Harvesting Insights from the Sky: Satellite-Powered Automation for Detecting Mowing Based on Predicted Compressed Sward Heights

The extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the impacts of drought events. Additionally, it provides valuable insights into farming practices and their consequential economic and ecologica...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 5; p. 1923
Main Authors Dichou, Killian, Nickmilder, Charles, Tedde, Anthony, Franceschini, Sébastien, Brostaux, Yves, Dufrasne, Isabelle, Lessire, Françoise, Glesner, Noémie, Soyeurt, Hélène
Format Journal Article Web Resource
LanguageEnglish
Published Basel MDPI AG 01.03.2024
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app14051923

Cover

Abstract The extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the impacts of drought events. Additionally, it provides valuable insights into farming practices and their consequential economic and ecological effects. To overcome challenges in obtaining reference grazing information directly from the field, this study introduces a novel methodology leveraging the compressed sward height (CSH) derived from Sentinel-1, Sentinel-2, and meteorological data, boasting an accuracy of 20 mm. Our central hypothesis posits that the mowing status of a parcel can be automatically discerned by analyzing the distribution and variation of its CSH values. Employing a two-step strategy, we first applied unsupervised algorithms, specifically k-means and isolation forest, and subsequently amalgamated the outcomes with a partial least squares analysis on an extensive dataset encompassing 194,657 pastures spanning the years 2018 to 2021. The culmination of our modeling efforts yielded a validation accuracy of 0.66, as ascertained from a focused dataset of 68 pastures. Depending on the studied year and with a threshold fixed at 0.50, 21% to 57% of all the parcels in the Wallonia dataset were tagged as mown by our model. This study introduces an innovative approach for the automated detection of mown parcels, showcasing its potential to monitor agricultural activities at scale.
AbstractList The prospective identification of mowing events holds promise for application across diverse domains, including the assessment of arthropod biodiversity as an explanatory factor and the evaluation of general agricultural practices. An examination of their occurrences over time has the potential to enhance the efficient allocation of inherent territorial resources for animal feeding. The extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the impacts of drought events. Additionally, it provides valuable insights into farming practices and their consequential economic and ecological effects. To overcome challenges in obtaining reference grazing information directly from the field, this study introduces a novel methodology leveraging the compressed sward height (CSH) derived from Sentinel-1, Sentinel-2, and meteorological data, boasting an accuracy of 20 mm. Our central hypothesis posits that the mowing status of a parcel can be automatically discerned by analyzing the distribution and variation of its CSH values. Employing a two-step strategy, we first applied unsupervised algorithms, specifically k-means and isolation forest, and subsequently amalgamated the outcomes with a partial least squares analysis on an extensive dataset encompassing 194,657 pastures spanning the years 2018 to 2021. The culmination of our modeling efforts yielded a validation accuracy of 0.66, as ascertained from a focused dataset of 68 pastures. Depending on the studied year and with a threshold fixed at 0.50, 21% to 57% of all the parcels in the Wallonia dataset were tagged as mown by our model. This study introduces an innovative approach for the automated detection of mown parcels, showcasing its potential to monitor agricultural activities at scale.
Featured ApplicationThe prospective identification of mowing events holds promise for application across diverse domains, including the assessment of arthropod biodiversity as an explanatory factor and the evaluation of general agricultural practices. An examination of their occurrences over time has the potential to enhance the efficient allocation of inherent territorial resources for animal feeding.AbstractThe extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the impacts of drought events. Additionally, it provides valuable insights into farming practices and their consequential economic and ecological effects. To overcome challenges in obtaining reference grazing information directly from the field, this study introduces a novel methodology leveraging the compressed sward height (CSH) derived from Sentinel-1, Sentinel-2, and meteorological data, boasting an accuracy of 20 mm. Our central hypothesis posits that the mowing status of a parcel can be automatically discerned by analyzing the distribution and variation of its CSH values. Employing a two-step strategy, we first applied unsupervised algorithms, specifically k-means and isolation forest, and subsequently amalgamated the outcomes with a partial least squares analysis on an extensive dataset encompassing 194,657 pastures spanning the years 2018 to 2021. The culmination of our modeling efforts yielded a validation accuracy of 0.66, as ascertained from a focused dataset of 68 pastures. Depending on the studied year and with a threshold fixed at 0.50, 21% to 57% of all the parcels in the Wallonia dataset were tagged as mown by our model. This study introduces an innovative approach for the automated detection of mown parcels, showcasing its potential to monitor agricultural activities at scale.
The extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the impacts of drought events. Additionally, it provides valuable insights into farming practices and their consequential economic and ecological effects. To overcome challenges in obtaining reference grazing information directly from the field, this study introduces a novel methodology leveraging the compressed sward height (CSH) derived from Sentinel-1, Sentinel-2, and meteorological data, boasting an accuracy of 20 mm. Our central hypothesis posits that the mowing status of a parcel can be automatically discerned by analyzing the distribution and variation of its CSH values. Employing a two-step strategy, we first applied unsupervised algorithms, specifically k-means and isolation forest, and subsequently amalgamated the outcomes with a partial least squares analysis on an extensive dataset encompassing 194,657 pastures spanning the years 2018 to 2021. The culmination of our modeling efforts yielded a validation accuracy of 0.66, as ascertained from a focused dataset of 68 pastures. Depending on the studied year and with a threshold fixed at 0.50, 21% to 57% of all the parcels in the Wallonia dataset were tagged as mown by our model. This study introduces an innovative approach for the automated detection of mown parcels, showcasing its potential to monitor agricultural activities at scale.
Audience Academic
Author Dufrasne, Isabelle
Glesner, Noémie
Tedde, Anthony
Lessire, Françoise
Brostaux, Yves
Nickmilder, Charles
Soyeurt, Hélène
Dichou, Killian
Franceschini, Sébastien
Author_xml – sequence: 1
  givenname: Killian
  surname: Dichou
  fullname: Dichou, Killian
– sequence: 2
  givenname: Charles
  orcidid: 0000-0001-5235-2145
  surname: Nickmilder
  fullname: Nickmilder, Charles
– sequence: 3
  givenname: Anthony
  surname: Tedde
  fullname: Tedde, Anthony
– sequence: 4
  givenname: Sébastien
  orcidid: 0000-0001-6298-5149
  surname: Franceschini
  fullname: Franceschini, Sébastien
– sequence: 5
  givenname: Yves
  orcidid: 0000-0001-6172-7869
  surname: Brostaux
  fullname: Brostaux, Yves
– sequence: 6
  givenname: Isabelle
  surname: Dufrasne
  fullname: Dufrasne, Isabelle
– sequence: 7
  givenname: Françoise
  surname: Lessire
  fullname: Lessire, Françoise
– sequence: 8
  givenname: Noémie
  surname: Glesner
  fullname: Glesner, Noémie
– sequence: 9
  givenname: Hélène
  orcidid: 0000-0001-9883-9047
  surname: Soyeurt
  fullname: Soyeurt, Hélène
BookMark eNpNUk1v1DAQjVCRKKUn_kAkjijFjh0n5rZsgV2piEoLZ8sf49RLEi-2t6ue-Ot4E4RqHzwev_fGz57XxcXkJyiKtxjdEMLRB3k4YIoazGvyorisUcsqQnF78Sx-VVzHuEd5cEw6jC6LPxsZHiEmN_Xldoquf0ixtMGPZXqAcvfr6WO5kwmGwSWo7v0JAphydUx-lMn5qbQ-lLeQQM8K3_zpvHySMaPy6X1GO53yZu3HQ4B4zu9OMphyA3OtN8VLK4cI1__Wq-Lnl88_1pvq7vvX7Xp1V-lsKVUckCbADTIIK6OZbS0hNtvQmjWkRrpmmoFurFJN3UFDWNsQyVumJNUtB3JVbBdd4-VeHIIbZXgSXjoxJ3zohQzJ6QEERgYrZBjV1NAGqU6qLpeTWPNO1cpmLbJoDQ56yFzlxGM9i83xcchiWigQdc06QTBpKc-sdwvrEPzvY35ysffHMGXTouZNQ2mHO5pRNwuql_kqbrI-BanzNDA6nT_cupxftR2jhLaUZML7haCDjzGA_W8OI3HuC_GsL8hfV1ms4A
Cites_doi 10.1016/j.rse.2021.112751
10.1109/Multi-Temp.2019.8866914
10.1016/j.agee.2012.04.008
10.1109/ICDM.2008.17
10.3390/rs13030408
10.3390/rs14122903
10.4236/ars.2017.61003
10.1016/j.rse.2023.113680
10.1071/CP22215
10.1038/nature25138
10.3390/rs15071890
10.1051/animres:2000117
10.1111/j.1471-0307.2008.00374.x
10.3390/su11153997
10.1038/s41586-020-2649-2
10.3390/agronomy9030124
10.1016/j.anifeedsci.2006.06.012
10.20870/productions-animales.2020.33.3.4543
10.1016/j.rse.2022.113145
10.1007/s11273-018-9615-x
10.3390/rs13030348
10.1038/s41598-022-04932-6
10.3390/rs14071647
10.1111/j.1365-2494.1987.tb02104.x
10.3390/rs11151801
10.3390/ani12192663
10.3168/jds.2023-23843
10.1371/journal.pone.0036992
ContentType Journal Article
Web Resource
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q33
DOA
DOI 10.3390/app14051923
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Université de Liège - Open Repository and Bibliography (ORBI)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_10d1b0d64c4d450b8ab87f3a1c98b2bf
oai_orbi_ulg_ac_be_2268_313749
A786434743
10_3390_app14051923
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
Q33
PUEGO
ID FETCH-LOGICAL-c405t-9e0c3e9d0d01bdc6f7f33f009cc65320c26c6ec5fbb528e536753a976ba4c79e3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:28:52 EDT 2025
Fri Jul 18 15:28:01 EDT 2025
Mon Jun 30 15:05:18 EDT 2025
Tue Jun 10 21:11:28 EDT 2025
Tue Jul 01 04:34:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-9e0c3e9d0d01bdc6f7f33f009cc65320c26c6ec5fbb528e536753a976ba4c79e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
scopus-id:2-s2.0-85192454646
ORCID 0000-0001-9883-9047
0000-0001-6172-7869
0000-0001-5235-2145
0000-0001-6298-5149
OpenAccessLink https://doaj.org/article/10d1b0d64c4d450b8ab87f3a1c98b2bf
PQID 2955448184
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_10d1b0d64c4d450b8ab87f3a1c98b2bf
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_313749
proquest_journals_2955448184
gale_infotracacademiconefile_A786434743
crossref_primary_10_3390_app14051923
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Holtgrave (ref_21) 2023; 295
Lobert (ref_20) 2021; 267
ref_10
ref_54
ref_53
ref_52
ref_51
ref_19
ref_18
ref_17
ref_16
ref_15
Michaud (ref_12) 2020; 33
Elgersma (ref_14) 2006; 131
Zavagli (ref_23) 2022; 280
Wrage (ref_28) 2012; 155
Cimbelli (ref_26) 2017; 6
Obermeyer (ref_30) 2022; 74
ref_25
ref_24
Rotz (ref_7) 2003; 15
Banaszuk (ref_11) 2018; 26
ref_29
ref_27
Erb (ref_2) 2018; 553
ref_36
ref_35
ref_34
ref_33
Fulkerson (ref_6) 1987; 42
ref_32
ref_31
Chilliard (ref_13) 2000; 49
Harris (ref_41) 2020; 585
ref_39
ref_38
ref_37
Komisarenko (ref_22) 2022; 12
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
ref_40
ref_3
Dillon (ref_5) 2008; 61
Mamadou (ref_1) 2016; 228–229
ref_49
ref_48
ref_9
ref_8
ref_4
References_xml – ident: ref_9
– volume: 267
  start-page: 112751
  year: 2021
  ident: ref_20
  article-title: Mowing Event Detection in Permanent Grasslands: Systematic Evaluation of Input Features from Sentinel-1, Sentinel-2, and Landsat 8 Time Series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112751
– ident: ref_49
– ident: ref_19
  doi: 10.1109/Multi-Temp.2019.8866914
– ident: ref_32
– ident: ref_51
– volume: 155
  start-page: 111
  year: 2012
  ident: ref_28
  article-title: Vegetation Height of Patch More Important for Phytodiversity than That of Paddock
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2012.04.008
– ident: ref_48
  doi: 10.1109/ICDM.2008.17
– ident: ref_39
– ident: ref_27
  doi: 10.3390/rs13030408
– ident: ref_42
– ident: ref_35
– ident: ref_24
  doi: 10.3390/rs14122903
– volume: 6
  start-page: 40
  year: 2017
  ident: ref_26
  article-title: Grassland Height Assessment by Satellite Images
  publication-title: Adv. Remote Sens.
  doi: 10.4236/ars.2017.61003
– volume: 295
  start-page: 113680
  year: 2023
  ident: ref_21
  article-title: Grassland Mowing Event Detection Using Combined Optical, SAR, and Weather Time Series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113680
– ident: ref_8
– volume: 228–229
  start-page: 370
  year: 2016
  ident: ref_1
  article-title: Carbon Balance of an Intensively Grazed Permanent Grassland in Southern Belgium
  publication-title: Agric. For. Meteorol.
– volume: 74
  start-page: 378
  year: 2022
  ident: ref_30
  article-title: Exploring the Potential of Rising Plate Meter Techniques to Analyse Ecosystem Services from Multi-Species Grasslands
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP22215
– ident: ref_4
– ident: ref_31
– volume: 553
  start-page: 73
  year: 2018
  ident: ref_2
  article-title: Unexpectedly Large Impact of Forest Management and Grazing on Global Vegetation Biomass
  publication-title: Nature
  doi: 10.1038/nature25138
– ident: ref_10
– ident: ref_29
  doi: 10.3390/rs15071890
– ident: ref_38
– ident: ref_45
– volume: 49
  start-page: 181
  year: 2000
  ident: ref_13
  article-title: Ruminant Milk Fat Plasticity: Nutritional Control of Saturated, Polyunsaturated, Trans and Conjugated Fatty Acids
  publication-title: Ann. Zootech.
  doi: 10.1051/animres:2000117
– volume: 15
  start-page: 227
  year: 2003
  ident: ref_7
  article-title: How to Maintain Forage Quality during Harvest and Storage
  publication-title: Adv. Dairy Tecnol.
– volume: 61
  start-page: 16
  year: 2008
  ident: ref_5
  article-title: Future Outlook for the Irish Dairy Industry: A Study of International Competitiveness, Influence of International Trade Reform and Requirement for Change
  publication-title: Int. J. Dairy Technol.
  doi: 10.1111/j.1471-0307.2008.00374.x
– ident: ref_3
  doi: 10.3390/su11153997
– volume: 585
  start-page: 357
  year: 2020
  ident: ref_41
  article-title: Array Programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: ref_54
  doi: 10.3390/agronomy9030124
– ident: ref_34
– volume: 131
  start-page: 207
  year: 2006
  ident: ref_14
  article-title: Modifying Milk Composition through Forage
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2006.06.012
– volume: 33
  start-page: 153
  year: 2020
  ident: ref_12
  article-title: Les prairies, une richesse et un support d’innovation pour des élevages de ruminants plus durables et acceptables
  publication-title: INRAE Prod. Anim.
  doi: 10.20870/productions-animales.2020.33.3.4543
– ident: ref_47
– ident: ref_40
– ident: ref_37
– ident: ref_44
– volume: 280
  start-page: 113145
  year: 2022
  ident: ref_23
  article-title: Mowing Detection Using Sentinel-1 and Sentinel-2 Time Series for Large Scale Grassland Monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113145
– ident: ref_50
– ident: ref_33
– volume: 26
  start-page: 879
  year: 2018
  ident: ref_11
  article-title: Mowing May Bring about Vegetation Change, but Its Effect Is Strongly Modified by Hydrological Factors
  publication-title: Wetl. Ecol. Manag.
  doi: 10.1007/s11273-018-9615-x
– ident: ref_46
– ident: ref_17
  doi: 10.3390/rs13030348
– volume: 12
  start-page: 983
  year: 2022
  ident: ref_22
  article-title: Exploiting Time Series of Sentinel-1 and Sentinel-2 to Detect Grassland Mowing Events Using Deep Learning with Reject Region
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-04932-6
– ident: ref_18
  doi: 10.3390/rs14071647
– volume: 42
  start-page: 169
  year: 1987
  ident: ref_6
  article-title: The Effect of Height and Frequency of Mowing on the Yield and Composition of Perennial Ryegrass—White Clover Swards in the Autumn to Spring Period
  publication-title: Grass Forage Sci.
  doi: 10.1111/j.1365-2494.1987.tb02104.x
– ident: ref_15
– ident: ref_25
  doi: 10.3390/rs11151801
– ident: ref_36
– ident: ref_43
– ident: ref_16
  doi: 10.3390/ani12192663
– ident: ref_52
  doi: 10.3168/jds.2023-23843
– ident: ref_53
  doi: 10.1371/journal.pone.0036992
RestrictionsOnAccess open access
SSID ssj0000913810
Score 2.2804768
Snippet The extensive identification of mowing events on a territory holds significant potential to help monitor shifts in biodiversity and contribute to assessing the...
The prospective identification of mowing events holds promise for application across diverse domains, including the assessment of arthropod biodiversity as an...
Featured ApplicationThe prospective identification of mowing events holds promise for application across diverse domains, including the assessment of arthropod...
SourceID doaj
liege
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1923
SubjectTerms Accuracy
Agriculture & agronomie
Agriculture & agronomy
Algorithms
Biodiversity
Climate change
compressed sward height
Computer Science Applications
Datasets
Fourier transforms
Geospatial data
Life sciences
Machine learning
mowing
pasture
Precipitation
Sciences du vivant
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge4EHxAaIwEB-mARIWCS24yS8oA4oBWloUpm0N8u_Mk1MyWhSEE_869w5bhlC4qlVk14in333nc_3HSGHZVCiBZjKAnhDJiulmAlBsMbz3LcGAogaC4WPP6vFqfx0Vp6lDbchHavc2MRoqH3vcI_8FW_A8UlwL_LN1TeGXaMwu5paaNwkuwUHX4uV4vMP2z0W5Lysi3wqyxMQ3WNWGCKKEmHNX44o8vVvrfLuJSas_7HO0eXM75I7CSvS2aTcPXIjdPvk9jUGwX2yl9bmQJ8nAukX98gvbPiD7BndOf3YDRh-DxTrSCigPbr8-vM1XZrIxDkGdoJt0oKns_XYT2WMFHAsfRcwu4ASjvsf-HEE7s5TuHqywtwOAFWKtiRyj3u6xMO3dBH3WYf75HT-_svbBUuNFpiDwRhZE3InQuNznxfWO9VWrRAtDJ9zChtHOK6cCq5srS15HUoBUYYwAGSska5qgnhAdrq-Cw8JNXkLmKysQJSSuVENdkeqZHAeJHMRMnK4GXV9NfFpaIhDUDn6mnIycoQa2d6CJNjxh351rtOagv-B0Nwr6aSXZW5rY2t4c1O4prbcthl5hvrUuFTHlXEmVRzAmyLplZ5VNeAxCRgqIy-jykG8vdDfeXxe_L6-hOc5bYMGnFprUYhKNhk52MwMnZb8oP9M0Ef_v_yY3OKAjKaDbAdkZ1ytwxNANqN9Gqfvb_ae-X0
  priority: 102
  providerName: ProQuest
Title Harvesting Insights from the Sky: Satellite-Powered Automation for Detecting Mowing Based on Predicted Compressed Sward Heights
URI https://www.proquest.com/docview/2955448184
http://orbi.ulg.ac.be/handle/2268/313749
https://doaj.org/article/10d1b0d64c4d450b8ab87f3a1c98b2bf
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1Be4EDogVEaFn5UAmQiJTEjhNz24UuC1KrFUul3ix_BSGqLNpkizjx15lx0moRBy6cEiWRbc2Mx29izxuAkzJI3iBMTQOuhqmopExNCDxVvsh8YzCAqClR-OxcLi7Ex8vycqfUF50JG-iBB8HhrPa5zbwUTnhRZrY2tq4abnKnalvYhrxvprKdYCr6YJUTddWQkMcxrqf9YIwlSgI0fyxBkan_1h_vX9FW9V9-OS4284fwYESJbDqM7gDuhPYQ7u9wBx7CwTgrO_ZypI5-9Qh-Uakf4s1ov7APbUeBd8cog4QhzmOrbz_fsJWJHJx9SJdUIC14Nt326yGBkSGCZe8C7StQC2frH3SZ4ULnGb5dbmhXByEqIy8SWcc9W9GxW7aIf1i7x3AxP_38dpGOJRZSh8LoUxUyx4Pymc9y651sULS8QfE5J6lkhCukk8GVjbVlUYeSY3zBDUIYa4SrVOBPYK9dt-EpMJM1iMbKCpuSIjNSUV2kSgSH-vMFDwmc3Ehdfx-YNDRGIKQcvaOcBGakkdtPiP46PkCj0KNR6H8ZRQIvSJ-aJmm_Mc6MuQY4UqK70tOqRiQmED0l8DqqHJu3X_V1EfuL99sr7M9pGzQi1FrznFdCJXB8Yxl6nOydLhRiMoHIRzz7H4M_gnsFIqfhoNsx7PWbbXiOyKe3E7hbz99PYH92er78NIkm_xu2PAUz
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V5AAcEC0gDAX2UARIWDje9QupQgltldAmikgr9bbsyxWiSkrsUPXEP-O3MbNxQhESt54c2cmsldmd-XZm5xuAncSlvESYGjr0hqHI0jRUzvGwsHFkS4UbiJwKhYejtH8iPp0mpxvwa1ULQ8cqVzbRG2o7MxQjfxcX6PgEuhfx4eJ7SF2jKLu6aqGhmtYKdtdTjDWFHYfu6hK3cNXuYA_1_TKOD_aPP_bDpstAaBCs1GHhIsNdYSMbdbQ1aZmVnJcIPYxJqWuCiVOTOpOUWidx7hKOEJsr9OJaCZMVjqPcW9AWFEBpQbu3Pxp_Xkd5iHUz70TLwkDOi4jy0rinSQhY_eUKfceAtV9on1PK_B__4J3ewX2416BV1l1Or03YcNMtuHuNw3ALNhvrULHXDYX1mwfwk1oOEX_H9IwNphUFACpGlSwM8SabfLt6zybKc4HWLhxTozZnWXdRz5aFlAyRNNtzlN8gCcPZJV166HAtw6fjOWWXECozsmae_dyyCR3_ZX0f6a0ewsmNKOERtKazqXsMTEUlosIkQ1GpiFRaUH-mTDhjUXLMXQA7q39dXiwZPSTuhEg58ppyAuiRRtZfIRpuf2M2P5PNqsbfodDIpsIIK5JI50rn-OaqY4pcx7oM4BXpU5KxqOfKqKbmAd-UaLdkN8sREQpEcQG89SpH8fqr_BH78fznxTmOZ6R2EpFyLnmHZ6IIYHs1M2RjdCr5Z4k8-f_jF3C7fzw8kkeD0eFTuBMjTlseq9uGVj1fuGeIs2r9vJnMDL7c9Pr5Db2xPY0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxNBEB5qC6IPYqtitOo-VFTw6OV2b-9OEEmNMbG2BGKhb9v9dUUsSc1dLH3y__Kvc2bvEiuCb31KyCVzR2Znvm92dmYAdlIveYk0NfKIhpHIpIy09zwqXBK7UmMAkVOh8MGhHB6JT8fp8Rr8WtbC0LHKpU8MjtrNLO2R7yYFAp9AeBG7ZXssYtwfvDv_HtEEKcq0LsdpNEtk319eYPhWvR31UdfPk2Tw4cv7YdROGIgsEpU6KnxsuS9c7OKucVaWWcl5ibTDWkkTE2wirfQ2LY1Jk9ynHOk114jgRgubFZ6j3BuwkXG0E6pSH3xc7e9Qv828GzclgZwXMWWkMZpJiVL9BYJhVsAKETbOKFn-DzIEuBvchTstT2W9ZmFtwpqfbsHtK90Lt2Cz9QsVe9k2r351D37SsCHq3DE9ZaNpRaF_xaiGhSHTZJNvl2_YRIcuoLWPxjSizTvWW9SzpoSSIYdmfU-ZDZJwMLuglz2EWsfw6nhOeSUkyYz8WOh77tiEDv6yYdjjre7D0bWo4AGsT2dT_xCYjkvkg2mGoqSItSxoMlMmvHUoOeG-AzvLf12dN708FMZApBx1RTkd2CONrL5CDbjDB7P5qWrtGX-HQmMnhRVOpLHJtcnxyXXXFrlJTNmBF6RPRW6inmur22oHfFJquKV6WY5cUCB_68DroHIUb76qH0m4X3i_OMP7WWW8Qo6cK97lmSg6sL1cGap1N5X6YxyP_n_5GdxEq1GfR4f7j-FWggStOU-3Dev1fOGfIMGqzdOwkhmcXLfp_AYhtDsp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harvesting+Insights+from+the+Sky%3A+Satellite-Powered+Automation+for+Detecting+Mowing+Based+on+Predicted+Compressed+Sward+Heights&rft.jtitle=Applied+sciences&rft.au=Dichou%2C+Killian&rft.au=Nickmilder%2C+Charles&rft.au=Tedde%2C+Anthony&rft.au=Franceschini%2C+S%C3%A9bastien&rft.date=2024-03-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=5&rft.spage=1923&rft_id=info:doi/10.3390%2Fapp14051923&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app14051923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon