GhostiPy: An Efficient Signal Processing and Spectral Analysis Toolbox for Large Data

Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Her...

Full description

Saved in:
Bibliographic Details
Published ineNeuro Vol. 8; no. 6; p. ENEURO.0202-21.2021
Main Authors Chu, Joshua P., Kemere, Caleb T.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 01.11.2021
Subjects
Online AccessGet full text
ISSN2373-2822
2373-2822
DOI10.1523/ENEURO.0202-21.2021

Cover

Abstract Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy ( g eneral h ub o f s pectral t echniques i n Py thon), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time–frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis.
AbstractList Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy (general hub of spectral techniques in Python), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time-frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis.Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy (general hub of spectral techniques in Python), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time-frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis.
Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy (general hub of spectral techniques in Python), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time–frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis.
Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy ( g eneral h ub o f s pectral t echniques i n Py thon), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time–frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis.
Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy ( eneral ub f pectral echniques n thon), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time-frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis.
Author Chu, Joshua P.
Kemere, Caleb T.
Author_xml – sequence: 1
  givenname: Joshua P.
  surname: Chu
  fullname: Chu, Joshua P.
– sequence: 2
  givenname: Caleb T.
  orcidid: 0000-0003-2054-0234
  surname: Kemere
  fullname: Kemere, Caleb T.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34556557$$D View this record in MEDLINE/PubMed
BookMark eNptUctuEzEUtaqivugXICEv2Uzwcx4skKKSFqSIVrRZW3c8dmo0sYM9Q5u_x1FKVCJW1_I9D51zz9GxD94g9I6SCZWMf5x9ny1-3E4II6xgdJIHPUJnjFe8YDVjx6_ep-gypZ-EEFqyitb0BJ1yIWUpZXWGFjePIQ3ubvMJTz2eWeu0M37A927pocd3MWiTkvNLDL7D92ujh5j_p3m5SS7hhxD6NjxjGyKeQ1wa_AUGeIveWOiTuXyZF2hxPXu4-lrMb2--XU3nhRZEDkVdUdsBBUFlrZtOVFrIsqONbDRwbhijtmmgklZzrTm0HRFdTm9aaKFktuUXSOx0R7-GzRP0vVpHt4K4UZSobVHKeDPGoLZFKUbVtqhM-7yjrcd2ZTqdA-dQe2oAp_7dePeoluG3qktBG1pngQ8vAjH8Gk0a1MolbfoevAljUkxWZSnLSjQZ-v61197k7wkyoNkBdAwpRWOVdgMMLmytXb8Psrv4YRB-wD2M_z_WHz-Frnc
CitedBy_id crossref_primary_10_1038_s43588_021_00183_z
crossref_primary_10_1016_j_cja_2024_04_014
crossref_primary_10_1109_ACCESS_2022_3232729
Cites_doi 10.1155/2011/156869
10.1098/rsta.2015.0193
10.1126/science.aad1935
10.1109/TSP.2008.2007607
10.7554/eLife.44320
10.1109/MCSE.2011.37
10.1109/78.139239
10.1038/s41592-019-0686-2
10.1109/TSP.2002.804066
10.25080/Majora-7b98e3ed-013
10.3389/fnins.2019.00076
10.5194/npg-13-467-2006
10.21105/joss.01237
10.1016/j.jneumeth.2014.01.002
10.1109/JPROC.2004.840301
10.1371/journal.pone.0073114
10.1073/pnas.0601707103
10.1017/CBO9780511622762
10.1109/TSP.2012.2210890
10.1016/j.jneumeth.2010.06.020
10.1201/9780203734032-20
10.1109/PROC.1982.12433
10.1016/j.sigpro.2012.11.029
10.1126/science.1128115
10.3389/fnins.2013.00267
10.1016/j.neuron.2015.10.025
ContentType Journal Article
Copyright Copyright © 2021 Chu and Kemere.
Copyright © 2021 Chu and Kemere 2021 Chu and Kemere
Copyright_xml – notice: Copyright © 2021 Chu and Kemere.
– notice: Copyright © 2021 Chu and Kemere 2021 Chu and Kemere
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1523/ENEURO.0202-21.2021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2373-2822
ExternalDocumentID 10.1523/eneuro.0202-21.2021
PMC8641918
34556557
10_1523_ENEURO_0202_21_2021
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS115233
– fundername: NINDS
  grantid: R01NS115233
– fundername: NSF
  grantid: CBET1351692
GroupedDBID 53G
5VS
AAYXX
ADBBV
ADRAZ
AKSEZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
GROUPED_DOAJ
H13
HYE
KQ8
M48
M~E
OK1
RHI
RPM
TFN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c405t-871fda1a4158c9d47c456d1959ca33e221f99a75fc3cc3abd04d152ebaba62fb3
IEDL.DBID M48
ISSN 2373-2822
IngestDate Sun Oct 26 04:00:01 EDT 2025
Tue Sep 30 16:35:38 EDT 2025
Wed Oct 01 13:41:02 EDT 2025
Mon Jul 21 05:59:06 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
Tue Jul 01 02:36:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords local field potential
spectral analysis
signal processing
oscillations
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2021 Chu and Kemere.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-871fda1a4158c9d47c456d1959ca33e221f99a75fc3cc3abd04d152ebaba62fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.P.C. and C.T.K. designed research; J.P.C. performed research; J.P.C. and C.T.K. analyzed data; J.P.C. and C.T.K. wrote the paper.
The development of GhostiPy was supported by the National Science Foundation (Grant NSF CBET1351692) and the National Institute of Neurological Diseases and Strokes (Grant R01-NS-115233).
The authors declare no competing financial interests.
ORCID 0000-0003-2054-0234
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1523/ENEURO.0202-21.2021
PMID 34556557
PQID 2576656749
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1523_eneuro_0202_21_2021
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8641918
proquest_miscellaneous_2576656749
pubmed_primary_34556557
crossref_citationtrail_10_1523_ENEURO_0202_21_2021
crossref_primary_10_1523_ENEURO_0202_21_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle eNeuro
PublicationTitleAlternate eNeuro
PublicationYear 2021
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041302161738000_8.6.ENEURO.0202-21.2021.10
2023041302161738000_8.6.ENEURO.0202-21.2021.11
2023041302161738000_8.6.ENEURO.0202-21.2021.30
2023041302161738000_8.6.ENEURO.0202-21.2021.31
2023041302161738000_8.6.ENEURO.0202-21.2021.18
2023041302161738000_8.6.ENEURO.0202-21.2021.19
2023041302161738000_8.6.ENEURO.0202-21.2021.16
2023041302161738000_8.6.ENEURO.0202-21.2021.17
(2023041302161738000_8.6.ENEURO.0202-21.2021.8) 1998; Vol 3
2023041302161738000_8.6.ENEURO.0202-21.2021.14
2023041302161738000_8.6.ENEURO.0202-21.2021.15
2023041302161738000_8.6.ENEURO.0202-21.2021.12
2023041302161738000_8.6.ENEURO.0202-21.2021.13
(2023041302161738000_8.6.ENEURO.0202-21.2021.9) 2005; 93
2023041302161738000_8.6.ENEURO.0202-21.2021.1
2023041302161738000_8.6.ENEURO.0202-21.2021.21
2023041302161738000_8.6.ENEURO.0202-21.2021.2
2023041302161738000_8.6.ENEURO.0202-21.2021.22
2023041302161738000_8.6.ENEURO.0202-21.2021.20
2023041302161738000_8.6.ENEURO.0202-21.2021.5
2023041302161738000_8.6.ENEURO.0202-21.2021.6
2023041302161738000_8.6.ENEURO.0202-21.2021.3
2023041302161738000_8.6.ENEURO.0202-21.2021.4
2023041302161738000_8.6.ENEURO.0202-21.2021.29
2023041302161738000_8.6.ENEURO.0202-21.2021.27
2023041302161738000_8.6.ENEURO.0202-21.2021.28
2023041302161738000_8.6.ENEURO.0202-21.2021.25
2023041302161738000_8.6.ENEURO.0202-21.2021.26
2023041302161738000_8.6.ENEURO.0202-21.2021.23
2023041302161738000_8.6.ENEURO.0202-21.2021.24
2023041302161738000_8.6.ENEURO.0202-21.2021.7
References_xml – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.21
  doi: 10.1155/2011/156869
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.5
  doi: 10.1098/rsta.2015.0193
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.12
  doi: 10.1126/science.aad1935
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.17
  doi: 10.1109/TSP.2008.2007607
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.31
  doi: 10.7554/eLife.44320
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.28
  doi: 10.1109/MCSE.2011.37
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.2
  doi: 10.1109/78.139239
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.29
  doi: 10.1038/s41592-019-0686-2
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.20
  doi: 10.1109/TSP.2002.804066
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.23
  doi: 10.25080/Majora-7b98e3ed-013
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.24
  doi: 10.3389/fnins.2019.00076
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.16
  doi: 10.5194/npg-13-467-2006
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.15
  doi: 10.21105/joss.01237
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.6
  doi: 10.1016/j.jneumeth.2014.01.002
– volume: Vol 3
  start-page: 1381
  volume-title: Proceedings of the 1998 IEEE International conference on acoustics, speech and signal processing: ICASSP'98: May 12-15, 1998, Washington state convention and Trade Center, Seattle, WA (USA)
  year: 1998
  ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.8
– volume: 93
  start-page: 216
  year: 2005
  ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.9
  article-title: The design and implementation of FFTW3
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2004.840301
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.14
  doi: 10.1371/journal.pone.0073114
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.10
  doi: 10.1073/pnas.0601707103
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.22
  doi: 10.1017/CBO9780511622762
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.18
  doi: 10.1109/TSP.2012.2210890
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.1
  doi: 10.1016/j.jneumeth.2010.06.020
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.30
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.7
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.4
  doi: 10.1201/9780203734032-20
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.27
  doi: 10.1109/PROC.1982.12433
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.13
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.26
  doi: 10.1016/j.sigpro.2012.11.029
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.3
  doi: 10.1126/science.1128115
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.19
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.11
  doi: 10.3389/fnins.2013.00267
– ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.25
  doi: 10.1016/j.neuron.2015.10.025
SSID ssj0001627181
Score 2.1936371
Snippet Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage ENEURO.0202-21.2021
SubjectTerms Algorithms
Open Source Tools and Methods
Signal Processing, Computer-Assisted
Software
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToK9ML42ygAZiUfcNnbsNLxVW8uEWDWJVRpPkWPHo6JKKkgF46_nLh8VoRIS4iWREtvx2Wf7d_HdzwCvR1aPXCwdD71QPDRK8FgLx5VyDi2iIPBVfMXFXJ8vwvfX6noPZm0sTOVWWVE5Vtv45K-Nk--wfjQcD_VwOicftwHCHMEFWXh4oV_Vg7Xzd2BfK8TkPdhfzC8nn6qT5SLJyVeyoRxCw6sprVNEd1nawZq7LpP3Nvna3H43q9Vv69HsEG5aSWo3lC-DTZkO7M8_SB7_X9QHcL-BrGxS69hD2MvyR3D3otmUfwyLdxQpsry8fcsmOZtWnBT4CfZxeUP5mlAEXCKZyR2jA-9JNtbSobCrolilxQ-G8Jl9IMd0dmZK8wQWs-nV6TlvTmvgFkFfidNq4J0JDCKCsY1dGFnEZo64a6yRMhMi8HFsIuWttFaa1I1Ch72RpSY1WvhUHkEvL_LsKTCdjiLEncpkwoba6Nh5nwplpYgi6fy4D6LtrMQ2VOZ0osYqIZMGezipWy6hlktEkFDL9eHNNtO6ZvL4e_JXrRYkOOJoG8XkWbH5lpCJhig4CuM-HNdasS1QhgoRsor6EHX0ZZuA2Ly7b_Ll54rVe6xDtJ1RNr7VrJ161rrRqeezf0x_Agd0q8Mpn0Ov_LrJXiCuKtOXzaD5BSvrICU
  priority: 102
  providerName: Unpaywall
Title GhostiPy: An Efficient Signal Processing and Spectral Analysis Toolbox for Large Data
URI https://www.ncbi.nlm.nih.gov/pubmed/34556557
https://www.proquest.com/docview/2576656749
https://pubmed.ncbi.nlm.nih.gov/PMC8641918
https://www.eneuro.org/content/eneuro/8/6/ENEURO.0202-21.2021.full.pdf
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2373-2822
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001627181
  issn: 2373-2822
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2373-2822
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001627181
  issn: 2373-2822
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2373-2822
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001627181
  issn: 2373-2822
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2373-2822
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001627181
  issn: 2373-2822
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2373-2822
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0001627181
  issn: 2373-2822
  databaseCode: M48
  dateStart: 20141101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5CAmkuJX07acwWeqxSa1-yCiWY1mkotQk0gvQkVrva1CCkNLFJ_O87o4eJcdtDz9qX9tvd-Uba-Qbg7cDqgYuFC6TnKpBG8SDW3AVKOYceURj6Or5iMtVnifx6qS63oMuK2k7g7R9dO8onldwUx_e_lie44T822XvE-_GUbr0dI_HhASefjwLLd9BUxZTLYdLy_fqji-Z4Foet-tBf6u7BrpAKiQ6ZrIfGaoOBbl6kfLQor83yzhTFAyt1ug-PW3rJRs16eAJbefkUdiftD_RnkHyhqI7Z-fIDG5VsXOtHYKvs--yK6rVhA2jOmCkdo-T01CPrpEvYRVUVWXXPkOqyb3SJnH02c_McktPxxaezoM2sEFgkaHM8AkPvTGjQeg9t7GRkkUc50pmxRoic89DHsYmUt8JaYTI3kA6nK89MZjT3mXgB22VV5q-A6WwQIUdUJudWaqNj533GlRU8ioTzwx7wbgpT28qOU_aLIiX3AyFIGwhSgiDlYUoQ9ODdqtJ1o7rx7-JvOmxS3B30y8OUebW4TcmdQsYaybgHLxusVg12IPcgWkNxVYCUt9eflLOftQL3UEv0c_HdghXeG-NsBEnXxnnw3z0dwh410ARBvobt-c0iP0I2NM_69VeEfr3O-7CTTM9HP34DEQ4JVQ
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToK9ML42ygAZiUfcNnbsNLxVW8uEWDWJVRpPkWPHo6JKKkgF46_nLh8VoRIS4iWREtvx2Wf7d_HdzwCvR1aPXCwdD71QPDRK8FgLx5VyDi2iIPBVfMXFXJ8vwvfX6noPZm0sTOVWWVE5Vtv45K-Nk--wfjQcD_VwOicftwHCHMEFWXh4oV_Vg7Xzd2BfK8TkPdhfzC8nn6qT5SLJyVeyoRxCw6sprVNEd1nawZq7LpP3Nvna3H43q9Vv69HsEG5aSWo3lC-DTZkO7M8_SB7_X9QHcL-BrGxS69hD2MvyR3D3otmUfwyLdxQpsry8fcsmOZtWnBT4CfZxeUP5mlAEXCKZyR2jA-9JNtbSobCrolilxQ-G8Jl9IMd0dmZK8wQWs-nV6TlvTmvgFkFfidNq4J0JDCKCsY1dGFnEZo64a6yRMhMi8HFsIuWttFaa1I1Ch72RpSY1WvhUHkEvL_LsKTCdjiLEncpkwoba6Nh5nwplpYgi6fy4D6LtrMQ2VOZ0osYqIZMGezipWy6hlktEkFDL9eHNNtO6ZvL4e_JXrRYkOOJoG8XkWbH5lpCJhig4CuM-HNdasS1QhgoRsor6EHX0ZZuA2Ly7b_Ll54rVe6xDtJ1RNr7VrJ161rrRqeezf0x_Agd0q8Mpn0Ov_LrJXiCuKtOXzaD5BSvrICU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GhostiPy%3A+An+Efficient+Signal+Processing+and+Spectral+Analysis+Toolbox+for+Large+Data&rft.jtitle=eNeuro&rft.au=Chu%2C+Joshua+P.&rft.au=Kemere%2C+Caleb+T.&rft.date=2021-11-01&rft.pub=Society+for+Neuroscience&rft.eissn=2373-2822&rft.volume=8&rft.issue=6&rft_id=info:doi/10.1523%2FENEURO.0202-21.2021&rft_id=info%3Apmid%2F34556557&rft.externalDocID=PMC8641918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-2822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-2822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-2822&client=summon