Statistical inference on restricted partial linear regression models with partial distortion measurement errors

We consider the estimation and hypothesis testing problems for the partial linear regression models when some variables are distorted with errors by some unknown functions of commonly observable confounding variable. The proposed estimation procedure is designed to accommodate undistorted as well as...

Full description

Saved in:
Bibliographic Details
Published inStatistica Neerlandica Vol. 70; no. 4; pp. 304 - 331
Main Authors Zhang, Jun, Zhou, Nanguang, Sun, Zipeng, Li, Gaorong, Wei, Zhenghong
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.11.2016
Subjects
Online AccessGet full text
ISSN0039-0402
1467-9574
DOI10.1111/stan.12089

Cover

Abstract We consider the estimation and hypothesis testing problems for the partial linear regression models when some variables are distorted with errors by some unknown functions of commonly observable confounding variable. The proposed estimation procedure is designed to accommodate undistorted as well as distorted variables. To test a hypothesis on the parametric components, a restricted least squares estimator is proposed under the null hypothesis. Asymptotic properties for the estimators are established. A test statistic based on the difference between the residual sums of squares under the null and alternative hypotheses is proposed, and we also obtain the asymptotic properties of the test statistic. A wild bootstrap procedure is proposed to calculate critical values. Simulation studies are conducted to demonstrate the performance of the proposed procedure, and a real example is analyzed for an illustration.
AbstractList We consider the estimation and hypothesis testing problems for the partial linear regression models when some variables are distorted with errors by some unknown functions of commonly observable confounding variable. The proposed estimation procedure is designed to accommodate undistorted as well as distorted variables. To test a hypothesis on the parametric components, a restricted least squares estimator is proposed under the null hypothesis. Asymptotic properties for the estimators are established. A test statistic based on the difference between the residual sums of squares under the null and alternative hypotheses is proposed, and we also obtain the asymptotic properties of the test statistic. A wild bootstrap procedure is proposed to calculate critical values. Simulation studies are conducted to demonstrate the performance of the proposed procedure, and a real example is analyzed for an illustration.
Author Wei, Zhenghong
Sun, Zipeng
Zhou, Nanguang
Li, Gaorong
Zhang, Jun
Author_xml – sequence: 1
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  email: zhangjunstat@gmail.com, Correspondence to:, zhangjunstat@gmail.com
  organization: College of Mathematics and Statistics, Institute of Statistical Sciences, Shen Zhen-Hong Kong Joint Research Center for Applied Statistical Sciences, Shenzhen University, 518060, Shenzhen, China
– sequence: 2
  givenname: Nanguang
  surname: Zhou
  fullname: Zhou, Nanguang
  email: zhounanguang123@gmail.com
  organization: College of Mathematics and Statistics, Shenzhen University, 518060, Shenzhen, China
– sequence: 3
  givenname: Zipeng
  surname: Sun
  fullname: Sun, Zipeng
  email: zipengs@163.com
  organization: College of Mathematics and Statistics, Shenzhen University, 518060, Shenzhen, China
– sequence: 4
  givenname: Gaorong
  surname: Li
  fullname: Li, Gaorong
  email: ligaorong@gmail.com
  organization: Beijing Center for Scientific and Engineering Computing, College of Applied Sciences, Beijing University of Technology, 100124, Beijing, China
– sequence: 5
  givenname: Zhenghong
  surname: Wei
  fullname: Wei, Zhenghong
  organization: College of Mathematics and Statistics, Institute of Statistical Sciences, Shenzhen University, 518060, Shenzhen, China
BookMark eNp9kM1LHTEUxUNR8Gm78S8Y6KYUxuZrkszSvvpRsHahIrgJmcxNGzsveU3ysP73zfOpCxHvJhfO7xxuzi7aCjEAQvsEH5A6X3Ix4YBQrPp3aEa4kG3fSb6FZhizvsUc0x20m_MtxkT2XMxQvCim-Fy8NVPjg4MEwUITQ5Mgl-RtgbFZmlR81ScfwKSq_Kpi9hVaxBGm3Nz58vuZGmtcrOtaBpNXCRYQSgMpxZTfo21npgwfHt89dHV8dDk_bc9-nnyfH561luOubwlRTklGHSZ8HGxnnVKuY8IwoFQYyZS1VSZicKJjvB-FcnQYBkGIoKoDtoc-bXKXKf5d1a_ohc8WpskEiKusieKdokJxWdGPL9DbuEqhXlcpKqXAvcSV-ryhbIo5J3B6mfzCpHtNsF53r9fd64fuK4xfwNave46hJOOn1y1kY7nzE9y_Ea4vLg_PnzztxlMbh3_PHpP-aCGZ7PT1-Yn-wW6-fjud32jC_gPgUKoq
CitedBy_id crossref_primary_10_1080_00949655_2016_1222612
crossref_primary_10_1214_19_EJS1654
crossref_primary_10_1080_03610918_2020_1752381
crossref_primary_10_1080_03610918_2023_2238361
crossref_primary_10_1080_03610918_2021_1897622
crossref_primary_10_1080_03610918_2019_1700280
crossref_primary_10_1080_03610918_2021_1890122
crossref_primary_10_1080_03610918_2021_2004421
crossref_primary_10_1016_j_csda_2019_06_009
crossref_primary_10_1214_16_BJPS333
crossref_primary_10_1080_03610926_2022_2076126
crossref_primary_10_1080_03610926_2024_2347330
crossref_primary_10_1080_03610918_2020_1757712
crossref_primary_10_1080_03610926_2024_2383646
crossref_primary_10_1016_j_jkss_2018_09_001
crossref_primary_10_1080_00949655_2020_1750614
Cites_doi 10.1046/j.1523-1755.2002.00076.x
10.1007/BF02517809
10.1214/12-EJS744
10.1016/j.jmva.2011.03.010
10.1017/S0266466606060506
10.1214/07-AOS561
10.1198/jasa.2009.0127
10.1016/j.jmva.2013.10.004
10.1080/02331888.2013.800519
10.1080/01621459.1997.10474001
10.5705/ss.2009.140
10.1016/j.jspi.2008.04.030
10.1080/10485250802226435
10.1016/j.jmva.2012.05.012
10.3150/bj/1137421639
10.1016/j.csda.2014.09.018
10.1080/02331888.2015.1074232
10.1214/08-AOS627
10.1111/j.1467-9469.2005.00450.x
10.1016/j.jspi.2014.03.005
10.1016/j.jmva.2011.06.004
10.1007/978-1-4899-3324-9
10.2307/2346884
10.1214/aos/1176350142
10.1214/009053606000000083
10.1214/09-AOS712
10.1201/9781420010138
10.1198/016214502388618861
10.1214/aos/1017939140
10.1198/jasa.2010.ap08274
10.1214/11-EJS621
10.1007/s10463-012-0391-8
10.1007/978-3-642-57700-0
10.1093/biomet/asp012
10.1080/03610920902846539
10.1016/j.csda.2012.10.001
10.1080/01621459.1998.10474096
10.1111/sjos.12124
10.1007/BF00539840
10.1016/j.jspi.2013.10.004
10.1016/j.jmva.2005.11.005
10.1007/s11749-011-0279-6
10.1007/s10463-012-0371-z
10.1111/1467-9868.00233
10.1093/biomet/asn024
10.1002/jae.1261
10.1214/09-AOS695
10.1214/10-AOS835
ContentType Journal Article
Copyright 2016 The Authors. Statistica Neerlandica © 2016 VVS.
2016 VVS
Copyright_xml – notice: 2016 The Authors. Statistica Neerlandica © 2016 VVS.
– notice: 2016 VVS
DBID BSCLL
AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1111/stan.12089
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9574
EndPage 331
ExternalDocumentID 4211011761
10_1111_stan_12089
STAN12089
ark_67375_WNG_M3ZBDHCZ_1
Genre article
GrantInformation_xml – fundername: National Natural Sciences Foundation of China
  funderid: 11401391
– fundername: Project of Department of Education of Guangdong Province of China
  funderid: 2014KTSCX112
– fundername: National Natural Sciences Foundation of China
  funderid: 11471029
– fundername: Science and Technology Project of Beijing Municipal Education Commission
  funderid: KM201410005010
– fundername: Natural Science Foundation of Beijing Municipality
  funderid: 1142002
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FSPIC
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
U5U
UB1
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
ZZTAW
~IA
~WT
AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4059-118f8732f014dbc5cf88f536a3e226a738cc73216bf65349d68f2bbb6116285e3
IEDL.DBID DR2
ISSN 0039-0402
IngestDate Thu Oct 02 11:13:25 EDT 2025
Sun Jul 13 04:52:17 EDT 2025
Wed Oct 01 05:04:23 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Sun Sep 21 06:24:10 EDT 2025
Sun Sep 21 06:22:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4059-118f8732f014dbc5cf88f536a3e226a738cc73216bf65349d68f2bbb6116285e3
Notes ArticleID:STAN12089
Natural Science Foundation of Beijing Municipality - No. 1142002
National Natural Sciences Foundation of China - No. 11471029
istex:8B5FC66E72D5A0F8F0AA32C03344B706D9023B94
National Natural Sciences Foundation of China - No. 11401391
Project of Department of Education of Guangdong Province of China - No. 2014KTSCX112
Science and Technology Project of Beijing Municipal Education Commission - No. KM201410005010
ark:/67375/WNG-M3ZBDHCZ-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1827760970
PQPubID 30850
PageCount 28
ParticipantIDs proquest_miscellaneous_1845826847
proquest_journals_1827760970
crossref_primary_10_1111_stan_12089
crossref_citationtrail_10_1111_stan_12089
wiley_primary_10_1111_stan_12089_STAN12089
istex_primary_ark_67375_WNG_M3ZBDHCZ_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11
November 2016
2016-11-00
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Statistica Neerlandica
PublicationTitleAlternate Statistica Neerlandica
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Liang H., W. Härdle, and R. J. Carroll (1999), Estimation in a semiparametric partially linear errors-in-variables model, The Annals of Statistics 27, 1519-1535.
Fan J., and J. Zhang (2000), Two-step estimation of functional linear models with applications to longitudinal data, Journal of the Royal Statistical Society Series B-Methodological 62, 303-322.
Nguyen D. V., D. Şentürk, and R. J. Carroll (2008), Covariate-adjusted linear mixed effects model with an application to longitudinal data, Journal of Nonparametric Statistics 20, 459-481.
Silverman B. W. (1986), Density estimation for statistics and data analysis, Monographs on Statistics and Applied Probability, Chapman & Hall, London.
Wang Q.-H., and B.-Y. Jing (2003), Empirical likelihood for partial linear models, Annals of the Institute of Statistical Mathematics 55, 585-595.
Sheil J., and I. O'Muircheartaigh (1977), Algorithm as 106: the distribution of non-negative quadratic forms in normal variables, Applied Statistics 26, 92-98.
Zhang J., Y. Gai, and P. Wu (2013a), Estimation in linear regression models with measurement errors subject to single-indexed distortion, Computational Statistics and Data Analysis 59, 103-120.
Zhang J., X. Wang, Y. Yu, and Y. Gai (2014b), Estimation and variable selection in partial linear single index models with error-prone linear covariates, Statistics 48, 1048-1070.
Huang L.-S., and P. W. Davidson (2010), Analysis of variance and F-tests for partial linear models with applications to environmental health data, Journal of the American Statistical Association 105, 991-1004.
Li G., L. Xue, and H. Lian (2011), Semi-varying coefficient models with a diverging number of components, Journal of Multivariate Analysis 102, 1166-1174.
Zhang J., Z. Feng, and B. Zhou (2014a), A revisit to correlation analysis for distortion measurement error data, Journal of Multivariate Analysis 124, 116-129.
Zhang J., G. Li, and Z. Feng (2015), Checking the adequacy for a distortion errors-in-variables parametric regression model, Computational Statistics and Data Analysis 83, 52-64.
Müller P., and S. van de Geer (2015), The partial linear model in high dimensions, Scandinavian Journal of Statistics 42, 580-608.
Zhou Y., and H. Liang (2009), Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates, Annals of Statistics 37, 427-458.
Liu X., L. Wang, and H. Liang (2011), Estimation and variable selection for semiparametric additive partial linear models, Statistica Sinica 21, 1225-1248.
Fan J., and I. Gijbels (1996), Local polynomial modelling and its applications, Chapman & Hall, London.
Liang H., and R. Li (2009), Variable selection for partially linear models with measurement errors, Journal of the American Statistical Association 104, 234-248.
Şentürk D., and D. V. Nguyen (2009), Partial covariate adjusted regression, Journal of Statistical Planning and Inference 139, 454-468.
Carroll R. J., D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu (2006), Nonlinear measurement error models, a modern perspective 2nd edn., Chapman and Hall, New York.
Fan J., and T. Huang (2005), Profile likelihood inferences on semiparametric varying-coefficient partially linear models, Bernoulli 11, 1031-1057.
Li Q., D. Ouyang, and J. S. Racine (2013), Categorical semiparametric varying-coefficient models, Journal of Applied Econometrics 28, 551-579.
Şentürk D., and H.-G. Müller (2009), Covariate-adjusted generalized linear models, Biometrika 96, 357-370.
Bravo F. (2013), Partially linear varying coefficient models with missing at random responses, Annals of the Institute of Statistical Mathematics 65, 721-762.
Mack Y. P., and B. W. Silverman (1982), Weak and strong uniform consistency of kernel regression estimates, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 61, 405-415.
Cui X., W. Guo, L. Lin, and L. Zhu (2009), Covariate-adjusted nonlinear regression, Annals of Statistics 37, 1839-1870.
Zhang J., L. Zhu, and L. Zhu (2012c), On a dimension reduction regression with covariate adjustment, Journal of Multivariate Analysis 104, 39-55.
Stute W., W. González Manteiga, and M. Presedo Quindimil (1998), Bootstrap approximations in model checks for regression, Journal of the American Statistical Association 93, 141-149.
Liang H., S. W. Thurston, D. Ruppert, T. Apanasovich, and R. Hauser (2008), Additive partial linear models with measurement errors, Biometrika 95, 667-678.
Yu Y., and D. Ruppert (2002), Penalized spline estimation for partially linear single-index models, Journal of the American Statistical Association 97, 1042-1054.
Zhang J., L. Zhu, and H. Liang (2012b), Nonlinear models with measurement errors subject to single-indexed distortion, Journal of Multivariate Analysis 112, 1-23.
Zhang J., Y. Yu, B. Zhou, and H. Liang (2014c), Nonlinear measurement errors models subject to additive distortion, Journal of Statistical Planning and Inference 150, 49-65.
Zhang J., T. Wang, L. Zhu, and H. Liang (2012a), A dimension reduction based approach for estimation and variable selection in partially linear single-index models with high-dimensional covariates, Electronic Journal of Statistics 6, 2235-2273.
Zhu L.-X., and K. W. Ng (2003), Checking the adequacy of a partial linear model, Statistica Sinica 13, 763-781.
Şentürk D., and H.-G. Müller (2006), Inference for covariate adjusted regression via varying coefficient models, Annals of Statistics 34, 654-679.
Wei C., and Q. Wang (2012), Statistical inference on restricted partially linear additive errors-in-variables models, Test 21, 757-774.
Härdle W., H. Liang, and J. T. Gao (2000), Partially linear models, Springer Physica, Heidelberg.
Liang H., X. Liu, R. Li, and C. L. Tsai (2010), Estimation and testing for partially linear single-index models, The Annals of Statistics 38, 3811-3836.
Wu C.-F. J. (1986), Jackknife, bootstrap and other resampling methods in regression analysis, Annals of Statistics 14, 1261-1350.
Escanciano J. C. (2006), A consistent diagnostic test for regression models using projections, Econometric Theory 22, 1030-1051.
Yang Y., G. Li, and H. Lian (2016), Nonconcave penalized estimation for partially linear models with longitudinal data, Statistics 50, 43-59.
Kaysen G. A., J. A. Dubin, H.-G. Müller, W. E. Mitch, L. M. Rosales, and Nathan W. Levin the Hemo Study Group (2002), Relationships among inflammation nutrition and physiologic mechanisms establishing albumin levels in hemodialysis patients, Kidney International 61, 2240-2249.
Li F., L. Lin, and X. Cui (2010), Covariate-adjusted partially linear regression models, Communications in Statistics-Theory and Methods 39, 1054-1074.
Wang H. J., Z. Zhu, and J. Zhou (2009), Quantile regression in partially linear varying coefficient models, Annals of Statistics 37, 3841-3866.
Şentürk D., and H.-G. Müller (2005), Covariate adjusted correlation analysis via varying coefficient models, Scandinavian Journal of Statistics 32, 365-383.
Carroll R. J., J. Q. Fan, I. Gijbels, and M. P. Wand (1997), Generalized partially linear single-index models, Journal of the American Statistical Association 92, 477-489.
Wang J.-L., L. Xue, L. Zhu, and Y. S. Chong (2010), Estimation for a partial-linear single-index model, The Annals of Statistics 38, 246-274.
He H., W. Tang, and G. Zuo (2014), Statistical inference in the partial linear models with the double smoothing local linear regression method, Journal of Statistical Planning and Inference 146, 102-112.
Zhang J., Y. Yu, L. Zhu, and H. Liang (2013b), Partial linear single index models with distortion measurement errors, Annals of the Institute of Statistical Mathematics 65, 237-267.
Wang L., L. D. Brown, and T. T. Cai (2011), A difference based approach to the semiparametric partial linear model, Electronic Journal of Statistics 5, 619-641.
2010; 38
2006; 97
2013; 28
2006; 34
1977; 26
2013; 65
2002; 97
2014b; 48
2010; 105
2013a; 59
2010; 39
2014c; 150
1999; 27
1986; 14
2012c; 104
2003; 13
1996
2006
2016; 50
2008; 95
2011; 5
2003; 55
2009; 139
2012a; 6
2011; 102
2009; 96
1997; 92
2013b; 65
2000
2002; 61
1982; 61
2006; 22
2015; 83
2015; 42
2012b; 112
2000; 62
1986
2014a; 124
2011; 21
2005; 32
2008; 20
1998; 93
2005; 11
2012; 21
2009; 37
2009; 104
2014; 146
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Zhu L.‐X. (e_1_2_8_51_1) 2003; 13
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Fan J. (e_1_2_8_7_1) 1996
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – reference: Carroll R. J., D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu (2006), Nonlinear measurement error models, a modern perspective 2nd edn., Chapman and Hall, New York.
– reference: Cui X., W. Guo, L. Lin, and L. Zhu (2009), Covariate-adjusted nonlinear regression, Annals of Statistics 37, 1839-1870.
– reference: Zhang J., Y. Yu, B. Zhou, and H. Liang (2014c), Nonlinear measurement errors models subject to additive distortion, Journal of Statistical Planning and Inference 150, 49-65.
– reference: Fan J., and I. Gijbels (1996), Local polynomial modelling and its applications, Chapman & Hall, London.
– reference: Silverman B. W. (1986), Density estimation for statistics and data analysis, Monographs on Statistics and Applied Probability, Chapman & Hall, London.
– reference: Zhou Y., and H. Liang (2009), Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates, Annals of Statistics 37, 427-458.
– reference: Li G., L. Xue, and H. Lian (2011), Semi-varying coefficient models with a diverging number of components, Journal of Multivariate Analysis 102, 1166-1174.
– reference: Wang H. J., Z. Zhu, and J. Zhou (2009), Quantile regression in partially linear varying coefficient models, Annals of Statistics 37, 3841-3866.
– reference: Mack Y. P., and B. W. Silverman (1982), Weak and strong uniform consistency of kernel regression estimates, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 61, 405-415.
– reference: Şentürk D., and D. V. Nguyen (2009), Partial covariate adjusted regression, Journal of Statistical Planning and Inference 139, 454-468.
– reference: Şentürk D., and H.-G. Müller (2009), Covariate-adjusted generalized linear models, Biometrika 96, 357-370.
– reference: Yang Y., G. Li, and H. Lian (2016), Nonconcave penalized estimation for partially linear models with longitudinal data, Statistics 50, 43-59.
– reference: Escanciano J. C. (2006), A consistent diagnostic test for regression models using projections, Econometric Theory 22, 1030-1051.
– reference: Liang H., X. Liu, R. Li, and C. L. Tsai (2010), Estimation and testing for partially linear single-index models, The Annals of Statistics 38, 3811-3836.
– reference: Liang H., S. W. Thurston, D. Ruppert, T. Apanasovich, and R. Hauser (2008), Additive partial linear models with measurement errors, Biometrika 95, 667-678.
– reference: Şentürk D., and H.-G. Müller (2006), Inference for covariate adjusted regression via varying coefficient models, Annals of Statistics 34, 654-679.
– reference: Li F., L. Lin, and X. Cui (2010), Covariate-adjusted partially linear regression models, Communications in Statistics-Theory and Methods 39, 1054-1074.
– reference: Li Q., D. Ouyang, and J. S. Racine (2013), Categorical semiparametric varying-coefficient models, Journal of Applied Econometrics 28, 551-579.
– reference: Sheil J., and I. O'Muircheartaigh (1977), Algorithm as 106: the distribution of non-negative quadratic forms in normal variables, Applied Statistics 26, 92-98.
– reference: Yu Y., and D. Ruppert (2002), Penalized spline estimation for partially linear single-index models, Journal of the American Statistical Association 97, 1042-1054.
– reference: Carroll R. J., J. Q. Fan, I. Gijbels, and M. P. Wand (1997), Generalized partially linear single-index models, Journal of the American Statistical Association 92, 477-489.
– reference: Kaysen G. A., J. A. Dubin, H.-G. Müller, W. E. Mitch, L. M. Rosales, and Nathan W. Levin the Hemo Study Group (2002), Relationships among inflammation nutrition and physiologic mechanisms establishing albumin levels in hemodialysis patients, Kidney International 61, 2240-2249.
– reference: Şentürk D., and H.-G. Müller (2005), Covariate adjusted correlation analysis via varying coefficient models, Scandinavian Journal of Statistics 32, 365-383.
– reference: Nguyen D. V., D. Şentürk, and R. J. Carroll (2008), Covariate-adjusted linear mixed effects model with an application to longitudinal data, Journal of Nonparametric Statistics 20, 459-481.
– reference: Bravo F. (2013), Partially linear varying coefficient models with missing at random responses, Annals of the Institute of Statistical Mathematics 65, 721-762.
– reference: He H., W. Tang, and G. Zuo (2014), Statistical inference in the partial linear models with the double smoothing local linear regression method, Journal of Statistical Planning and Inference 146, 102-112.
– reference: Fan J., and J. Zhang (2000), Two-step estimation of functional linear models with applications to longitudinal data, Journal of the Royal Statistical Society Series B-Methodological 62, 303-322.
– reference: Liu X., L. Wang, and H. Liang (2011), Estimation and variable selection for semiparametric additive partial linear models, Statistica Sinica 21, 1225-1248.
– reference: Härdle W., H. Liang, and J. T. Gao (2000), Partially linear models, Springer Physica, Heidelberg.
– reference: Zhang J., Z. Feng, and B. Zhou (2014a), A revisit to correlation analysis for distortion measurement error data, Journal of Multivariate Analysis 124, 116-129.
– reference: Zhang J., X. Wang, Y. Yu, and Y. Gai (2014b), Estimation and variable selection in partial linear single index models with error-prone linear covariates, Statistics 48, 1048-1070.
– reference: Fan J., and T. Huang (2005), Profile likelihood inferences on semiparametric varying-coefficient partially linear models, Bernoulli 11, 1031-1057.
– reference: Wang L., L. D. Brown, and T. T. Cai (2011), A difference based approach to the semiparametric partial linear model, Electronic Journal of Statistics 5, 619-641.
– reference: Wu C.-F. J. (1986), Jackknife, bootstrap and other resampling methods in regression analysis, Annals of Statistics 14, 1261-1350.
– reference: Zhang J., Y. Yu, L. Zhu, and H. Liang (2013b), Partial linear single index models with distortion measurement errors, Annals of the Institute of Statistical Mathematics 65, 237-267.
– reference: Zhang J., G. Li, and Z. Feng (2015), Checking the adequacy for a distortion errors-in-variables parametric regression model, Computational Statistics and Data Analysis 83, 52-64.
– reference: Zhu L.-X., and K. W. Ng (2003), Checking the adequacy of a partial linear model, Statistica Sinica 13, 763-781.
– reference: Wang Q.-H., and B.-Y. Jing (2003), Empirical likelihood for partial linear models, Annals of the Institute of Statistical Mathematics 55, 585-595.
– reference: Zhang J., Y. Gai, and P. Wu (2013a), Estimation in linear regression models with measurement errors subject to single-indexed distortion, Computational Statistics and Data Analysis 59, 103-120.
– reference: Zhang J., T. Wang, L. Zhu, and H. Liang (2012a), A dimension reduction based approach for estimation and variable selection in partially linear single-index models with high-dimensional covariates, Electronic Journal of Statistics 6, 2235-2273.
– reference: Zhang J., L. Zhu, and L. Zhu (2012c), On a dimension reduction regression with covariate adjustment, Journal of Multivariate Analysis 104, 39-55.
– reference: Wei C., and Q. Wang (2012), Statistical inference on restricted partially linear additive errors-in-variables models, Test 21, 757-774.
– reference: Zhang J., L. Zhu, and H. Liang (2012b), Nonlinear models with measurement errors subject to single-indexed distortion, Journal of Multivariate Analysis 112, 1-23.
– reference: Stute W., W. González Manteiga, and M. Presedo Quindimil (1998), Bootstrap approximations in model checks for regression, Journal of the American Statistical Association 93, 141-149.
– reference: Müller P., and S. van de Geer (2015), The partial linear model in high dimensions, Scandinavian Journal of Statistics 42, 580-608.
– reference: Liang H., and R. Li (2009), Variable selection for partially linear models with measurement errors, Journal of the American Statistical Association 104, 234-248.
– reference: Huang L.-S., and P. W. Davidson (2010), Analysis of variance and F-tests for partial linear models with applications to environmental health data, Journal of the American Statistical Association 105, 991-1004.
– reference: Liang H., W. Härdle, and R. J. Carroll (1999), Estimation in a semiparametric partially linear errors-in-variables model, The Annals of Statistics 27, 1519-1535.
– reference: Wang J.-L., L. Xue, L. Zhu, and Y. S. Chong (2010), Estimation for a partial-linear single-index model, The Annals of Statistics 38, 246-274.
– volume: 48
  start-page: 1048
  year: 2014b
  end-page: 1070
  article-title: Estimation and variable selection in partial linear single index models with error‐prone linear covariates
  publication-title: Statistics
– volume: 61
  start-page: 405
  year: 1982
  end-page: 415
  article-title: Weak and strong uniform consistency of kernel regression estimates
  publication-title: Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete
– volume: 105
  start-page: 991
  year: 2010
  end-page: 1004
  article-title: Analysis of variance and F‐tests for partial linear models with applications to environmental health data
  publication-title: Journal of the American Statistical Association
– volume: 21
  start-page: 757
  year: 2012
  end-page: 774
  article-title: Statistical inference on restricted partially linear additive errors‐in‐variables models
  publication-title: Test
– volume: 37
  start-page: 3841
  year: 2009
  end-page: 3866
  article-title: Quantile regression in partially linear varying coefficient models
  publication-title: Annals of Statistics
– volume: 39
  start-page: 1054
  year: 2010
  end-page: 1074
  article-title: Covariate‐adjusted partially linear regression models
  publication-title: Communications in Statistics‐Theory and Methods
– volume: 20
  start-page: 459
  year: 2008
  end-page: 481
  article-title: Covariate‐adjusted linear mixed effects model with an application to longitudinal data
  publication-title: Journal of Nonparametric Statistics
– volume: 96
  start-page: 357
  year: 2009
  end-page: 370
  article-title: Covariate‐adjusted generalized linear models
  publication-title: Biometrika
– volume: 32
  start-page: 365
  year: 2005
  end-page: 383
  article-title: Covariate adjusted correlation analysis via varying coefficient models
  publication-title: Scandinavian Journal of Statistics
– volume: 97
  start-page: 1162
  year: 2006
  end-page: 1184
– volume: 5
  start-page: 619
  year: 2011
  end-page: 641
  article-title: A difference based approach to the semiparametric partial linear model
  publication-title: Electronic Journal of Statistics
– volume: 22
  start-page: 1030
  year: 2006
  end-page: 1051
  article-title: A consistent diagnostic test for regression models using projections
  publication-title: Econometric Theory
– volume: 102
  start-page: 1166
  year: 2011
  end-page: 1174
  article-title: Semi‐varying coefficient models with a diverging number of components
  publication-title: Journal of Multivariate Analysis
– year: 1986
– volume: 37
  start-page: 1839
  year: 2009
  end-page: 1870
  article-title: Covariate‐adjusted nonlinear regression
  publication-title: Annals of Statistics
– volume: 34
  start-page: 654
  year: 2006
  end-page: 679
  article-title: Inference for covariate adjusted regression via varying coefficient models
  publication-title: Annals of Statistics
– volume: 92
  start-page: 477
  year: 1997
  end-page: 489
  article-title: Generalized partially linear single‐index models
  publication-title: Journal of the American Statistical Association
– volume: 62
  start-page: 303
  year: 2000
  end-page: 322
  article-title: Two‐step estimation of functional linear models with applications to longitudinal data
  publication-title: Journal of the Royal Statistical Society Series B‐Methodological
– volume: 6
  start-page: 2235
  year: 2012a
  end-page: 2273
  article-title: A dimension reduction based approach for estimation and variable selection in partially linear single‐index models with high‐dimensional covariates
  publication-title: Electronic Journal of Statistics
– volume: 124
  start-page: 116
  year: 2014a
  end-page: 129
  article-title: A revisit to correlation analysis for distortion measurement error data
  publication-title: Journal of Multivariate Analysis
– volume: 28
  start-page: 551
  year: 2013
  end-page: 579
  article-title: Categorical semiparametric varying‐coefficient models
  publication-title: Journal of Applied Econometrics
– volume: 150
  start-page: 49
  year: 2014c
  end-page: 65
  article-title: Nonlinear measurement errors models subject to additive distortion
  publication-title: Journal of Statistical Planning and Inference
– volume: 37
  start-page: 427
  year: 2009
  end-page: 458
  article-title: Statistical inference for semiparametric varying‐coefficient partially linear models with error‐prone linear covariates
  publication-title: Annals of Statistics
– volume: 11
  start-page: 1031
  year: 2005
  end-page: 1057
  article-title: Profile likelihood inferences on semiparametric varying‐coefficient partially linear models
  publication-title: Bernoulli
– volume: 50
  start-page: 43
  year: 2016
  end-page: 59
  article-title: Nonconcave penalized estimation for partially linear models with longitudinal data
  publication-title: Statistics
– volume: 14
  start-page: 1261
  year: 1986
  end-page: 1350
  article-title: Jackknife, bootstrap and other resampling methods in regression analysis
  publication-title: Annals of Statistics
– volume: 26
  start-page: 92
  year: 1977
  end-page: 98
  article-title: Algorithm as 106: the distribution of non‐negative quadratic forms in normal variables
  publication-title: Applied Statistics
– volume: 112
  start-page: 1
  year: 2012b
  end-page: 23
  article-title: Nonlinear models with measurement errors subject to single‐indexed distortion
  publication-title: Journal of Multivariate Analysis
– volume: 61
  start-page: 2240
  year: 2002
  end-page: 2249
  article-title: Relationships among inflammation nutrition and physiologic mechanisms establishing albumin levels in hemodialysis patients
  publication-title: Kidney International
– volume: 104
  start-page: 39
  year: 2012c
  end-page: 55
  article-title: On a dimension reduction regression with covariate adjustment
  publication-title: Journal of Multivariate Analysis
– volume: 59
  start-page: 103
  year: 2013a
  end-page: 120
  article-title: Estimation in linear regression models with measurement errors subject to single‐indexed distortion
  publication-title: Computational Statistics and Data Analysis
– volume: 93
  start-page: 141
  year: 1998
  end-page: 149
  article-title: Bootstrap approximations in model checks for regression
  publication-title: Journal of the American Statistical Association
– volume: 83
  start-page: 52
  year: 2015
  end-page: 64
  article-title: Checking the adequacy for a distortion errors‐in‐variables parametric regression model
  publication-title: Computational Statistics and Data Analysis
– volume: 55
  start-page: 585
  year: 2003
  end-page: 595
  article-title: Empirical likelihood for partial linear models
  publication-title: Annals of the Institute of Statistical Mathematics
– year: 1996
– year: 2000
– volume: 104
  start-page: 234
  year: 2009
  end-page: 248
  article-title: Variable selection for partially linear models with measurement errors
  publication-title: Journal of the American Statistical Association
– volume: 97
  start-page: 1042
  year: 2002
  end-page: 1054
  article-title: Penalized spline estimation for partially linear single‐index models
  publication-title: Journal of the American Statistical Association
– volume: 13
  start-page: 763
  year: 2003
  end-page: 781
  article-title: Checking the adequacy of a partial linear model
  publication-title: Statistica Sinica
– volume: 21
  start-page: 1225
  year: 2011
  end-page: 1248
  article-title: Estimation and variable selection for semiparametric additive partial linear models
  publication-title: Statistica Sinica
– volume: 95
  start-page: 667
  year: 2008
  end-page: 678
  article-title: Additive partial linear models with measurement errors
  publication-title: Biometrika
– volume: 27
  start-page: 1519
  year: 1999
  end-page: 1535
  article-title: Estimation in a semiparametric partially linear errors‐in‐variables model
  publication-title: The Annals of Statistics
– volume: 38
  start-page: 3811
  year: 2010
  end-page: 3836
  article-title: Estimation and testing for partially linear single‐index models
  publication-title: The Annals of Statistics
– volume: 65
  start-page: 237
  year: 2013b
  end-page: 267
  article-title: Partial linear single index models with distortion measurement errors
  publication-title: Annals of the Institute of Statistical Mathematics
– volume: 42
  start-page: 580
  year: 2015
  end-page: 608
  article-title: The partial linear model in high dimensions
  publication-title: Scandinavian Journal of Statistics
– year: 2006
– volume: 139
  start-page: 454
  year: 2009
  end-page: 468
  article-title: Partial covariate adjusted regression
  publication-title: Journal of Statistical Planning and Inference
– volume: 146
  start-page: 102
  year: 2014
  end-page: 112
  article-title: Statistical inference in the partial linear models with the double smoothing local linear regression method
  publication-title: Journal of Statistical Planning and Inference
– volume: 38
  start-page: 246
  year: 2010
  end-page: 274
  article-title: Estimation for a partial‐linear single‐index model
  publication-title: The Annals of Statistics
– volume: 65
  start-page: 721
  year: 2013
  end-page: 762
  article-title: Partially linear varying coefficient models with missing at random responses
  publication-title: Annals of the Institute of Statistical Mathematics
– ident: e_1_2_8_13_1
  doi: 10.1046/j.1523-1755.2002.00076.x
– ident: e_1_2_8_32_1
  doi: 10.1007/BF02517809
– ident: e_1_2_8_41_1
  doi: 10.1214/12-EJS744
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jmva.2011.03.010
– ident: e_1_2_8_6_1
  doi: 10.1017/S0266466606060506
– ident: e_1_2_8_50_1
  doi: 10.1214/07-AOS561
– ident: e_1_2_8_17_1
  doi: 10.1198/jasa.2009.0127
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jmva.2013.10.004
– ident: e_1_2_8_47_1
  doi: 10.1080/02331888.2013.800519
– ident: e_1_2_8_3_1
  doi: 10.1080/01621459.1997.10474001
– ident: e_1_2_8_21_1
  doi: 10.5705/ss.2009.140
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jspi.2008.04.030
– ident: e_1_2_8_24_1
  doi: 10.1080/10485250802226435
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jmva.2012.05.012
– ident: e_1_2_8_8_1
  doi: 10.3150/bj/1137421639
– ident: e_1_2_8_49_1
  doi: 10.1016/j.csda.2014.09.018
– ident: e_1_2_8_39_1
  doi: 10.1080/02331888.2015.1074232
– ident: e_1_2_8_5_1
  doi: 10.1214/08-AOS627
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1467-9469.2005.00450.x
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jspi.2014.03.005
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jmva.2011.06.004
– ident: e_1_2_8_30_1
  doi: 10.1007/978-1-4899-3324-9
– ident: e_1_2_8_29_1
  doi: 10.2307/2346884
– ident: e_1_2_8_37_1
  doi: 10.1214/aos/1176350142
– ident: e_1_2_8_26_1
  doi: 10.1214/009053606000000083
– volume-title: Local polynomial modelling and its applications
  year: 1996
  ident: e_1_2_8_7_1
– ident: e_1_2_8_34_1
  doi: 10.1214/09-AOS712
– ident: e_1_2_8_4_1
  doi: 10.1201/9781420010138
– ident: e_1_2_8_40_1
  doi: 10.1198/016214502388618861
– ident: e_1_2_8_18_1
  doi: 10.1214/aos/1017939140
– ident: e_1_2_8_12_1
  doi: 10.1198/jasa.2010.ap08274
– ident: e_1_2_8_35_1
  doi: 10.1214/11-EJS621
– ident: e_1_2_8_2_1
  doi: 10.1007/s10463-012-0391-8
– ident: e_1_2_8_10_1
  doi: 10.1007/978-3-642-57700-0
– ident: e_1_2_8_27_1
  doi: 10.1093/biomet/asp012
– ident: e_1_2_8_14_1
  doi: 10.1080/03610920902846539
– ident: e_1_2_8_44_1
  doi: 10.1016/j.csda.2012.10.001
– volume: 13
  start-page: 763
  year: 2003
  ident: e_1_2_8_51_1
  article-title: Checking the adequacy of a partial linear model
  publication-title: Statistica Sinica
– ident: e_1_2_8_31_1
  doi: 10.1080/01621459.1998.10474096
– ident: e_1_2_8_23_1
  doi: 10.1111/sjos.12124
– ident: e_1_2_8_22_1
  doi: 10.1007/BF00539840
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jspi.2013.10.004
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jmva.2005.11.005
– ident: e_1_2_8_36_1
  doi: 10.1007/s11749-011-0279-6
– ident: e_1_2_8_45_1
  doi: 10.1007/s10463-012-0371-z
– ident: e_1_2_8_9_1
  doi: 10.1111/1467-9868.00233
– ident: e_1_2_8_19_1
  doi: 10.1093/biomet/asn024
– ident: e_1_2_8_16_1
  doi: 10.1002/jae.1261
– ident: e_1_2_8_33_1
  doi: 10.1214/09-AOS695
– ident: e_1_2_8_20_1
  doi: 10.1214/10-AOS835
SSID ssj0017946
Score 2.1635168
Snippet We consider the estimation and hypothesis testing problems for the partial linear regression models when some variables are distorted with errors by some...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 304
SubjectTerms Asymptotic properties
Bootstrap method
bootstrap procedure
Distortion
distortion measurement errors
Errors
Estimating techniques
Estimators
Hypotheses
Hypothesis testing
Least squares method
local linear smoothing
Mathematical models
Measurement errors
Regression
Regression analysis
restricted estimator
Statistical inference
Statistical tests
Statistics
Studies
Title Statistical inference on restricted partial linear regression models with partial distortion measurement errors
URI https://api.istex.fr/ark:/67375/WNG-M3ZBDHCZ-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fstan.12089
https://www.proquest.com/docview/1827760970
https://www.proquest.com/docview/1845826847
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-9574
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0017946
  issn: 0039-0402
  databaseCode: ABDBF
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1467-9574
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0017946
  issn: 0039-0402
  databaseCode: AMVHM
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0039-0402
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-9574
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017946
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5EX3zxFutFRREUumybbZqCL96L4D54oAgSkrQVUVrp7oL4651Jt_VABH1rmSmkSSb5ZjLzBWCrnSjdCUzqRTG6qx2FYxEnWnhKEYlhhoAjpuLk8x7vXnfObsPbMdira2Eqfogm4EaWYddrMnCl-5-MnMBTyw_agqr3fMatP3XRcEfRROMVJyNF_ymNZ7ZO4_n49MtuNEEd-_oFan4GrHbHOZmG-7qtVaLJU2s40C3z9o3G8b8_MwNTIyjq7ldzZxbG0nwOJgl9VuTN81A0L6j3WJcGukXu0o0euIIiXHVfaPKhnBqhSpQ8VKm1uWtv2em7FOpttBJLSzKw4o_wpJuWZVH2F-D65PjqsOuNbmjwDAK92EPvJBMRCzJ0tBJtQpMJkYWMK5YirFMRE8ag2Oc64yHrxAkXWaC15r5PpZspW4TxvMjTJXBVhLuk0IguE0KZStA5W-gnhgXKD4LEgZ16pKQZ0ZfTLRrPsnZjqA-l7UMHNhvdl4q040etbTvgjYoqnyjNLQrlTe9UnrO7g6Pu4Z30HVitZ4QcWXhfol8WRbwdR20HNhox2iYduKg8LYakQ6eSHAGAA7t2-H9pjry82u_Zp-W_KK_AJGI4XpVHrsL4oByma4iTBnrd2sM7Z34QGA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOJRLCwVEeAaBKlEpq83LcY7LAl0Ku4d2EYiLZTtJVVElKLsrVfx6ZpwHDyGk9pZoJlJie-JvxjPfABx2E6kCT6dOFKO7GkicizhR3JGSSAwzBBwxFScPR2xwFXy_CW_q3Byqhan4IdqAG1mG-V-TgVNA-pmVE3rquF6Xx_OwGDB0VAgT_WjZo2ipsYqVkeL_lMiz0iTyPD37Yj9apKH9-wJsPoesZs85-1Q1Vp0YqkJKNbnrzKaqox9eETn-9-csw8cajdq9avmswFyaf4YlAqAVf_MqFO0N6v1uqgPtIrepqQf-RBGx2ve0_lBObyFLlPyqsmtz2zTamdgU7W21EsNMMjXipwilnZZlUU7W4OrsdNwfOHWTBkcj1osddFAyHvlehr5WonSoM86z0GfSTxHZycjnWqPYZSpjoR_ECeOZp5RirkvVm6m_Dgt5kacbYMsIN0quEGAmBDQlp6O20E2070nX8xILjpqpErpmMKdGGn9E48nQGAozhhYctLr3FW_Hm1pfzIy3KrK8o0y3KBTXo29i6N8enwz6t8K1YLtZEqI28olA1yyKWDeOuhbst2I0TzpzkXlazEiHDiYZYgALvpr5f-d1xM9xb2SuNv9FeQ8-DMbDS3F5PrrYgiWEdKyqltyGhWk5S3cQNk3VrjGOR2NyFDk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB7aBEpekqYHcZO0Li2FFrysL1l-TLPdbo8sJU1oyIvQ5RBS7MW7C6W_PjPykYNQSN9sZgyypJG-kWa-AXg7NFIlkbZBlqO7mkgci9woHkhJJIYFAo6ckpMPpmxynHw9SU_a2BzKhWn4IfoDN7IMt16TgduZKa5ZOaGnQRgNef4QVpM05xTRNzrs2aNoqrGGlZHO_ymQZ7ML5Ln69sZ-tEpd--cG2LwOWd2eM95oCqvOHVUhhZpcDJYLNdB_bxE5_vfvPIb1Fo36e8302YQHtnwCawRAG_7mp1D1L6h33mUH-lXpU1EPXEQRsfozmn8op1bIGiVnTXRt6btCO3OfTnt7LeOYSRZOfHVC6du6rur5MzgefzranwRtkYZAI9bLA3RQCp7FUYG-llE61QXnRRozGVtEdjKLudYoDpkqWBonuWG8iJRSLAwpe9PGz2GlrEq7Bb7McKPkCgGmIaApOV21paHRcSTDKDIevO-GSuiWwZwKafwWnSdDfShcH3rwptedNbwdd2q9cyPeq8j6giLdslT8mn4WB_Hpx9Fk_1SEHux0U0K0Rj4X6JplGRvm2dCD170YzZPuXGRpqyXp0MUkQwzgwQc3_v9ojvh5tDd1Ty_uo_wKHv0YjcX3L9Nv27CGiI41yZI7sLKol3YXUdNCvXS2cQnwwBO9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+inference+on+restricted+partial+linear+regression+models+with+partial+distortion+measurement+errors&rft.jtitle=Statistica+Neerlandica&rft.au=Zhang%2C+Jun&rft.au=Zhou%2C+Nanguang&rft.au=Sun%2C+Zipeng&rft.au=Li%2C+Gaorong&rft.date=2016-11-01&rft.issn=0039-0402&rft.eissn=1467-9574&rft.volume=70&rft.issue=4&rft.spage=304&rft.epage=331&rft_id=info:doi/10.1111%2Fstan.12089&rft.externalDBID=10.1111%252Fstan.12089&rft.externalDocID=STAN12089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-0402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-0402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-0402&client=summon