Harvesting Insights from the Sky: Satellite-Powered Automation for Detecting Mowing Based on Predicted Compressed Sward Heights
The extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the impacts of drought events. Additionally, it provides valuable insights into farming practices and their consequential economic and ecologica...
Saved in:
Published in | Applied sciences Vol. 14; no. 5; p. 1923 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Basel
MDPI AG
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app14051923 |
Cover
Abstract | The extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the impacts of drought events. Additionally, it provides valuable insights into farming practices and their consequential economic and ecological effects. To overcome challenges in obtaining reference grazing information directly from the field, this study introduces a novel methodology leveraging the compressed sward height (CSH) derived from Sentinel-1, Sentinel-2, and meteorological data, boasting an accuracy of 20 mm. Our central hypothesis posits that the mowing status of a parcel can be automatically discerned by analyzing the distribution and variation of its CSH values. Employing a two-step strategy, we first applied unsupervised algorithms, specifically k-means and isolation forest, and subsequently amalgamated the outcomes with a partial least squares analysis on an extensive dataset encompassing 194,657 pastures spanning the years 2018 to 2021. The culmination of our modeling efforts yielded a validation accuracy of 0.66, as ascertained from a focused dataset of 68 pastures. Depending on the studied year and with a threshold fixed at 0.50, 21% to 57% of all the parcels in the Wallonia dataset were tagged as mown by our model. This study introduces an innovative approach for the automated detection of mown parcels, showcasing its potential to monitor agricultural activities at scale. |
---|---|
AbstractList | The prospective identification of mowing events holds promise for application across diverse domains, including the assessment of arthropod biodiversity as an explanatory factor and the evaluation of general agricultural practices. An examination of their occurrences over time has the potential to enhance the efficient allocation of inherent territorial resources for animal feeding. The extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the impacts of drought events. Additionally, it provides valuable insights into farming practices and their consequential economic and ecological effects. To overcome challenges in obtaining reference grazing information directly from the field, this study introduces a novel methodology leveraging the compressed sward height (CSH) derived from Sentinel-1, Sentinel-2, and meteorological data, boasting an accuracy of 20 mm. Our central hypothesis posits that the mowing status of a parcel can be automatically discerned by analyzing the distribution and variation of its CSH values. Employing a two-step strategy, we first applied unsupervised algorithms, specifically k-means and isolation forest, and subsequently amalgamated the outcomes with a partial least squares analysis on an extensive dataset encompassing 194,657 pastures spanning the years 2018 to 2021. The culmination of our modeling efforts yielded a validation accuracy of 0.66, as ascertained from a focused dataset of 68 pastures. Depending on the studied year and with a threshold fixed at 0.50, 21% to 57% of all the parcels in the Wallonia dataset were tagged as mown by our model. This study introduces an innovative approach for the automated detection of mown parcels, showcasing its potential to monitor agricultural activities at scale. Featured ApplicationThe prospective identification of mowing events holds promise for application across diverse domains, including the assessment of arthropod biodiversity as an explanatory factor and the evaluation of general agricultural practices. An examination of their occurrences over time has the potential to enhance the efficient allocation of inherent territorial resources for animal feeding.AbstractThe extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the impacts of drought events. Additionally, it provides valuable insights into farming practices and their consequential economic and ecological effects. To overcome challenges in obtaining reference grazing information directly from the field, this study introduces a novel methodology leveraging the compressed sward height (CSH) derived from Sentinel-1, Sentinel-2, and meteorological data, boasting an accuracy of 20 mm. Our central hypothesis posits that the mowing status of a parcel can be automatically discerned by analyzing the distribution and variation of its CSH values. Employing a two-step strategy, we first applied unsupervised algorithms, specifically k-means and isolation forest, and subsequently amalgamated the outcomes with a partial least squares analysis on an extensive dataset encompassing 194,657 pastures spanning the years 2018 to 2021. The culmination of our modeling efforts yielded a validation accuracy of 0.66, as ascertained from a focused dataset of 68 pastures. Depending on the studied year and with a threshold fixed at 0.50, 21% to 57% of all the parcels in the Wallonia dataset were tagged as mown by our model. This study introduces an innovative approach for the automated detection of mown parcels, showcasing its potential to monitor agricultural activities at scale. The extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the impacts of drought events. Additionally, it provides valuable insights into farming practices and their consequential economic and ecological effects. To overcome challenges in obtaining reference grazing information directly from the field, this study introduces a novel methodology leveraging the compressed sward height (CSH) derived from Sentinel-1, Sentinel-2, and meteorological data, boasting an accuracy of 20 mm. Our central hypothesis posits that the mowing status of a parcel can be automatically discerned by analyzing the distribution and variation of its CSH values. Employing a two-step strategy, we first applied unsupervised algorithms, specifically k-means and isolation forest, and subsequently amalgamated the outcomes with a partial least squares analysis on an extensive dataset encompassing 194,657 pastures spanning the years 2018 to 2021. The culmination of our modeling efforts yielded a validation accuracy of 0.66, as ascertained from a focused dataset of 68 pastures. Depending on the studied year and with a threshold fixed at 0.50, 21% to 57% of all the parcels in the Wallonia dataset were tagged as mown by our model. This study introduces an innovative approach for the automated detection of mown parcels, showcasing its potential to monitor agricultural activities at scale. |
Audience | Academic |
Author | Dufrasne, Isabelle Glesner, Noémie Tedde, Anthony Lessire, Françoise Brostaux, Yves Nickmilder, Charles Soyeurt, Hélène Dichou, Killian Franceschini, Sébastien |
Author_xml | – sequence: 1 givenname: Killian surname: Dichou fullname: Dichou, Killian – sequence: 2 givenname: Charles orcidid: 0000-0001-5235-2145 surname: Nickmilder fullname: Nickmilder, Charles – sequence: 3 givenname: Anthony surname: Tedde fullname: Tedde, Anthony – sequence: 4 givenname: Sébastien orcidid: 0000-0001-6298-5149 surname: Franceschini fullname: Franceschini, Sébastien – sequence: 5 givenname: Yves orcidid: 0000-0001-6172-7869 surname: Brostaux fullname: Brostaux, Yves – sequence: 6 givenname: Isabelle surname: Dufrasne fullname: Dufrasne, Isabelle – sequence: 7 givenname: Françoise surname: Lessire fullname: Lessire, Françoise – sequence: 8 givenname: Noémie surname: Glesner fullname: Glesner, Noémie – sequence: 9 givenname: Hélène orcidid: 0000-0001-9883-9047 surname: Soyeurt fullname: Soyeurt, Hélène |
BookMark | eNpNUk1v1DAQjVCRKKUn_kAkjijFjh0n5rZsgV2piEoLZ8sf49RLEi-2t6ue-Ot4E4RqHzwev_fGz57XxcXkJyiKtxjdEMLRB3k4YIoazGvyorisUcsqQnF78Sx-VVzHuEd5cEw6jC6LPxsZHiEmN_Xldoquf0ixtMGPZXqAcvfr6WO5kwmGwSWo7v0JAphydUx-lMn5qbQ-lLeQQM8K3_zpvHySMaPy6X1GO53yZu3HQ4B4zu9OMphyA3OtN8VLK4cI1__Wq-Lnl88_1pvq7vvX7Xp1V-lsKVUckCbADTIIK6OZbS0hNtvQmjWkRrpmmoFurFJN3UFDWNsQyVumJNUtB3JVbBdd4-VeHIIbZXgSXjoxJ3zohQzJ6QEERgYrZBjV1NAGqU6qLpeTWPNO1cpmLbJoDQ56yFzlxGM9i83xcchiWigQdc06QTBpKc-sdwvrEPzvY35ysffHMGXTouZNQ2mHO5pRNwuql_kqbrI-BanzNDA6nT_cupxftR2jhLaUZML7haCDjzGA_W8OI3HuC_GsL8hfV1ms4A |
Cites_doi | 10.1016/j.rse.2021.112751 10.1109/Multi-Temp.2019.8866914 10.1016/j.agee.2012.04.008 10.1109/ICDM.2008.17 10.3390/rs13030408 10.3390/rs14122903 10.4236/ars.2017.61003 10.1016/j.rse.2023.113680 10.1071/CP22215 10.1038/nature25138 10.3390/rs15071890 10.1051/animres:2000117 10.1111/j.1471-0307.2008.00374.x 10.3390/su11153997 10.1038/s41586-020-2649-2 10.3390/agronomy9030124 10.1016/j.anifeedsci.2006.06.012 10.20870/productions-animales.2020.33.3.4543 10.1016/j.rse.2022.113145 10.1007/s11273-018-9615-x 10.3390/rs13030348 10.1038/s41598-022-04932-6 10.3390/rs14071647 10.1111/j.1365-2494.1987.tb02104.x 10.3390/rs11151801 10.3390/ani12192663 10.3168/jds.2023-23843 10.1371/journal.pone.0036992 |
ContentType | Journal Article Web Resource |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q33 DOA |
DOI | 10.3390/app14051923 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Université de Liège - Open Repository and Bibliography (ORBI) Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_10d1b0d64c4d450b8ab87f3a1c98b2bf oai_orbi_ulg_ac_be_2268_313749 A786434743 10_3390_app14051923 |
GeographicLocations | Belgium |
GeographicLocations_xml | – name: Belgium |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI Q33 PUEGO |
ID | FETCH-LOGICAL-c405t-9e0c3e9d0d01bdc6f7f33f009cc65320c26c6ec5fbb528e536753a976ba4c79e3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:28:52 EDT 2025 Fri Jul 18 15:28:01 EDT 2025 Mon Jun 30 15:05:18 EDT 2025 Tue Jun 10 21:11:28 EDT 2025 Tue Jul 01 04:34:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-9e0c3e9d0d01bdc6f7f33f009cc65320c26c6ec5fbb528e536753a976ba4c79e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 scopus-id:2-s2.0-85192454646 |
ORCID | 0000-0001-9883-9047 0000-0001-6172-7869 0000-0001-5235-2145 0000-0001-6298-5149 |
OpenAccessLink | https://doaj.org/article/10d1b0d64c4d450b8ab87f3a1c98b2bf |
PQID | 2955448184 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_10d1b0d64c4d450b8ab87f3a1c98b2bf liege_orbi_v2_oai_orbi_ulg_ac_be_2268_313749 proquest_journals_2955448184 gale_infotracacademiconefile_A786434743 crossref_primary_10_3390_app14051923 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Holtgrave (ref_21) 2023; 295 Lobert (ref_20) 2021; 267 ref_10 ref_54 ref_53 ref_52 ref_51 ref_19 ref_18 ref_17 ref_16 ref_15 Michaud (ref_12) 2020; 33 Elgersma (ref_14) 2006; 131 Zavagli (ref_23) 2022; 280 Wrage (ref_28) 2012; 155 Cimbelli (ref_26) 2017; 6 Obermeyer (ref_30) 2022; 74 ref_25 ref_24 Rotz (ref_7) 2003; 15 Banaszuk (ref_11) 2018; 26 ref_29 ref_27 Erb (ref_2) 2018; 553 ref_36 ref_35 ref_34 ref_33 Fulkerson (ref_6) 1987; 42 ref_32 ref_31 Chilliard (ref_13) 2000; 49 Harris (ref_41) 2020; 585 ref_39 ref_38 ref_37 Komisarenko (ref_22) 2022; 12 ref_47 ref_46 ref_45 ref_44 ref_43 ref_42 ref_40 ref_3 Dillon (ref_5) 2008; 61 Mamadou (ref_1) 2016; 228–229 ref_49 ref_48 ref_9 ref_8 ref_4 |
References_xml | – ident: ref_9 – volume: 267 start-page: 112751 year: 2021 ident: ref_20 article-title: Mowing Event Detection in Permanent Grasslands: Systematic Evaluation of Input Features from Sentinel-1, Sentinel-2, and Landsat 8 Time Series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112751 – ident: ref_49 – ident: ref_19 doi: 10.1109/Multi-Temp.2019.8866914 – ident: ref_32 – ident: ref_51 – volume: 155 start-page: 111 year: 2012 ident: ref_28 article-title: Vegetation Height of Patch More Important for Phytodiversity than That of Paddock publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2012.04.008 – ident: ref_48 doi: 10.1109/ICDM.2008.17 – ident: ref_39 – ident: ref_27 doi: 10.3390/rs13030408 – ident: ref_42 – ident: ref_35 – ident: ref_24 doi: 10.3390/rs14122903 – volume: 6 start-page: 40 year: 2017 ident: ref_26 article-title: Grassland Height Assessment by Satellite Images publication-title: Adv. Remote Sens. doi: 10.4236/ars.2017.61003 – volume: 295 start-page: 113680 year: 2023 ident: ref_21 article-title: Grassland Mowing Event Detection Using Combined Optical, SAR, and Weather Time Series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113680 – ident: ref_8 – volume: 228–229 start-page: 370 year: 2016 ident: ref_1 article-title: Carbon Balance of an Intensively Grazed Permanent Grassland in Southern Belgium publication-title: Agric. For. Meteorol. – volume: 74 start-page: 378 year: 2022 ident: ref_30 article-title: Exploring the Potential of Rising Plate Meter Techniques to Analyse Ecosystem Services from Multi-Species Grasslands publication-title: Crop Pasture Sci. doi: 10.1071/CP22215 – ident: ref_4 – ident: ref_31 – volume: 553 start-page: 73 year: 2018 ident: ref_2 article-title: Unexpectedly Large Impact of Forest Management and Grazing on Global Vegetation Biomass publication-title: Nature doi: 10.1038/nature25138 – ident: ref_10 – ident: ref_29 doi: 10.3390/rs15071890 – ident: ref_38 – ident: ref_45 – volume: 49 start-page: 181 year: 2000 ident: ref_13 article-title: Ruminant Milk Fat Plasticity: Nutritional Control of Saturated, Polyunsaturated, Trans and Conjugated Fatty Acids publication-title: Ann. Zootech. doi: 10.1051/animres:2000117 – volume: 15 start-page: 227 year: 2003 ident: ref_7 article-title: How to Maintain Forage Quality during Harvest and Storage publication-title: Adv. Dairy Tecnol. – volume: 61 start-page: 16 year: 2008 ident: ref_5 article-title: Future Outlook for the Irish Dairy Industry: A Study of International Competitiveness, Influence of International Trade Reform and Requirement for Change publication-title: Int. J. Dairy Technol. doi: 10.1111/j.1471-0307.2008.00374.x – ident: ref_3 doi: 10.3390/su11153997 – volume: 585 start-page: 357 year: 2020 ident: ref_41 article-title: Array Programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – ident: ref_54 doi: 10.3390/agronomy9030124 – ident: ref_34 – volume: 131 start-page: 207 year: 2006 ident: ref_14 article-title: Modifying Milk Composition through Forage publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2006.06.012 – volume: 33 start-page: 153 year: 2020 ident: ref_12 article-title: Les prairies, une richesse et un support d’innovation pour des élevages de ruminants plus durables et acceptables publication-title: INRAE Prod. Anim. doi: 10.20870/productions-animales.2020.33.3.4543 – ident: ref_47 – ident: ref_40 – ident: ref_37 – ident: ref_44 – volume: 280 start-page: 113145 year: 2022 ident: ref_23 article-title: Mowing Detection Using Sentinel-1 and Sentinel-2 Time Series for Large Scale Grassland Monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113145 – ident: ref_50 – ident: ref_33 – volume: 26 start-page: 879 year: 2018 ident: ref_11 article-title: Mowing May Bring about Vegetation Change, but Its Effect Is Strongly Modified by Hydrological Factors publication-title: Wetl. Ecol. Manag. doi: 10.1007/s11273-018-9615-x – ident: ref_46 – ident: ref_17 doi: 10.3390/rs13030348 – volume: 12 start-page: 983 year: 2022 ident: ref_22 article-title: Exploiting Time Series of Sentinel-1 and Sentinel-2 to Detect Grassland Mowing Events Using Deep Learning with Reject Region publication-title: Sci. Rep. doi: 10.1038/s41598-022-04932-6 – ident: ref_18 doi: 10.3390/rs14071647 – volume: 42 start-page: 169 year: 1987 ident: ref_6 article-title: The Effect of Height and Frequency of Mowing on the Yield and Composition of Perennial Ryegrass—White Clover Swards in the Autumn to Spring Period publication-title: Grass Forage Sci. doi: 10.1111/j.1365-2494.1987.tb02104.x – ident: ref_15 – ident: ref_25 doi: 10.3390/rs11151801 – ident: ref_36 – ident: ref_43 – ident: ref_16 doi: 10.3390/ani12192663 – ident: ref_52 doi: 10.3168/jds.2023-23843 – ident: ref_53 doi: 10.1371/journal.pone.0036992 |
RestrictionsOnAccess | open access |
SSID | ssj0000913810 |
Score | 2.2804768 |
Snippet | The extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the... The prospective identification of mowing events holds promise for application across diverse domains, including the assessment of arthropod biodiversity as an... Featured ApplicationThe prospective identification of mowing events holds promise for application across diverse domains, including the assessment of arthropod... |
SourceID | doaj liege proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1923 |
SubjectTerms | Accuracy Agriculture & agronomie Agriculture & agronomy Algorithms Biodiversity Climate change compressed sward height Computer Science Applications Datasets Fourier transforms Geospatial data Life sciences Machine learning mowing pasture Precipitation Sciences du vivant |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge4EHxAaIwEB-mARIWCS24yS8oA4oBWloUpm0N8u_Mk1MyWhSEE_869w5bhlC4qlVk14in333nc_3HSGHZVCiBZjKAnhDJiulmAlBsMbz3LcGAogaC4WPP6vFqfx0Vp6lDbchHavc2MRoqH3vcI_8FW_A8UlwL_LN1TeGXaMwu5paaNwkuwUHX4uV4vMP2z0W5Lysi3wqyxMQ3WNWGCKKEmHNX44o8vVvrfLuJSas_7HO0eXM75I7CSvS2aTcPXIjdPvk9jUGwX2yl9bmQJ8nAukX98gvbPiD7BndOf3YDRh-DxTrSCigPbr8-vM1XZrIxDkGdoJt0oKns_XYT2WMFHAsfRcwu4ASjvsf-HEE7s5TuHqywtwOAFWKtiRyj3u6xMO3dBH3WYf75HT-_svbBUuNFpiDwRhZE3InQuNznxfWO9VWrRAtDJ9zChtHOK6cCq5srS15HUoBUYYwAGSska5qgnhAdrq-Cw8JNXkLmKysQJSSuVENdkeqZHAeJHMRMnK4GXV9NfFpaIhDUDn6mnIycoQa2d6CJNjxh351rtOagv-B0Nwr6aSXZW5rY2t4c1O4prbcthl5hvrUuFTHlXEmVRzAmyLplZ5VNeAxCRgqIy-jykG8vdDfeXxe_L6-hOc5bYMGnFprUYhKNhk52MwMnZb8oP9M0Ef_v_yY3OKAjKaDbAdkZ1ytwxNANqN9Gqfvb_ae-X0 priority: 102 providerName: ProQuest |
Title | Harvesting Insights from the Sky: Satellite-Powered Automation for Detecting Mowing Based on Predicted Compressed Sward Heights |
URI | https://www.proquest.com/docview/2955448184 http://orbi.ulg.ac.be/handle/2268/313749 https://doaj.org/article/10d1b0d64c4d450b8ab87f3a1c98b2bf |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1Be4EDogVEaFn5UAmQiJTEjhNz24UuC1KrFUul3ix_BSGqLNpkizjx15lx0moRBy6cEiWRbc2Mx29izxuAkzJI3iBMTQOuhqmopExNCDxVvsh8YzCAqClR-OxcLi7Ex8vycqfUF50JG-iBB8HhrPa5zbwUTnhRZrY2tq4abnKnalvYhrxvprKdYCr6YJUTddWQkMcxrqf9YIwlSgI0fyxBkan_1h_vX9FW9V9-OS4284fwYESJbDqM7gDuhPYQ7u9wBx7CwTgrO_ZypI5-9Qh-Uakf4s1ov7APbUeBd8cog4QhzmOrbz_fsJWJHJx9SJdUIC14Nt326yGBkSGCZe8C7StQC2frH3SZ4ULnGb5dbmhXByEqIy8SWcc9W9GxW7aIf1i7x3AxP_38dpGOJRZSh8LoUxUyx4Pymc9y651sULS8QfE5J6lkhCukk8GVjbVlUYeSY3zBDUIYa4SrVOBPYK9dt-EpMJM1iMbKCpuSIjNSUV2kSgSH-vMFDwmc3Ehdfx-YNDRGIKQcvaOcBGakkdtPiP46PkCj0KNR6H8ZRQIvSJ-aJmm_Mc6MuQY4UqK70tOqRiQmED0l8DqqHJu3X_V1EfuL99sr7M9pGzQi1FrznFdCJXB8Yxl6nOydLhRiMoHIRzz7H4M_gnsFIqfhoNsx7PWbbXiOyKe3E7hbz99PYH92er78NIkm_xu2PAUz |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V5AAcEC0gDAX2UARIWDje9QupQgltldAmikgr9bbsyxWiSkrsUPXEP-O3MbNxQhESt54c2cmsldmd-XZm5xuAncSlvESYGjr0hqHI0jRUzvGwsHFkS4UbiJwKhYejtH8iPp0mpxvwa1ULQ8cqVzbRG2o7MxQjfxcX6PgEuhfx4eJ7SF2jKLu6aqGhmtYKdtdTjDWFHYfu6hK3cNXuYA_1_TKOD_aPP_bDpstAaBCs1GHhIsNdYSMbdbQ1aZmVnJcIPYxJqWuCiVOTOpOUWidx7hKOEJsr9OJaCZMVjqPcW9AWFEBpQbu3Pxp_Xkd5iHUz70TLwkDOi4jy0rinSQhY_eUKfceAtV9on1PK_B__4J3ewX2416BV1l1Or03YcNMtuHuNw3ALNhvrULHXDYX1mwfwk1oOEX_H9IwNphUFACpGlSwM8SabfLt6zybKc4HWLhxTozZnWXdRz5aFlAyRNNtzlN8gCcPZJV166HAtw6fjOWWXECozsmae_dyyCR3_ZX0f6a0ewsmNKOERtKazqXsMTEUlosIkQ1GpiFRaUH-mTDhjUXLMXQA7q39dXiwZPSTuhEg58ppyAuiRRtZfIRpuf2M2P5PNqsbfodDIpsIIK5JI50rn-OaqY4pcx7oM4BXpU5KxqOfKqKbmAd-UaLdkN8sREQpEcQG89SpH8fqr_BH78fznxTmOZ6R2EpFyLnmHZ6IIYHs1M2RjdCr5Z4k8-f_jF3C7fzw8kkeD0eFTuBMjTlseq9uGVj1fuGeIs2r9vJnMDL7c9Pr5Db2xPY0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxNBEB5qC6IPYqtitOo-VFTw6OV2b-9OEEmNMbG2BGKhb9v9dUUsSc1dLH3y__Kvc2bvEiuCb31KyCVzR2Znvm92dmYAdlIveYk0NfKIhpHIpIy09zwqXBK7UmMAkVOh8MGhHB6JT8fp8Rr8WtbC0LHKpU8MjtrNLO2R7yYFAp9AeBG7ZXssYtwfvDv_HtEEKcq0LsdpNEtk319eYPhWvR31UdfPk2Tw4cv7YdROGIgsEpU6KnxsuS9c7OKucVaWWcl5ibTDWkkTE2wirfQ2LY1Jk9ynHOk114jgRgubFZ6j3BuwkXG0E6pSH3xc7e9Qv828GzclgZwXMWWkMZpJiVL9BYJhVsAKETbOKFn-DzIEuBvchTstT2W9ZmFtwpqfbsHtK90Lt2Cz9QsVe9k2r351D37SsCHq3DE9ZaNpRaF_xaiGhSHTZJNvl2_YRIcuoLWPxjSizTvWW9SzpoSSIYdmfU-ZDZJwMLuglz2EWsfw6nhOeSUkyYz8WOh77tiEDv6yYdjjre7D0bWo4AGsT2dT_xCYjkvkg2mGoqSItSxoMlMmvHUoOeG-AzvLf12dN708FMZApBx1RTkd2CONrL5CDbjDB7P5qWrtGX-HQmMnhRVOpLHJtcnxyXXXFrlJTNmBF6RPRW6inmur22oHfFJquKV6WY5cUCB_68DroHIUb76qH0m4X3i_OMP7WWW8Qo6cK97lmSg6sL1cGap1N5X6YxyP_n_5GdxEq1GfR4f7j-FWggStOU-3Dev1fOGfIMGqzdOwkhmcXLfp_AYhtDsp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harvesting+Insights+from+the+Sky%3A+Satellite-Powered+Automation+for+Detecting+Mowing+Based+on+Predicted+Compressed+Sward+Heights&rft.jtitle=Applied+sciences&rft.au=Dichou%2C+Killian&rft.au=Nickmilder%2C+Charles&rft.au=Tedde%2C+Anthony&rft.au=Franceschini%2C+S%C3%A9bastien&rft.date=2024-03-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=5&rft.spage=1923&rft_id=info:doi/10.3390%2Fapp14051923&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app14051923 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |