NAPC: A Neural Algorithm for Automated Passenger Counting in Public Transport on a Privacy-Friendly Dataset

Real-time load information in public transport is of high importance for both passengers and service providers. Neural algorithms have shown a high performance on various object counting tasks and play a continually growing methodological role in developing automated passenger counting systems. Howe...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of intelligent transportation systems Vol. 3; pp. 33 - 44
Main Authors Seidel, Robert, Jahn, Nico, Seo, Sambu, Goerttler, Thomas, Obermayer, Klaus
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2687-7813
2687-7813
DOI10.1109/OJITS.2021.3139393

Cover

Abstract Real-time load information in public transport is of high importance for both passengers and service providers. Neural algorithms have shown a high performance on various object counting tasks and play a continually growing methodological role in developing automated passenger counting systems. However, the publication of public-space video footage is often contradicted by legal and ethical considerations to protect the passengers' privacy. This work proposes an end-to-end Long Short-Term Memory network with a problem-adapted cost function that learned to count boarding and alighting passengers on a publicly available, comprehensive dataset of approx.13,000 manually annotated low-resolution 3D LiDAR video recordings (depth information only) from the doorways of a regional train. These depth recordings do not allow the identification of single individuals. For each door opening phase, the trained models predict the correct passenger count (ranging from 0 to 67) in approx.96% of boarding and alighting, respectively. Repeated training with different training and validation sets confirms the independence of this result from a specific test set.
AbstractList Real-time load information in public transport is of high importance for both passengers and service providers. Neural algorithms have shown a high performance on various object counting tasks and play a continually growing methodological role in developing automated passenger counting systems. However, the publication of public-space video footage is often contradicted by legal and ethical considerations to protect the passengers' privacy. This work proposes an end-to-end Long Short-Term Memory network with a problem-adapted cost function that learned to count boarding and alighting passengers on a publicly available, comprehensive dataset of approx.13,000 manually annotated low-resolution 3D LiDAR video recordings (depth information only) from the doorways of a regional train. These depth recordings do not allow the identification of single individuals. For each door opening phase, the trained models predict the correct passenger count (ranging from 0 to 67) in approx.96% of boarding and alighting, respectively. Repeated training with different training and validation sets confirms the independence of this result from a specific test set.
Author Goerttler, Thomas
Obermayer, Klaus
Jahn, Nico
Seidel, Robert
Seo, Sambu
Author_xml – sequence: 1
  givenname: Robert
  orcidid: 0000-0002-3075-2153
  surname: Seidel
  fullname: Seidel, Robert
  organization: Institute of Software Engineering and Theoretical Computer Science, Neural Information Processing Group, Technische Universität Berlin, Berlin, Germany
– sequence: 2
  givenname: Nico
  orcidid: 0000-0001-6452-7985
  surname: Jahn
  fullname: Jahn, Nico
  organization: Institute of Software Engineering and Theoretical Computer Science, Neural Information Processing Group, Technische Universität Berlin, Berlin, Germany
– sequence: 3
  givenname: Sambu
  orcidid: 0000-0001-9344-6690
  surname: Seo
  fullname: Seo, Sambu
  organization: Institute of Software Engineering and Theoretical Computer Science, Neural Information Processing Group, Technische Universität Berlin, Berlin, Germany
– sequence: 4
  givenname: Thomas
  orcidid: 0000-0002-1437-0235
  surname: Goerttler
  fullname: Goerttler, Thomas
  email: thomas.goerttler@tu-berlin.de
  organization: Institute of Software Engineering and Theoretical Computer Science, Neural Information Processing Group, Technische Universität Berlin, Berlin, Germany
– sequence: 5
  givenname: Klaus
  orcidid: 0000-0002-5057-6142
  surname: Obermayer
  fullname: Obermayer, Klaus
  organization: Institute of Software Engineering and Theoretical Computer Science, Neural Information Processing Group, Technische Universität Berlin, Berlin, Germany
BookMark eNptkV1v0zAUhiO0SYyxPzBuLHGd4q86CXdR2aBo2iqtu7ZOnJPiktrFdkD992TLVKEK-cKWdZ7nHL9-l5057zDLrhmdMUarTw_fl-vHGaeczQQT1bjeZBdclUVelEyc_XN-m13FuKWU8jljnFYX2c_7erX4TGpyj0OAntT9xgebfuxI5wOph-R3kLAlK4gR3QYDWfjBJes2xDqyGpreGrIO4OLeh0S8I0BWwf4Gc8hvg0XX9gfyBRJETO-z8w76iFev-2X2dHuzXnzL7x6-Lhf1XW4knae8VJRVRjCGTYkFmqZTINqKUiOFlK1AibJrpMKGqZaJojCUCyo6IwvRNkKJy2w5eVsPW70PdgfhoD1Y_XLhw0ZDSNb0qLFVQiG0FGk1ussSsFG84AxAAlYwusTkGtweDn-g749CRvVz_NpvbYr6OX79Gv9IfZyoffC_BoxJb_0Q3PhozRXnpaBzSceqcqoywccYsNPGJkjWuxTA9scGL_972oCfoKdT_Rf6MEEWEY9ApdS84Fz8BX9-sTw
CitedBy_id crossref_primary_10_1016_j_engappai_2022_105148
crossref_primary_10_3390_eng5040172
crossref_primary_10_3390_fi14110319
crossref_primary_10_1109_OJITS_2023_3331447
crossref_primary_10_1109_TSMC_2024_3385711
crossref_primary_10_3390_s23187719
crossref_primary_10_1016_j_trpro_2023_02_063
crossref_primary_10_1109_OJITS_2024_3441048
crossref_primary_10_1109_OJITS_2023_3251564
crossref_primary_10_1109_TITS_2024_3434746
crossref_primary_10_32397_tesea_vol5_n2_624
crossref_primary_10_3390_s25061695
Cites_doi 10.1145/2964284.2967300
10.1145/2733373.2806337
10.1109/TPAMI.2016.2599174
10.1109/ICIP.2014.7026221
10.3390/s17051065
10.1109/AVSS.2013.6636641
10.1109/TITS.2019.2911128
10.1007/978-3-030-01246-5_38
10.1109/UEMCON47517.2019.8993109
10.3115/v1/d14-1179
10.23919/SpliTech49282.2020.9243737
10.1109/CVPR.2016.91
10.1016/j.knosys.2017.02.016
10.1109/ICIP.2017.8296412
10.1162/neco.1997.9.8.1735
10.1007/s11042-020-09487-0
10.1155/2020/8843113
10.1016/j.neucom.2016.01.097
10.1145/3323933.3324076
10.1016/j.patrec.2017.07.007
10.1109/UEMCON47517.2019.8992980
10.1007/978-3-030-01270-0_37
10.1007/s11116-019-09991-9
10.1109/AVSS.2018.8639165
10.1088/1742-6596/1575/1/012067
10.1109/ICME.2010.5583552
10.3390/s21030916
10.1109/TKDE.2005.32
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2014.81
10.1038/323533a0
10.1891/9780826190123.ap02
10.21307/ijssis-2020-008
10.1109/EECSI.2018.8752666
10.1109/CVPR.2017.195
10.1007/s11042-020-09971-7
10.1109/CVPR.2016.255
10.18653/v1/P18-2117
10.1145/3007669.3007745
10.3390/s20082178
10.1109/TCSVT.2008.928225
10.1109/ICMA.2018.8484698
10.2139/ssrn.364600
10.1007/s00138-020-01089-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1109/OJITS.2021.3139393
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2687-7813
EndPage 44
ExternalDocumentID oai_doaj_org_article_ed636ead0e0944d88aeb62721aa4ae9a
10.1109/ojits.2021.3139393
10_1109_OJITS_2021_3139393
9665722
Genre orig-research
GrantInformation_xml – fundername: European Regional Development Fund
  grantid: 10167006
  funderid: 10.13039/501100008530
– fundername: German Science Foundation
– fundername: Open Access Publication Fund of the Technische Universität Berlin
  funderid: 10.13039/501100006764
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c405t-86019c311eb8e7ecbf6a3d900c4344d3e4e4fb46eb16d1377c02303fc473db363
IEDL.DBID UNPAY
ISSN 2687-7813
IngestDate Fri Oct 03 12:52:27 EDT 2025
Wed Oct 01 16:24:45 EDT 2025
Mon Jun 30 09:48:29 EDT 2025
Tue Jul 01 02:37:44 EDT 2025
Thu Apr 24 22:59:07 EDT 2025
Wed Aug 27 03:00:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-86019c311eb8e7ecbf6a3d900c4344d3e4e4fb46eb16d1377c02303fc473db363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1437-0235
0000-0002-3075-2153
0000-0001-9344-6690
0000-0001-6452-7985
0000-0002-5057-6142
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/8784355/9680328/09665722.pdf
PQID 2622830540
PQPubID 5075787
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_OJITS_2021_3139393
proquest_journals_2622830540
doaj_primary_oai_doaj_org_article_ed636ead0e0944d88aeb62721aa4ae9a
ieee_primary_9665722
unpaywall_primary_10_1109_ojits_2021_3139393
crossref_primary_10_1109_OJITS_2021_3139393
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE open journal of intelligent transportation systems
PublicationTitleAbbrev OJITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
van den Oord (ref45)
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref46
Zhang (ref24) 2019
ref48
ref47
ref42
ref41
Kingma (ref50)
ref8
ref7
Maas (ref49)
ref9
ref4
ref3
Seidel (ref44) 2021
ref6
ref5
ref40
Shen (ref43); 11764
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
ref23
ref26
ref25
ref20
ref22
ref21
Hodges (ref2) 1985
ref28
ref27
ref29
(ref52) 2018
References_xml – ident: ref18
  doi: 10.1145/2964284.2967300
– ident: ref15
  doi: 10.1145/2733373.2806337
– ident: ref29
  doi: 10.1109/TPAMI.2016.2599174
– ident: ref40
  doi: 10.1109/ICIP.2014.7026221
– ident: ref19
  doi: 10.3390/s17051065
– ident: ref39
  doi: 10.1109/AVSS.2013.6636641
– ident: ref33
  doi: 10.1109/TITS.2019.2911128
– ident: ref42
  doi: 10.1007/978-3-030-01246-5_38
– ident: ref14
  doi: 10.1109/UEMCON47517.2019.8993109
– year: 1985
  ident: ref2
  article-title: Automatic passenger counter systems: The state of the practice
– ident: ref47
  doi: 10.3115/v1/d14-1179
– ident: ref26
  doi: 10.23919/SpliTech49282.2020.9243737
– ident: ref9
  doi: 10.1109/CVPR.2016.91
– ident: ref31
  doi: 10.1016/j.knosys.2017.02.016
– ident: ref5
  doi: 10.1109/ICIP.2017.8296412
– volume: 11764
  volume-title: Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Interv.
  ident: ref43
  article-title: Medical image computing and computer assisted intervention—MICCAI
– ident: ref4
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref32
  doi: 10.1007/s11042-020-09487-0
– ident: ref20
  doi: 10.1155/2020/8843113
– ident: ref21
  doi: 10.1016/j.neucom.2016.01.097
– ident: ref12
  doi: 10.1145/3323933.3324076
– start-page: 1
  volume-title: Proc. 3rd Int. Conf. Learn. Represent.
  ident: ref50
  article-title: Adam: A method for stochastic optimization
– ident: ref16
  doi: 10.1016/j.patrec.2017.07.007
– ident: ref10
  doi: 10.1109/UEMCON47517.2019.8992980
– ident: ref41
  doi: 10.1007/978-3-030-01270-0_37
– ident: ref51
  doi: 10.1007/s11116-019-09991-9
– volume-title: Manual to Berlin-APC: A Privacy-Friendly Dataset for Automated Passenger Counting in Public Transport
  year: 2021
  ident: ref44
– ident: ref7
  doi: 10.1109/AVSS.2018.8639165
– ident: ref25
  doi: 10.1088/1742-6596/1575/1/012067
– ident: ref38
  doi: 10.1109/ICME.2010.5583552
– start-page: 125
  volume-title: Proc. 9th ISCA Speech Synth. Workshop
  ident: ref45
  article-title: WaveNet: A generative model for raw audio
– volume-title: Automatische Fahrgastzählsysteme
  year: 2018
  ident: ref52
– start-page: 1
  volume-title: Proc. 30th Int. Conf. Mach. Learn.
  ident: ref49
  article-title: Rectifier nonlinearities improve neural network acoustic models
– ident: ref6
  doi: 10.3390/s21030916
– ident: ref36
  doi: 10.1109/TKDE.2005.32
– ident: ref13
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref23
  doi: 10.1109/CVPR.2014.81
– volume-title: arXiv:1909.09998
  year: 2019
  ident: ref24
  article-title: Double anchor R-CNN for human detection in a crowd
– ident: ref46
  doi: 10.1038/323533a0
– ident: ref1
  doi: 10.1891/9780826190123.ap02
– ident: ref35
  doi: 10.21307/ijssis-2020-008
– ident: ref28
  doi: 10.1109/EECSI.2018.8752666
– ident: ref27
  doi: 10.1109/CVPR.2017.195
– ident: ref30
  doi: 10.1007/s11042-020-09971-7
– ident: ref3
  doi: 10.1109/CVPR.2016.255
– ident: ref48
  doi: 10.18653/v1/P18-2117
– ident: ref17
  doi: 10.1145/3007669.3007745
– ident: ref22
  doi: 10.3390/s20082178
– ident: ref37
  doi: 10.1109/TCSVT.2008.928225
– ident: ref11
  doi: 10.1109/ICMA.2018.8484698
– ident: ref34
  doi: 10.2139/ssrn.364600
– ident: ref8
  doi: 10.1007/s00138-020-01089-y
SSID ssj0002511209
Score 2.3023481
Snippet Real-time load information in public transport is of high importance for both passengers and service providers. Neural algorithms have shown a high performance...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Algorithms
Automation
Boarding
boarding and alighting passenger counting
Cameras
Convolutional neural networks
Cost function
Datasets
Feature extraction
Intelligent transportation
Laser radar
LiDAR
long short-term memory (LSTM)
neural network
Neural networks
Passengers
Privacy
Public transportation
range imaging
Task analysis
Three-dimensional displays
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQL4UDohREoEU-cIOoiW0cm9t2YVUqUVailXqz7NiBLSGptlnQ_j0zTjbaFRJcuEZONPFMPO9N7DeEvEIFGFvYIq1EkKmw0qe6UlWaO-WswlYPseD26UKeXYnz67fXW62-cE9YLw_cT9xJ8JJLeN0sABERXikbnGTAW6wVNugIjTKlt8gUrsEInFmmN6dkMn3y-fzj5RfggywHmso113wnE0XB_qHDyg7Y3F81t3b9y9b1Vt6ZPSIPB8BIJ72hB-ReaB6TB1sygofk-8VkPn1HJxSVNnBs_bUFzv_tBwVESierrgVYGjydA1DGTaxLOh06RNBFQ_vCHR1VzmnbUEvny8VPW67TGeog-3pN39sOEl73hFzNPlxOz9KhiUJaAhbrUgWMS5c8z4NToQilq6TlXmdZKTjMJw8iiMoJCWu29Cg_WCIr4VUpCu4dl_wp2WvaJjwjFMXXK1swgedPlaqUzqzghQPKxoRneULyzYSaclAYx0YXtYlMI9MmOsGgE8zghIS8Hu-57fU1_jr6FP00jkRt7HgBIsYMEWP-FTEJOUQvjw_R-POJsYQcbbxuhu_4zjAZFdIA1ibkzRgJf1ja3iy6ux1Ln_8PS1-Q-wxPW8SKzxHZ65arcAwYqHMvY7j_BivK_7U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLXGXoCH8TEQgYH8wBtLl8SeY--tFKoxaaMSm7S3yF8Z3bJk6hym8uvxddJoBYR4qyqndXT8cc6177kIvQcHGJnLPC6pZTGVzMSi5GWcKq4kh1IPIeB2fMIOz-jR-f75BtodcmGsteHymR3Bx3CWbxrdQqhsT8AxQeYX3Ac5Z12u1hBPAaqcJWKVF5OIva9HX06_eQWYpV6YEkEEWdt7gkV_X1NljV4-bOsbubyTVXVvp5k-QcerPnYXTK5GrVMj_fM3-8b_fYmnaKunnHjcjZFnaMPWz9Hje0aE2-jqZDybHOAxBq8OaFtdNIu5-36NPafF49Y1nthag2eeasM12AWe9DUm8LzGXegPDz7puKmxxLPF_IfUy3gKTsqmWuJP0vkt071AZ9PPp5PDuC_DEGvP5lzMvWYTmqSpVdzmVquSSWJEkmhKKDXEUktLRZlf9ZkBA0MNuoaUmubEKMLIS7RZN7V9hTDYt5cyzyhksHJecpFISnLlRV9GTZZGKF0BVOjeoxxKZVRF0CqJKAKoBYBa9KBG6MPwzE3n0PHP1h8B96EluGuHLzxGRT9ZC2sYYX6KJdaLX2o4l1axzGtlKam0QkZoG3AdfqSHNEI7q1FU9CvBbZGx4LHmiXGEdoeR9UdPm8u5u13r6eu__8kb9CiDDIwQBdpBm27R2reeFzn1LkyIX_rZCB0
  priority: 102
  providerName: IEEE
Title NAPC: A Neural Algorithm for Automated Passenger Counting in Public Transport on a Privacy-Friendly Dataset
URI https://ieeexplore.ieee.org/document/9665722
https://www.proquest.com/docview/2622830540
https://ieeexplore.ieee.org/ielx7/8784355/9680328/09665722.pdf
https://doaj.org/article/ed636ead0e0944d88aeb62721aa4ae9a
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2687-7813
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511209
  issn: 2687-7813
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2687-7813
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511209
  issn: 2687-7813
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQQUvlAzdIm8Su7XALZatlpS2V2ErLKbJjB8KGZFVSoBz47YxdN9qChASXKIomkaOZybyZeN4g9MwywEgueVhSw0IqmQ7TUpRhrISSwo56cAW3szk7WdLTi8mFL7i5XhhjjNt8Zkb21P3Lr0z9nY8FFxDaJ-OUCcsBNwbszSY8gbxQlzfRAZsAFh-gg-V8kb23E-UYeA8XMdl1ykTpuP1UdZaiO4khVSUpScleNHKk_X7Kyh7gvLVuruTmm6zra7Fndhflu1Vvt5xcjtadGhU_fiN0_P_XuofueFiKs60d3Uc3TPMA3b5GVniILufZYvoSZ9jyeVjZ-kO7qrqPnzHgXpytuxbAr9F4AXDcbpVd4amfQ4GrBm_Lg7jnUsdtgyVerKqvstiEM8u2rOsNfi07CKvdQ7ScHZ9PT0I_qiEsAPF1oYC8Li1IHBslDDeFKpkkOo2ighJKNTHU0FJRBpGBaUtyWNjch5QF5UQrwsgjNGjaxjxG2FK8l5In1Ha5ClGKNJKUcAWJYUJ1Egco3qksLzyPuR2nUecun4nS_O3pm_N3uVVz7tUcoOf9PVdbFo-_Sr-yltBLWgZudwG0lnuHzo1mhIEbRgYSZKqFkEaxBPJpKak0qQzQodV0_xCv1gAd7ewq91-LL3nCHA8bgOcAveht7Y-VOvPdW-mTfxM_QoNutTZPAUZ1aujKD3A8-3k8dH2PQ-89vwAJWRkb
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLWm8TB4GB8DERjgB95YuiR2HZu3Uqi6sZZKdNLeLMd2oKxLpi4BlV-Pr5NGKyDEW1U5raPjj3Oufc9F6DU4wKhUpWFOLQupYiYUOc_DOOOZ4lDqwQfcJlM2PqenF_2LHXTU5cJYa_3lM9uDj_4s35S6hlDZsYBjgsQtuHf6lNJ-k63VRVSALCeR2GTGROL40-nJ_LPTgEnspCkRRJCt3ceb9LdVVbYI5l5dXKv1D7Vc3tprRvfRZNPL5orJZa-usp7--ZuB4_--xgO035JOPGhGyUO0Y4tH6N4tK8IDdDkdzIZv8QCDWwe0XX4pV4vq6xV2rBYP6qp01NYaPHNkGy7CrvCwrTKBFwVugn-4c0rHZYEVnq0W35VehyPwUjbLNX6vKrdpVo_R-ejDfDgO20IMoXZ8rgq5U21Ckzi2Gbep1VnOFDEiijQllBpiqaV5Rplb95kBC0MNyobkmqbEZISRJ2i3KAv7FGEwcM9VmlDIYeU85yJSlKSZk30JNUkcoHgDkNStSzkUy1hKr1YiIT2oEkCVLagBetM9c914dPyz9TvAvWsJ_tr-C4eRbKertIYR5iZZZJ38pYZzZTOWOLWsFFVWqAAdAK7dj7SQBuhwM4pkuxbcyIR5lzVHjQN01I2sP3pafltUN1s9ffb3P3mF9sbzyZk8O5l-fI7uJpCP4WNCh2i3WtX2hWNJVfbST45f7acLag
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2IrBbkAzdIm8SuH9xCoVpWolRiKy0ny44dCBuSVTcFyq9nnLrVFiQkuEXRJHI0M5nv8-MbhJ55BRjNNY9L6lhMNbOxLEUZp0YYLXyrh37C7d2MnSzo6fn4PEy49WdhnHP95jM39Jf9Wn7l6h98JLiA0j4eSSa8BtwIsDcb8wx4oS1vogM2Biw-QAeL2Tz_6DvKMcgeLlKyPSmTyFH7peq8RHeWAlUlkkiyV4160f7QZWUPcN5aNZd6_V3X9bXaM72L1HbUmy0nF8NVZ4bFz98EHf__s-6hOwGW4nwTR_fRDdc8QLeviRUeootZPp-8xDn2eh7etv7ULqvu81cMuBfnq64F8OssngMc91tll3gS-lDgqsGb6UG801LHbYM1ni-rb7pYx1OvtmzrNX6tOyir3UO0mL45m5zEoVVDXADi62IBvE4WJE2dEY67wpRMEyuTpKCEUkscdbQ0lEFlYNaLHBae-5CyoJxYQxh5hAZN27jHCHuJ91LzjPpTrkKUQiaaEm6AGGbUZmmE0q3LVBF0zH07jVr1fCaR6v3p27MPyrtZBTdH6PnumcuNisdfrV_5SNhZegXu_gZ4TYWEVs4ywiANEwcEmVohtDMsAz6tNdVO6ggdek_vXhLcGqHjbVyp8Le4UhnrddgAPEfoxS7W_hhpH757Iz36N_NjNOiWK_cEYFRnnoZc-QVouRX0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAPC%3A+A+Neural+Algorithm+for+Automated+Passenger+Counting+in+Public+Transport+on+a+Privacy-Friendly+Dataset&rft.jtitle=IEEE+open+journal+of+intelligent+transportation+systems&rft.au=Seidel%2C+Robert&rft.au=Jahn%2C+Nico&rft.au=Seo%2C+Sambu&rft.au=Goerttler%2C+Thomas&rft.date=2022&rft.pub=IEEE&rft.eissn=2687-7813&rft.volume=3&rft.spage=33&rft.epage=44&rft_id=info:doi/10.1109%2FOJITS.2021.3139393&rft.externalDocID=9665722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2687-7813&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2687-7813&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2687-7813&client=summon