EMG analysis across different tasks improves prevention screenings in diabetes: a cluster analysis approach

The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography (sEMG) to classify diabetic subjects with and without neuropathy and discriminate them from healthy controls and second to assess the role of the task acquired in the classification pr...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 60; no. 6; pp. 1659 - 1673
Main Authors Piatkowska, Weronika, Spolaor, Fabiola, Guiotto, Annamaria, Guarneri, Gabriella, Avogaro, Angelo, Sawacha, Zimi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-022-02559-3

Cover

Abstract The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography (sEMG) to classify diabetic subjects with and without neuropathy and discriminate them from healthy controls and second to assess the role of the task acquired in the classification process. For this purpose 30 subjects were examined (10 controls, 10 diabetics with and 10 without neuropathy) whilst walking and stair ascending and descending. The electrical activity of six muscles was recorded bilaterally through a 16-channel sEMG system synchronised with a stereophotogrammetric system: Rectus Femoris, Gluteus Medius, Tibialis Anterior, Peroneus Longus, Gastrocnemius Lateralis and Extensor Digitorum. Spatiotemporal parameters of gait and stair climbing and the following sEMG parameters were extracted: signal envelope, activity duration, timing of activation and deactivation. A hierarchical clustering algorithm was applied to the whole set of parameters with different distances and linkage methods. Results showed that only by applying the Ward agglomerative hierarchical clustering (Hamming distance) to the all set of parameters extracted from both tasks, 5 well-separated clusters were obtained: cluster 3 included only DS subjects, cluster 2 and 4 only controls and cluster 1 and 5 only DNS subjects. This method could be used for planning rehabilitation treatments. Graphical abstract
AbstractList Abstract The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography (sEMG) to classify diabetic subjects with and without neuropathy and discriminate them from healthy controls and second to assess the role of the task acquired in the classification process. For this purpose 30 subjects were examined (10 controls, 10 diabetics with and 10 without neuropathy) whilst walking and stair ascending and descending. The electrical activity of six muscles was recorded bilaterally through a 16-channel sEMG system synchronised with a stereophotogrammetric system: Rectus Femoris, Gluteus Medius, Tibialis Anterior, Peroneus Longus, Gastrocnemius Lateralis and Extensor Digitorum. Spatiotemporal parameters of gait and stair climbing and the following sEMG parameters were extracted: signal envelope, activity duration, timing of activation and deactivation. A hierarchical clustering algorithm was applied to the whole set of parameters with different distances and linkage methods. Results showed that only by applying the Ward agglomerative hierarchical clustering (Hamming distance) to the all set of parameters extracted from both tasks, 5 well-separated clusters were obtained: cluster 3 included only DS subjects, cluster 2 and 4 only controls and cluster 1 and 5 only DNS subjects. This method could be used for planning rehabilitation treatments.
The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography (sEMG) to classify diabetic subjects with and without neuropathy and discriminate them from healthy controls and second to assess the role of the task acquired in the classification process. For this purpose 30 subjects were examined (10 controls, 10 diabetics with and 10 without neuropathy) whilst walking and stair ascending and descending. The electrical activity of six muscles was recorded bilaterally through a 16-channel sEMG system synchronised with a stereophotogrammetric system: Rectus Femoris, Gluteus Medius, Tibialis Anterior, Peroneus Longus, Gastrocnemius Lateralis and Extensor Digitorum. Spatiotemporal parameters of gait and stair climbing and the following sEMG parameters were extracted: signal envelope, activity duration, timing of activation and deactivation. A hierarchical clustering algorithm was applied to the whole set of parameters with different distances and linkage methods. Results showed that only by applying the Ward agglomerative hierarchical clustering (Hamming distance) to the all set of parameters extracted from both tasks, 5 well-separated clusters were obtained: cluster 3 included only DS subjects, cluster 2 and 4 only controls and cluster 1 and 5 only DNS subjects. This method could be used for planning rehabilitation treatments. Graphical abstract
The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography (sEMG) to classify diabetic subjects with and without neuropathy and discriminate them from healthy controls and second to assess the role of the task acquired in the classification process. For this purpose 30 subjects were examined (10 controls, 10 diabetics with and 10 without neuropathy) whilst walking and stair ascending and descending. The electrical activity of six muscles was recorded bilaterally through a 16-channel sEMG system synchronised with a stereophotogrammetric system: Rectus Femoris, Gluteus Medius, Tibialis Anterior, Peroneus Longus, Gastrocnemius Lateralis and Extensor Digitorum. Spatiotemporal parameters of gait and stair climbing and the following sEMG parameters were extracted: signal envelope, activity duration, timing of activation and deactivation. A hierarchical clustering algorithm was applied to the whole set of parameters with different distances and linkage methods. Results showed that only by applying the Ward agglomerative hierarchical clustering (Hamming distance) to the all set of parameters extracted from both tasks, 5 well-separated clusters were obtained: cluster 3 included only DS subjects, cluster 2 and 4 only controls and cluster 1 and 5 only DNS subjects. This method could be used for planning rehabilitation treatments.
The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography (sEMG) to classify diabetic subjects with and without neuropathy and discriminate them from healthy controls and second to assess the role of the task acquired in the classification process. For this purpose 30 subjects were examined (10 controls, 10 diabetics with and 10 without neuropathy) whilst walking and stair ascending and descending. The electrical activity of six muscles was recorded bilaterally through a 16-channel sEMG system synchronised with a stereophotogrammetric system: Rectus Femoris, Gluteus Medius, Tibialis Anterior, Peroneus Longus, Gastrocnemius Lateralis and Extensor Digitorum. Spatiotemporal parameters of gait and stair climbing and the following sEMG parameters were extracted: signal envelope, activity duration, timing of activation and deactivation. A hierarchical clustering algorithm was applied to the whole set of parameters with different distances and linkage methods. Results showed that only by applying the Ward agglomerative hierarchical clustering (Hamming distance) to the all set of parameters extracted from both tasks, 5 well-separated clusters were obtained: cluster 3 included only DS subjects, cluster 2 and 4 only controls and cluster 1 and 5 only DNS subjects. This method could be used for planning rehabilitation treatments.The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography (sEMG) to classify diabetic subjects with and without neuropathy and discriminate them from healthy controls and second to assess the role of the task acquired in the classification process. For this purpose 30 subjects were examined (10 controls, 10 diabetics with and 10 without neuropathy) whilst walking and stair ascending and descending. The electrical activity of six muscles was recorded bilaterally through a 16-channel sEMG system synchronised with a stereophotogrammetric system: Rectus Femoris, Gluteus Medius, Tibialis Anterior, Peroneus Longus, Gastrocnemius Lateralis and Extensor Digitorum. Spatiotemporal parameters of gait and stair climbing and the following sEMG parameters were extracted: signal envelope, activity duration, timing of activation and deactivation. A hierarchical clustering algorithm was applied to the whole set of parameters with different distances and linkage methods. Results showed that only by applying the Ward agglomerative hierarchical clustering (Hamming distance) to the all set of parameters extracted from both tasks, 5 well-separated clusters were obtained: cluster 3 included only DS subjects, cluster 2 and 4 only controls and cluster 1 and 5 only DNS subjects. This method could be used for planning rehabilitation treatments.
Author Guarneri, Gabriella
Guiotto, Annamaria
Avogaro, Angelo
Spolaor, Fabiola
Sawacha, Zimi
Piatkowska, Weronika
Author_xml – sequence: 1
  givenname: Weronika
  surname: Piatkowska
  fullname: Piatkowska, Weronika
  organization: Department of Information Engineering, University of Padova
– sequence: 2
  givenname: Fabiola
  surname: Spolaor
  fullname: Spolaor, Fabiola
  organization: Department of Information Engineering, University of Padova
– sequence: 3
  givenname: Annamaria
  surname: Guiotto
  fullname: Guiotto, Annamaria
  organization: Department of Information Engineering, University of Padova
– sequence: 4
  givenname: Gabriella
  surname: Guarneri
  fullname: Guarneri, Gabriella
  organization: Department of Clinical Medicine and Metabolic Disease, University Polyclinic
– sequence: 5
  givenname: Angelo
  surname: Avogaro
  fullname: Avogaro, Angelo
  organization: Department of Clinical Medicine and Metabolic Disease, University Polyclinic
– sequence: 6
  givenname: Zimi
  orcidid: 0000-0002-2624-5415
  surname: Sawacha
  fullname: Sawacha, Zimi
  email: zimi.sawacha@dei.unipd.it
  organization: Department of Information Engineering, University of Padova, Department of Medicine, University of Padova
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35428958$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS1URLeFP8ABReLCJTDj2LHDAQlVpSAVcYGz5fVOtm6zTrCTRfvvcboLLT1UHCxL9vtm5r05YUehD8TYS4S3CKDeJUSJqgTO85GyKasnbIFKYAlCiCO2ABRQAqI-ZicpXQNwlFw8Y8eVFFw3Ui_YzfnXi8IG2-2ST4V1sU-pWPm2pUhhLEabblLhN0Pst5SKIdI2P_s-FMlFouDDOn-HTNgljZTeF7Zw3ZRGiveqDhm37uo5e9raLtGLw33Kfnw6_372ubz8dvHl7ONl6QSIsWw16ZWEJZCrERXXVVMjYLvEhjtF4JxrK6mUlYoLJVatbpxAUTfc6hWIpjpl1b7uFAa7-2W7zgzRb2zcGQQzR2f20ZkcnbmNzlSZ-rCnhmm5oZXLPqO9I3vrzb8_wV-Zdb81DagGBOQCbw4FYv9zojSajU-Ous4G6qdkeC2x1kLKudfrB9Lrfoo5r1lVzx4kzKpX9yf6O8qf7WUB3wtu1xap_T-f-gHk_GjnnWZXvnscPQSbcp-wpng39iPUb_rzzwE
CitedBy_id crossref_primary_10_3390_jpm14080884
crossref_primary_10_3390_app13042326
Cites_doi 10.1002/mus.22072
10.1016/s0966-6362(02)00165-0
10.1016/j.gaitpost.2011.08.016
10.1016/0021-9290(88)90282-5
10.1590/S1413-35552012005000048
10.1016/j.mpmed.2014.10.006
10.1109/JBHI.2014.2320408
10.1109/10.661154
10.1016/j.clinbiomech.2007.11.015
10.1016/s0268-0033(03)00043-3
10.1016/B978-0-444-53491-0.00022-5
10.1016/j.medengphy.2011.07.013
10.1177/096228029200100103
10.1089/dia.2014.0284
10.5772/25792
10.1016/j.clinbiomech.2009.07.007
10.1016/j.diabres.2018.02.020
10.1016/j.gaitpost.2020.03.016
10.1016/j.patcog.2005.01.025
10.1007/s11517-008-0369-0
10.1177/193229681000400511
10.1152/japplphysiol.01380.2006
10.2337/diacare.17.11.1281
10.2337/dc14-0955
10.2337/diacare.27.2007.s63
10.1016/s0003-9993(00)90038-8
10.1016/j.jelekin.2016.08.007
10.1016/s0268-0033(02)00007-4
10.1302/0301-620X.49B4.774
10.1186/cc1521
10.1109/ICSTW.2013.52
10.1002/9780470417409.ch3
10.1016/j.artmed.2005.09.002
10.2174/1874943701003010110
10.1109/10.52330
10.1016/j.gaitpost.2006.12.018
10.1016/s0966-6362(98)00042-3
10.1016/s0966-6362(02)00166-2
10.1016/j.eswa.2013.02.006
10.1016/0003-9993(94)90004-3
ContentType Journal Article
Copyright The Author(s) 2022. corrected publication 2022
2022. The Author(s).
The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022, corrected publication 2022
Copyright_xml – notice: The Author(s) 2022. corrected publication 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022, corrected publication 2022
DBID C6C
AAYXX
CITATION
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s11517-022-02559-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database (Proquest)
Biological Science Database (Proquest)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
CrossRef
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 1673
ExternalDocumentID 10.1007/s11517-022-02559-3
PMC9079040
35428958
10_1007_s11517_022_02559_3
Genre Journal Article
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c404t-f8e8d50b0ec611728396101fb192c7e0cccf3577a572474df89c414692a8d0493
IEDL.DBID C6C
ISSN 0140-0118
1741-0444
IngestDate Sun Oct 26 04:17:24 EDT 2025
Tue Sep 30 16:40:14 EDT 2025
Fri Sep 05 09:03:08 EDT 2025
Tue Oct 07 05:38:03 EDT 2025
Wed Feb 19 02:25:40 EST 2025
Wed Oct 01 03:38:01 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Fri Feb 21 02:45:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Diabetic neuropathies
Stair climbing
Electromyography
Clustering
Diabetes mellitus
Gait analysis
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-f8e8d50b0ec611728396101fb192c7e0cccf3577a572474df89c414692a8d0493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2624-5415
OpenAccessLink https://doi.org/10.1007/s11517-022-02559-3
PMID 35428958
PQID 2660493503
PQPubID 54161
PageCount 15
ParticipantIDs unpaywall_primary_10_1007_s11517_022_02559_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9079040
proquest_miscellaneous_2651684553
proquest_journals_2660493503
pubmed_primary_35428958
crossref_primary_10_1007_s11517_022_02559_3
crossref_citationtrail_10_1007_s11517_022_02559_3
springer_journals_10_1007_s11517_022_02559_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SimonsenEBAlkjærTThe variability problem of normal human walkingMed Eng Phys20123421922410.1016/j.medengphy.2011.07.01321852174
KatsisCDGoletsisYLikasAFotiadisDISarmasIA novel method for automated EMG decomposition and MUAP classificationArtif Intell Med20063755641:STN:280:DC%2BD28zis1Gmtg%3D%3D10.1016/j.artmed.2005.09.00216377160
Farjo J, Assi RA, Masri W, Zaraket F (2013) Does principal component analysis improve cluster-based analysis?, in: 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops. Presented at the 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops. 400–403. https://doi.org/10.1109/ICSTW.2013.52
PiconAPSartorCDRoveriMIPássaroACOrtegaNRSaccoICNDiabetic patients with and without peripheral neuropathy reveal different hip and ankle biomechanical strategies during stair descentBraz J Phys Ther20121652853410.1590/S1413-35552012005000048
Bonato P, D’Alessio T, Knaflitz M (1998) A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait. IEEE Trans Biomed Eng 45:287–299. https://doi.org/10.1109/10.661154
BoultonAJMThe diabetic foot Medicine201543333710.1016/j.mpmed.2014.10.006
BasmajianJVBlumensteinRElectrode placement in EMG biofeedback1980Williams & Wilkins
AkashiPMHSaccoICNWatariRHennigEThe effect of diabetic neuropathy and previous foot ulceration in EMG and ground reaction forces during gaitClin Biomech20082358459210.1016/j.clinbiomech.2007.11.015
NeneAMayagoitiaRVeltinkPAssessment of rectus femoris function during initial swing phaseGait Posture19999191:STN:280:DC%2BD3c%2FksFWmsw%3D%3D10.1016/s0966-6362(98)00042-310575064
SaccoICNAmadioACInfluence of the diabetic neuropathy on the behavior of electromyographic and sensorial responses in treadmill gaitClin Biomech (Bristol, Avon)2003184264341:STN:280:DC%2BD3s3ktFSltQ%3D%3D10.1016/s0268-0033(03)00043-3
McFadyenBJWinterDAAn integrated biomechanical analysis of normal stair ascent and descentJ Biomech1988217337441:STN:280:DyaL1M%2FjsVegsA%3D%3D10.1016/0021-9290(88)90282-53182877
HandsakerJCBrownSJBowlingFLCooperGMaganarisCNBoultonAJMReevesNDContributory factors to unsteadiness during walking up and down stairs in patients with diabetic peripheral neuropathyDiabetes Care2014373047305310.2337/dc14-095525315208
Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Pearson: Addison Wesley, Boston
WhiteSGMcNairPJAbdominal and erector spinae muscle activity during gait: the use of cluster analysis to identify patterns of activityClin Biomech (Bristol, Avon)20021717718410.1016/s0268-0033(02)00007-4
MulroySGronleyJWeissWNewsamCPerryJUse of cluster analysis for gait pattern classification of patients in the early and late recovery phases following strokeGait Posture20031811412510.1016/s0966-6362(02)00165-012855307
SpolaorFSawachaZGuarneriGDel DinSAvogaroACobelliCAltered EMG patterns in diabetic neuropathic and not neuropathic patients during step ascending and descendingJ Electromyogr Kinesiol201631323910.1016/j.jelekin.2016.08.00727632533
LeardiniASawachaZPaoliniGIngrossoSNativoRBenedettiMGA new anatomically based protocol for gait analysis in childrenGait Posture20072656057110.1016/j.gaitpost.2006.12.01817291764
SawachaZGuarneriGAvogaroACobelliCA new classification of diabetic gait pattern based on cluster analysis of biomechanical dataJ Diabetes Sci Technol201041127113810.1177/193229681000400511
MuellerMJSinacoreDRHoogstrateSDalyLHip and ankle walking strategies: effect on peak plantar pressures and implications for neuropathic ulcerationArch Phys Med Rehabil199475119612001:STN:280:DyaK2M%2FntVOhsw%3D%3D10.1016/0003-9993(94)90004-37979928
Blanc Y, Dimanico U (2010) Electrode placement in surface electromyography (sEMG) “minimal crosstalk area” (MCA). The Open Rehabilitation Journal 3
JosephJWatsonRTelemetering electromyography of muscles used in walking up and down stairsJ Bone Joint Surg Br1967497747801:STN:280:DyaF1c%2FptFCjsQ%3D%3D10.1302/0301-620X.49B4.774
McLachlanGCluster analysis and related techniques in medical researchStat Methods Med Res1992127481:STN:280:DyaK2c%2FosVCmtQ%3D%3D10.1177/0962280292001001031341650
Clustering (2009) Making sense of data II. John Wiley & Sons, Ltd, pp 67–110. https://doi.org/10.1002/9780470417409.ch3
FeldmanELStevensMJThomasPKBrownMBCanalNGreeneDAA practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathyDiabetes Care199417128112891:STN:280:DyaK2M7itFWmtw%3D%3D10.2337/diacare.17.11.12817821168
MalikOASenanayakeSMNAZaheerDAn intelligent recovery progress evaluation system for ACL reconstructed subjects using integrated 3-D kinematics and EMG featuresIEEE J Biomed Health Inform20151945346310.1109/JBHI.2014.232040824801517
Benedetti MG, Agostini V, Knaflitz M, Bonato P (2012) Muscle activation patterns during level walking and stair ambulation, applications of EMG in clinical and sports medicine. IntechOpen. https://doi.org/10.5772/25792
RoglicGOrganizationWHGlobal report on diabetes2016Geneva, SwitzerlandWorld Health Organization
ChenJJShiaviRTemporal feature extraction and clustering analysis of electromyographic linear envelopes in gait studiesIEEE Trans Biomed Eng1990372953021:STN:280:DyaK3c3ivV2rtg%3D%3D10.1109/10.523302184121
SawachaZGabriellaGCristoferiGGuiottoAAvogaroACobelliCDiabetic gait and posture abnormalities: a biomechanical investigation through three dimensional gait analysisClin Biomech (Bristol, Avon)20092472272810.1016/j.clinbiomech.2009.07.007
VinikAIErbasTDiabetic autonomic neuropathyHandb Clin Neurol201311727929410.1016/B978-0-444-53491-0.00022-524095132
OnoderaANGomesAAPripasDMezzaraneRASaccoICNLower limb electromygraphy and kinematics of neuropathic diabetic patients during real-life activities: Stair negotiationMuscle Nerve20114426927710.1002/mus.2207221698651
LeeSJHidlerJBiomechanics of overground vs. treadmill walking in healthy individualsJ Appl Physiol200810474775510.1152/japplphysiol.01380.200618048582
MatosMMendesRSilvaABSousaNPhysical activity and exercise on diabetic foot related outcomes: a systematic reviewDiabetes Res Clin Pract2018139819010.1016/j.diabres.2018.02.02029477503
MayfieldJAReiberGESandersLJJanisseDPogachLMAssociationADPreventive foot care in diabetesDiabetes Care200427Suppl 1S636410.2337/diacare.27.2007.s6314693928
AntonelliDBaralisEBrunoGCerquitelliTChiusanoSMahotoNAnalysis of diabetic patients through their examination historyExpert Syst Appl2013404672467810.1016/j.eswa.2013.02.006
SawachaZSartorCDYiLCGuiottoASpolaorFSaccoICNClustering classification of diabetic walking abnormalities: a new approach taking into account intralimb coordination patternsGait Posture202079334010.1016/j.gaitpost.2020.03.01632334348
RissanenSMKankaanpääMMeigalATarvainenMPNuutinenJTarkkaIMAiraksinenOKarjalainenPASurface EMG and acceleration signals in Parkinson’s disease: feature extraction and cluster analysisMed Biol Eng Comput20084684985810.1007/s11517-008-0369-018633662
KwonO-YMinorSDMalufKSMuellerMJComparison of muscle activity during walking in subjects with and without diabetic neuropathyGait Posture20031810511310.1016/s0966-6362(02)00166-212855306
SawachaZSpolaorFGuarneriGContessaPCarraroEVenturinAAvogaroACobelliCAbnormal muscle activation during gait in diabetes patients with and without neuropathyGait Posture20123510110510.1016/j.gaitpost.2011.08.01622098824
WatelainEBarbierFAllardPThevenonAAnguéJCGait pattern classification of healthy elderly men based on biomechanical dataArch Phys Med Rehabil2000815795861:STN:280:DC%2BD3c3msFektw%3D%3D10.1016/s0003-9993(00)90038-810807095
Hair JF, Black WC, Babin BJ, Anderson RE (2014) Multivariate data analysis, 7th edn. Pearson Education, Upper Saddle River.
Warren LiaoTClustering of time series data—a surveyPattern Recogn2005381857187410.1016/j.patcog.2005.01.025
WhitleyEBallJStatistics review 4: sample size calculationsCrit Care20026433534110.1186/cc152112225610137461
SaccoICNPiconAPMacedoDOButuganMKWatariRSartorCDAlterations in the lower limb joint moments precede the peripheral neuropathy diagnosis in diabetes patientsDiabetes Technol Ther20151740541210.1089/dia.2014.028425664904
SJ Lee (2559_CR30) 2008; 104
G McLachlan (2559_CR21) 1992; 1
ICN Sacco (2559_CR36) 2015; 17
AP Picon (2559_CR35) 2012; 16
2559_CR40
M Matos (2559_CR44) 2018; 139
2559_CR28
Z Sawacha (2559_CR6) 2012; 35
EB Simonsen (2559_CR34) 2012; 34
JC Handsaker (2559_CR8) 2014; 37
Z Sawacha (2559_CR11) 2020; 79
J Joseph (2559_CR23) 1967; 49
2559_CR26
D Antonelli (2559_CR14) 2013; 40
JJ Chen (2559_CR18) 1990; 37
AI Vinik (2559_CR2) 2013; 117
SG White (2559_CR43) 2002; 17
SM Rissanen (2559_CR20) 2008; 46
Z Sawacha (2559_CR15) 2010; 4
A Leardini (2559_CR29) 2007; 26
2559_CR32
2559_CR33
Z Sawacha (2559_CR37) 2009; 24
A Nene (2559_CR39) 1999; 9
ICN Sacco (2559_CR10) 2003; 18
CD Katsis (2559_CR41) 2006; 37
2559_CR12
JV Basmajian (2559_CR27) 1980
2559_CR13
OA Malik (2559_CR19) 2015; 19
E Whitley (2559_CR22) 2002; 6
E Watelain (2559_CR17) 2000; 81
MJ Mueller (2559_CR38) 1994; 75
AN Onodera (2559_CR7) 2011; 44
S Mulroy (2559_CR42) 2003; 18
(2559_CR1) 2016
O-Y Kwon (2559_CR4) 2003; 18
AJM Boulton (2559_CR3) 2015; 43
T Warren Liao (2559_CR16) 2005; 38
BJ McFadyen (2559_CR31) 1988; 21
PMH Akashi (2559_CR5) 2008; 23
EL Feldman (2559_CR24) 1994; 17
F Spolaor (2559_CR9) 2016; 31
JA Mayfield (2559_CR25) 2004; 27
References_xml – reference: BoultonAJMThe diabetic foot Medicine201543333710.1016/j.mpmed.2014.10.006
– reference: PiconAPSartorCDRoveriMIPássaroACOrtegaNRSaccoICNDiabetic patients with and without peripheral neuropathy reveal different hip and ankle biomechanical strategies during stair descentBraz J Phys Ther20121652853410.1590/S1413-35552012005000048
– reference: SawachaZGabriellaGCristoferiGGuiottoAAvogaroACobelliCDiabetic gait and posture abnormalities: a biomechanical investigation through three dimensional gait analysisClin Biomech (Bristol, Avon)20092472272810.1016/j.clinbiomech.2009.07.007
– reference: SaccoICNPiconAPMacedoDOButuganMKWatariRSartorCDAlterations in the lower limb joint moments precede the peripheral neuropathy diagnosis in diabetes patientsDiabetes Technol Ther20151740541210.1089/dia.2014.028425664904
– reference: MatosMMendesRSilvaABSousaNPhysical activity and exercise on diabetic foot related outcomes: a systematic reviewDiabetes Res Clin Pract2018139819010.1016/j.diabres.2018.02.02029477503
– reference: KwonO-YMinorSDMalufKSMuellerMJComparison of muscle activity during walking in subjects with and without diabetic neuropathyGait Posture20031810511310.1016/s0966-6362(02)00166-212855306
– reference: AkashiPMHSaccoICNWatariRHennigEThe effect of diabetic neuropathy and previous foot ulceration in EMG and ground reaction forces during gaitClin Biomech20082358459210.1016/j.clinbiomech.2007.11.015
– reference: MuellerMJSinacoreDRHoogstrateSDalyLHip and ankle walking strategies: effect on peak plantar pressures and implications for neuropathic ulcerationArch Phys Med Rehabil199475119612001:STN:280:DyaK2M%2FntVOhsw%3D%3D10.1016/0003-9993(94)90004-37979928
– reference: OnoderaANGomesAAPripasDMezzaraneRASaccoICNLower limb electromygraphy and kinematics of neuropathic diabetic patients during real-life activities: Stair negotiationMuscle Nerve20114426927710.1002/mus.2207221698651
– reference: SawachaZGuarneriGAvogaroACobelliCA new classification of diabetic gait pattern based on cluster analysis of biomechanical dataJ Diabetes Sci Technol201041127113810.1177/193229681000400511
– reference: Hair JF, Black WC, Babin BJ, Anderson RE (2014) Multivariate data analysis, 7th edn. Pearson Education, Upper Saddle River.
– reference: MalikOASenanayakeSMNAZaheerDAn intelligent recovery progress evaluation system for ACL reconstructed subjects using integrated 3-D kinematics and EMG featuresIEEE J Biomed Health Inform20151945346310.1109/JBHI.2014.232040824801517
– reference: JosephJWatsonRTelemetering electromyography of muscles used in walking up and down stairsJ Bone Joint Surg Br1967497747801:STN:280:DyaF1c%2FptFCjsQ%3D%3D10.1302/0301-620X.49B4.774
– reference: LeardiniASawachaZPaoliniGIngrossoSNativoRBenedettiMGA new anatomically based protocol for gait analysis in childrenGait Posture20072656057110.1016/j.gaitpost.2006.12.01817291764
– reference: KatsisCDGoletsisYLikasAFotiadisDISarmasIA novel method for automated EMG decomposition and MUAP classificationArtif Intell Med20063755641:STN:280:DC%2BD28zis1Gmtg%3D%3D10.1016/j.artmed.2005.09.00216377160
– reference: WhitleyEBallJStatistics review 4: sample size calculationsCrit Care20026433534110.1186/cc152112225610137461
– reference: MulroySGronleyJWeissWNewsamCPerryJUse of cluster analysis for gait pattern classification of patients in the early and late recovery phases following strokeGait Posture20031811412510.1016/s0966-6362(02)00165-012855307
– reference: SawachaZSpolaorFGuarneriGContessaPCarraroEVenturinAAvogaroACobelliCAbnormal muscle activation during gait in diabetes patients with and without neuropathyGait Posture20123510110510.1016/j.gaitpost.2011.08.01622098824
– reference: Benedetti MG, Agostini V, Knaflitz M, Bonato P (2012) Muscle activation patterns during level walking and stair ambulation, applications of EMG in clinical and sports medicine. IntechOpen. https://doi.org/10.5772/25792
– reference: NeneAMayagoitiaRVeltinkPAssessment of rectus femoris function during initial swing phaseGait Posture19999191:STN:280:DC%2BD3c%2FksFWmsw%3D%3D10.1016/s0966-6362(98)00042-310575064
– reference: AntonelliDBaralisEBrunoGCerquitelliTChiusanoSMahotoNAnalysis of diabetic patients through their examination historyExpert Syst Appl2013404672467810.1016/j.eswa.2013.02.006
– reference: RoglicGOrganizationWHGlobal report on diabetes2016Geneva, SwitzerlandWorld Health Organization
– reference: VinikAIErbasTDiabetic autonomic neuropathyHandb Clin Neurol201311727929410.1016/B978-0-444-53491-0.00022-524095132
– reference: Clustering (2009) Making sense of data II. John Wiley & Sons, Ltd, pp 67–110. https://doi.org/10.1002/9780470417409.ch3
– reference: Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Pearson: Addison Wesley, Boston
– reference: WatelainEBarbierFAllardPThevenonAAnguéJCGait pattern classification of healthy elderly men based on biomechanical dataArch Phys Med Rehabil2000815795861:STN:280:DC%2BD3c3msFektw%3D%3D10.1016/s0003-9993(00)90038-810807095
– reference: RissanenSMKankaanpääMMeigalATarvainenMPNuutinenJTarkkaIMAiraksinenOKarjalainenPASurface EMG and acceleration signals in Parkinson’s disease: feature extraction and cluster analysisMed Biol Eng Comput20084684985810.1007/s11517-008-0369-018633662
– reference: SaccoICNAmadioACInfluence of the diabetic neuropathy on the behavior of electromyographic and sensorial responses in treadmill gaitClin Biomech (Bristol, Avon)2003184264341:STN:280:DC%2BD3s3ktFSltQ%3D%3D10.1016/s0268-0033(03)00043-3
– reference: FeldmanELStevensMJThomasPKBrownMBCanalNGreeneDAA practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathyDiabetes Care199417128112891:STN:280:DyaK2M7itFWmtw%3D%3D10.2337/diacare.17.11.12817821168
– reference: BasmajianJVBlumensteinRElectrode placement in EMG biofeedback1980Williams & Wilkins
– reference: Farjo J, Assi RA, Masri W, Zaraket F (2013) Does principal component analysis improve cluster-based analysis?, in: 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops. Presented at the 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops. 400–403. https://doi.org/10.1109/ICSTW.2013.52
– reference: MayfieldJAReiberGESandersLJJanisseDPogachLMAssociationADPreventive foot care in diabetesDiabetes Care200427Suppl 1S636410.2337/diacare.27.2007.s6314693928
– reference: Blanc Y, Dimanico U (2010) Electrode placement in surface electromyography (sEMG) “minimal crosstalk area” (MCA). The Open Rehabilitation Journal 3
– reference: HandsakerJCBrownSJBowlingFLCooperGMaganarisCNBoultonAJMReevesNDContributory factors to unsteadiness during walking up and down stairs in patients with diabetic peripheral neuropathyDiabetes Care2014373047305310.2337/dc14-095525315208
– reference: SpolaorFSawachaZGuarneriGDel DinSAvogaroACobelliCAltered EMG patterns in diabetic neuropathic and not neuropathic patients during step ascending and descendingJ Electromyogr Kinesiol201631323910.1016/j.jelekin.2016.08.00727632533
– reference: ChenJJShiaviRTemporal feature extraction and clustering analysis of electromyographic linear envelopes in gait studiesIEEE Trans Biomed Eng1990372953021:STN:280:DyaK3c3ivV2rtg%3D%3D10.1109/10.523302184121
– reference: LeeSJHidlerJBiomechanics of overground vs. treadmill walking in healthy individualsJ Appl Physiol200810474775510.1152/japplphysiol.01380.200618048582
– reference: McFadyenBJWinterDAAn integrated biomechanical analysis of normal stair ascent and descentJ Biomech1988217337441:STN:280:DyaL1M%2FjsVegsA%3D%3D10.1016/0021-9290(88)90282-53182877
– reference: WhiteSGMcNairPJAbdominal and erector spinae muscle activity during gait: the use of cluster analysis to identify patterns of activityClin Biomech (Bristol, Avon)20021717718410.1016/s0268-0033(02)00007-4
– reference: Warren LiaoTClustering of time series data—a surveyPattern Recogn2005381857187410.1016/j.patcog.2005.01.025
– reference: SimonsenEBAlkjærTThe variability problem of normal human walkingMed Eng Phys20123421922410.1016/j.medengphy.2011.07.01321852174
– reference: McLachlanGCluster analysis and related techniques in medical researchStat Methods Med Res1992127481:STN:280:DyaK2c%2FosVCmtQ%3D%3D10.1177/0962280292001001031341650
– reference: Bonato P, D’Alessio T, Knaflitz M (1998) A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait. IEEE Trans Biomed Eng 45:287–299. https://doi.org/10.1109/10.661154
– reference: SawachaZSartorCDYiLCGuiottoASpolaorFSaccoICNClustering classification of diabetic walking abnormalities: a new approach taking into account intralimb coordination patternsGait Posture202079334010.1016/j.gaitpost.2020.03.01632334348
– volume: 44
  start-page: 269
  year: 2011
  ident: 2559_CR7
  publication-title: Muscle Nerve
  doi: 10.1002/mus.22072
– volume: 18
  start-page: 114
  year: 2003
  ident: 2559_CR42
  publication-title: Gait Posture
  doi: 10.1016/s0966-6362(02)00165-0
– volume: 35
  start-page: 101
  year: 2012
  ident: 2559_CR6
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.08.016
– volume: 21
  start-page: 733
  year: 1988
  ident: 2559_CR31
  publication-title: J Biomech
  doi: 10.1016/0021-9290(88)90282-5
– ident: 2559_CR12
– volume: 16
  start-page: 528
  year: 2012
  ident: 2559_CR35
  publication-title: Braz J Phys Ther
  doi: 10.1590/S1413-35552012005000048
– volume: 43
  start-page: 33
  year: 2015
  ident: 2559_CR3
  publication-title: The diabetic foot Medicine
  doi: 10.1016/j.mpmed.2014.10.006
– volume: 19
  start-page: 453
  year: 2015
  ident: 2559_CR19
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2014.2320408
– ident: 2559_CR32
  doi: 10.1109/10.661154
– volume: 23
  start-page: 584
  year: 2008
  ident: 2559_CR5
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2007.11.015
– volume: 18
  start-page: 426
  year: 2003
  ident: 2559_CR10
  publication-title: Clin Biomech (Bristol, Avon)
  doi: 10.1016/s0268-0033(03)00043-3
– volume: 117
  start-page: 279
  year: 2013
  ident: 2559_CR2
  publication-title: Handb Clin Neurol
  doi: 10.1016/B978-0-444-53491-0.00022-5
– volume: 34
  start-page: 219
  year: 2012
  ident: 2559_CR34
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2011.07.013
– volume: 1
  start-page: 27
  year: 1992
  ident: 2559_CR21
  publication-title: Stat Methods Med Res
  doi: 10.1177/096228029200100103
– volume: 17
  start-page: 405
  year: 2015
  ident: 2559_CR36
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2014.0284
– ident: 2559_CR26
  doi: 10.5772/25792
– volume: 24
  start-page: 722
  year: 2009
  ident: 2559_CR37
  publication-title: Clin Biomech (Bristol, Avon)
  doi: 10.1016/j.clinbiomech.2009.07.007
– volume: 139
  start-page: 81
  year: 2018
  ident: 2559_CR44
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2018.02.020
– volume: 79
  start-page: 33
  year: 2020
  ident: 2559_CR11
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2020.03.016
– volume: 38
  start-page: 1857
  year: 2005
  ident: 2559_CR16
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2005.01.025
– volume: 46
  start-page: 849
  year: 2008
  ident: 2559_CR20
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-008-0369-0
– volume: 4
  start-page: 1127
  year: 2010
  ident: 2559_CR15
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/193229681000400511
– volume: 104
  start-page: 747
  year: 2008
  ident: 2559_CR30
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01380.2006
– volume: 17
  start-page: 1281
  year: 1994
  ident: 2559_CR24
  publication-title: Diabetes Care
  doi: 10.2337/diacare.17.11.1281
– volume: 37
  start-page: 3047
  year: 2014
  ident: 2559_CR8
  publication-title: Diabetes Care
  doi: 10.2337/dc14-0955
– ident: 2559_CR13
– volume: 27
  start-page: S63
  issue: Suppl 1
  year: 2004
  ident: 2559_CR25
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.2007.s63
– volume-title: Electrode placement in EMG biofeedback
  year: 1980
  ident: 2559_CR27
– volume: 81
  start-page: 579
  year: 2000
  ident: 2559_CR17
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/s0003-9993(00)90038-8
– volume: 31
  start-page: 32
  year: 2016
  ident: 2559_CR9
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2016.08.007
– volume: 17
  start-page: 177
  year: 2002
  ident: 2559_CR43
  publication-title: Clin Biomech (Bristol, Avon)
  doi: 10.1016/s0268-0033(02)00007-4
– volume: 49
  start-page: 774
  year: 1967
  ident: 2559_CR23
  publication-title: J Bone Joint Surg Br
  doi: 10.1302/0301-620X.49B4.774
– volume: 6
  start-page: 335
  issue: 4
  year: 2002
  ident: 2559_CR22
  publication-title: Crit Care
  doi: 10.1186/cc1521
– ident: 2559_CR40
  doi: 10.1109/ICSTW.2013.52
– ident: 2559_CR33
  doi: 10.1002/9780470417409.ch3
– volume: 37
  start-page: 55
  year: 2006
  ident: 2559_CR41
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2005.09.002
– volume-title: Global report on diabetes
  year: 2016
  ident: 2559_CR1
– ident: 2559_CR28
  doi: 10.2174/1874943701003010110
– volume: 37
  start-page: 295
  year: 1990
  ident: 2559_CR18
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.52330
– volume: 26
  start-page: 560
  year: 2007
  ident: 2559_CR29
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.12.018
– volume: 9
  start-page: 1
  year: 1999
  ident: 2559_CR39
  publication-title: Gait Posture
  doi: 10.1016/s0966-6362(98)00042-3
– volume: 18
  start-page: 105
  year: 2003
  ident: 2559_CR4
  publication-title: Gait Posture
  doi: 10.1016/s0966-6362(02)00166-2
– volume: 40
  start-page: 4672
  year: 2013
  ident: 2559_CR14
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.02.006
– volume: 75
  start-page: 1196
  year: 1994
  ident: 2559_CR38
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/0003-9993(94)90004-3
SSID ssj0021524
Score 2.354128
Snippet The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography (sEMG) to classify diabetic subjects with...
Abstract The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography (sEMG) to classify diabetic...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1659
SubjectTerms Algorithms
Ankle
Bioengineering
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Cardiovascular disease
Climbing
Cluster analysis
Clustering
Computer Applications
Deactivation
Diabetes
Diabetes mellitus
Diabetic neuropathy
Electromyography
Gait
Human Physiology
Hypotheses
Imaging
Metabolic disorders
Muscle function
Muscles
Original
Original Article
Parameters
Radiology
Rehabilitation
Ulcers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OPfDjQfy2ekoE37xgmo8mFURU9jyEXUQ8uLeSpikut3T3bruI_72Tbtq95WDxOWmbdCYzv8wkvwF4KwyvreeWlnlZU-mFp7m0BncpprRe24y7cDl5Ms1Oz-T3c3V-ANP-Lkw4VtnbxM5QVwsXYuTv0ZEgmBWKiU_LSxqqRoXsal9Cw8bSCtXHjmLsFhzywIw1gsMv4-mPn8MWDL2VHA41IraO12g2l-nQ-WkaTrd3OJuKXVd1A3_ePEY55FLvwZ11s7R__9j5_Jq7OnkA9yPOJJ83ivEQDnzzCG5PYib9MVyMJ9-IjYwkxHYjIH21lJa0dnWxIrMu4uBXZBmJnhYNQTODW98QXyezhvSh2w_EEjdfB9aFa2-NfOVP4Oxk_OvrKY2FF6iTTLa0Nt5UipXMuywNBaxEjigrrUuEg0575pyrhdLaKs2lllVtcifR5ObcmipI6SmMmkXjnwPxqaoZK3laIfbJlC2lcaryTHpXl1y4BNL-HxcuspKH4hjzYsunHORSoFyKTi6FSODd8Mxyw8mxt_dRL7oirs9VsdWmBN4MzbiyQrrENn6xDn1UmhmpFPZ5tpH08DmhcNuWK5OA3tGBoUNg7d5taWa_O_bunOkcLWcCx722bIe1bxbHg0b9x6Rf7J_0S7jLO0UP0aQjGLVXa_8KwVVbvo4r5h8BgSAu
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrcTjwPuxUJCRuNG0edixw62ClgppKw6sVE6R7djqalfeFZsIwa9nnDjZLkUViLMnTsYZ29-MZz4DvMlEaqVJZaQKZSNqMhMVVAr0UoSShss81b44eXKWn07pp3N2vgMf-lqYNtu9P5Lsaho8S5OrD1eVPdwUvuFGxSOfid5i4ggdwsregN2cISIfwe707PPR1yF7MWnDfIi90XOmlIbamT93tL0_XQGdV3MnhwPUO3CrcSv547tcLC7tUSf3wPTadakp84OmVgf652_Ej_-r_n24G0AsOeqs7gHsGPcQbk7CMf0jmB9PPhIZ6E6IbDUl_VUsNanler4mszacYdZkFViklo7gGoZ-tQ_ek5kjfVz4HZFELxpP6XCp10CG_himJ8df3p9G4VaHSNOY1pEVRlQsVrHReeJvx8oKhHCJVYg1NTex1tpmjHPJeEo5rawoNMX1vEilqNCfyZ7AyC2deQbEJMzGsUqTCoFVzqSiQrPKxNRoq9JMjyHp_2WpA-W5v3ljUW7Imv1IljiSZTuSZTaGt8Mzq47w41rpvd5EyjD51yViHv-dLMbm10MzTlt_FiOdWTZehiW5oIyhzNPOoobXZQx9woKJMfAtWxsEPCX4doubXbTU4EXMC1yWx7DfG9Hms67TYn-w3L9Q-vm_ib-A22lrqj50tQej-ltjXiKSq9WrMFF_AS13PwE
  priority: 102
  providerName: Unpaywall
Title EMG analysis across different tasks improves prevention screenings in diabetes: a cluster analysis approach
URI https://link.springer.com/article/10.1007/s11517-022-02559-3
https://www.ncbi.nlm.nih.gov/pubmed/35428958
https://www.proquest.com/docview/2660493503
https://www.proquest.com/docview/2651684553
https://pubmed.ncbi.nlm.nih.gov/PMC9079040
https://link.springer.com/content/pdf/10.1007/s11517-022-02559-3.pdf
UnpaywallVersion publishedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-0444
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: ADMLS
  dateStart: 19770101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1741-0444
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 1741-0444
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7WFrbuYexnl60LGuxtNbMtyZL3lpYkZSOhjAXSJyPJMgsNTpgdxv77nRzZbdpRthcbLFmWfJLuuzvpE8AHKuNC2VgFOtVFwCy1QcqURCtFamWFSmLjNidPpsn5jH2Z87mnyXF7YW7F7z9ViFhwHnVrzhv0G9A9OEAllTSB2eSsM65QD7FuuSKiZr9B5u9l7CqhO8jy7gLJLkr6GB5tyrX6_UstlzcU0egpPPEIkgy2In8GD2z5HB5OfIz8BVwNJ2OiPNcIUU0NSHsOSk1qVV1VZNH4EmxF1p7CaVUSnEDQqHWec7IoSeuU_UwUMcuN41O4UapnIn8Js9Hw-9l54I9UCAwLWR0U0sqchzq0Jonc0VQ0RfwUFRqBnhE2NMYUlAuhuIiZYHkhU8NwMk1jJXM0Jugr2C9XpX0NxEa8CEMdRzmimoQrzaThuQ2ZNYWOqelB1P7jzHi-cXfsxTK7Zkp2cslQLlkjl4z24GP3znrLtnFv7uNWdJkfeVWGgMPVk4eY_L5LxjHjAiGqtKuNy8OjRDLOMc_RVtLd5yhHgyzlsgdipw90GRwf925KufjR8HKnoUhxTuzBSdtbrqt1XytOuh71D41-83-lv4XDuOn4zm90DPv1z419hzCq1n3YE3OBVzka9-FgML78OsT76XB68a3fjC28zuIBPptNLwaXfwBOJRoG
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLwMPFNYICR4IlFJP5InEkT4qOjY2uF0CbtLTiOI6pVaSGppv1z-9t2Tp101aSKlz3HTe3c-e53Z9_vAN4xSQtlqPKzJCt8bpjxE64kRikyUyZWEdW2OHkwjPon_MepOF2Dy7YWxl6rbG1iY6jzibY58o_oSBDMMhGwT9O_vu0aZU9X2xYayrVWyPcaijFX2HFoLs4xhKv2Dr6hvN9Tut87_tr3XZcBX_OA134hjcxFkAVGR6Ht1sQShBRhkSH20bEJtNYFE3GsREx5zPNCJpqjfUmokrmdEr73DmxwxhMM_ja-9IY_f3UhH3pH3l2iRCzvynbmxXvobGPf3qZvcL3Pll3jDbx789pmd3Z7HzZn5VRdnKvx-Jp73H8AWw7Xks9zRXwIa6Z8BHcH7uT-MZz1Bt-JcgwoRDUzIG13lprUqjqryKjJcJiKTB2x1KQkaNYw1Lb5fDIqSZsq3iWK6PHMsjxce6vjR38CJ7cigqewXk5K8xyICUURBBkNc8RakVAZl1rkJuBGFxll2oOw_capdizothnHOF3wN1u5pCiXtJFLyjz40P1mOucAWTl6uxVd6uxBlS6014O33WPcyfZ4RpVmMrNjRBhJLgSOeTaXdPd3TGCYmAjpQbykA90AyxK-_KQc_WnYwpMgTtBSe7DTastiWqtWsdNp1H8s-sXqRb-Bzf7x4Cg9OhgevoR7tFF6m8nahvX638y8QmBXZ6_d7iHw-7Y37BUfyVuA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQ14QHwvMMBI8MSiJf6oHSSEEFvZGJ14YFLfguM4WrUqLSTVtH-Nv45z4qSrJlW87DluaufOd787n38H8JYpWmhLdZglWRFyy2yYcK0wSlGZtlIPqHGXk0cng8NT_m0sxhvwt7sL48oqO5vYGOp8ZlyOfA8dCYJZJiK2V_iyiB_7w0_z36HrIOVOWrt2Gq2KHNvLCwzfqo9H-yjrd5QOD35-OQx9h4HQ8IjXYaGsykWURdYMYtepiSUIJ-IiQ9xjpI2MMQUTUmohKZc8L1RiONqWhGqVu-nge2_BbclY4soJ5XgZ7KFf5H35JKJ4f2GnvbaHblaGro6-QfQhW3WK15Du9YLN_tT2HtxZlHN9eaGn0yuOcfgA7ntESz63KvgQNmz5CLZG_sz-MZwfjL4S7blPiG5mQLq-LDWpdXVekUmT27AVmXtKqVlJ0KBhkO0y-WRSki5J_IFoYqYLx-9w5a2eGf0JnN6IAJ7CZjkr7TYQG4siijIa54iyBkJnXBmR24hbU2SUmQDi7hunxvOfuzYc03TJ3OzkkqJc0kYuKQvgff-becv-sXb0Tie61FuCKl3qbQBv-se4h93BjC7tbOHGiHiguBA45lkr6f7vmMAAMREqALmiA_0Axw---qScnDU84UkkE7TRAex22rKc1rpV7PYa9R-Lfr5-0a9hC7dp-v3o5PgF3KWNzrsU1g5s1n8W9iUiujp71WwdAr9ueq_-A4NuWRo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrcTjwPuxUJCRuNG0edixw62ClgppKw6sVE6R7djqalfeFZsIwa9nnDjZLkUViLMnTsYZ29-MZz4DvMlEaqVJZaQKZSNqMhMVVAr0UoSShss81b44eXKWn07pp3N2vgMf-lqYNtu9P5Lsaho8S5OrD1eVPdwUvuFGxSOfid5i4ggdwsregN2cISIfwe707PPR1yF7MWnDfIi90XOmlIbamT93tL0_XQGdV3MnhwPUO3CrcSv547tcLC7tUSf3wPTadakp84OmVgf652_Ej_-r_n24G0AsOeqs7gHsGPcQbk7CMf0jmB9PPhIZ6E6IbDUl_VUsNanler4mszacYdZkFViklo7gGoZ-tQ_ek5kjfVz4HZFELxpP6XCp10CG_himJ8df3p9G4VaHSNOY1pEVRlQsVrHReeJvx8oKhHCJVYg1NTex1tpmjHPJeEo5rawoNMX1vEilqNCfyZ7AyC2deQbEJMzGsUqTCoFVzqSiQrPKxNRoq9JMjyHp_2WpA-W5v3ljUW7Imv1IljiSZTuSZTaGt8Mzq47w41rpvd5EyjD51yViHv-dLMbm10MzTlt_FiOdWTZehiW5oIyhzNPOoobXZQx9woKJMfAtWxsEPCX4doubXbTU4EXMC1yWx7DfG9Hms67TYn-w3L9Q-vm_ib-A22lrqj50tQej-ltjXiKSq9WrMFF_AS13PwE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMG+analysis+across+different+tasks+improves+prevention+screenings+in+diabetes%3A+a+cluster+analysis+approach&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Piatkowska%2C+Weronika&rft.au=Spolaor%2C+Fabiola&rft.au=Guiotto%2C+Annamaria&rft.au=Guarneri%2C+Gabriella&rft.date=2022-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=60&rft.issue=6&rft.spage=1659&rft.epage=1673&rft_id=info:doi/10.1007%2Fs11517-022-02559-3&rft.externalDocID=10_1007_s11517_022_02559_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon