GhostiPy: An Efficient Signal Processing and Spectral Analysis Toolbox for Large Data
Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Her...
        Saved in:
      
    
          | Published in | eNeuro Vol. 8; no. 6; p. ENEURO.0202-21.2021 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Society for Neuroscience
    
        01.11.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2373-2822 2373-2822  | 
| DOI | 10.1523/ENEURO.0202-21.2021 | 
Cover
| Abstract | Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy (
g
eneral
h
ub
o
f
s
pectral
t
echniques
i
n
Py
thon), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time–frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis. | 
    
|---|---|
| AbstractList | Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy (general hub of spectral techniques in Python), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time-frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis.Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy (general hub of spectral techniques in Python), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time-frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis. Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy (general hub of spectral techniques in Python), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time–frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis. Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy ( g eneral h ub o f s pectral t echniques i n Py thon), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time–frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis. Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy ( eneral ub f pectral echniques n thon), a Python open source software toolbox implementing various signal processing and spectral analyses including optimal digital filters and time-frequency transforms. GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able to outperform commercial software in both time and space complexity for high-channel count data and can handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently encountered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portability and scalability of neural data analysis.  | 
    
| Author | Chu, Joshua P. Kemere, Caleb T.  | 
    
| Author_xml | – sequence: 1 givenname: Joshua P. surname: Chu fullname: Chu, Joshua P. – sequence: 2 givenname: Caleb T. orcidid: 0000-0003-2054-0234 surname: Kemere fullname: Kemere, Caleb T.  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34556557$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNptUctuEzEUtaqivugXICEv2Uzwcx4skKKSFqSIVrRZW3c8dmo0sYM9Q5u_x1FKVCJW1_I9D51zz9GxD94g9I6SCZWMf5x9ny1-3E4II6xgdJIHPUJnjFe8YDVjx6_ep-gypZ-EEFqyitb0BJ1yIWUpZXWGFjePIQ3ubvMJTz2eWeu0M37A927pocd3MWiTkvNLDL7D92ujh5j_p3m5SS7hhxD6NjxjGyKeQ1wa_AUGeIveWOiTuXyZF2hxPXu4-lrMb2--XU3nhRZEDkVdUdsBBUFlrZtOVFrIsqONbDRwbhijtmmgklZzrTm0HRFdTm9aaKFktuUXSOx0R7-GzRP0vVpHt4K4UZSobVHKeDPGoLZFKUbVtqhM-7yjrcd2ZTqdA-dQe2oAp_7dePeoluG3qktBG1pngQ8vAjH8Gk0a1MolbfoevAljUkxWZSnLSjQZ-v61197k7wkyoNkBdAwpRWOVdgMMLmytXb8Psrv4YRB-wD2M_z_WHz-Frnc | 
    
| CitedBy_id | crossref_primary_10_1038_s43588_021_00183_z crossref_primary_10_1016_j_cja_2024_04_014 crossref_primary_10_1109_ACCESS_2022_3232729  | 
    
| Cites_doi | 10.1155/2011/156869 10.1098/rsta.2015.0193 10.1126/science.aad1935 10.1109/TSP.2008.2007607 10.7554/eLife.44320 10.1109/MCSE.2011.37 10.1109/78.139239 10.1038/s41592-019-0686-2 10.1109/TSP.2002.804066 10.25080/Majora-7b98e3ed-013 10.3389/fnins.2019.00076 10.5194/npg-13-467-2006 10.21105/joss.01237 10.1016/j.jneumeth.2014.01.002 10.1109/JPROC.2004.840301 10.1371/journal.pone.0073114 10.1073/pnas.0601707103 10.1017/CBO9780511622762 10.1109/TSP.2012.2210890 10.1016/j.jneumeth.2010.06.020 10.1201/9780203734032-20 10.1109/PROC.1982.12433 10.1016/j.sigpro.2012.11.029 10.1126/science.1128115 10.3389/fnins.2013.00267 10.1016/j.neuron.2015.10.025  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2021 Chu and Kemere. Copyright © 2021 Chu and Kemere 2021 Chu and Kemere  | 
    
| Copyright_xml | – notice: Copyright © 2021 Chu and Kemere. – notice: Copyright © 2021 Chu and Kemere 2021 Chu and Kemere  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1523/ENEURO.0202-21.2021 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2373-2822 | 
    
| ExternalDocumentID | 10.1523/eneuro.0202-21.2021 PMC8641918 34556557 10_1523_ENEURO_0202_21_2021  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS115233 – fundername: NINDS grantid: R01NS115233 – fundername: NSF grantid: CBET1351692  | 
    
| GroupedDBID | 53G 5VS AAYXX ADBBV ADRAZ AKSEZ ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION GROUPED_DOAJ H13 HYE KQ8 M48 M~E OK1 RHI RPM TFN CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c405t-871fda1a4158c9d47c456d1959ca33e221f99a75fc3cc3abd04d152ebaba62fb3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2373-2822 | 
    
| IngestDate | Sun Oct 26 04:00:01 EDT 2025 Tue Sep 30 16:35:38 EDT 2025 Wed Oct 01 13:41:02 EDT 2025 Mon Jul 21 05:59:06 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 Tue Jul 01 02:36:05 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | local field potential spectral analysis signal processing oscillations  | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by-nc-sa/4.0 Copyright © 2021 Chu and Kemere. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c405t-871fda1a4158c9d47c456d1959ca33e221f99a75fc3cc3abd04d152ebaba62fb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: J.P.C. and C.T.K. designed research; J.P.C. performed research; J.P.C. and C.T.K. analyzed data; J.P.C. and C.T.K. wrote the paper. The development of GhostiPy was supported by the National Science Foundation (Grant NSF CBET1351692) and the National Institute of Neurological Diseases and Strokes (Grant R01-NS-115233). The authors declare no competing financial interests.  | 
    
| ORCID | 0000-0003-2054-0234 | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1523/ENEURO.0202-21.2021 | 
    
| PMID | 34556557 | 
    
| PQID | 2576656749 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | unpaywall_primary_10_1523_eneuro_0202_21_2021 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8641918 proquest_miscellaneous_2576656749 pubmed_primary_34556557 crossref_citationtrail_10_1523_ENEURO_0202_21_2021 crossref_primary_10_1523_ENEURO_0202_21_2021  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-11-01 | 
    
| PublicationDateYYYYMMDD | 2021-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | eNeuro | 
    
| PublicationTitleAlternate | eNeuro | 
    
| PublicationYear | 2021 | 
    
| Publisher | Society for Neuroscience | 
    
| Publisher_xml | – name: Society for Neuroscience | 
    
| References | 2023041302161738000_8.6.ENEURO.0202-21.2021.10 2023041302161738000_8.6.ENEURO.0202-21.2021.11 2023041302161738000_8.6.ENEURO.0202-21.2021.30 2023041302161738000_8.6.ENEURO.0202-21.2021.31 2023041302161738000_8.6.ENEURO.0202-21.2021.18 2023041302161738000_8.6.ENEURO.0202-21.2021.19 2023041302161738000_8.6.ENEURO.0202-21.2021.16 2023041302161738000_8.6.ENEURO.0202-21.2021.17 (2023041302161738000_8.6.ENEURO.0202-21.2021.8) 1998; Vol 3 2023041302161738000_8.6.ENEURO.0202-21.2021.14 2023041302161738000_8.6.ENEURO.0202-21.2021.15 2023041302161738000_8.6.ENEURO.0202-21.2021.12 2023041302161738000_8.6.ENEURO.0202-21.2021.13 (2023041302161738000_8.6.ENEURO.0202-21.2021.9) 2005; 93 2023041302161738000_8.6.ENEURO.0202-21.2021.1 2023041302161738000_8.6.ENEURO.0202-21.2021.21 2023041302161738000_8.6.ENEURO.0202-21.2021.2 2023041302161738000_8.6.ENEURO.0202-21.2021.22 2023041302161738000_8.6.ENEURO.0202-21.2021.20 2023041302161738000_8.6.ENEURO.0202-21.2021.5 2023041302161738000_8.6.ENEURO.0202-21.2021.6 2023041302161738000_8.6.ENEURO.0202-21.2021.3 2023041302161738000_8.6.ENEURO.0202-21.2021.4 2023041302161738000_8.6.ENEURO.0202-21.2021.29 2023041302161738000_8.6.ENEURO.0202-21.2021.27 2023041302161738000_8.6.ENEURO.0202-21.2021.28 2023041302161738000_8.6.ENEURO.0202-21.2021.25 2023041302161738000_8.6.ENEURO.0202-21.2021.26 2023041302161738000_8.6.ENEURO.0202-21.2021.23 2023041302161738000_8.6.ENEURO.0202-21.2021.24 2023041302161738000_8.6.ENEURO.0202-21.2021.7  | 
    
| References_xml | – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.21 doi: 10.1155/2011/156869 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.5 doi: 10.1098/rsta.2015.0193 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.12 doi: 10.1126/science.aad1935 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.17 doi: 10.1109/TSP.2008.2007607 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.31 doi: 10.7554/eLife.44320 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.28 doi: 10.1109/MCSE.2011.37 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.2 doi: 10.1109/78.139239 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.29 doi: 10.1038/s41592-019-0686-2 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.20 doi: 10.1109/TSP.2002.804066 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.23 doi: 10.25080/Majora-7b98e3ed-013 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.24 doi: 10.3389/fnins.2019.00076 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.16 doi: 10.5194/npg-13-467-2006 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.15 doi: 10.21105/joss.01237 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.6 doi: 10.1016/j.jneumeth.2014.01.002 – volume: Vol 3 start-page: 1381 volume-title: Proceedings of the 1998 IEEE International conference on acoustics, speech and signal processing: ICASSP'98: May 12-15, 1998, Washington state convention and Trade Center, Seattle, WA (USA) year: 1998 ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.8 – volume: 93 start-page: 216 year: 2005 ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.9 article-title: The design and implementation of FFTW3 publication-title: Proc IEEE doi: 10.1109/JPROC.2004.840301 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.14 doi: 10.1371/journal.pone.0073114 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.10 doi: 10.1073/pnas.0601707103 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.22 doi: 10.1017/CBO9780511622762 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.18 doi: 10.1109/TSP.2012.2210890 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.1 doi: 10.1016/j.jneumeth.2010.06.020 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.30 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.7 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.4 doi: 10.1201/9780203734032-20 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.27 doi: 10.1109/PROC.1982.12433 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.13 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.26 doi: 10.1016/j.sigpro.2012.11.029 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.3 doi: 10.1126/science.1128115 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.19 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.11 doi: 10.3389/fnins.2013.00267 – ident: 2023041302161738000_8.6.ENEURO.0202-21.2021.25 doi: 10.1016/j.neuron.2015.10.025  | 
    
| SSID | ssj0001627181 | 
    
| Score | 2.1936371 | 
    
| Snippet | Recent technological advances have enabled neural recordings consisting of hundreds to thousands of channels. As the pace of these developments continues to... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | ENEURO.0202-21.2021 | 
    
| SubjectTerms | Algorithms Open Source Tools and Methods Signal Processing, Computer-Assisted Software  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToK9ML42ygAZiUfcNnbsNLxVW8uEWDWJVRpPkWPHo6JKKkgF46_nLh8VoRIS4iWREtvx2Wf7d_HdzwCvR1aPXCwdD71QPDRK8FgLx5VyDi2iIPBVfMXFXJ8vwvfX6noPZm0sTOVWWVE5Vtv45K-Nk--wfjQcD_VwOicftwHCHMEFWXh4oV_Vg7Xzd2BfK8TkPdhfzC8nn6qT5SLJyVeyoRxCw6sprVNEd1nawZq7LpP3Nvna3H43q9Vv69HsEG5aSWo3lC-DTZkO7M8_SB7_X9QHcL-BrGxS69hD2MvyR3D3otmUfwyLdxQpsry8fcsmOZtWnBT4CfZxeUP5mlAEXCKZyR2jA-9JNtbSobCrolilxQ-G8Jl9IMd0dmZK8wQWs-nV6TlvTmvgFkFfidNq4J0JDCKCsY1dGFnEZo64a6yRMhMi8HFsIuWttFaa1I1Ch72RpSY1WvhUHkEvL_LsKTCdjiLEncpkwoba6Nh5nwplpYgi6fy4D6LtrMQ2VOZ0osYqIZMGezipWy6hlktEkFDL9eHNNtO6ZvL4e_JXrRYkOOJoG8XkWbH5lpCJhig4CuM-HNdasS1QhgoRsor6EHX0ZZuA2Ly7b_Ll54rVe6xDtJ1RNr7VrJ161rrRqeezf0x_Agd0q8Mpn0Ov_LrJXiCuKtOXzaD5BSvrICU priority: 102 providerName: Unpaywall  | 
    
| Title | GhostiPy: An Efficient Signal Processing and Spectral Analysis Toolbox for Large Data | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34556557 https://www.proquest.com/docview/2576656749 https://pubmed.ncbi.nlm.nih.gov/PMC8641918 https://www.eneuro.org/content/eneuro/8/6/ENEURO.0202-21.2021.full.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2373-2822 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001627181 issn: 2373-2822 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2373-2822 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001627181 issn: 2373-2822 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2373-2822 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001627181 issn: 2373-2822 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2373-2822 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001627181 issn: 2373-2822 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2373-2822 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0001627181 issn: 2373-2822 databaseCode: M48 dateStart: 20141101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5CAmkuJX07acwWeqxSa1-yCiWY1mkotQk0gvQkVrva1CCkNLFJ_O87o4eJcdtDz9qX9tvd-Uba-Qbg7cDqgYuFC6TnKpBG8SDW3AVKOYceURj6Or5iMtVnifx6qS63oMuK2k7g7R9dO8onldwUx_e_lie44T822XvE-_GUbr0dI_HhASefjwLLd9BUxZTLYdLy_fqji-Z4Foet-tBf6u7BrpAKiQ6ZrIfGaoOBbl6kfLQor83yzhTFAyt1ug-PW3rJRs16eAJbefkUdiftD_RnkHyhqI7Z-fIDG5VsXOtHYKvs--yK6rVhA2jOmCkdo-T01CPrpEvYRVUVWXXPkOqyb3SJnH02c_McktPxxaezoM2sEFgkaHM8AkPvTGjQeg9t7GRkkUc50pmxRoic89DHsYmUt8JaYTI3kA6nK89MZjT3mXgB22VV5q-A6WwQIUdUJudWaqNj533GlRU8ioTzwx7wbgpT28qOU_aLIiX3AyFIGwhSgiDlYUoQ9ODdqtJ1o7rx7-JvOmxS3B30y8OUebW4TcmdQsYaybgHLxusVg12IPcgWkNxVYCUt9eflLOftQL3UEv0c_HdghXeG-NsBEnXxnnw3z0dwh410ARBvobt-c0iP0I2NM_69VeEfr3O-7CTTM9HP34DEQ4JVQ | 
    
| linkProvider | Scholars Portal | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToK9ML42ygAZiUfcNnbsNLxVW8uEWDWJVRpPkWPHo6JKKkgF46_nLh8VoRIS4iWREtvx2Wf7d_HdzwCvR1aPXCwdD71QPDRK8FgLx5VyDi2iIPBVfMXFXJ8vwvfX6noPZm0sTOVWWVE5Vtv45K-Nk--wfjQcD_VwOicftwHCHMEFWXh4oV_Vg7Xzd2BfK8TkPdhfzC8nn6qT5SLJyVeyoRxCw6sprVNEd1nawZq7LpP3Nvna3H43q9Vv69HsEG5aSWo3lC-DTZkO7M8_SB7_X9QHcL-BrGxS69hD2MvyR3D3otmUfwyLdxQpsry8fcsmOZtWnBT4CfZxeUP5mlAEXCKZyR2jA-9JNtbSobCrolilxQ-G8Jl9IMd0dmZK8wQWs-nV6TlvTmvgFkFfidNq4J0JDCKCsY1dGFnEZo64a6yRMhMi8HFsIuWttFaa1I1Ch72RpSY1WvhUHkEvL_LsKTCdjiLEncpkwoba6Nh5nwplpYgi6fy4D6LtrMQ2VOZ0osYqIZMGezipWy6hlktEkFDL9eHNNtO6ZvL4e_JXrRYkOOJoG8XkWbH5lpCJhig4CuM-HNdasS1QhgoRsor6EHX0ZZuA2Ly7b_Ll54rVe6xDtJ1RNr7VrJ161rrRqeezf0x_Agd0q8Mpn0Ov_LrJXiCuKtOXzaD5BSvrICU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GhostiPy%3A+An+Efficient+Signal+Processing+and+Spectral+Analysis+Toolbox+for+Large+Data&rft.jtitle=eNeuro&rft.au=Chu%2C+Joshua+P.&rft.au=Kemere%2C+Caleb+T.&rft.date=2021-11-01&rft.pub=Society+for+Neuroscience&rft.eissn=2373-2822&rft.volume=8&rft.issue=6&rft_id=info:doi/10.1523%2FENEURO.0202-21.2021&rft_id=info%3Apmid%2F34556557&rft.externalDocID=PMC8641918 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-2822&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-2822&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-2822&client=summon |