Classification Based on Cortical Folding Patterns

We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the ris...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 26; no. 4; pp. 553 - 565
Main Authors Duchesnay, E., Cachia, A., Roche, A., Riviere, D., Cointepas, Y., Papadopoulos-Orfanos, D., Zilbovicius, M., Martinot, J.-L., Regis, J., Mangin, J.-F.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
DOI10.1109/TMI.2007.892501

Cover

Abstract We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the risk of overfitting the training dataset in high-dimensional space. We overcame this problem, using a classifier pipeline with one- or two-stage of descriptor selection based on machine-learning methods, followed by a support vector machine classifier or linear discriminant analysis. We compared alternative designs of the pipeline on two different datasets built from the same database corresponding to 151 brains. The first dataset dealt with cortex asymmetry and the second dealt with the effect of the subject's sex. Our system successfully (98%) distinguished between the left and right hemispheres on the basis of sulcal shape (size, depth, etc.). The sex of the subject could be determined with a success rate of 85%. These results highlight the attractiveness of multivariate recognition models combined with appropriate descriptor selection. The sulci selected by the pipeline are consistent with previous whole-brain studies on sex effects and hemispheric asymmetries
AbstractList We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the risk of overfitting the training dataset in high-dimensional space. We overcame this problem, using a classifier pipeline with one- or two-stage of descriptor selection based on machine-learning methods, followed by a support vector machine classifier or linear discriminant analysis. We compared alternative designs of the pipeline on two different datasets built from the same database corresponding to 151 brains. The first dataset dealt with cortex asymmetry and the second dealt with the effect of the subject's sex. Our system successfully (98%) distinguished between the left and right hemispheres on the basis of sulcal shape (size, depth, etc.). The sex of the subject could be determined with a success rate of 85%. These results highlight the attractiveness of multivariate recognition models combined with appropriate descriptor selection. The sulci selected by the pipeline are consistent with previous whole-brain studies on sex effects and hemispheric asymmetries
We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the risk of overfitting the training dataset in high-dimensional space. We overcame this problem, using a classifier pipeline with one- or two-stage of descriptor selection based on machine-learning methods, followed by a support vector machine classifier or linear discriminant analysis. We compared alternative designs of the pipeline on two different datasets built from the same database corresponding to 151 brains. The first dataset dealt with cortex asymmetry and the second dealt with the effect of the subject's sex. Our system successfully (98%) distinguished between the left and right hemispheres on the basis of sulcal shape (size, depth, etc.). The sex of the subject could be determined with a success rate of 85%. These results highlight the attractiveness of multivariate recognition models combined with appropriate descriptor selection. The sulci selected by the pipeline are consistent with previous whole-brain studies on sex effects and hemispheric asymmetries.
Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution.
We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the risk of overfitting the training dataset in high-dimensional space. We overcame this problem, using a classifier pipeline with one- or two-stage of descriptor selection based on machine-learning methods, followed by a support vector machine classifier or linear discriminant analysis. We compared alternative designs of the pipeline on two different datasets built from the same database corresponding to 151 brains. The first dataset dealt with cortex asymmetry and the second dealt with the effect of the subject's sex. Our system successfully (98%) distinguished between the left and right hemispheres on the basis of sulcal shape (size, depth, etc.). The sex of the subject could be determined with a success rate of 85%. These results highlight the attractiveness of multivariate recognition models combined with appropriate descriptor selection. The sulci selected by the pipeline are consistent with previous whole-brain studies on sex effects and hemispheric asymmetries.We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution. However, such methods may face the well-known issue of the curse of dimensionality-the risk of overfitting the training dataset in high-dimensional space. We overcame this problem, using a classifier pipeline with one- or two-stage of descriptor selection based on machine-learning methods, followed by a support vector machine classifier or linear discriminant analysis. We compared alternative designs of the pipeline on two different datasets built from the same database corresponding to 151 brains. The first dataset dealt with cortex asymmetry and the second dealt with the effect of the subject's sex. Our system successfully (98%) distinguished between the left and right hemispheres on the basis of sulcal shape (size, depth, etc.). The sex of the subject could be determined with a success rate of 85%. These results highlight the attractiveness of multivariate recognition models combined with appropriate descriptor selection. The sulci selected by the pipeline are consistent with previous whole-brain studies on sex effects and hemispheric asymmetries.
Author Martinot, J.-L.
Duchesnay, E.
Riviere, D.
Roche, A.
Cointepas, Y.
Papadopoulos-Orfanos, D.
Cachia, A.
Mangin, J.-F.
Regis, J.
Zilbovicius, M.
Author_xml – sequence: 1
  givenname: E.
  surname: Duchesnay
  fullname: Duchesnay, E.
  organization: CEA-INSERM, Orsay
– sequence: 2
  givenname: A.
  surname: Cachia
  fullname: Cachia, A.
– sequence: 3
  givenname: A.
  surname: Roche
  fullname: Roche, A.
– sequence: 4
  givenname: D.
  surname: Riviere
  fullname: Riviere, D.
– sequence: 5
  givenname: Y.
  surname: Cointepas
  fullname: Cointepas, Y.
– sequence: 6
  givenname: D.
  surname: Papadopoulos-Orfanos
  fullname: Papadopoulos-Orfanos, D.
– sequence: 7
  givenname: M.
  surname: Zilbovicius
  fullname: Zilbovicius, M.
– sequence: 8
  givenname: J.-L.
  surname: Martinot
  fullname: Martinot, J.-L.
– sequence: 9
  givenname: J.
  surname: Regis
  fullname: Regis, J.
– sequence: 10
  givenname: J.-F.
  surname: Mangin
  fullname: Mangin, J.-F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17427742$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LwzAUx4NM3A89exCkeNBTt5e2aZKjFqeDiR4meAtpmkpG186kO_jfm7qpsMM8hITH5_vCe58h6tVNrRE6xzDGGPhk8TQbRwB0zHhEAB-hASaEhRFJ3npoABFlIUAa9dHQuSUATgjwE9THNImoPwOEs0o6Z0qjZGuaOriTTheBf2SNbX2xCqZNVZj6PXiRbatt7U7RcSkrp8929wi9Tu8X2WM4f36YZbfzUCVA2pBwwiSXDIoixzLnNPXlGDgnlGupABgrOS4wgOeYjpUEVahUl5LwXOYkHqGbbd-1bT422rViZZzSVSVr3WycYDTBHChPPHl9kKQQ05TR6F8wgjhOOek6Xu2By2Zjaz-uYN0chAH20OUO2uQrXYi1NStpP8XPcj0w2QLKNs5ZXf4hIDp9wusTnT6x1ecTZC-hTPstprXSVAdyF9uc0Vr__pLgBPsVxV_8ZqOI
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_neuroimage_2015_01_032
crossref_primary_10_1371_journal_pone_0050698
crossref_primary_10_1007_s12021_014_9238_1
crossref_primary_10_1097_CHI_0b013e3181825aa7
crossref_primary_10_1111_j_1399_5618_2009_00683_x
crossref_primary_10_1051_medsci_2011276017
crossref_primary_10_1523_ENEURO_0197_17_2018
crossref_primary_10_1038_s42003_024_06175_9
crossref_primary_10_1093_texcom_tgab044
crossref_primary_10_1038_mp_2014_140
crossref_primary_10_1007_s12021_013_9204_3
crossref_primary_10_1371_journal_pone_0122252
crossref_primary_10_1109_TMI_2012_2186975
crossref_primary_10_1007_s00429_017_1516_x
crossref_primary_10_1016_j_media_2008_06_010
crossref_primary_10_1093_cercor_bhab145
crossref_primary_10_1016_j_neuroimage_2007_08_049
crossref_primary_10_1109_TMI_2007_908685
crossref_primary_10_1016_j_dcn_2021_100998
crossref_primary_10_1371_journal_pone_0293886
crossref_primary_10_1038_s41598_022_15335_y
crossref_primary_10_3389_fnana_2021_712862
crossref_primary_10_1016_j_mri_2014_07_011
crossref_primary_10_1016_j_nicl_2020_102211
crossref_primary_10_1111_j_1469_7610_2012_02539_x
crossref_primary_10_1109_TSMCB_2008_2002852
crossref_primary_10_1016_j_neuroimage_2011_05_011
crossref_primary_10_1016_j_media_2016_04_011
crossref_primary_10_1016_j_neuroimage_2011_11_002
crossref_primary_10_1016_j_brainres_2009_12_069
crossref_primary_10_1016_j_neuroimage_2010_01_005
crossref_primary_10_1093_schbul_sbs083
crossref_primary_10_1007_s11682_011_9123_6
crossref_primary_10_1093_cercor_bhac104
crossref_primary_10_3760_cma_j_issn_0366_6999_20122683
Cites_doi 10.1093/cercor/11.9.868
10.1073/pnas.070039597
10.1016/j.neuroimage.2006.01.022
10.1038/427311a
10.1006/nimg.2001.0857
10.1097/00004728-199403000-00005
10.1016/j.neuroimage.2005.08.009
10.1006/nimg.2000.0582
10.1016/0167-8655(94)90127-9
10.1111/j.1601-183X.2006.00196.x
10.1016/j.neuroimage.2005.02.010
10.1002/hbm.20187
10.1109/ISBI.2004.1398776
10.1016/S1361-8415(02)00052-X
10.1038/385313a0
10.1007/978-1-4757-2440-0
10.1001/archpsyc.62.11.1218
10.1016/j.neuroimage.2004.07.019
10.1016/j.neuroimage.2004.05.010
10.1162/153244303322753616
10.1023/A:1012487302797
10.1007/978-94-009-9941-1_3
10.1038/nn1444
10.1162/089976600300015042
10.1016/S1053-8119(03)00049-1
10.1176/appi.ajgp.10.1.13
10.1016/j.neuroimage.2003.09.027
10.1016/j.neuroimage.2005.07.052
10.1162/153244303322753706
10.1016/j.neuroimage.2004.04.021
10.1137/1116025
10.1073/pnas.102102699
10.2176/nmc.45.1
10.1016/S1474-4422(03)00304-1
10.1038/nn1445
10.1109/TMI.2004.831204
10.1038/nrn1009
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2007.892501
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE
Engineering Research Database
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Psychology
EISSN 1558-254X
EndPage 565
ExternalDocumentID 2333371821
17427742
10_1109_TMI_2007_892501
4141190
Genre orig-research
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c405t-5958a9a80ddb1ab9764053099579eac0088f91d10058a8e3ca0cdc6efa59bab53
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Wed Oct 01 13:52:45 EDT 2025
Sun Sep 28 10:05:28 EDT 2025
Sat Sep 27 17:53:34 EDT 2025
Mon Jun 30 04:07:02 EDT 2025
Wed Feb 19 01:43:00 EST 2025
Thu Apr 24 23:00:10 EDT 2025
Wed Oct 01 03:55:14 EDT 2025
Tue Aug 26 16:43:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-5958a9a80ddb1ab9764053099579eac0088f91d10058a8e3ca0cdc6efa59bab53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 17427742
PQID 864055801
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_70376872
proquest_miscellaneous_20336954
crossref_citationtrail_10_1109_TMI_2007_892501
ieee_primary_4141190
crossref_primary_10_1109_TMI_2007_892501
proquest_miscellaneous_874190794
pubmed_primary_17427742
proquest_journals_864055801
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-01
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2007
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
thirion (ref18) 2005; 26
ref2
ref1
ref39
ref17
ref38
(ref35) 2001
ref16
ref19
yushkevich (ref21) 2003; 2732
hanada (ref29) 0
pollard (ref25) 2005
golland (ref20) 2000
ref24
ref23
ref26
ref42
ref41
ref22
ref44
ref43
schlkopf (ref10) 2002
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – year: 2002
  ident: ref10
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
– ident: ref40
  doi: 10.1093/cercor/11.9.868
– ident: ref1
  doi: 10.1073/pnas.070039597
– ident: ref19
  doi: 10.1016/j.neuroimage.2006.01.022
– ident: ref2
  doi: 10.1038/427311a
– ident: ref39
  doi: 10.1006/nimg.2001.0857
– ident: ref33
  doi: 10.1097/00004728-199403000-00005
– ident: ref15
  doi: 10.1016/j.neuroimage.2005.08.009
– ident: ref4
  doi: 10.1006/nimg.2000.0582
– ident: ref28
  doi: 10.1016/0167-8655(94)90127-9
– volume: 2732
  start-page: 114
  year: 2003
  ident: ref21
  publication-title: IPMI
– year: 0
  ident: ref29
– ident: ref3
  doi: 10.1111/j.1601-183X.2006.00196.x
– ident: ref41
  doi: 10.1016/j.neuroimage.2005.02.010
– start-page: 72
  year: 2000
  ident: ref20
  article-title: small sample size learning for shape analysis of anatomical structures
  publication-title: MICCAI
– ident: ref42
  doi: 10.1002/hbm.20187
– ident: ref11
  doi: 10.1109/ISBI.2004.1398776
– ident: ref12
  doi: 10.1016/S1361-8415(02)00052-X
– ident: ref37
  doi: 10.1038/385313a0
– ident: ref32
  doi: 10.1007/978-1-4757-2440-0
– year: 2005
  ident: ref25
  publication-title: Test statistics null distributions in multiple testing Simulation studies and applications to genomics
– ident: ref23
  doi: 10.1001/archpsyc.62.11.1218
– ident: ref13
  doi: 10.1016/j.neuroimage.2004.07.019
– ident: ref9
  doi: 10.1016/j.neuroimage.2004.05.010
– ident: ref26
  doi: 10.1162/153244303322753616
– ident: ref36
  doi: 10.1023/A:1012487302797
– ident: ref27
  doi: 10.1007/978-94-009-9941-1_3
– ident: ref16
  doi: 10.1038/nn1444
– ident: ref44
  doi: 10.1162/089976600300015042
– ident: ref14
  doi: 10.1016/S1053-8119(03)00049-1
– ident: ref6
  doi: 10.1176/appi.ajgp.10.1.13
– ident: ref22
  doi: 10.1016/j.neuroimage.2003.09.027
– ident: ref24
  doi: 10.1016/j.neuroimage.2005.07.052
– ident: ref30
  doi: 10.1162/153244303322753706
– ident: ref8
  doi: 10.1016/j.neuroimage.2004.04.021
– ident: ref31
  doi: 10.1137/1116025
– ident: ref34
  doi: 10.1073/pnas.102102699
– ident: ref38
  doi: 10.2176/nmc.45.1
– volume: 26
  year: 2005
  ident: ref18
  article-title: reading in the subject's mind: the case of low-level vision
  publication-title: Proc 11th HBMCD-RomNeuroimage
– year: 2001
  ident: ref35
  publication-title: The Elements of Statistical Learning
– ident: ref5
  doi: 10.1016/S1474-4422(03)00304-1
– ident: ref17
  doi: 10.1038/nn1445
– ident: ref7
  doi: 10.1109/TMI.2004.831204
– ident: ref43
  doi: 10.1038/nrn1009
SSID ssj0014509
Score 2.060664
Snippet We describe here a classification system based on automatically identified cortical sulci. Multivariate recognition methods are required for the detection of...
Multivariate recognition methods are required for the detection of complex brain patterns with a spatial distribution.
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 553
SubjectTerms Algorithms
Artificial Intelligence
Biomedical imaging
Cerebral Cortex - anatomy & histology
Discriminant analysis
Diseases
Face detection
Feature selection
Hospitals
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Linear discriminant analysis
Magnetic Resonance Imaging - methods
Numerical Analysis, Computer-Assisted
Pattern recognition
Pattern Recognition, Automated - methods
Pipelines
Psychology
Reproducibility of Results
Sensitivity and Specificity
Studies
sulcal morphometry
Support vector machine classification
Support vector machines
Title Classification Based on Cortical Folding Patterns
URI https://ieeexplore.ieee.org/document/4141190
https://www.ncbi.nlm.nih.gov/pubmed/17427742
https://www.proquest.com/docview/864055801
https://www.proquest.com/docview/20336954
https://www.proquest.com/docview/70376872
https://www.proquest.com/docview/874190794
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BB8QeeBQWsjw2Bw57IG3sxIl9hIoKVupqD1TqLfIrF1CKaHvY_fU7ttMAKypxsxI78WPs-ewZfwNwKRXNWapMQoXluEHRKpGUZAk1qeAFkZJIdzl5_Ku4m-Q_p2y6AVfdXRhrrXc-s32X9LZ8M9NLd1Q2yElOUIFtwmZZinBXq7MY4B891KWOMTYtaEvjQ1IxeBjfB65CLlDh-9gwuCFE3EPfKSMfXWU90PQKZ7QH41VVg5_JY3-5UH399z8Wx8-2ZR92W-QZXwdROYAN2_Tgyxs-wh5sj1tLew92upXxzyEQHzrTORX5cYxvUPWZGBPD2Ys_C49HwYgV__Z0nc38CCaj24fhXdLGWkg0QrZFwgTjUkieGqOIVAhS8HGG8JGVAtdmRAq8FsQQF4ZQcptpmWqjC1tLJpRULPsKW82ssScQZ4Rkta1LoxGqoH6UCAtMIbEHlKkF5RH0V51e6ZaI3MXDeKr8hiQVFQ6YC49ZVmHAIvjRFXgOHBzrsx66ru6ytb0cwelqVKt2js4r7prIuCv0vXuLk8tZTGRjZ8s5fjnLCsHy9TlwwcQNW0kjiNfk4IjZRIrLXgTHQZ5eG9GK4bePa30KO-Ek2fkJncHW4mVpzxECLdSFl_1_B_n-hw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RkCg9lLIUmgIlhx56aJbYiRP7SBGrhRLUwyJxi_zKpSiL2N0D_PqO7WxaECv1ZiXjxM-ZbzzjGYCvUtGcpcokVFiOCopWiaQkS6hJBS-IlES6y8nVdTG-yS9v2e0afO_vwlhrvfOZHbqit-WbqV64o7KTnOQEBdgb2GCoVZThtlZvM8B_erBLXczYtKBdIB-SipNJdRGiFXKBIt9nh0GVEJEPfSaOfH6V1VDTi5zRNlTLxgZPk9_DxVwN9dOLOI7_25sP8L7DnvFpWCw7sGbbAbz7JyLhADarztY-gK2eNz7uAvHJM51bkZ_J-AcKPxNj4Wz64E_D41EwY8W_fMDOdvYRbkbnk7Nx0mVbSDSCtnnCBONSSJ4ao4hUCFPwcYYAkpUCuTNiBd4IYohLRCi5zbRMtdGFbSQTSiqW7cF6O23tJ4gzQrLGNqXRCFZQQkoEBqaQOALKNILyCIbLQa91F4rcZcS4q71KkooaJ8wlyCzrMGERfOsr3IcoHKtJd91Q92TdKEdwsJzVutuls5q7LjLuKh33b3F7OZuJbO10McMvZ1khWL6aAlkmqmwljSBeQcERtYkUGV8E-2E9_e1Etww_v97qY3g7nlRX9dXF9c8D2Arnys5r6BDW5w8Le4SAaK6--H3wB4xwAec
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+Based+on+Cortical+Folding+Patterns&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Duchesnay%2C+E&rft.au=Cachia%2C+A&rft.au=Roche%2C+A&rft.au=Riviere%2C+D&rft.date=2007-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=26&rft.issue=4&rft.spage=553&rft_id=info:doi/10.1109%2FTMI.2007.892501&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2333371821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon