Optimal PID controller parameters for first order and second order systems with time delay using a connectionist approach

This article focuses on developing a neural controller based on a proportional integral derivative (PID) law. The main objective is to show that using neural networks represents a better alternative compared with other conventional models that were used in the past to express the tuning parameters a...

Full description

Saved in:
Bibliographic Details
Published inEngineering optimization Vol. 42; no. 3; pp. 295 - 303
Main Authors Madhuranthakam, C. R., Singh, J., Elkamel, A., Budman, H.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.03.2010
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0305-215X
1029-0273
DOI10.1080/03052150903196917

Cover

Abstract This article focuses on developing a neural controller based on a proportional integral derivative (PID) law. The main objective is to show that using neural networks represents a better alternative compared with other conventional models that were used in the past to express the tuning parameters as a function of process parameters such as process gain (K P ), process time constants (τ 1 , τ 2 , etc.,) and process time delay (θ). A Levenberg-Marquardt backward propagation algorithm is used to get the required PID parameters corresponding to different types of processes. In the present study, the PID parameters for the first order plus time delay (FOPTD) and the second order plus time delay (SOPTD) are obtained. It was observed that very high R 2 values between the actual PID parameters and the parameters obtained from the NN were achieved. Furthermore, the performance of PID control systems with FOPTD and SOPTD processes are applied on a number of case studies and compared with the conventional Zeigler-Nichols (Z-N) method of tuning PID controllers. Using the proposed NN controller was found to be efficient and the current method could be of potential use in control systems with gain scheduling also where the controller parameters are tuned according to a continuous gain schedule variable that changes based on different levels of process parameters.
AbstractList This article focuses on developing a neural controller based on a proportional integral derivative (PID) law. The main objective is to show that using neural networks represents a better alternative compared with other conventional models that were used in the past to express the tuning parameters as a function of process parameters such as process gain (K P ), process time constants (τ 1 , τ 2 , etc.,) and process time delay (θ). A Levenberg-Marquardt backward propagation algorithm is used to get the required PID parameters corresponding to different types of processes. In the present study, the PID parameters for the first order plus time delay (FOPTD) and the second order plus time delay (SOPTD) are obtained. It was observed that very high R 2 values between the actual PID parameters and the parameters obtained from the NN were achieved. Furthermore, the performance of PID control systems with FOPTD and SOPTD processes are applied on a number of case studies and compared with the conventional Zeigler-Nichols (Z-N) method of tuning PID controllers. Using the proposed NN controller was found to be efficient and the current method could be of potential use in control systems with gain scheduling also where the controller parameters are tuned according to a continuous gain schedule variable that changes based on different levels of process parameters.
This article focuses on developing a neural controller based on a proportional integral derivative (PID) law. The main objective is to show that using neural networks represents a better alternative compared with other conventional models that were used in the past to express the tuning parameters as a function of process parameters such as process gain (KP), process time constants ( tau 1, tau 2, etc.,) and process time delay ([thetas]). A Levenberg-Marquardt backward propagation algorithm is used to get the required PID parameters corresponding to different types of processes. In the present study, the PID parameters for the first order plus time delay (FOPTD) and the second order plus time delay (SOPTD) are obtained. It was observed that very high R2 values between the actual PID parameters and the parameters obtained from the NN were achieved. Furthermore, the performance of PID control systems with FOPTD and SOPTD processes are applied on a number of case studies and compared with the conventional Zeigler-Nichols (Z-N) method of tuning PID controllers. Using the proposed NN controller was found to be efficient and the current method could be of potential use in control systems with gain scheduling also where the controller parameters are tuned according to a continuous gain schedule variable that changes based on different levels of process parameters.
This article focuses on developing a neural controller based on a proportional integral derivative (PID) law. The main objective is to show that using neural networks represents a better alternative compared with other conventional models that were used in the past to express the tuning parameters as a function of process parameters such as process gain (Kp), process time constants (τ1, τ2, etc.,) and process time delay (θ). A Levenberg-Marquardt backward propagation algorithm is used to get the required PID parameters corresponding to different types of processes. In the present study, the PID parameters for the first order plus time delay (FOPTD) and the second order plus time delay (SOPTD) are obtained. It was observed that very high R^2 values between the actual PID parameters and the parameters obtained from the NN were achieved. Furthermore, the performance of PID control systems with FOPTD and SOPTD processes are applied on a number of case studies and compared with the conventional Zeigler-Nichols (Z-N) method of tuning PID controllers. Using the proposed NN controller was found to be efficient and the current method could be of potential use in control systems with gain scheduling also where the controller parameters are tuned according to a continuous gain schedule variable that changes based on different levels of process parameters. [PUBLICATION ABSTRACT]
Author Budman, H.
Madhuranthakam, C. R.
Singh, J.
Elkamel, A.
Author_xml – sequence: 1
  givenname: C. R.
  surname: Madhuranthakam
  fullname: Madhuranthakam, C. R.
  organization: Department of Chemical Engineering , University of Waterloo
– sequence: 2
  givenname: J.
  surname: Singh
  fullname: Singh, J.
  organization: Department of Chemical Engineering , University of Waterloo
– sequence: 3
  givenname: A.
  surname: Elkamel
  fullname: Elkamel, A.
  email: aelkamel@cape.uwaterloo.ca
  organization: Department of Chemical Engineering , University of Waterloo
– sequence: 4
  givenname: H.
  surname: Budman
  fullname: Budman, H.
  organization: Department of Chemical Engineering , University of Waterloo
BookMark eNqNkUFrFjEQhoNU8Gv1B3gLXjytTpLNZhe8SNW2UKgHBW_LNDtrU7LJmuSj7r83H-2pRfQUyDzPO8PMMTsKMRBjrwW8E9DDe1CgpdAwgBJDNwjzjO0EyKEBadQR2x3qTQV-vGDHOd8CCAXQ79h2tRa3oOdfLz5xG0NJ0XtKfMWECxVKmc8x8dmlXHhMUy1hmHimyk4PH3nLhZbM71y54TWN-EQeN77PLvzkeIgNZIuLwdUQXNcU0d68ZM9n9JlePbwn7PuXz99Oz5vLq7OL04-XjW1Bl6ZTUkpzra2ynUAphdTG6ImUQpj7oceubQ2CIZhpHgx18zX1VpKYtOhbMakT9vY-t7b9tadcxsVlS95joLjPo9Gq032vTCXfPCJv4z6FOtyooNW9aLu2QuIesinmnGge11QXmLZRwHg4xfjkFNUxjxzrCh4WUhI6_z-mC_UMC97F5Kex4OZjmhMG6_JTayy_SzU__NNUf2_8B5jRtKo
CitedBy_id crossref_primary_10_1002_jnm_2572
crossref_primary_10_1177_01423312211040294
crossref_primary_10_3390_sym12091449
crossref_primary_10_1016_j_jprocont_2012_07_001
crossref_primary_10_1177_0142331214527476
Cites_doi 10.1021/ie020763q
10.1016/S1093-0191(00)00042-3
10.1016/j.cep.2006.11.013
10.1021/ef050132j
10.1016/S0098-1354(97)00261-5
10.1016/j.cej.2005.08.018
10.1002/ceat.270200702
10.1021/ie990866h
10.1002/jps.3080080322
10.1016/S0009-2509(98)00089-X
10.1111/j.1600-0889.2005.00164.x
10.1016/0009-2509(93)80202-2
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2010
Copyright Taylor & Francis Ltd. Mar 2010
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2010
– notice: Copyright Taylor & Francis Ltd. Mar 2010
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03052150903196917
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-0273
EndPage 303
ExternalDocumentID 2037645191
10_1080_03052150903196917
419864
Genre Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADUMR
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGBKS
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
07I
1TA
4B5
AAYLN
AAYXX
ACTTO
ADXEU
AEHZU
AEZBV
AFBWG
AFFNX
AFION
AGBLW
AGVKY
AGWUF
AGYFW
AKHJE
AKMBP
ALRRR
ALXIB
ARCSS
BGSSV
BWMZZ
C0-
C5H
CITATION
CYRSC
DAOYK
DEXXA
FETWF
IFELN
L8C
LJTGL
NUSFT
OPCYK
TAJZE
TAP
UB6
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c405t-632227b5c3c61a22125775de33a0f898a6447a07e0fef97e6fbe8c2e1d51841d3
ISSN 0305-215X
IngestDate Fri Sep 05 14:46:14 EDT 2025
Wed Aug 13 11:17:18 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
Wed Oct 01 01:40:05 EDT 2025
Mon Oct 20 23:35:37 EDT 2025
Mon May 13 12:10:10 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-632227b5c3c61a22125775de33a0f898a6447a07e0fef97e6fbe8c2e1d51841d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 304581464
PQPubID 53195
PageCount 9
ParticipantIDs proquest_miscellaneous_753658837
crossref_primary_10_1080_03052150903196917
crossref_citationtrail_10_1080_03052150903196917
informaworld_taylorfrancis_310_1080_03052150903196917
proquest_journals_304581464
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-00
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-00
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Engineering optimization
PublicationYear 2010
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0001
CIT0012
Madhuranthakam C. R. (CIT0010) 2008; 47
CIT0011
Lefevre N. (CIT0008) 2005; 57
CIT0003
CIT0002
CIT0005
CIT0004
Ziegler J. G. (CIT0013) 1942; 64
CIT0007
CIT0006
CIT0009
References_xml – ident: CIT0003
  doi: 10.1021/ie020763q
– ident: CIT0005
  doi: 10.1016/S1093-0191(00)00042-3
– volume: 47
  start-page: 251
  year: 2008
  ident: CIT0010
  publication-title: Chemical Engineering and Processing
  doi: 10.1016/j.cep.2006.11.013
– ident: CIT0001
  doi: 10.1021/ef050132j
– volume: 64
  start-page: 759
  year: 1942
  ident: CIT0013
  publication-title: Transactions of ASME
– ident: CIT0006
  doi: 10.1016/S0098-1354(97)00261-5
– ident: CIT0011
  doi: 10.1016/j.cej.2005.08.018
– ident: CIT0007
  doi: 10.1002/ceat.270200702
– ident: CIT0012
  doi: 10.1021/ie990866h
– ident: CIT0002
  doi: 10.1002/jps.3080080322
– ident: CIT0004
  doi: 10.1016/S0009-2509(98)00089-X
– volume: 57
  start-page: 375
  year: 2005
  ident: CIT0008
  publication-title: Tellus
  doi: 10.1111/j.1600-0889.2005.00164.x
– ident: CIT0009
  doi: 10.1016/0009-2509(93)80202-2
SSID ssj0013008
Score 1.8832271
Snippet This article focuses on developing a neural controller based on a proportional integral derivative (PID) law. The main objective is to show that using neural...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 295
SubjectTerms back propagation
Control systems
Controllers
Feedback control systems
FOPTD
Gain
Mathematical models
Neural networks
Optimization
Optimization algorithms
Parameter estimation
PID controller
process control
Proportional integral derivative
SOPTD
Time delay
Tuning
Title Optimal PID controller parameters for first order and second order systems with time delay using a connectionist approach
URI https://www.tandfonline.com/doi/abs/10.1080/03052150903196917
https://www.proquest.com/docview/304581464
https://www.proquest.com/docview/753658837
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1029-0273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013008
  issn: 0305-215X
  databaseCode: AHDZW
  dateStart: 19970501
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1029-0273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013008
  issn: 0305-215X
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsoA-QHnohSJXESJ49jGyqTuAh1ouIlcmJbm-hStCXStl_Cz-Ucx7m0RRXsJapcO45yvhwfn8tnQt7GMgryQEvX86RyQ-WlrghC7qaBVKmfw5qrsMD50-d4dhqeLKLFaPR7kLVUV_m0uP1rXcldpAptIFeskv0PyXY3hQb4DfKFK0gYrv8k4y_wvV_AO_768ajNOV-qSwfpvC8wzcVwLTj6HCw8x3BsmlDBFe6BpW1omJxtjRseNO8gbeSNUxsfgsDbliZbCxl2OwbyNX9-z2jorPCBbGVn7-uWZzWsiNWZ-Nmg73DqfJt2rh0YZ1w7J13T8RI62uyBrvF9La2zdjYduiowys6Gror51qkhA2UHescF82PRrEuNMsbUHOTbGWrrMBigkg1Vb3NYp13FmWFO2F4gbEYlw5rlCH1USA_UVI9u8G6HPjLX3yN7AawX3pjsHcyOfnzvI1SeOe2we-42Yo687Zt3X7N51hhxtywAY9bMH5GHdj9CDxpwPSYjVT4hDwYyfUpuLMwowIz2MKM9zChMRQ3MqEEVBZjRBma2wcKMIswowowamFEDMyroGsxoC7Nn5PTD8fxw5toTO9wCDP_KjTFux_OoYEXsiwDMoojzSCrGhKeTNBFgfXPhceVppVOuYp2rpAiULyM_CX3JnpNxuSrVC0LTUHAep7kA-zzUIc-1SAud6DxOJRjx0YR47TvNCktnj6eqLDO_Zb3dFMOEvOuG_Gq4XHZ19oaCyioDXt3gdrt7Vl1XExLtGMJ2TLXfgiCz2gW6YwYDmDHhhNDuX1D9GM8TpVrVVxmPGOwfEsZf3nHifXK__0xfkXF1WavXYGNX-RsL9z89Bs9Q
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB619EA5AC0gFij1oadKAefhOD4iHloobHsAaW-RHdtVBQREshLw65nJg2e1B67J5OHEmfk88-UbgB-pFZGJvA04ty5IHFeBjhIZqMg6FRqMuY5-cD4ZpcOz5Ggsxl3CrepolbSG9q1QROOr6eOmZHRPidumSYqhilIMpO4Syo_wSSDQpw4GMR89VRF405GOzAO0H_dVzf-d4kVceqFa-sZLN6HnYAHy_qZbxsn51qQ2W8X9Kz3H949qEeY7VMp22mn0BT648ivMPdMqXIK73-hcLtHoz-Ee6wjuF-6GkXb4JXFqKoaDYf4fwknWCHoyvBVW0YLbdhta2eiKUfKXUVd7RhqVd4zI93-ZptOWDTWM5HxZL3e-DGcH-6e7w6Dr2xAUCP_qIKXqjTSiiIs01BEGRyGlsC6ONfeZyjRiMKm5dNw7r6RLvXFZEbnQClxvhjZegZnyqnSrwFSipUyV0YjSEp9I47UqfOZNqixCOTEA3r-1vOhEzam3xkUe9tqnr5_qAH4-HnLdKnpMM-bPp0JeN2kU3_Y8eWue17f1AMSUQ-Ipl1rvp1ne-RE0pzo2BrNkAOxxLzoAquro0l1NqhzXm4gis1iuvfPC32F2eHpynB8fjn6tw-eWHkEkuw2YqW8m7huirtpsNp_WAyPZIOU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6VrYTgUFoeYrtt8YETUsB5Oj5WhRW0sOUA0t4iO7YRArIrkpWAX9-ZPHhWe-CajJ04GXtmPJ-_AdhOTBzowBmPc2O9yHLpqSASngyMlb5Gm2vpgPPJKDk8j36P43GLzSlbWCXF0K4hiqjXaprcU-M6RNwe6ShaKtphIHIXXyzAx4QyYnSCg4-ekgi8LkhH4h7Kj7uk5v-6eGGWXpCWvlmka8szXGnKq5Y1YSEBTq52Z5XezR9e0Tm-e1Cf4VPrk7KfjRJ9gQ-2WIXlZ0yFa3D_F5eWGxQ6PdpnLbz92t4yYg6_IURNyXAszF2iM8lqOk-Gb8JKCrdNe6EhjS4Zbf0yqmnPiKHynhH0_oIp6raogWFE5ss6svN1OB8enP069NqqDV6Ozl_lJZS7ETrOwzzxVYCmMRYiNjYMFXepTBV6YEJxYbmzTgqbOG3TPLC-iTHa9E24Ab1iUthNYDJSQiRSK_TRIhcJ7ZTMXep0Ig06cnEfePfTsrylNKfKGteZ3zGfvv6qfdh5bDJt-DzmCfPnmpBV9SaKayqevBXPqruqD_GcJuGcRw06LcvaVQTFKYuNpizqA3u8i9OfcjqqsJNZmWG0iT5kGoqv73zwFiye7g-z46PRnwEsNdgIQth9g151O7Pf0eWq9I96Yv0DdUwfiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+PID+controller+parameters+for+first+order+and+second+order+systems+with+time+delay+using+a+connectionist+approach&rft.jtitle=Engineering+optimization&rft.au=Madhuranthakam%2C+C.+R.&rft.au=Singh%2C+J.&rft.au=Elkamel%2C+A.&rft.au=Budman%2C+H.&rft.date=2010-03-01&rft.pub=Taylor+%26+Francis&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=42&rft.issue=3&rft.spage=295&rft.epage=303&rft_id=info:doi/10.1080%2F03052150903196917&rft.externalDocID=419864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon