Okba
Lahdhiri, Hajer
Said, Maroua
Abdellafou, Khaoula Ben
Author_xml – sequence: 1
  givenname: Hajer
  surname: Lahdhiri
  fullname: Lahdhiri, Hajer
  organization: National Engineering School of Monastir, University of Monastir
– sequence: 2
  givenname: Maroua
  surname: Said
  fullname: Said, Maroua
  organization: National Engineering School of Sousse, MARS Research Laboratory, LR17ES05, University of Sousse
– sequence: 3
  givenname: Khaoula Ben
  surname: Abdellafou
  fullname: Abdellafou, Khaoula Ben
  organization: ISITCom, MARS Research Laboratory, LR17ES05, University of Sousse, Faculty of Computers and Information Technology, University of Tabuk
– sequence: 4
  givenname: Okba
  surname: Taouali
  fullname: Taouali, Okba
  email: taoualiok@gmail.com
  organization: National Engineering School of Monastir, University of Monastir, Faculty of Computers and Information Technology, University of Tabuk
– sequence: 5
  givenname: Mohamed Faouzi
  surname: Harkat
  fullname: Harkat, Mohamed Faouzi
  organization: Department of Electronics, University Badji Mokhtar
BookMark eNp9kE9LwzAYh4NMcJt-AU8Fz9E3TZsmRxn-A8HD9BzSNt0y2qQmmeA-ve0qCB52yuV53vx4FmhmndUIXRO4JQDFXQAgBWAgAgOlwPDhDM1JRimmQPIZmkPKOKYF4xdoEcJuwBlhfI7W632v_ZcJuk567yodQtI5a6Lzxm4SZeukUfs2JrVRG-uCCUmpRtjZpFPV1lidtFp5O9KdjltXh0t03qg26Kvfd4k-Hh_eV8_49e3pZXX_iqsM8ohVLcphtK6IKqniqWKK1SUDlfOciTLPOKPAM50yzXjTsKqgooa0KXiTgygKukQ3091h-Odehyh3bu_t8KVMMzGomeD0JJWmQlCSHW_xiaq8C8HrRlYmqmicjV6ZVhKQY2g5hZZDaHkMLQ-Dmv5Te2865b9PS3SSQj-G1v5v1QnrB-smkq0
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3083544
crossref_primary_10_1007_s00170_019_03520_9
crossref_primary_10_1007_s00521_024_10551_1
crossref_primary_10_1016_j_psep_2024_05_070
crossref_primary_10_1007_s00170_024_14175_6
crossref_primary_10_1051_jnwpu_20234130546
crossref_primary_10_1155_2023_1091276
crossref_primary_10_1080_0951192X_2020_1858509
crossref_primary_10_1109_JSEN_2023_3349296
crossref_primary_10_1016_j_measurement_2020_108342
crossref_primary_10_1016_j_solener_2023_112155
crossref_primary_10_3390_en14165072
crossref_primary_10_1016_j_asoc_2022_109570
crossref_primary_10_1016_j_measurement_2020_108776
crossref_primary_10_1007_s00521_024_09847_z
crossref_primary_10_1016_j_isatra_2021_08_040
crossref_primary_10_1007_s00170_019_03912_x
crossref_primary_10_3390_pr8010024
crossref_primary_10_54021_seesv5n2_613
crossref_primary_10_1016_j_energy_2023_128874
crossref_primary_10_1155_2021_2154258
crossref_primary_10_1155_2022_5580774
crossref_primary_10_1016_j_measurement_2021_110064
Cites_doi 10.1007/s00477-017-1467-z
10.1016/j.jprocont.2004.04.001
10.1109/72.788640
10.1016/j.ces.2004.07.019
10.1090/S0002-9947-1950-0051437-7
10.1016/0098-1354(94)00057-U
10.1016/j.ces.2008.01.022
10.1016/j.apenergy.2012.12.043
10.1016/j.ces.2010.10.008
10.1016/j.isatra.2015.02.003
10.1016/j.ces.2008.10.012
10.1016/j.chemolab.2009.01.002
10.1080/10789669.2014.938006
10.1016/j.psep.2013.11.003
10.1016/j.jprocont.2003.09.004
10.1093/imamci/dnt025
10.1016/0098-1354(95)00003-K
10.1016/j.automatica.2009.10.030
10.1016/j.psep.2017.01.017
10.1016/j.chemolab.2004.05.001
10.2478/v10006-008-0038-3
10.1109/TPAMI.2011.270
10.1016/j.compeleceng.2014.11.003
10.1016/j.ces.2003.09.012
10.1016/j.psep.2016.03.016
10.1016/j.jprocont.2018.02.002
10.1007/s00477-016-1246-2
10.1016/0098-1354(93)80018-I
10.1016/j.psep.2016.01.015
10.1002/aic.690490414
10.1007/s00170-016-8745-7
10.1016/j.jprocont.2017.10.010
10.1007/s00477-007-0123-4
10.1016/j.jprocont.2005.09.007
10.1080/00401706.1995.10485888
10.1007/s00477-013-0700-7
10.1016/j.ces.2004.08.007
10.1016/j.jprocont.2017.03.004
10.1021/ac9704366
10.1007/s00170-018-2526-4
10.1504/IJAIS.2010.034804
10.1016/j.ces.2011.12.026
10.1007/s00170-015-8059-1
10.1007/s00521-010-0461-x
10.1162/089976698300017467
10.1016/j.isatra.2016.06.002
10.1088/1742-6596/570/7/072004
10.1007/s00170-016-8987-4
10.1016/S1474-6670(17)42503-1
10.1177/0142331218807271
10.1007/s00170-016-9887-3
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-019-03306-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 2337
ExternalDocumentID 10_1007_s00170_019_03306_z
GroupedDBID -5B
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
_50
~8M
~A9
~EX
-XW
-XX
-Y2
1SB
28-
2P1
2VQ
5QI
9M8
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADQRH
ADRFC
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARCEE
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
PHGZM
PHGZT
PQGLB
PUEGO
R4E
RNI
RZK
S1Z
S26
S28
SCLPG
SCV
T16
ZY4
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c405t-ad9b170ec1ab3a82a6a6db60a58569b54863084e26e68ff6c739d02f78f509773
IEDL.DBID U2A
ISSN 0268-3768
IngestDate Fri Jul 25 11:01:16 EDT 2025
Fri Jul 25 11:07:39 EDT 2025
Wed Oct 01 00:53:04 EDT 2025
Thu Apr 24 23:16:20 EDT 2025
Fri Feb 21 02:35:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-8
Keywords Nonlinear process monitoring
Fault isolation
Air quality monitoring
Fault detection
Reduced rank KPCA
Tabu search algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-ad9b170ec1ab3a82a6a6db60a58569b54863084e26e68ff6c739d02f78f509773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2490844983
PQPubID 2044010
PageCount 17
ParticipantIDs proquest_journals_2490844983
proquest_journals_2229931477
crossref_citationtrail_10_1007_s00170_019_03306_z
crossref_primary_10_1007_s00170_019_03306_z
springer_journals_10_1007_s00170_019_03306_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Harkat, Mourot, Ragot (CR58) 2006; 16
Vapnik (CR47) 1999; 10
Zhao, Wang, Xiao (CR25) 2013; 112
Sheriff, Mansouric, Nazmul Karima, Nounouc, Nounou (CR38) 2017; 54
Schölkopf, Smola, Müller (CR4) 1998; 10
Dong, McAvoy (CR27) 1996; 20
CR37
Mercer (CR48) 1909; 209
Aronszajn (CR5) 1950; 68
Harrou, Kadri, Khadraoui, Sun (CR32) 2016; 100
Jaffel, Taouali, Elaissi, Messaoud (CR1) 2014; 31
Fezaia, Mansourib, Taoualia, Harkatc, Bouguilaa (CR18) 2017; 61
Cho, Lee, Choi, Lee, Lee (CR36) 2005; 60
Liu, Kruger, Littler, Xie, Wang (CR45) 2009; 96
Lee, Yoo, Lee (CR9) 2004; 14
Navi, Meskin, Davoodi (CR44) 2018; 64
Lahdhiri, Elaissi, Taouali, Harakat, Messaoud (CR55) 2017; 32
Jaffel, Taouali, Harkat, Messaoud (CR17) 2016; 64
Mika, Schölkopf, Smola, Müller, Scholz, Rätsch (CR3) 1998
Kazor, Holloway, Cath, Hering (CR8) 2016; 30
CR49
Chetouani (CR26) 2008; 22
Choi, Lee, Lee, Park, Lee (CR53) 2005; 75
Li, Qin, Zhou (CR30) 2010; 46
Zhang, Li, Teng (CR50) 2012; 72
Stork, Veltkamp, Kowalski (CR57) 1997; 69
Zhang (CR41) 2009; 64
Said, Fazai, Adellafou, Taouali (CR21) 2018; 99
Taouali, Elaissi, Messaoud (CR12) 2015; 57
Lyman, Georgakis (CR23) 1995; 19
Dhillon (CR16) 2004; 78712
Cristóvão, Pinto, Gonçalves, Martins, Loureiro, Boaventura (CR29) 2016; 102
CR19
Patan, Parisini (CR28) 2005; 15
Jicong Fan, Qin, Wang (CR40) 2014; 22
Aizerman, Braverman, Rozonoer (CR10) 1964; 25
Harkat, Tharrault, Mourot, Ragot (CR59) 2010; 1
CR56
Honeine (CR7) 2012; 34
Kano, Tanaka, Hasebe, Hashimoto, Ohno (CR31) 2003; 49
Cai, Tian (CR34) 2014; 92
CR51
Choi, Lee (CR42) 2004; 59
Lee, Yoo, Choi, Vanrolleghem, Lee (CR54) 2004; 59
Huang, Gertler (CR20) 1999
Taouali, Jaffel, Lahdhiri, Harkat, Messaoud (CR13) 2016; 85
Chouaib, Mohamed-Faouzi, Messaoud (CR11) 2015; 9
Tharrault, Mourot, Ragot, Maquin (CR2) 2008; 18
Downs, Vogel (CR22) 1993; 17
Zhang, Ma (CR39) 2011; 66
Li, Zhang (CR46) 2013; 27
Ding (CR15) 2004
Taouali, Elaissi, Messaoud (CR14) 2012; 21
Choi, Morris, Lee (CR35) 2008; 63
Zhao, Xiao, Wen, Lu, Wang (CR24) 2014; 20
Nomikos, MacGregor (CR52) 1995; 37
Fazai, Taouali, Harkat, Bouguila (CR6) 2016; 87
Zhang, Tian, Cai, Deng (CR43) 2015; 41
Madakyaru, Harrou, Sun (CR33) 2017; 107
RO Cristóvão (3306_CR29) 2016; 102
S Mika (3306_CR3) 1998
K Patan (3306_CR28) 2005; 15
B Schölkopf (3306_CR4) 1998; 10
H Lahdhiri (3306_CR55) 2017; 32
SW Choi (3306_CR53) 2005; 75
M Said (3306_CR21) 2018; 99
O Taouali (3306_CR12) 2015; 57
Y Zhao (3306_CR25) 2013; 112
G Li (3306_CR30) 2010; 46
O Taouali (3306_CR14) 2012; 21
I Jaffel (3306_CR17) 2016; 64
3306_CR56
D Dong (3306_CR27) 1996; 20
MZ Sheriff (3306_CR38) 2017; 54
M Aizerman (3306_CR10) 1964; 25
N Zhang (3306_CR43) 2015; 41
V Vapnik (3306_CR47) 1999; 10
JJ Downs (3306_CR22) 1993; 17
3306_CR51
C Chouaib (3306_CR11) 2015; 9
R Fazai (3306_CR6) 2016; 87
JM Lee (3306_CR9) 2004; 14
K Kazor (3306_CR8) 2016; 30
S Choi (3306_CR42) 2004; 59
Y Zhao (3306_CR24) 2014; 20
M Kano (3306_CR31) 2003; 49
3306_CR19
JM Lee (3306_CR54) 2004; 59
P Honeine (3306_CR7) 2012; 34
MF Harkat (3306_CR59) 2010; 1
S Jicong Fan (3306_CR40) 2014; 22
3306_CR49
N Aronszajn (3306_CR5) 1950; 68
CL Stork (3306_CR57) 1997; 69
MF Harkat (3306_CR58) 2006; 16
C Ding (3306_CR15) 2004
S Choi (3306_CR35) 2008; 63
IS Dhillon (3306_CR16) 2004; 78712
Y Chetouani (3306_CR26) 2008; 22
JH Cho (3306_CR36) 2005; 60
J Mercer (3306_CR48) 1909; 209
L Cai (3306_CR34) 2014; 92
Y Huang (3306_CR20) 1999
PR Lyman (3306_CR23) 1995; 19
M Navi (3306_CR44) 2018; 64
X Liu (3306_CR45) 2009; 96
I Jaffel (3306_CR1) 2014; 31
R Fezaia (3306_CR18) 2017; 61
P Nomikos (3306_CR52) 1995; 37
Y Tharrault (3306_CR2) 2008; 18
Y Zhang (3306_CR41) 2009; 64
3306_CR37
Y Zhang (3306_CR39) 2011; 66
H Li (3306_CR46) 2013; 27
F Harrou (3306_CR32) 2016; 100
O Taouali (3306_CR13) 2016; 85
M Madakyaru (3306_CR33) 2017; 107
Y Zhang (3306_CR50) 2012; 72
References_xml – year: 2004
  ident: CR15
  publication-title: K -means clustering via principal component analysis, in the 21st Int Conf Mach Learn
– volume: 32
  start-page: 1833
  issue: 6
  year: 2017
  end-page: 1848
  ident: CR55
  article-title: Nonlinear process monitoring based on new reduced rank-KPCA method
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-017-1467-z
– volume: 15
  start-page: 67
  year: 2005
  end-page: 79
  ident: CR28
  article-title: Identication of neural dynamic models for fault detection and isolation: the case of a real sugar evaporation process
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2004.04.001
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  end-page: 999
  ident: CR47
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.788640
– volume: 25
  start-page: 821
  year: 1964
  end-page: 837
  ident: CR10
  article-title: Theoretical foundations of the potential function method in pattern recognition learning
  publication-title: Autom Remote Control
– volume: 59
  start-page: 5897
  issue: 24
  year: 2004
  end-page: 5908
  ident: CR42
  article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2004.07.019
– ident: CR49
– volume: 68
  start-page: 337
  issue: 3
  year: 1950
  end-page: 404
  ident: CR5
  article-title: Theory of reproducing kernels
  publication-title: Trans Am Math Soc
  doi: 10.1090/S0002-9947-1950-0051437-7
– volume: 19
  start-page: 321
  year: 1995
  end-page: 331
  ident: CR23
  article-title: Plant-wide control of the Tennessee Eastmanproblem
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(94)00057-U
– ident: CR51
– volume: 63
  start-page: 2252
  issue: 8
  year: 2008
  end-page: 2266
  ident: CR35
  article-title: Nonlinear multiscale modelling for fault detection and identification
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2008.01.022
– start-page: 536
  year: 1998
  end-page: 542
  ident: CR3
  article-title: Kernel PCA and de-noising in feature spaces
  publication-title: NIPS
– volume: 112
  start-page: 1041
  year: 2013
  end-page: 1048
  ident: CR25
  article-title: Pattern recognition-based chillers fault detection method using support vector data description (SVDD)
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.043
– volume: 66
  start-page: 64
  issue: 1
  year: 2011
  end-page: 72
  ident: CR39
  article-title: Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2010.10.008
– volume: 57
  start-page: 205
  year: 2015
  end-page: 210
  ident: CR12
  article-title: Dimensionality reduction of RKHS model parameters
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2015.02.003
– volume: 64
  start-page: 801
  issue: 5
  year: 2009
  end-page: 811
  ident: CR41
  article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2008.10.012
– volume: 96
  start-page: 132
  issue: 2
  year: 2009
  end-page: 143
  ident: CR45
  article-title: Moving window kernel PCA for adaptive monitoring of nonlinear processes
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2009.01.002
– volume: 20
  start-page: 798
  year: 2014
  end-page: 809
  ident: CR24
  article-title: A robust pattern recognition-based fault detection and diagnosis (FDD) method for chillers
  publication-title: HVAC&R RESEARCH
  doi: 10.1080/10789669.2014.938006
– volume: 92
  start-page: 645
  issue: 6
  year: 2014
  end-page: 658
  ident: CR34
  article-title: A new fault detection method for non-Gaussian process based on robust independent component analysis
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2013.11.003
– volume: 14
  start-page: 467
  issue: 5
  year: 2004
  end-page: 485
  ident: CR9
  article-title: Statistical process monitoring with independent component analysis
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2003.09.004
– ident: CR19
– volume: 31
  start-page: 487
  issue: 4
  year: 2014
  end-page: 499
  ident: CR1
  article-title: A new online fault detection method based on PCA technique
  publication-title: IMA J Math Control Inf
  doi: 10.1093/imamci/dnt025
– start-page: 545
  year: 1999
  end-page: 550
  ident: CR20
  publication-title: Fault isolation by partial PCA and partial NLPCA.. IFAC’99, 14th triennial world congress
– volume: 20
  start-page: 65
  issue: 1
  year: 1996
  end-page: 78
  ident: CR27
  article-title: Nonlinear principal component analysis based on principal curves and neural networks
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(95)00003-K
– volume: 46
  start-page: 204
  issue: 1
  year: 2010
  end-page: 210
  ident: CR30
  article-title: Geometric properties of partial least squares for process monitoring
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.10.030
– volume: 107
  start-page: 22
  year: 2017
  end-page: 34
  ident: CR33
  article-title: Improved data-based fault detection strategy and application to distillation columns
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2017.01.017
– volume: 75
  start-page: 55
  issue: 1
  year: 2005
  end-page: 67
  ident: CR53
  article-title: Fault detection and identification of nonlinear processes based on kernel PCA
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2004.05.001
– volume: 18
  start-page: 429
  issue: 4
  year: 2008
  end-page: 442
  ident: CR2
  article-title: Fault detection and isolation with robust principal component analysis
  publication-title: Int J Appl Math Comput Sci
  doi: 10.2478/v10006-008-0038-3
– volume: 34
  start-page: 1814
  issue: 9
  year: 2012
  end-page: 1826
  ident: CR7
  article-title: Online kernel principal component analysis: a reduced-order model
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.270
– volume: 41
  start-page: 9
  year: 2015
  end-page: 17
  ident: CR43
  article-title: Process fault detection based on dynamic kernel slow feature analysis
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2014.11.003
– volume: 59
  start-page: 223
  issue: 1
  year: 2004
  end-page: 234
  ident: CR54
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2003.09.012
– volume: 102
  start-page: 263
  year: 2016
  end-page: 276
  ident: CR29
  article-title: Fish canning industry wastewater variability assessment using multivariate statistical methods
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2016.03.016
– volume: 22
  start-page: 205
  issue: 2014
  year: 2014
  end-page: 216
  ident: CR40
  article-title: Online monitoring of nonlinear multivariate industrial processes using filtering KICA–PCA
  publication-title: Control Eng Pract
– volume: 64
  start-page: 37
  year: 2018
  end-page: 48
  ident: CR44
  article-title: Sensor fault detection and isolation of an industrial gas turbine using partial adaptive KPCA
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2018.02.002
– volume: 30
  start-page: 1527
  issue: 5
  year: 2016
  end-page: 1544
  ident: CR8
  article-title: Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-016-1246-2
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: CR22
  article-title: A plant-wide industrial process control problem
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(93)80018-I
– volume: 100
  start-page: 220
  year: 2016
  end-page: 231
  ident: CR32
  article-title: Ozone measurements monitoring using data-based approach
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2016.01.015
– volume: 49
  start-page: 969
  issue: 4
  year: 2003
  end-page: 976
  ident: CR31
  article-title: Monitoring independent components for fault detection
  publication-title: AICHE J
  doi: 10.1002/aic.690490414
– volume: 87
  start-page: 3425
  issue: 9–12
  year: 2016
  end-page: 3436
  ident: CR6
  article-title: A new fault detection method for nonlinear process monitoring
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-8745-7
– volume: 61
  start-page: 1
  year: 2017
  end-page: 11
  ident: CR18
  article-title: Online reduced kernel principal component analysis for process monitoring
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2017.10.010
– volume: 22
  start-page: 339
  issue: 3
  year: 2008
  end-page: 349
  ident: CR26
  article-title: A neural network approach for the real-time detection of faults
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-007-0123-4
– volume: 16
  start-page: 625
  issue: 6
  year: 2006
  end-page: 634
  ident: CR58
  article-title: An improved PCA scheme for sensor FDI: application to an air quality monitoring network
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2005.09.007
– ident: CR37
– volume: 37
  start-page: 41
  issue: 1
  year: 1995
  end-page: 59
  ident: CR52
  article-title: Multivariate SPC charts for monitoring batch processes
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10485888
– ident: CR56
– volume: 27
  start-page: 1621
  issue: 7
  year: 2013
  end-page: 1635
  ident: CR46
  article-title: Stochastic representation and dimension reduction for non-Gaussian random fields: review and reflection
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-013-0700-7
– volume: 60
  start-page: 279
  issue: 1
  year: 2005
  end-page: 288
  ident: CR36
  article-title: Fault identification for process monitoring using kernel principal component analysis
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2004.08.007
– volume: 54
  start-page: 47
  year: 2017
  end-page: 64
  ident: CR38
  article-title: Fault detection using multiscale PCA-based moving window GLRT
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2017.03.004
– volume: 69
  start-page: 5031
  issue: 24
  year: 1997
  end-page: 5036
  ident: CR57
  article-title: Identification of multiple sensor disturbances during process monitoring
  publication-title: Anal Chem
  doi: 10.1021/ac9704366
– volume: 99
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR21
  article-title: Decentralized fault detection and isolation using bond graph and PCA methods
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-2526-4
– volume: 78712
  start-page: 551
  year: 2004
  end-page: 556
  ident: CR16
  article-title: Kernel k-means, spectral clustering and normalized cuts
  publication-title: Compute
– volume: 1
  start-page: 267
  issue: 3–4
  year: 2010
  end-page: 284
  ident: CR59
  article-title: Multiple sensor fault detection and isolation of an air quality monitoring network using RBF-NLPCA model
  publication-title: Int J Adapt Innov Syst
  doi: 10.1504/IJAIS.2010.034804
– volume: 72
  start-page: 78
  year: 2012
  end-page: 86
  ident: CR50
  article-title: Dynamic processes monitoring using recursive kernel principal component analysis
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2011.12.026
– volume: 9
  start-page: 1833
  issue: 4
  year: 2015
  end-page: 1845
  ident: CR11
  article-title: New adaptive kernel principal component analysis for nonlinear dynamic process monitoring
  publication-title: Appl Math Inf Sci
– volume: 85
  start-page: 1547
  issue: 5–8
  year: 2016
  end-page: 1552
  ident: CR13
  article-title: New fault detection method based on reduced kernel principal component analysis (RKPCA)
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-8059-1
– volume: 21
  start-page: 161
  issue: 1
  year: 2012
  end-page: 169
  ident: CR14
  article-title: Online identification of nonlinear system using reduced kernel principal component analysis
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-010-0461-x
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  end-page: 1319
  ident: CR4
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput
  doi: 10.1162/089976698300017467
– volume: 64
  start-page: 184
  year: 2016
  end-page: 192
  ident: CR17
  article-title: Moving window KPCA with reduced complexity for nonlinear dynamic process monitoring
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2016.06.002
– volume: 209
  start-page: 415
  year: 1909
  end-page: 446
  ident: CR48
  article-title: Functions of positive and negative type and their connection with the theory of integral equations. Philosophical transactions of the royal society of London
  publication-title: Series A, containing papers of a mathematical or physical character
– volume: 209
  start-page: 415
  year: 1909
  ident: 3306_CR48
  publication-title: Series A, containing papers of a mathematical or physical character
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  ident: 3306_CR47
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.788640
– start-page: 536
  volume-title: NIPS
  year: 1998
  ident: 3306_CR3
– volume: 64
  start-page: 184
  year: 2016
  ident: 3306_CR17
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2016.06.002
– volume: 46
  start-page: 204
  issue: 1
  year: 2010
  ident: 3306_CR30
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.10.030
– volume: 96
  start-page: 132
  issue: 2
  year: 2009
  ident: 3306_CR45
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2009.01.002
– ident: 3306_CR37
  doi: 10.1088/1742-6596/570/7/072004
– volume: 112
  start-page: 1041
  year: 2013
  ident: 3306_CR25
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.043
– volume: 19
  start-page: 321
  year: 1995
  ident: 3306_CR23
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(94)00057-U
– volume: 49
  start-page: 969
  issue: 4
  year: 2003
  ident: 3306_CR31
  publication-title: AICHE J
  doi: 10.1002/aic.690490414
– volume: 78712
  start-page: 551
  year: 2004
  ident: 3306_CR16
  publication-title: Compute
– volume: 54
  start-page: 47
  year: 2017
  ident: 3306_CR38
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2017.03.004
– volume: 21
  start-page: 161
  issue: 1
  year: 2012
  ident: 3306_CR14
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-010-0461-x
– volume: 61
  start-page: 1
  year: 2017
  ident: 3306_CR18
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2017.10.010
– start-page: 545
  volume-title: Fault isolation by partial PCA and partial NLPCA.. IFAC’99, 14th triennial world congress
  year: 1999
  ident: 3306_CR20
– volume: 34
  start-page: 1814
  issue: 9
  year: 2012
  ident: 3306_CR7
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.270
– volume: 27
  start-page: 1621
  issue: 7
  year: 2013
  ident: 3306_CR46
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-013-0700-7
– volume: 18
  start-page: 429
  issue: 4
  year: 2008
  ident: 3306_CR2
  publication-title: Int J Appl Math Comput Sci
  doi: 10.2478/v10006-008-0038-3
– volume: 99
  start-page: 1
  year: 2018
  ident: 3306_CR21
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-2526-4
– volume: 9
  start-page: 1833
  issue: 4
  year: 2015
  ident: 3306_CR11
  publication-title: Appl Math Inf Sci
– volume: 102
  start-page: 263
  year: 2016
  ident: 3306_CR29
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2016.03.016
– ident: 3306_CR49
  doi: 10.1007/s00170-016-8987-4
– volume: 37
  start-page: 41
  issue: 1
  year: 1995
  ident: 3306_CR52
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10485888
– volume: 22
  start-page: 339
  issue: 3
  year: 2008
  ident: 3306_CR26
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-007-0123-4
– volume: 20
  start-page: 798
  year: 2014
  ident: 3306_CR24
  publication-title: HVAC&R RESEARCH
  doi: 10.1080/10789669.2014.938006
– volume: 14
  start-page: 467
  issue: 5
  year: 2004
  ident: 3306_CR9
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2003.09.004
– volume: 57
  start-page: 205
  year: 2015
  ident: 3306_CR12
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2015.02.003
– volume: 66
  start-page: 64
  issue: 1
  year: 2011
  ident: 3306_CR39
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2010.10.008
– volume: 41
  start-page: 9
  year: 2015
  ident: 3306_CR43
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2014.11.003
– ident: 3306_CR19
  doi: 10.1016/S1474-6670(17)42503-1
– volume: 63
  start-page: 2252
  issue: 8
  year: 2008
  ident: 3306_CR35
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2008.01.022
– volume: 17
  start-page: 245
  year: 1993
  ident: 3306_CR22
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(93)80018-I
– volume: 15
  start-page: 67
  year: 2005
  ident: 3306_CR28
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2004.04.001
– volume: 72
  start-page: 78
  year: 2012
  ident: 3306_CR50
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2011.12.026
– volume: 60
  start-page: 279
  issue: 1
  year: 2005
  ident: 3306_CR36
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2004.08.007
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  ident: 3306_CR4
  publication-title: Neural Comput
  doi: 10.1162/089976698300017467
– volume: 107
  start-page: 22
  year: 2017
  ident: 3306_CR33
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2017.01.017
– volume: 64
  start-page: 801
  issue: 5
  year: 2009
  ident: 3306_CR41
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2008.10.012
– ident: 3306_CR56
  doi: 10.1177/0142331218807271
– volume: 25
  start-page: 821
  year: 1964
  ident: 3306_CR10
  publication-title: Autom Remote Control
– volume: 16
  start-page: 625
  issue: 6
  year: 2006
  ident: 3306_CR58
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2005.09.007
– volume: 87
  start-page: 3425
  issue: 9–12
  year: 2016
  ident: 3306_CR6
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-8745-7
– volume: 31
  start-page: 487
  issue: 4
  year: 2014
  ident: 3306_CR1
  publication-title: IMA J Math Control Inf
  doi: 10.1093/imamci/dnt025
– volume: 59
  start-page: 5897
  issue: 24
  year: 2004
  ident: 3306_CR42
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2004.07.019
– volume: 22
  start-page: 205
  issue: 2014
  year: 2014
  ident: 3306_CR40
  publication-title: Control Eng Pract
– volume: 20
  start-page: 65
  issue: 1
  year: 1996
  ident: 3306_CR27
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(95)00003-K
– volume: 92
  start-page: 645
  issue: 6
  year: 2014
  ident: 3306_CR34
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2013.11.003
– ident: 3306_CR51
  doi: 10.1007/s00170-016-9887-3
– volume: 75
  start-page: 55
  issue: 1
  year: 2005
  ident: 3306_CR53
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2004.05.001
– volume: 69
  start-page: 5031
  issue: 24
  year: 1997
  ident: 3306_CR57
  publication-title: Anal Chem
  doi: 10.1021/ac9704366
– volume: 64
  start-page: 37
  year: 2018
  ident: 3306_CR44
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2018.02.002
– volume: 59
  start-page: 223
  issue: 1
  year: 2004
  ident: 3306_CR54
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2003.09.012
– volume: 68
  start-page: 337
  issue: 3
  year: 1950
  ident: 3306_CR5
  publication-title: Trans Am Math Soc
  doi: 10.1090/S0002-9947-1950-0051437-7
– volume: 30
  start-page: 1527
  issue: 5
  year: 2016
  ident: 3306_CR8
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-016-1246-2
– volume-title: K -means clustering via principal component analysis, in the 21st Int Conf Mach Learn
  year: 2004
  ident: 3306_CR15
– volume: 100
  start-page: 220
  year: 2016
  ident: 3306_CR32
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2016.01.015
– volume: 85
  start-page: 1547
  issue: 5–8
  year: 2016
  ident: 3306_CR13
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-8059-1
– volume: 32
  start-page: 1833
  issue: 6
  year: 2017
  ident: 3306_CR55
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-017-1467-z
– volume: 1
  start-page: 267
  issue: 3–4
  year: 2010
  ident: 3306_CR59
  publication-title: Int J Adapt Innov Syst
  doi: 10.1504/IJAIS.2010.034804
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.3548195
Snippet Data-driven techniques have been receiving considerable attention in the industrial process monitoring field due to their major advantages of easy...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2321
SubjectTerms Air monitoring
Air quality
CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Environmental monitoring
Fault detection
Fault diagnosis
Industrial and Production Engineering
Kernels
Machine learning
Mechanical Engineering
Media Management
Methods
Nonlinear systems
Original Article
Principal components analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RcGkPiEerhpd84NZa7NqOHweEAIEQEhGqisRt5bW9VSXYBBIu_Ho8Xm_SVoWzsxvt-LNnxuP5PoCDRssYdAhNC6stFaXitA68pMFJ1RSusKzGc8jrsby8FVd3o7sVGPe9MHitst8T00btJw7PyA8ZVqiEMJofTx8pqkZhdbWX0LBZWsEfJYqxD7DKkBlrAKun5-ObHz3CSqNQJXOBQGZQmn6JcC5GvKt75TqELFMzXUxUNC5FndtuUvNdop6JqbihBY-BN33527Ut49V_SqzJc12sw1oOOclJh5ENWAntJnz6g4hwC1DcEzeNWfBk2rUOkIe02nGc2NaTxj7fz4nvbub9nhF0f55MWvKQrmMGkvUnfpFOlHr2GW4vzn-eXdIst0BdjNrm1HpTxy8KrrQ1t5pZaaWvZWFjRiFNHVMbyeMUBCaD1E0jneLGF6xRuolRh1L8CwzaSRu-AomJr9PSsdIGI0J0ea6RweqRClh1NWIIZW-pymUucpTEuK8WLMrJulW0bpWsW70M4dvimWnHxPHur3f7CajyqpxVqF1ueCmU-v_wAmJD-N7P2XL47T_bfv9tO_CRJZjg2c0uDOZPz2EvhjLzej_j8xVf5el8
  priority: 102
  providerName: ProQuest
Title Supervised process monitoring and fault diagnosis based on machine learning methods
URI https://link.springer.com/article/10.1007/s00170-019-03306-z
https://www.proquest.com/docview/2229931477
https://www.proquest.com/docview/2490844983
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3015
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241028
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ADMLS
  dateStart: 19850901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3015
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RWGBAPEV5VB7YwFISu36MBVoQLyGgUpkix3EQEqQVaZf-emwnaQEBEpMHO7Jy_uy78_nuAzjMBLNGBxU4UEJhGnKCE0NCbDTjWaADFSXuHvLmll306eWgPaiSwor6tXsdkvQn9SzZzZd6sa6vxIF1whmeNmCp7cp5WRT3o06NolByx4Q5Q1kkHf38HMWEtkkZ26piDSz0CXPWGRFuu4kqtebnOb-qr7lN-i2M6rVTbw1WK7MSdUocrMOCyTdg5VOxwU1wBJ7uYChMikZlegB68zva9SOVpyhTk9cxSsvXdy8FciouRcMcvfknlwZVHBPPqCSeLrag3-s-nl7gilIBa2uZjbFKZWL_yOhQJUSJSDHF0oQFynoNTCbWfWEkENREzDCRZUxzItMgyrjIrGXBOdmGxXyYmx1A1rnVgukoVEZSY9WazphRos2Ni6xK2oSwllSsq3rjjvbiNZ5VSvbSja10Yy_deNqEo9k3o7Laxp-j9-sFiKudV8SOn1ySkHL-c7cLdFIqBWnCcb1m8-7fJ9v93_A9WI48bNx9zT4sjt8n5sCaL-OkBQ3RO2_BUufs5vrBtedPV13bnnRv7-5bHssfkYnl7A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE-xUMAHOIFFYnv9OFSIR6stbVcItVJvwbEdhNRmF7IVoj-O38bYcXYBQW89O7Gl8XjmG49nPoCnjZYIOoSmhdWWilJxWgde0uCkagpXWFbHe8iDqZwciffH4-M1-DnUwsRnlYNNTIbaz1y8I3_JYoZKCKP5q_lXGlmjYnZ1oNCwmVrBb6UWY7mwYy_8-I4hXLe1-w73-xljO9uHbyc0swxQh2BlQa03damK4Epbc6uZlVb6WhYWgbQ0NSJ6yXHlwGSQummkU9z4gjVKN-hsleI47xXYEFwYDP423mxPP3wcNLo0KrJyLjWeGQQ4anWiuBjzPs-W8x6yTMV7GBjpePR1LvNJxX6p1Q2G_oYWHIE-Pf_Tla7w8V8p3eQpd27CjQxxyeteJ2_BWmhvw_XfGh_egUgmGo1UFzyZ96UK5DRZlzhObOtJY89OFsT3LwG_dCS6W09mLTlNzz8DyXwXn0lPgt3dhaNLEfw9WG9nbbgPBANtp6VjpQ1GBHSxrpHB6rEKMctrxAjKQVKVy73PIwXHSbXs2pykW6F0qyTd6nwEz5f_zPvOHxd-vTlsQJWtQFdFrnTDS6HUv4eXKj2CF8OerYb_v9iDi2d7Alcnhwf71f7udO8hXGNJZeK90SasL76dhUcIoxb146yrBD5d9vH4BQN9Ja8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86QfQgfuJ0ag7eNKxtsnwchzr8HB4c7FbSNBFh64brLvvrTdJ2mzIFz0kJff2l7728vN8PgEvDqQ06CEeB5BKRkGGUaBwirSgzgQpklLhzyJcuve-Rx36rv9TF72-7VyXJoqfBsTRleXOcmua88c3Tvtg0WKDAJuQUzdbBBnFECRbRvahdISoUzKlizhEXCSdFv0A0Ji1c1LnKugMNffOcTUy423q8bLNZveZ3V7aIT3-UVL2n6uyCnTLEhO0CE3tgTWf7YHuJePAAODFP95OY6BSOi1YBOPS7241DmaXQyOkgh2lxE-9jAp27S-Eog0N__VLDUm_iHRYi1JND0Ovcvd3co1JeASkbpeVIpiKxb6RVKBMseSSppGlCA2kzCCoSm8pQHHCiI6opN4YqhkUaRIZxY6MMxvARqGWjTB8DaBNdxamKQqkF0dbFKUO15C2mXZVVkDoIK0vFquQedxIYg3jOmuytG1vrxt668awOrubPjAvmjT9nN6oPEJe7cBI7rXKBQ8LY6mFX9CREcFwH19U3Wwz_vtjJ_6ZfgM3X2078_NB9OgVbkUeQO8ZpgFr-OdVnNqrJk3MP3C8cSeds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+process+monitoring+and+fault+diagnosis+based+on+machine+learning+methods&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Lahdhiri%2C+Hajer&rft.au=Maroua+Said&rft.au=Khaoula+Ben+Abdellafou&rft.au=Taouali%2C+Okba&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=102&rft.issue=5&rft.spage=2321&rft.epage=2337&rft_id=info:doi/10.1007%2Fs00170-019-03306-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon