Efficient algorithms for frequent pattern mining in many-task computing environments
The goal of data mining is to discover hidden useful information in large databases. Mining frequent patterns from transaction databases is an important problem in data mining. As the database size increases, the computation time and required memory also increase. Because the number of items increas...
Saved in:
| Published in | Knowledge-based systems Vol. 49; pp. 10 - 21 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.09.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0950-7051 1872-7409 |
| DOI | 10.1016/j.knosys.2013.04.004 |
Cover
| Abstract | The goal of data mining is to discover hidden useful information in large databases. Mining frequent patterns from transaction databases is an important problem in data mining. As the database size increases, the computation time and required memory also increase. Because the number of items increases, the user behaviours also become more complex. To solve the problem of increasing complexity, many researchers have applied parallel and distributed computing techniques to the discovery of frequent patterns from large amounts of data. However, most studies have focused on improving the performance for a single task and have neglected the many-task computing issue, which is important in the current cloud-computing environments. In these environments, an application is often provided as a service, e.g., the Google search engine, implying that many users can use it simultaneously. In this paper, we propose a set of algorithms, containing the Equal Working Set (EWS) algorithm, the Request On Demand (ROD) algorithm, the Small Size Working Set (SSWS) algorithm and the Progressive Size Working Set (PSWS) algorithm, for frequent pattern mining that provides a fast and scalable mining service in many-task computing environments. Through empirical evaluations in various simulation conditions, the proposed algorithms are shown to deliver excellent performance with respect to scalability and execution time. |
|---|---|
| AbstractList | The goal of data mining is to discover hidden useful information in large databases. Mining frequent patterns from transaction databases is an important problem in data mining. As the database size increases, the computation time and required memory also increase. Because the number of items increases, the user behaviours also become more complex. To solve the problem of increasing complexity, many researchers have applied parallel and distributed computing techniques to the discovery of frequent patterns from large amounts of data. However, most studies have focused on improving the performance for a single task and have neglected the many-task computing issue, which is important in the current cloud-computing environments. In these environments, an application is often provided as a service, e.g., the Google search engine, implying that many users can use it simultaneously. In this paper, we propose a set of algorithms, containing the Equal Working Set (EWS) algorithm, the Request On Demand (ROD) algorithm, the Small Size Working Set (SSWS) algorithm and the Progressive Size Working Set (PSWS) algorithm, for frequent pattern mining that provides a fast and scalable mining service in many-task computing environments. Through empirical evaluations in various simulation conditions, the proposed algorithms are shown to deliver excellent performance with respect to scalability and execution time. |
| Author | Lo, Yu-Chin Lin, Kawuu W. |
| Author_xml | – sequence: 1 givenname: Kawuu W. surname: Lin fullname: Lin, Kawuu W. email: linwc@kuas.edu.tw – sequence: 2 givenname: Yu-Chin surname: Lo fullname: Lo, Yu-Chin |
| BookMark | eNqNkcFq3DAQhkVIoZu0b9CDj73YmZElS-qhUELaFAK9pGehlaVUG1vaStrAvn1stqccmpxmGP5vGOa7IOcxRUfIJ4QOAYerXfcYUzmWjgL2HbAOgJ2RDUpBW8FAnZMNKA6tAI7vyUUpOwCgFOWG3N94H2xwsTZmekg51D9zaXzKjc_u72Gd702tLsdmDjHEhyYsnYnHtpry2Ng07w91Hbv4FHKK80KUD-SdN1NxH__VS_L7-8399W179-vHz-tvd61lwGsrBrelvfJ8C4IqO1rX896P0g-9sQLRDhLHgY1bAFSD4JarLYIZGadGKun6S_L5tHef03JrqXoOxbppMtGlQ9E4COScMQqvRzmXSilE8YYoDL2kQsklyk5Rm1Mp2Xm9z2E2-agR9KpG7_RJjV7VaGB6UbNgX15gNlRTQ4o1mzC9Bn89wW757FNwWZfVn3VjyM5WPabw_wXPc6Ovkw |
| CitedBy_id | crossref_primary_10_3233_IDA_150375 crossref_primary_10_1016_j_knosys_2014_04_010 crossref_primary_10_1088_1757_899X_263_4_042003 crossref_primary_10_1016_j_future_2015_05_009 crossref_primary_10_1016_j_ins_2018_08_009 crossref_primary_10_1080_17445760_2014_927470 crossref_primary_10_1007_s11227_015_1566_x crossref_primary_10_3390_app9091859 crossref_primary_10_3233_IDA_170876 crossref_primary_10_1016_j_jksuci_2020_04_008 crossref_primary_10_1016_j_jpdc_2020_05_017 crossref_primary_10_1088_1742_6596_1648_3_032105 crossref_primary_10_1007_s10619_018_7221_9 crossref_primary_10_1016_j_datak_2019_101721 crossref_primary_10_1186_s40064_015_1481_x crossref_primary_10_1016_j_future_2024_06_042 |
| Cites_doi | 10.1016/j.future.2006.04.008 10.1006/jpdc.2000.1693 10.1109/SKG.2009.83 10.1109/ICECTECH.2011.5941631 10.1504/IJAHUC.2010.035533 10.1007/978-3-540-68083-3_5 10.1023/B:DAMI.0000005258.31418.83 10.1109/BCGIn.2011.125 10.1016/j.jpdc.2007.07.007 10.1109/SKG.2008.65 10.1016/j.advengsoft.2006.08.011 10.1023/B:DAPD.0000031634.19130.bd 10.1016/j.jpdc.2007.06.007 10.1109/69.553164 10.1109/ICICIS.2010.5534718 10.1016/j.eswa.2009.07.072 10.1016/j.eswa.2011.11.095 10.1109/IPDPS.2004.1303027 10.1109/MTAGS.2008.4777912 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. |
| Copyright_xml | – notice: 2013 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 8BP E3H F2A |
| DOI | 10.1016/j.knosys.2013.04.004 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Library & Information Sciences Abstracts (LISA) - CILIP Edition Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Library & Information Sciences Abstracts (LISA) - CILIP Edition Library and Information Science Abstracts (LISA) |
| DatabaseTitleList | Computer and Information Systems Abstracts Library & Information Sciences Abstracts (LISA) - CILIP Edition Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| EndPage | 21 |
| ExternalDocumentID | 10_1016_j_knosys_2013_04_004 S0950705113001160 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K UHS WH7 WUQ XPP ZMT ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D 8BP E3H F2A |
| ID | FETCH-LOGICAL-c405t-76eb239f5b0729cdce353fd8f63ac711c681d64db0019675c59b10ad452a898e3 |
| IEDL.DBID | .~1 |
| ISSN | 0950-7051 |
| IngestDate | Sun Sep 28 00:56:06 EDT 2025 Sat Sep 27 20:28:32 EDT 2025 Sun Sep 28 10:16:01 EDT 2025 Wed Oct 01 05:08:45 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 Fri Feb 23 02:28:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Frequent pattern mining Cloud computing Association rule mining Many-task computing Data mining |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-76eb239f5b0729cdce353fd8f63ac711c681d64db0019675c59b10ad452a898e3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1506382798 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1671554420 proquest_miscellaneous_1558999117 proquest_miscellaneous_1506382798 crossref_primary_10_1016_j_knosys_2013_04_004 crossref_citationtrail_10_1016_j_knosys_2013_04_004 elsevier_sciencedirect_doi_10_1016_j_knosys_2013_04_004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2013 2013-9-00 20130901 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: September 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Glimcher, Jin, Agrawal (b0035) 2008; 68 Pérez, Sánchez, Robles, Herrero, Peña (b0095) 2007; 23 Han, Pei, Yin, Mao (b0045) 2004; 8 J. Zhou, K.M. Yu, Balanced Tidset-based parallel FP-tree algorithm for the frequent pattern mining on grid system, in: Proceedings of the Fourth International Conference on Semantics, Knowledge and Grid, 2008, pp. 103–108. R. Agrawal, R. Srikant, Quest Synthetic Data Generator, IBM Almaden Research Center, San Jose, California. Han, Karypis, Kumar (b0040) 2000; 12 J.D. Holt, S.M. Chung, Parallel mining of association rules from text databases on a cluster of workstations, in: Proceedings of 18th International Symposium on Parallel and Distributed Processing, 2004. Yang, Liu, Fu (b0110) 2010 Yu, Zhou (b0115) 2010; 37 K. Sharma, G. Shrivastava, V. Kumar, Web mining: today and tomorrow, in: Proceedings of the Third International Conference on Electronics Computer Technology, 2011, pp. 399–403. Zhou, Yu (b0120) 2008; 5036 Congiusta, Talia, Trunfio (b0030) 2008; 68 Y. Han, P. Brezany, I. Janciak, Cloud-enabled scalable decision tree construction, in: Proceedings of Fifth International Conference on Semantics, Knowledge and Grid, 2009, pp. 128–135. Agarwal, Aggarwal, Prasad (b0025) 2001; 61 L. Li, M. Zhang, The strategy of mining association rule based on cloud computing, Proceedings of 2011 Business Computing and Global Informatization, 2011, pp. 475–478. Agrawal, Shafer (b0020) 1996 Y. Qiu, Y.J. Lan, Q.S. Xie, An improved algorithm of mining from FP-tree, in: Proceedings of the Third International Conference on Machine Learning and Cybernetics, 2004, pp. 26–29. . Aflori, Craus (b0005) 2007; 38 Lin, Deng (b0080) 2010; 6 I. Raicu, I.T. Foster, Y. Zhao, Many-task computing for grids and supercomputers, Proceedings of 2008 IEEE Workshop on Many-Task Computing on Grids and Supercomputers, 2008. Lai, ZhongZhi (b0070) 2010 Iko, Kitsuregawa (b0060) 2003; 2 Javed, Khokhar (b0065) 2004; 16 R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the 20th International Conference on Very Large Data Bases, 1994, pp. 487–499. Wu, Lai, Lo (b0105) 2012; 39 Aflori (10.1016/j.knosys.2013.04.004_b0005) 2007; 38 Javed (10.1016/j.knosys.2013.04.004_b0065) 2004; 16 Lin (10.1016/j.knosys.2013.04.004_b0080) 2010; 6 Glimcher (10.1016/j.knosys.2013.04.004_b0035) 2008; 68 10.1016/j.knosys.2013.04.004_b0125 Han (10.1016/j.knosys.2013.04.004_b0040) 2000; 12 Congiusta (10.1016/j.knosys.2013.04.004_b0030) 2008; 68 Yang (10.1016/j.knosys.2013.04.004_b0110) 2010 Zhou (10.1016/j.knosys.2013.04.004_b0120) 2008; 5036 Agrawal (10.1016/j.knosys.2013.04.004_b0020) 1996 10.1016/j.knosys.2013.04.004_b0100 Han (10.1016/j.knosys.2013.04.004_b0045) 2004; 8 10.1016/j.knosys.2013.04.004_b0085 10.1016/j.knosys.2013.04.004_b0015 Iko (10.1016/j.knosys.2013.04.004_b0060) 2003; 2 10.1016/j.knosys.2013.04.004_b0090 Pérez (10.1016/j.knosys.2013.04.004_b0095) 2007; 23 Lai (10.1016/j.knosys.2013.04.004_b0070) 2010 10.1016/j.knosys.2013.04.004_b0055 10.1016/j.knosys.2013.04.004_b0010 Yu (10.1016/j.knosys.2013.04.004_b0115) 2010; 37 10.1016/j.knosys.2013.04.004_b0075 Agarwal (10.1016/j.knosys.2013.04.004_b0025) 2001; 61 10.1016/j.knosys.2013.04.004_b0050 Wu (10.1016/j.knosys.2013.04.004_b0105) 2012; 39 |
| References_xml | – reference: R. Agrawal, R. Srikant, Quest Synthetic Data Generator, IBM Almaden Research Center, San Jose, California. < – volume: 5036 start-page: 18 year: 2008 end-page: 28 ident: b0120 article-title: Tidset-based parallel FP-tree algorithm for the frequent pattern mining problem on PC clusters publication-title: Lecture Notes in Computer Science – volume: 6 start-page: 205 year: 2010 end-page: 215 ident: b0080 article-title: A novel parallel algorithm for frequent pattern mining with privacy preserved in cloud computing environments publication-title: International Journal of Ad Hoc and Ubiquitous Computing – volume: 39 start-page: 5748 year: 2012 end-page: 5757 ident: b0105 article-title: An empirical study on mining sequential patterns in a grid computing environment publication-title: Expert Systems with Applications – volume: 68 start-page: 37 year: 2008 end-page: 53 ident: b0035 article-title: Middleware for data mining applications on clusters and grids publication-title: Journal of Parallel and Distributed Computing – volume: 8 start-page: 53 year: 2004 end-page: 87 ident: b0045 article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach publication-title: Journal of Data Mining and Knowledge Discovery – volume: 2 start-page: 43 year: 2003 end-page: 46 ident: b0060 article-title: Shared nothing parallel execution of FP-growth publication-title: DBSJ Letters – start-page: 962 year: 1996 end-page: 969 ident: b0020 article-title: Parallel mining of association rules publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 37 start-page: 2486 year: 2010 end-page: 2494 ident: b0115 article-title: Parallel TID-based frequent pattern mining algorithm on a PC cluster and grid computing system publication-title: Expert Systems with Applications – start-page: 99 year: 2010 end-page: 102 ident: b0110 article-title: MapReduce as a programming model for association rules algorithm on Hadoop publication-title: Information Sciences and Interaction Sciences – volume: 12 start-page: 352 year: 2000 end-page: 377 ident: b0040 article-title: Scalable parallel data mining for association rules publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 38 start-page: 295 year: 2007 end-page: 300 ident: b0005 article-title: Grid implementation of the Apriori algorithm publication-title: Advances in Engineering Software – reference: J. Zhou, K.M. Yu, Balanced Tidset-based parallel FP-tree algorithm for the frequent pattern mining on grid system, in: Proceedings of the Fourth International Conference on Semantics, Knowledge and Grid, 2008, pp. 103–108. – reference: K. Sharma, G. Shrivastava, V. Kumar, Web mining: today and tomorrow, in: Proceedings of the Third International Conference on Electronics Computer Technology, 2011, pp. 399–403. – volume: 68 start-page: 3 year: 2008 end-page: 15 ident: b0030 article-title: Service-oriented middleware for distributed data mining on the grid publication-title: Journal of Parallel and Distributed Computing – reference: J.D. Holt, S.M. Chung, Parallel mining of association rules from text databases on a cluster of workstations, in: Proceedings of 18th International Symposium on Parallel and Distributed Processing, 2004. – reference: Y. Han, P. Brezany, I. Janciak, Cloud-enabled scalable decision tree construction, in: Proceedings of Fifth International Conference on Semantics, Knowledge and Grid, 2009, pp. 128–135. – reference: >. – volume: 16 start-page: 321 year: 2004 end-page: 334 ident: b0065 article-title: Frequent pattern mining on message passing multiprocessor systems publication-title: Distributed and Parallel Database – start-page: 203 year: 2010 end-page: 209 ident: b0070 article-title: An efficient data mining framework on Hadoop using java persistence API publication-title: Computer and Information Technology – reference: L. Li, M. Zhang, The strategy of mining association rule based on cloud computing, Proceedings of 2011 Business Computing and Global Informatization, 2011, pp. 475–478. – volume: 23 start-page: 42 year: 2007 end-page: 47 ident: b0095 article-title: Design and implementation of a data mining grid-aware architecture publication-title: Future Generation Computer Systems – reference: R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the 20th International Conference on Very Large Data Bases, 1994, pp. 487–499. – reference: Y. Qiu, Y.J. Lan, Q.S. Xie, An improved algorithm of mining from FP-tree, in: Proceedings of the Third International Conference on Machine Learning and Cybernetics, 2004, pp. 26–29. – volume: 61 start-page: 350 year: 2001 end-page: 371 ident: b0025 article-title: A tree projection algorithm for generation of frequent itemsets publication-title: Journal of Parallel and Distributed Computing – reference: I. Raicu, I.T. Foster, Y. Zhao, Many-task computing for grids and supercomputers, Proceedings of 2008 IEEE Workshop on Many-Task Computing on Grids and Supercomputers, 2008. – volume: 23 start-page: 42 issue: 1 year: 2007 ident: 10.1016/j.knosys.2013.04.004_b0095 article-title: Design and implementation of a data mining grid-aware architecture publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2006.04.008 – volume: 61 start-page: 350 issue: 3 year: 2001 ident: 10.1016/j.knosys.2013.04.004_b0025 article-title: A tree projection algorithm for generation of frequent itemsets publication-title: Journal of Parallel and Distributed Computing doi: 10.1006/jpdc.2000.1693 – ident: 10.1016/j.knosys.2013.04.004_b0050 doi: 10.1109/SKG.2009.83 – ident: 10.1016/j.knosys.2013.04.004_b0090 doi: 10.1109/ICECTECH.2011.5941631 – volume: 6 start-page: 205 issue: 4 year: 2010 ident: 10.1016/j.knosys.2013.04.004_b0080 article-title: A novel parallel algorithm for frequent pattern mining with privacy preserved in cloud computing environments publication-title: International Journal of Ad Hoc and Ubiquitous Computing doi: 10.1504/IJAHUC.2010.035533 – ident: 10.1016/j.knosys.2013.04.004_b0010 – start-page: 203 year: 2010 ident: 10.1016/j.knosys.2013.04.004_b0070 article-title: An efficient data mining framework on Hadoop using java persistence API publication-title: Computer and Information Technology – volume: 5036 start-page: 18 year: 2008 ident: 10.1016/j.knosys.2013.04.004_b0120 article-title: Tidset-based parallel FP-tree algorithm for the frequent pattern mining problem on PC clusters publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-540-68083-3_5 – ident: 10.1016/j.knosys.2013.04.004_b0015 – volume: 8 start-page: 53 issue: 1 year: 2004 ident: 10.1016/j.knosys.2013.04.004_b0045 article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach publication-title: Journal of Data Mining and Knowledge Discovery doi: 10.1023/B:DAMI.0000005258.31418.83 – ident: 10.1016/j.knosys.2013.04.004_b0075 doi: 10.1109/BCGIn.2011.125 – volume: 68 start-page: 3 issue: 1 year: 2008 ident: 10.1016/j.knosys.2013.04.004_b0030 article-title: Service-oriented middleware for distributed data mining on the grid publication-title: Journal of Parallel and Distributed Computing doi: 10.1016/j.jpdc.2007.07.007 – ident: 10.1016/j.knosys.2013.04.004_b0125 doi: 10.1109/SKG.2008.65 – volume: 38 start-page: 295 issue: 5 year: 2007 ident: 10.1016/j.knosys.2013.04.004_b0005 article-title: Grid implementation of the Apriori algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2006.08.011 – volume: 16 start-page: 321 issue: 3 year: 2004 ident: 10.1016/j.knosys.2013.04.004_b0065 article-title: Frequent pattern mining on message passing multiprocessor systems publication-title: Distributed and Parallel Database doi: 10.1023/B:DAPD.0000031634.19130.bd – volume: 68 start-page: 37 issue: 1 year: 2008 ident: 10.1016/j.knosys.2013.04.004_b0035 article-title: Middleware for data mining applications on clusters and grids publication-title: Journal of Parallel and Distributed Computing doi: 10.1016/j.jpdc.2007.06.007 – volume: 2 start-page: 43 issue: 1 year: 2003 ident: 10.1016/j.knosys.2013.04.004_b0060 article-title: Shared nothing parallel execution of FP-growth publication-title: DBSJ Letters – start-page: 962 year: 1996 ident: 10.1016/j.knosys.2013.04.004_b0020 article-title: Parallel mining of association rules publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/69.553164 – volume: 12 start-page: 352 issue: 3 year: 2000 ident: 10.1016/j.knosys.2013.04.004_b0040 article-title: Scalable parallel data mining for association rules publication-title: IEEE Transactions on Knowledge and Data Engineering – ident: 10.1016/j.knosys.2013.04.004_b0100 – start-page: 99 year: 2010 ident: 10.1016/j.knosys.2013.04.004_b0110 article-title: MapReduce as a programming model for association rules algorithm on Hadoop publication-title: Information Sciences and Interaction Sciences doi: 10.1109/ICICIS.2010.5534718 – volume: 37 start-page: 2486 issue: 3 year: 2010 ident: 10.1016/j.knosys.2013.04.004_b0115 article-title: Parallel TID-based frequent pattern mining algorithm on a PC cluster and grid computing system publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.07.072 – volume: 39 start-page: 5748 issue: 5 year: 2012 ident: 10.1016/j.knosys.2013.04.004_b0105 article-title: An empirical study on mining sequential patterns in a grid computing environment publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.11.095 – ident: 10.1016/j.knosys.2013.04.004_b0055 doi: 10.1109/IPDPS.2004.1303027 – ident: 10.1016/j.knosys.2013.04.004_b0085 doi: 10.1109/MTAGS.2008.4777912 |
| SSID | ssj0002218 |
| Score | 2.1798081 |
| Snippet | The goal of data mining is to discover hidden useful information in large databases. Mining frequent patterns from transaction databases is an important... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10 |
| SubjectTerms | Algorithms Association rule mining Cloud computing Computation Data mining Frequent pattern mining Knowledge base Many-task computing Pattern analysis Pattern recognition Search engines Tasks |
| Title | Efficient algorithms for frequent pattern mining in many-task computing environments |
| URI | https://dx.doi.org/10.1016/j.knosys.2013.04.004 https://www.proquest.com/docview/1506382798 https://www.proquest.com/docview/1558999117 https://www.proquest.com/docview/1671554420 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I8pLRmI1bWI7dsaqalVAsAASm-U4MZS2adWmAwu_nbOb8BJqJbbEOkfW2T5_F999h9AFT9LYaqaJjaUmzPKMaE7BcTU-T5PZNHXZyLd3Ue-RXT_xpzXUrnJhXFhlafsXNt1b67KlUWqzMen3G_cADmC9AmCg_jbB-e2MCVfF4PL9K8wjDP0_PidMnHSVPudjvAb5ePbmSLsD6glPy3JtfxxPvwy1P32622izhI24tRjZDlrL8l20VZVkwOUO3UMPHU8JAScJ1sPnMXj-L6MZBmCK7dQHTRd44hk1czzypSFwH57AIJBCzwbY-A-65u8JcPvosdt5aPdIWTiBGMBfBRER-Ms0tjxxvOAmNRnl1KbSRlQbEQQmApQasTTx7DiCGx4nQVOnjIdaxjKjB6iWj_PsEGFrORVwpGsGfpuRXNpQR0bCi7VJpNM6opW-lClZxV1xi6Gqwsde1ULLymlZNZkCLdcR-ew1WbBqrJAX1VSoH6tDgeFf0fO8mjkFG8fdhug8G89nylErUhmKWC6T4dIh6EAskYmEw2QsbB79e5THaCP0ZTZc7NoJqhXTeXYKYKdIzvxqPkPrraub3t0HE-MBYw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG_HGSKymTWzHzoiqovJcaKVuluPEUAppRdOBhd_O2U14CRWJLbHOkXW2z9_Fd98hdMKTNLaaaWJjqQmzPCOaU3Bcjc_TZDZNXTbyzW3U6bHLPu_XUKvKhXFhlaXtn9l0b63LlkapzcZ4MGjcATiA9QqAgfrbBPDbFxgPhfPATt8-4zzC0P_kc9LEiVf5cz7Ia5iPJq-OtTugnvG0rNf2y_n0w1L74-d8FS2XuBGfzYa2hmpZvo5WqpoMuNyiG6jb9pwQcJRg_XQ_Atf_4XmCAZli--Kjpgs89pSaOX72tSHwAJ7AIpBCT4bY-A-65q8ZcJuod97utjqkrJxADACwgogIHGYaW544YnCTmoxyalNpI6qNCAITAUyNWJp4ehzBDY-ToKlT0J-WsczoFqrnozzbRthaTgWc6ZqB42YklzbUkZHwYm0S6XQH0UpfypS04q66xZOq4sce1UzLymlZNZkCLe8g8tFrPKPV-ENeVFOhvi0PBZb_j57H1cwp2DnuOkTn2Wg6UY5bkcpQxHKeDJcOQgdijkwkHChjYXP336M8Qoud7s21ur64vdpDS6GvueEC2fZRvXiZZgeAfIrk0K_sd_doAvg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+algorithms+for+frequent+pattern+mining+in+many-task+computing+environments&rft.jtitle=Knowledge-based+systems&rft.au=Lin%2C+Kawuu&rft.au=Lo%2C+Yu-Chin&rft.date=2013-09-01&rft.issn=0950-7051&rft.volume=49&rft.spage=10&rft.epage=21&rft_id=info:doi/10.1016%2Fj.knosys.2013.04.004&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |