Efficient algorithms for frequent pattern mining in many-task computing environments

The goal of data mining is to discover hidden useful information in large databases. Mining frequent patterns from transaction databases is an important problem in data mining. As the database size increases, the computation time and required memory also increase. Because the number of items increas...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 49; pp. 10 - 21
Main Authors Lin, Kawuu W., Lo, Yu-Chin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2013
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2013.04.004

Cover

Abstract The goal of data mining is to discover hidden useful information in large databases. Mining frequent patterns from transaction databases is an important problem in data mining. As the database size increases, the computation time and required memory also increase. Because the number of items increases, the user behaviours also become more complex. To solve the problem of increasing complexity, many researchers have applied parallel and distributed computing techniques to the discovery of frequent patterns from large amounts of data. However, most studies have focused on improving the performance for a single task and have neglected the many-task computing issue, which is important in the current cloud-computing environments. In these environments, an application is often provided as a service, e.g., the Google search engine, implying that many users can use it simultaneously. In this paper, we propose a set of algorithms, containing the Equal Working Set (EWS) algorithm, the Request On Demand (ROD) algorithm, the Small Size Working Set (SSWS) algorithm and the Progressive Size Working Set (PSWS) algorithm, for frequent pattern mining that provides a fast and scalable mining service in many-task computing environments. Through empirical evaluations in various simulation conditions, the proposed algorithms are shown to deliver excellent performance with respect to scalability and execution time.
AbstractList The goal of data mining is to discover hidden useful information in large databases. Mining frequent patterns from transaction databases is an important problem in data mining. As the database size increases, the computation time and required memory also increase. Because the number of items increases, the user behaviours also become more complex. To solve the problem of increasing complexity, many researchers have applied parallel and distributed computing techniques to the discovery of frequent patterns from large amounts of data. However, most studies have focused on improving the performance for a single task and have neglected the many-task computing issue, which is important in the current cloud-computing environments. In these environments, an application is often provided as a service, e.g., the Google search engine, implying that many users can use it simultaneously. In this paper, we propose a set of algorithms, containing the Equal Working Set (EWS) algorithm, the Request On Demand (ROD) algorithm, the Small Size Working Set (SSWS) algorithm and the Progressive Size Working Set (PSWS) algorithm, for frequent pattern mining that provides a fast and scalable mining service in many-task computing environments. Through empirical evaluations in various simulation conditions, the proposed algorithms are shown to deliver excellent performance with respect to scalability and execution time.
Author Lo, Yu-Chin
Lin, Kawuu W.
Author_xml – sequence: 1
  givenname: Kawuu W.
  surname: Lin
  fullname: Lin, Kawuu W.
  email: linwc@kuas.edu.tw
– sequence: 2
  givenname: Yu-Chin
  surname: Lo
  fullname: Lo, Yu-Chin
BookMark eNqNkcFq3DAQhkVIoZu0b9CDj73YmZElS-qhUELaFAK9pGehlaVUG1vaStrAvn1stqccmpxmGP5vGOa7IOcxRUfIJ4QOAYerXfcYUzmWjgL2HbAOgJ2RDUpBW8FAnZMNKA6tAI7vyUUpOwCgFOWG3N94H2xwsTZmekg51D9zaXzKjc_u72Gd702tLsdmDjHEhyYsnYnHtpry2Ng07w91Hbv4FHKK80KUD-SdN1NxH__VS_L7-8399W179-vHz-tvd61lwGsrBrelvfJ8C4IqO1rX896P0g-9sQLRDhLHgY1bAFSD4JarLYIZGadGKun6S_L5tHef03JrqXoOxbppMtGlQ9E4COScMQqvRzmXSilE8YYoDL2kQsklyk5Rm1Mp2Xm9z2E2-agR9KpG7_RJjV7VaGB6UbNgX15gNlRTQ4o1mzC9Bn89wW757FNwWZfVn3VjyM5WPabw_wXPc6Ovkw
CitedBy_id crossref_primary_10_3233_IDA_150375
crossref_primary_10_1016_j_knosys_2014_04_010
crossref_primary_10_1088_1757_899X_263_4_042003
crossref_primary_10_1016_j_future_2015_05_009
crossref_primary_10_1016_j_ins_2018_08_009
crossref_primary_10_1080_17445760_2014_927470
crossref_primary_10_1007_s11227_015_1566_x
crossref_primary_10_3390_app9091859
crossref_primary_10_3233_IDA_170876
crossref_primary_10_1016_j_jksuci_2020_04_008
crossref_primary_10_1016_j_jpdc_2020_05_017
crossref_primary_10_1088_1742_6596_1648_3_032105
crossref_primary_10_1007_s10619_018_7221_9
crossref_primary_10_1016_j_datak_2019_101721
crossref_primary_10_1186_s40064_015_1481_x
crossref_primary_10_1016_j_future_2024_06_042
Cites_doi 10.1016/j.future.2006.04.008
10.1006/jpdc.2000.1693
10.1109/SKG.2009.83
10.1109/ICECTECH.2011.5941631
10.1504/IJAHUC.2010.035533
10.1007/978-3-540-68083-3_5
10.1023/B:DAMI.0000005258.31418.83
10.1109/BCGIn.2011.125
10.1016/j.jpdc.2007.07.007
10.1109/SKG.2008.65
10.1016/j.advengsoft.2006.08.011
10.1023/B:DAPD.0000031634.19130.bd
10.1016/j.jpdc.2007.06.007
10.1109/69.553164
10.1109/ICICIS.2010.5534718
10.1016/j.eswa.2009.07.072
10.1016/j.eswa.2011.11.095
10.1109/IPDPS.2004.1303027
10.1109/MTAGS.2008.4777912
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
8BP
E3H
F2A
DOI 10.1016/j.knosys.2013.04.004
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Library & Information Sciences Abstracts (LISA) - CILIP Edition
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Library & Information Sciences Abstracts (LISA) - CILIP Edition
Library and Information Science Abstracts (LISA)
DatabaseTitleList Computer and Information Systems Abstracts
Library & Information Sciences Abstracts (LISA) - CILIP Edition
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 21
ExternalDocumentID 10_1016_j_knosys_2013_04_004
S0950705113001160
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
8BP
E3H
F2A
ID FETCH-LOGICAL-c405t-76eb239f5b0729cdce353fd8f63ac711c681d64db0019675c59b10ad452a898e3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Sun Sep 28 00:56:06 EDT 2025
Sat Sep 27 20:28:32 EDT 2025
Sun Sep 28 10:16:01 EDT 2025
Wed Oct 01 05:08:45 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
Fri Feb 23 02:28:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Frequent pattern mining
Cloud computing
Association rule mining
Many-task computing
Data mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-76eb239f5b0729cdce353fd8f63ac711c681d64db0019675c59b10ad452a898e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1506382798
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1671554420
proquest_miscellaneous_1558999117
proquest_miscellaneous_1506382798
crossref_primary_10_1016_j_knosys_2013_04_004
crossref_citationtrail_10_1016_j_knosys_2013_04_004
elsevier_sciencedirect_doi_10_1016_j_knosys_2013_04_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2013
2013-9-00
20130901
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: September 2013
PublicationDecade 2010
PublicationTitle Knowledge-based systems
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Glimcher, Jin, Agrawal (b0035) 2008; 68
Pérez, Sánchez, Robles, Herrero, Peña (b0095) 2007; 23
Han, Pei, Yin, Mao (b0045) 2004; 8
J. Zhou, K.M. Yu, Balanced Tidset-based parallel FP-tree algorithm for the frequent pattern mining on grid system, in: Proceedings of the Fourth International Conference on Semantics, Knowledge and Grid, 2008, pp. 103–108.
R. Agrawal, R. Srikant, Quest Synthetic Data Generator, IBM Almaden Research Center, San Jose, California.
Han, Karypis, Kumar (b0040) 2000; 12
J.D. Holt, S.M. Chung, Parallel mining of association rules from text databases on a cluster of workstations, in: Proceedings of 18th International Symposium on Parallel and Distributed Processing, 2004.
Yang, Liu, Fu (b0110) 2010
Yu, Zhou (b0115) 2010; 37
K. Sharma, G. Shrivastava, V. Kumar, Web mining: today and tomorrow, in: Proceedings of the Third International Conference on Electronics Computer Technology, 2011, pp. 399–403.
Zhou, Yu (b0120) 2008; 5036
Congiusta, Talia, Trunfio (b0030) 2008; 68
Y. Han, P. Brezany, I. Janciak, Cloud-enabled scalable decision tree construction, in: Proceedings of Fifth International Conference on Semantics, Knowledge and Grid, 2009, pp. 128–135.
Agarwal, Aggarwal, Prasad (b0025) 2001; 61
L. Li, M. Zhang, The strategy of mining association rule based on cloud computing, Proceedings of 2011 Business Computing and Global Informatization, 2011, pp. 475–478.
Agrawal, Shafer (b0020) 1996
Y. Qiu, Y.J. Lan, Q.S. Xie, An improved algorithm of mining from FP-tree, in: Proceedings of the Third International Conference on Machine Learning and Cybernetics, 2004, pp. 26–29.
.
Aflori, Craus (b0005) 2007; 38
Lin, Deng (b0080) 2010; 6
I. Raicu, I.T. Foster, Y. Zhao, Many-task computing for grids and supercomputers, Proceedings of 2008 IEEE Workshop on Many-Task Computing on Grids and Supercomputers, 2008.
Lai, ZhongZhi (b0070) 2010
Iko, Kitsuregawa (b0060) 2003; 2
Javed, Khokhar (b0065) 2004; 16
R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the 20th International Conference on Very Large Data Bases, 1994, pp. 487–499.
Wu, Lai, Lo (b0105) 2012; 39
Aflori (10.1016/j.knosys.2013.04.004_b0005) 2007; 38
Javed (10.1016/j.knosys.2013.04.004_b0065) 2004; 16
Lin (10.1016/j.knosys.2013.04.004_b0080) 2010; 6
Glimcher (10.1016/j.knosys.2013.04.004_b0035) 2008; 68
10.1016/j.knosys.2013.04.004_b0125
Han (10.1016/j.knosys.2013.04.004_b0040) 2000; 12
Congiusta (10.1016/j.knosys.2013.04.004_b0030) 2008; 68
Yang (10.1016/j.knosys.2013.04.004_b0110) 2010
Zhou (10.1016/j.knosys.2013.04.004_b0120) 2008; 5036
Agrawal (10.1016/j.knosys.2013.04.004_b0020) 1996
10.1016/j.knosys.2013.04.004_b0100
Han (10.1016/j.knosys.2013.04.004_b0045) 2004; 8
10.1016/j.knosys.2013.04.004_b0085
10.1016/j.knosys.2013.04.004_b0015
Iko (10.1016/j.knosys.2013.04.004_b0060) 2003; 2
10.1016/j.knosys.2013.04.004_b0090
Pérez (10.1016/j.knosys.2013.04.004_b0095) 2007; 23
Lai (10.1016/j.knosys.2013.04.004_b0070) 2010
10.1016/j.knosys.2013.04.004_b0055
10.1016/j.knosys.2013.04.004_b0010
Yu (10.1016/j.knosys.2013.04.004_b0115) 2010; 37
10.1016/j.knosys.2013.04.004_b0075
Agarwal (10.1016/j.knosys.2013.04.004_b0025) 2001; 61
10.1016/j.knosys.2013.04.004_b0050
Wu (10.1016/j.knosys.2013.04.004_b0105) 2012; 39
References_xml – reference: R. Agrawal, R. Srikant, Quest Synthetic Data Generator, IBM Almaden Research Center, San Jose, California. <
– volume: 5036
  start-page: 18
  year: 2008
  end-page: 28
  ident: b0120
  article-title: Tidset-based parallel FP-tree algorithm for the frequent pattern mining problem on PC clusters
  publication-title: Lecture Notes in Computer Science
– volume: 6
  start-page: 205
  year: 2010
  end-page: 215
  ident: b0080
  article-title: A novel parallel algorithm for frequent pattern mining with privacy preserved in cloud computing environments
  publication-title: International Journal of Ad Hoc and Ubiquitous Computing
– volume: 39
  start-page: 5748
  year: 2012
  end-page: 5757
  ident: b0105
  article-title: An empirical study on mining sequential patterns in a grid computing environment
  publication-title: Expert Systems with Applications
– volume: 68
  start-page: 37
  year: 2008
  end-page: 53
  ident: b0035
  article-title: Middleware for data mining applications on clusters and grids
  publication-title: Journal of Parallel and Distributed Computing
– volume: 8
  start-page: 53
  year: 2004
  end-page: 87
  ident: b0045
  article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach
  publication-title: Journal of Data Mining and Knowledge Discovery
– volume: 2
  start-page: 43
  year: 2003
  end-page: 46
  ident: b0060
  article-title: Shared nothing parallel execution of FP-growth
  publication-title: DBSJ Letters
– start-page: 962
  year: 1996
  end-page: 969
  ident: b0020
  article-title: Parallel mining of association rules
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 37
  start-page: 2486
  year: 2010
  end-page: 2494
  ident: b0115
  article-title: Parallel TID-based frequent pattern mining algorithm on a PC cluster and grid computing system
  publication-title: Expert Systems with Applications
– start-page: 99
  year: 2010
  end-page: 102
  ident: b0110
  article-title: MapReduce as a programming model for association rules algorithm on Hadoop
  publication-title: Information Sciences and Interaction Sciences
– volume: 12
  start-page: 352
  year: 2000
  end-page: 377
  ident: b0040
  article-title: Scalable parallel data mining for association rules
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 38
  start-page: 295
  year: 2007
  end-page: 300
  ident: b0005
  article-title: Grid implementation of the Apriori algorithm
  publication-title: Advances in Engineering Software
– reference: J. Zhou, K.M. Yu, Balanced Tidset-based parallel FP-tree algorithm for the frequent pattern mining on grid system, in: Proceedings of the Fourth International Conference on Semantics, Knowledge and Grid, 2008, pp. 103–108.
– reference: K. Sharma, G. Shrivastava, V. Kumar, Web mining: today and tomorrow, in: Proceedings of the Third International Conference on Electronics Computer Technology, 2011, pp. 399–403.
– volume: 68
  start-page: 3
  year: 2008
  end-page: 15
  ident: b0030
  article-title: Service-oriented middleware for distributed data mining on the grid
  publication-title: Journal of Parallel and Distributed Computing
– reference: J.D. Holt, S.M. Chung, Parallel mining of association rules from text databases on a cluster of workstations, in: Proceedings of 18th International Symposium on Parallel and Distributed Processing, 2004.
– reference: Y. Han, P. Brezany, I. Janciak, Cloud-enabled scalable decision tree construction, in: Proceedings of Fifth International Conference on Semantics, Knowledge and Grid, 2009, pp. 128–135.
– reference: >.
– volume: 16
  start-page: 321
  year: 2004
  end-page: 334
  ident: b0065
  article-title: Frequent pattern mining on message passing multiprocessor systems
  publication-title: Distributed and Parallel Database
– start-page: 203
  year: 2010
  end-page: 209
  ident: b0070
  article-title: An efficient data mining framework on Hadoop using java persistence API
  publication-title: Computer and Information Technology
– reference: L. Li, M. Zhang, The strategy of mining association rule based on cloud computing, Proceedings of 2011 Business Computing and Global Informatization, 2011, pp. 475–478.
– volume: 23
  start-page: 42
  year: 2007
  end-page: 47
  ident: b0095
  article-title: Design and implementation of a data mining grid-aware architecture
  publication-title: Future Generation Computer Systems
– reference: R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the 20th International Conference on Very Large Data Bases, 1994, pp. 487–499.
– reference: Y. Qiu, Y.J. Lan, Q.S. Xie, An improved algorithm of mining from FP-tree, in: Proceedings of the Third International Conference on Machine Learning and Cybernetics, 2004, pp. 26–29.
– volume: 61
  start-page: 350
  year: 2001
  end-page: 371
  ident: b0025
  article-title: A tree projection algorithm for generation of frequent itemsets
  publication-title: Journal of Parallel and Distributed Computing
– reference: I. Raicu, I.T. Foster, Y. Zhao, Many-task computing for grids and supercomputers, Proceedings of 2008 IEEE Workshop on Many-Task Computing on Grids and Supercomputers, 2008.
– volume: 23
  start-page: 42
  issue: 1
  year: 2007
  ident: 10.1016/j.knosys.2013.04.004_b0095
  article-title: Design and implementation of a data mining grid-aware architecture
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2006.04.008
– volume: 61
  start-page: 350
  issue: 3
  year: 2001
  ident: 10.1016/j.knosys.2013.04.004_b0025
  article-title: A tree projection algorithm for generation of frequent itemsets
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1006/jpdc.2000.1693
– ident: 10.1016/j.knosys.2013.04.004_b0050
  doi: 10.1109/SKG.2009.83
– ident: 10.1016/j.knosys.2013.04.004_b0090
  doi: 10.1109/ICECTECH.2011.5941631
– volume: 6
  start-page: 205
  issue: 4
  year: 2010
  ident: 10.1016/j.knosys.2013.04.004_b0080
  article-title: A novel parallel algorithm for frequent pattern mining with privacy preserved in cloud computing environments
  publication-title: International Journal of Ad Hoc and Ubiquitous Computing
  doi: 10.1504/IJAHUC.2010.035533
– ident: 10.1016/j.knosys.2013.04.004_b0010
– start-page: 203
  year: 2010
  ident: 10.1016/j.knosys.2013.04.004_b0070
  article-title: An efficient data mining framework on Hadoop using java persistence API
  publication-title: Computer and Information Technology
– volume: 5036
  start-page: 18
  year: 2008
  ident: 10.1016/j.knosys.2013.04.004_b0120
  article-title: Tidset-based parallel FP-tree algorithm for the frequent pattern mining problem on PC clusters
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-68083-3_5
– ident: 10.1016/j.knosys.2013.04.004_b0015
– volume: 8
  start-page: 53
  issue: 1
  year: 2004
  ident: 10.1016/j.knosys.2013.04.004_b0045
  article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach
  publication-title: Journal of Data Mining and Knowledge Discovery
  doi: 10.1023/B:DAMI.0000005258.31418.83
– ident: 10.1016/j.knosys.2013.04.004_b0075
  doi: 10.1109/BCGIn.2011.125
– volume: 68
  start-page: 3
  issue: 1
  year: 2008
  ident: 10.1016/j.knosys.2013.04.004_b0030
  article-title: Service-oriented middleware for distributed data mining on the grid
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2007.07.007
– ident: 10.1016/j.knosys.2013.04.004_b0125
  doi: 10.1109/SKG.2008.65
– volume: 38
  start-page: 295
  issue: 5
  year: 2007
  ident: 10.1016/j.knosys.2013.04.004_b0005
  article-title: Grid implementation of the Apriori algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2006.08.011
– volume: 16
  start-page: 321
  issue: 3
  year: 2004
  ident: 10.1016/j.knosys.2013.04.004_b0065
  article-title: Frequent pattern mining on message passing multiprocessor systems
  publication-title: Distributed and Parallel Database
  doi: 10.1023/B:DAPD.0000031634.19130.bd
– volume: 68
  start-page: 37
  issue: 1
  year: 2008
  ident: 10.1016/j.knosys.2013.04.004_b0035
  article-title: Middleware for data mining applications on clusters and grids
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2007.06.007
– volume: 2
  start-page: 43
  issue: 1
  year: 2003
  ident: 10.1016/j.knosys.2013.04.004_b0060
  article-title: Shared nothing parallel execution of FP-growth
  publication-title: DBSJ Letters
– start-page: 962
  year: 1996
  ident: 10.1016/j.knosys.2013.04.004_b0020
  article-title: Parallel mining of association rules
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/69.553164
– volume: 12
  start-page: 352
  issue: 3
  year: 2000
  ident: 10.1016/j.knosys.2013.04.004_b0040
  article-title: Scalable parallel data mining for association rules
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– ident: 10.1016/j.knosys.2013.04.004_b0100
– start-page: 99
  year: 2010
  ident: 10.1016/j.knosys.2013.04.004_b0110
  article-title: MapReduce as a programming model for association rules algorithm on Hadoop
  publication-title: Information Sciences and Interaction Sciences
  doi: 10.1109/ICICIS.2010.5534718
– volume: 37
  start-page: 2486
  issue: 3
  year: 2010
  ident: 10.1016/j.knosys.2013.04.004_b0115
  article-title: Parallel TID-based frequent pattern mining algorithm on a PC cluster and grid computing system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.07.072
– volume: 39
  start-page: 5748
  issue: 5
  year: 2012
  ident: 10.1016/j.knosys.2013.04.004_b0105
  article-title: An empirical study on mining sequential patterns in a grid computing environment
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.11.095
– ident: 10.1016/j.knosys.2013.04.004_b0055
  doi: 10.1109/IPDPS.2004.1303027
– ident: 10.1016/j.knosys.2013.04.004_b0085
  doi: 10.1109/MTAGS.2008.4777912
SSID ssj0002218
Score 2.1798081
Snippet The goal of data mining is to discover hidden useful information in large databases. Mining frequent patterns from transaction databases is an important...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10
SubjectTerms Algorithms
Association rule mining
Cloud computing
Computation
Data mining
Frequent pattern mining
Knowledge base
Many-task computing
Pattern analysis
Pattern recognition
Search engines
Tasks
Title Efficient algorithms for frequent pattern mining in many-task computing environments
URI https://dx.doi.org/10.1016/j.knosys.2013.04.004
https://www.proquest.com/docview/1506382798
https://www.proquest.com/docview/1558999117
https://www.proquest.com/docview/1671554420
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I8pLRmI1bWI7dsaqalVAsAASm-U4MZS2adWmAwu_nbOb8BJqJbbEOkfW2T5_F999h9AFT9LYaqaJjaUmzPKMaE7BcTU-T5PZNHXZyLd3Ue-RXT_xpzXUrnJhXFhlafsXNt1b67KlUWqzMen3G_cADmC9AmCg_jbB-e2MCVfF4PL9K8wjDP0_PidMnHSVPudjvAb5ePbmSLsD6glPy3JtfxxPvwy1P32622izhI24tRjZDlrL8l20VZVkwOUO3UMPHU8JAScJ1sPnMXj-L6MZBmCK7dQHTRd44hk1czzypSFwH57AIJBCzwbY-A-65u8JcPvosdt5aPdIWTiBGMBfBRER-Ms0tjxxvOAmNRnl1KbSRlQbEQQmApQasTTx7DiCGx4nQVOnjIdaxjKjB6iWj_PsEGFrORVwpGsGfpuRXNpQR0bCi7VJpNM6opW-lClZxV1xi6Gqwsde1ULLymlZNZkCLdcR-ew1WbBqrJAX1VSoH6tDgeFf0fO8mjkFG8fdhug8G89nylErUhmKWC6T4dIh6EAskYmEw2QsbB79e5THaCP0ZTZc7NoJqhXTeXYKYKdIzvxqPkPrraub3t0HE-MBYw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG_HGSKymTWzHzoiqovJcaKVuluPEUAppRdOBhd_O2U14CRWJLbHOkXW2z9_Fd98hdMKTNLaaaWJjqQmzPCOaU3Bcjc_TZDZNXTbyzW3U6bHLPu_XUKvKhXFhlaXtn9l0b63LlkapzcZ4MGjcATiA9QqAgfrbBPDbFxgPhfPATt8-4zzC0P_kc9LEiVf5cz7Ia5iPJq-OtTugnvG0rNf2y_n0w1L74-d8FS2XuBGfzYa2hmpZvo5WqpoMuNyiG6jb9pwQcJRg_XQ_Atf_4XmCAZli--Kjpgs89pSaOX72tSHwAJ7AIpBCT4bY-A-65q8ZcJuod97utjqkrJxADACwgogIHGYaW544YnCTmoxyalNpI6qNCAITAUyNWJp4ehzBDY-ToKlT0J-WsczoFqrnozzbRthaTgWc6ZqB42YklzbUkZHwYm0S6XQH0UpfypS04q66xZOq4sce1UzLymlZNZkCLe8g8tFrPKPV-ENeVFOhvi0PBZb_j57H1cwp2DnuOkTn2Wg6UY5bkcpQxHKeDJcOQgdijkwkHChjYXP336M8Qoud7s21ur64vdpDS6GvueEC2fZRvXiZZgeAfIrk0K_sd_doAvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+algorithms+for+frequent+pattern+mining+in+many-task+computing+environments&rft.jtitle=Knowledge-based+systems&rft.au=Lin%2C+Kawuu&rft.au=Lo%2C+Yu-Chin&rft.date=2013-09-01&rft.issn=0950-7051&rft.volume=49&rft.spage=10&rft.epage=21&rft_id=info:doi/10.1016%2Fj.knosys.2013.04.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon