Classification Based on Cortical Folding Patterns
We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the ris...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 26; no. 4; pp. 553 - 565 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X |
DOI | 10.1109/TMI.2007.892501 |
Cover
Abstract | We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the risk of overfitting the training dataset in high-dimensional space. We overcame this problem, using a classifier pipeline with one- or two-stage of descriptor selection based on machine-learning methods, followed by a support vector machine classifier or linear discriminant analysis. We compared alternative designs of the pipeline on two different datasets built from the same database corresponding to 151 brains. The first dataset dealt with cortex asymmetry and the second dealt with the effect of the subject's sex. Our system successfully (98%) distinguished between the left and right hemispheres on the basis of sulcal shape (size, depth, etc.). The sex of the subject could be determined with a success rate of 85%. These results highlight the attractiveness of multivariate recognition models combined with appropriate descriptor selection. The sulci selected by the pipeline are consistent with previous whole-brain studies on sex effects and hemispheric asymmetries |
---|---|
AbstractList | We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the risk of overfitting the training dataset in high-dimensional space. We overcame this problem, using a classifier pipeline with one- or two-stage of descriptor selection based on machine-learning methods, followed by a support vector machine classifier or linear discriminant analysis. We compared alternative designs of the pipeline on two different datasets built from the same database corresponding to 151 brains. The first dataset dealt with cortex asymmetry and the second dealt with the effect of the subject's sex. Our system successfully (98%) distinguished between the left and right hemispheres on the basis of sulcal shape (size, depth, etc.). The sex of the subject could be determined with a success rate of 85%. These results highlight the attractiveness of multivariate recognition models combined with appropriate descriptor selection. The sulci selected by the pipeline are consistent with previous whole-brain studies on sex effects and hemispheric asymmetries We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the risk of overfitting the training dataset in high-dimensional space. We overcame this problem, using a classifier pipeline with one- or two-stage of descriptor selection based on machine-learning methods, followed by a support vector machine classifier or linear discriminant analysis. We compared alternative designs of the pipeline on two different datasets built from the same database corresponding to 151 brains. The first dataset dealt with cortex asymmetry and the second dealt with the effect of the subject's sex. Our system successfully (98%) distinguished between the left and right hemispheres on the basis of sulcal shape (size, depth, etc.). The sex of the subject could be determined with a success rate of 85%. These results highlight the attractiveness of multivariate recognition models combined with appropriate descriptor selection. The sulci selected by the pipeline are consistent with previous whole-brain studies on sex effects and hemispheric asymmetries. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the risk of overfitting the training dataset in high-dimensional space. We overcame this problem, using a classifier pipeline with one- or two-stage of descriptor selection based on machine-learning methods, followed by a support vector machine classifier or linear discriminant analysis. We compared alternative designs of the pipeline on two different datasets built from the same database corresponding to 151 brains. The first dataset dealt with cortex asymmetry and the second dealt with the effect of the subject's sex. Our system successfully (98%) distinguished between the left and right hemispheres on the basis of sulcal shape (size, depth, etc.). The sex of the subject could be determined with a success rate of 85%. These results highlight the attractiveness of multivariate recognition models combined with appropriate descriptor selection. The sulci selected by the pipeline are consistent with previous whole-brain studies on sex effects and hemispheric asymmetries.We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the risk of overfitting the training dataset in high-dimensional space. We overcame this problem, using a classifier pipeline with one- or two-stage of descriptor selection based on machine-learning methods, followed by a support vector machine classifier or linear discriminant analysis. We compared alternative designs of the pipeline on two different datasets built from the same database corresponding to 151 brains. The first dataset dealt with cortex asymmetry and the second dealt with the effect of the subject's sex. Our system successfully (98%) distinguished between the left and right hemispheres on the basis of sulcal shape (size, depth, etc.). The sex of the subject could be determined with a success rate of 85%. These results highlight the attractiveness of multivariate recognition models combined with appropriate descriptor selection. The sulci selected by the pipeline are consistent with previous whole-brain studies on sex effects and hemispheric asymmetries. |
Author | Martinot, J.-L. Duchesnay, E. Riviere, D. Roche, A. Cointepas, Y. Papadopoulos-Orfanos, D. Cachia, A. Mangin, J.-F. Regis, J. Zilbovicius, M. |
Author_xml | – sequence: 1 givenname: E. surname: Duchesnay fullname: Duchesnay, E. organization: CEA-INSERM, Orsay – sequence: 2 givenname: A. surname: Cachia fullname: Cachia, A. – sequence: 3 givenname: A. surname: Roche fullname: Roche, A. – sequence: 4 givenname: D. surname: Riviere fullname: Riviere, D. – sequence: 5 givenname: Y. surname: Cointepas fullname: Cointepas, Y. – sequence: 6 givenname: D. surname: Papadopoulos-Orfanos fullname: Papadopoulos-Orfanos, D. – sequence: 7 givenname: M. surname: Zilbovicius fullname: Zilbovicius, M. – sequence: 8 givenname: J.-L. surname: Martinot fullname: Martinot, J.-L. – sequence: 9 givenname: J. surname: Regis fullname: Regis, J. – sequence: 10 givenname: J.-F. surname: Mangin fullname: Mangin, J.-F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17427742$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LwzAUx4NM3A89exCkeNBTt5e2aZKjFqeDiR4meAtpmkpG186kO_jfm7qpsMM8hITH5_vCe58h6tVNrRE6xzDGGPhk8TQbRwB0zHhEAB-hASaEhRFJ3npoABFlIUAa9dHQuSUATgjwE9THNImoPwOEs0o6Z0qjZGuaOriTTheBf2SNbX2xCqZNVZj6PXiRbatt7U7RcSkrp8929wi9Tu8X2WM4f36YZbfzUCVA2pBwwiSXDIoixzLnNPXlGDgnlGupABgrOS4wgOeYjpUEVahUl5LwXOYkHqGbbd-1bT422rViZZzSVSVr3WycYDTBHChPPHl9kKQQ05TR6F8wgjhOOek6Xu2By2Zjaz-uYN0chAH20OUO2uQrXYi1NStpP8XPcj0w2QLKNs5ZXf4hIDp9wusTnT6x1ecTZC-hTPstprXSVAdyF9uc0Vr__pLgBPsVxV_8ZqOI |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2015_01_032 crossref_primary_10_1371_journal_pone_0050698 crossref_primary_10_1007_s12021_014_9238_1 crossref_primary_10_1097_CHI_0b013e3181825aa7 crossref_primary_10_1111_j_1399_5618_2009_00683_x crossref_primary_10_1051_medsci_2011276017 crossref_primary_10_1523_ENEURO_0197_17_2018 crossref_primary_10_1038_s42003_024_06175_9 crossref_primary_10_1093_texcom_tgab044 crossref_primary_10_1038_mp_2014_140 crossref_primary_10_1007_s12021_013_9204_3 crossref_primary_10_1371_journal_pone_0122252 crossref_primary_10_1109_TMI_2012_2186975 crossref_primary_10_1007_s00429_017_1516_x crossref_primary_10_1016_j_media_2008_06_010 crossref_primary_10_1093_cercor_bhab145 crossref_primary_10_1016_j_neuroimage_2007_08_049 crossref_primary_10_1109_TMI_2007_908685 crossref_primary_10_1016_j_dcn_2021_100998 crossref_primary_10_1371_journal_pone_0293886 crossref_primary_10_1038_s41598_022_15335_y crossref_primary_10_3389_fnana_2021_712862 crossref_primary_10_1016_j_mri_2014_07_011 crossref_primary_10_1016_j_nicl_2020_102211 crossref_primary_10_1111_j_1469_7610_2012_02539_x crossref_primary_10_1109_TSMCB_2008_2002852 crossref_primary_10_1016_j_neuroimage_2011_05_011 crossref_primary_10_1016_j_media_2016_04_011 crossref_primary_10_1016_j_neuroimage_2011_11_002 crossref_primary_10_1016_j_brainres_2009_12_069 crossref_primary_10_1016_j_neuroimage_2010_01_005 crossref_primary_10_1093_schbul_sbs083 crossref_primary_10_1007_s11682_011_9123_6 crossref_primary_10_1093_cercor_bhac104 crossref_primary_10_3760_cma_j_issn_0366_6999_20122683 |
Cites_doi | 10.1093/cercor/11.9.868 10.1073/pnas.070039597 10.1016/j.neuroimage.2006.01.022 10.1038/427311a 10.1006/nimg.2001.0857 10.1097/00004728-199403000-00005 10.1016/j.neuroimage.2005.08.009 10.1006/nimg.2000.0582 10.1016/0167-8655(94)90127-9 10.1111/j.1601-183X.2006.00196.x 10.1016/j.neuroimage.2005.02.010 10.1002/hbm.20187 10.1109/ISBI.2004.1398776 10.1016/S1361-8415(02)00052-X 10.1038/385313a0 10.1007/978-1-4757-2440-0 10.1001/archpsyc.62.11.1218 10.1016/j.neuroimage.2004.07.019 10.1016/j.neuroimage.2004.05.010 10.1162/153244303322753616 10.1023/A:1012487302797 10.1007/978-94-009-9941-1_3 10.1038/nn1444 10.1162/089976600300015042 10.1016/S1053-8119(03)00049-1 10.1176/appi.ajgp.10.1.13 10.1016/j.neuroimage.2003.09.027 10.1016/j.neuroimage.2005.07.052 10.1162/153244303322753706 10.1016/j.neuroimage.2004.04.021 10.1137/1116025 10.1073/pnas.102102699 10.2176/nmc.45.1 10.1016/S1474-4422(03)00304-1 10.1038/nn1445 10.1109/TMI.2004.831204 10.1038/nrn1009 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2007.892501 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE Engineering Research Database Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Psychology |
EISSN | 1558-254X |
EndPage | 565 |
ExternalDocumentID | 2333371821 17427742 10_1109_TMI_2007_892501 4141190 |
Genre | orig-research Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM PKN RIG Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c405t-5958a9a80ddb1ab9764053099579eac0088f91d10058a8e3ca0cdc6efa59bab53 |
IEDL.DBID | RIE |
ISSN | 0278-0062 |
IngestDate | Wed Oct 01 13:52:45 EDT 2025 Sun Sep 28 10:05:28 EDT 2025 Sat Sep 27 17:53:34 EDT 2025 Mon Jun 30 04:07:02 EDT 2025 Wed Feb 19 01:43:00 EST 2025 Thu Apr 24 23:00:10 EDT 2025 Wed Oct 01 03:55:14 EDT 2025 Tue Aug 26 16:43:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-5958a9a80ddb1ab9764053099579eac0088f91d10058a8e3ca0cdc6efa59bab53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 |
PMID | 17427742 |
PQID | 864055801 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_70376872 proquest_miscellaneous_20336954 crossref_citationtrail_10_1109_TMI_2007_892501 ieee_primary_4141190 crossref_primary_10_1109_TMI_2007_892501 proquest_miscellaneous_874190794 pubmed_primary_17427742 proquest_journals_864055801 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-01 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2007 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 thirion (ref18) 2005; 26 ref2 ref1 ref39 ref17 ref38 (ref35) 2001 ref16 ref19 yushkevich (ref21) 2003; 2732 hanada (ref29) 0 pollard (ref25) 2005 golland (ref20) 2000 ref24 ref23 ref26 ref42 ref41 ref22 ref44 ref43 schlkopf (ref10) 2002 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – year: 2002 ident: ref10 publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond – ident: ref40 doi: 10.1093/cercor/11.9.868 – ident: ref1 doi: 10.1073/pnas.070039597 – ident: ref19 doi: 10.1016/j.neuroimage.2006.01.022 – ident: ref2 doi: 10.1038/427311a – ident: ref39 doi: 10.1006/nimg.2001.0857 – ident: ref33 doi: 10.1097/00004728-199403000-00005 – ident: ref15 doi: 10.1016/j.neuroimage.2005.08.009 – ident: ref4 doi: 10.1006/nimg.2000.0582 – ident: ref28 doi: 10.1016/0167-8655(94)90127-9 – volume: 2732 start-page: 114 year: 2003 ident: ref21 publication-title: IPMI – year: 0 ident: ref29 – ident: ref3 doi: 10.1111/j.1601-183X.2006.00196.x – ident: ref41 doi: 10.1016/j.neuroimage.2005.02.010 – start-page: 72 year: 2000 ident: ref20 article-title: small sample size learning for shape analysis of anatomical structures publication-title: MICCAI – ident: ref42 doi: 10.1002/hbm.20187 – ident: ref11 doi: 10.1109/ISBI.2004.1398776 – ident: ref12 doi: 10.1016/S1361-8415(02)00052-X – ident: ref37 doi: 10.1038/385313a0 – ident: ref32 doi: 10.1007/978-1-4757-2440-0 – year: 2005 ident: ref25 publication-title: Test statistics null distributions in multiple testing Simulation studies and applications to genomics – ident: ref23 doi: 10.1001/archpsyc.62.11.1218 – ident: ref13 doi: 10.1016/j.neuroimage.2004.07.019 – ident: ref9 doi: 10.1016/j.neuroimage.2004.05.010 – ident: ref26 doi: 10.1162/153244303322753616 – ident: ref36 doi: 10.1023/A:1012487302797 – ident: ref27 doi: 10.1007/978-94-009-9941-1_3 – ident: ref16 doi: 10.1038/nn1444 – ident: ref44 doi: 10.1162/089976600300015042 – ident: ref14 doi: 10.1016/S1053-8119(03)00049-1 – ident: ref6 doi: 10.1176/appi.ajgp.10.1.13 – ident: ref22 doi: 10.1016/j.neuroimage.2003.09.027 – ident: ref24 doi: 10.1016/j.neuroimage.2005.07.052 – ident: ref30 doi: 10.1162/153244303322753706 – ident: ref8 doi: 10.1016/j.neuroimage.2004.04.021 – ident: ref31 doi: 10.1137/1116025 – ident: ref34 doi: 10.1073/pnas.102102699 – ident: ref38 doi: 10.2176/nmc.45.1 – volume: 26 year: 2005 ident: ref18 article-title: reading in the subject's mind: the case of low-level vision publication-title: Proc 11th HBMCD-RomNeuroimage – year: 2001 ident: ref35 publication-title: The Elements of Statistical Learning – ident: ref5 doi: 10.1016/S1474-4422(03)00304-1 – ident: ref17 doi: 10.1038/nn1445 – ident: ref7 doi: 10.1109/TMI.2004.831204 – ident: ref43 doi: 10.1038/nrn1009 |
SSID | ssj0014509 |
Score | 2.060664 |
Snippet | We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of... Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 553 |
SubjectTerms | Algorithms Artificial Intelligence Biomedical imaging Cerebral Cortex - anatomy & histology Discriminant analysis Diseases Face detection Feature selection Hospitals Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Linear discriminant analysis Magnetic Resonance Imaging - methods Numerical Analysis, Computer-Assisted Pattern recognition Pattern Recognition, Automated - methods Pipelines Psychology Reproducibility of Results Sensitivity and Specificity Studies sulcal morphometry Support vector machine classification Support vector machines |
Title | Classification Based on Cortical Folding Patterns |
URI | https://ieeexplore.ieee.org/document/4141190 https://www.ncbi.nlm.nih.gov/pubmed/17427742 https://www.proquest.com/docview/864055801 https://www.proquest.com/docview/20336954 https://www.proquest.com/docview/70376872 https://www.proquest.com/docview/874190794 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BB8QeeBQWsjw2Bw57IG3sxIl9hIoKVupqD1TqLfIrF1CKaHvY_fU7ttMAKypxsxI78WPs-ewZfwNwKRXNWapMQoXluEHRKpGUZAk1qeAFkZJIdzl5_Ku4m-Q_p2y6AVfdXRhrrXc-s32X9LZ8M9NLd1Q2yElOUIFtwmZZinBXq7MY4B891KWOMTYtaEvjQ1IxeBjfB65CLlDh-9gwuCFE3EPfKSMfXWU90PQKZ7QH41VVg5_JY3-5UH399z8Wx8-2ZR92W-QZXwdROYAN2_Tgyxs-wh5sj1tLew92upXxzyEQHzrTORX5cYxvUPWZGBPD2Ys_C49HwYgV__Z0nc38CCaj24fhXdLGWkg0QrZFwgTjUkieGqOIVAhS8HGG8JGVAtdmRAq8FsQQF4ZQcptpmWqjC1tLJpRULPsKW82ssScQZ4Rkta1LoxGqoH6UCAtMIbEHlKkF5RH0V51e6ZaI3MXDeKr8hiQVFQ6YC49ZVmHAIvjRFXgOHBzrsx66ru6ytb0cwelqVKt2js4r7prIuCv0vXuLk8tZTGRjZ8s5fjnLCsHy9TlwwcQNW0kjiNfk4IjZRIrLXgTHQZ5eG9GK4bePa30KO-Ek2fkJncHW4mVpzxECLdSFl_1_B_n-hw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RkCg9lLIUmgIlhx56aJbYiRP7SBGrhRLUwyJxi_zKpSiL2N0D_PqO7WxaECv1ZiXjxM-ZbzzjGYCvUtGcpcokVFiOCopWiaQkS6hJBS-IlES6y8nVdTG-yS9v2e0afO_vwlhrvfOZHbqit-WbqV64o7KTnOQEBdgb2GCoVZThtlZvM8B_erBLXczYtKBdIB-SipNJdRGiFXKBIt9nh0GVEJEPfSaOfH6V1VDTi5zRNlTLxgZPk9_DxVwN9dOLOI7_25sP8L7DnvFpWCw7sGbbAbz7JyLhADarztY-gK2eNz7uAvHJM51bkZ_J-AcKPxNj4Wz64E_D41EwY8W_fMDOdvYRbkbnk7Nx0mVbSDSCtnnCBONSSJ4ao4hUCFPwcYYAkpUCuTNiBd4IYohLRCi5zbRMtdGFbSQTSiqW7cF6O23tJ4gzQrLGNqXRCFZQQkoEBqaQOALKNILyCIbLQa91F4rcZcS4q71KkooaJ8wlyCzrMGERfOsr3IcoHKtJd91Q92TdKEdwsJzVutuls5q7LjLuKh33b3F7OZuJbO10McMvZ1khWL6aAlkmqmwljSBeQcERtYkUGV8E-2E9_e1Etww_v97qY3g7nlRX9dXF9c8D2Arnys5r6BDW5w8Le4SAaK6--H3wB4xwAec |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+Based+on+Cortical+Folding+Patterns&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Duchesnay%2C+E&rft.au=Cachia%2C+A&rft.au=Roche%2C+A&rft.au=Riviere%2C+D&rft.date=2007-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=26&rft.issue=4&rft.spage=553&rft_id=info:doi/10.1109%2FTMI.2007.892501&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2333371821 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |