Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary

Sparse Representation-Based Classification (SRC) is a face recognition breakthrough in recent years which has successfully addressed the recognition problem with sufficient training images of each gallery subject. In this paper, we extend SRC to applications where there are very few, or even a singl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 34; no. 9; pp. 1864 - 1870
Main Authors Deng, Weihong, Hu, Jiani, Guo, Jun
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.09.2012
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2012.30

Cover

Abstract Sparse Representation-Based Classification (SRC) is a face recognition breakthrough in recent years which has successfully addressed the recognition problem with sufficient training images of each gallery subject. In this paper, we extend SRC to applications where there are very few, or even a single, training images per subject. Assuming that the intraclass variations of one subject can be approximated by a sparse linear combination of those of other subjects, Extended Sparse Representation-Based Classifier (ESRC) applies an auxiliary intraclass variant dictionary to represent the possible variation between the training and testing images. The dictionary atoms typically represent intraclass sample differences computed from either the gallery faces themselves or the generic faces that are outside the gallery. Experimental results on the AR and FERET databases show that ESRC has better generalization ability than SRC for undersampled face recognition under variable expressions, illuminations, disguises, and ages. The superior results of ESRC suggest that if the dictionary is properly constructed, SRC algorithms can generalize well to the large-scale face recognition problem, even with a single training image per class.
AbstractList Sparse Representation-Based Classification (SRC) is a face recognition breakthrough in recent years which has successfully addressed the recognition problem with sufficient training images of each gallery subject. In this paper, we extend SRC to applications where there are very few, or even a single, training images per subject. Assuming that the intraclass variations of one subject can be approximated by a sparse linear combination of those of other subjects, Extended Sparse Representation-Based Classifier (ESRC) applies an auxiliary intraclass variant dictionary to represent the possible variation between the training and testing images. The dictionary atoms typically represent intraclass sample differences computed from either the gallery faces themselves or the generic faces that are outside the gallery. Experimental results on the AR and FERET databases show that ESRC has better generalization ability than SRC for undersampled face recognition under variable expressions, illuminations, disguises, and ages. The superior results of ESRC suggest that if the dictionary is properly constructed, SRC algorithms can generalize well to the large-scale face recognition problem, even with a single training image per class.
Sparse Representation-Based Classification (SRC) is a face recognition breakthrough in recent years which has successfully addressed the recognition problem with sufficient training images of each gallery subject. In this paper, we extend SRC to applications where there are very few, or even a single, training images per subject. Assuming that the intraclass variations of one subject can be approximated by a sparse linear combination of those of other subjects, Extended Sparse Representation-Based Classifier (ESRC) applies an auxiliary intraclass variant dictionary to represent the possible variation between the training and testing images. The dictionary atoms typically represent intraclass sample differences computed from either the gallery faces themselves or the generic faces that are outside the gallery. Experimental results on the AR and FERET databases show that ESRC has better generalization ability than SRC for undersampled face recognition under variable expressions, illuminations, disguises, and ages. The superior results of ESRC suggest that if the dictionary is properly constructed, SRC algorithms can generalize well to the large-scale face recognition problem, even with a single training image per class.Sparse Representation-Based Classification (SRC) is a face recognition breakthrough in recent years which has successfully addressed the recognition problem with sufficient training images of each gallery subject. In this paper, we extend SRC to applications where there are very few, or even a single, training images per subject. Assuming that the intraclass variations of one subject can be approximated by a sparse linear combination of those of other subjects, Extended Sparse Representation-Based Classifier (ESRC) applies an auxiliary intraclass variant dictionary to represent the possible variation between the training and testing images. The dictionary atoms typically represent intraclass sample differences computed from either the gallery faces themselves or the generic faces that are outside the gallery. Experimental results on the AR and FERET databases show that ESRC has better generalization ability than SRC for undersampled face recognition under variable expressions, illuminations, disguises, and ages. The superior results of ESRC suggest that if the dictionary is properly constructed, SRC algorithms can generalize well to the large-scale face recognition problem, even with a single training image per class.
Author Jun Guo
Jiani Hu
Weihong Deng
Author_xml – sequence: 1
  givenname: Weihong
  surname: Deng
  fullname: Deng, Weihong
  email: whdeng@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications, Beijing, China. whdeng@bupt.edu.cn
– sequence: 2
  givenname: Jiani
  surname: Hu
  fullname: Hu, Jiani
– sequence: 3
  givenname: Jun
  surname: Guo
  fullname: Guo, Jun
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27252005$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22813959$$D View this record in MEDLINE/PubMed
BookMark eNqF0VFrFDEQAOAgFXutPvokyIIIvuw5yWyyiW_lbPWgRamtryHNzkrKXvaa7In-e3PeVaEgPiUk30wyM0fsII6RGHvOYc45mLdXn08ulnMBXMwRHrGZ4ApqI4w4YDPgStRaC33IjnK-BeCNBHzCDoXQHI00M3Zx-mOi2FFXfblcvKuuyzZlt1oP5eTMeaouyY_fYpjCGKvvwVXLOCXnB5dz9dWl4OJUvQ9-e-3Sz6fsce-GTM_26zG7Pju9Wnyszz99WC5OzmvfQDPVJFujBHQeFFLXS8Wh005yqT0YJImGFGnZqUZ3EhuDXcv7m4ZU3zcCieMxe7PLu07j3YbyZFchexoGF2ncZMs5KmzbVjb_pyBabEtjVKGvHtDbcZNiKaQoVLp82ZiiXu7V5mZFnV2nsCql2_ueFvB6D1z2buiTiz7kv64VUgDI4nDnfBpzTtRbHya37WTpcBjKm3Y7Yft7wnY7YYtQouoHUfeJ_-Vf7Hwgoj9WcURhEH8BU-ysPg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_3390_s150101071
crossref_primary_10_1016_j_neucom_2015_05_132
crossref_primary_10_1016_j_patcog_2019_04_013
crossref_primary_10_1016_j_prime_2023_100241
crossref_primary_10_1007_s11042_020_09855_w
crossref_primary_10_1088_1742_6596_1871_1_012120
crossref_primary_10_1016_j_patcog_2016_02_005
crossref_primary_10_1007_s11042_022_13203_5
crossref_primary_10_1016_j_ijleo_2022_168925
crossref_primary_10_1016_j_ijleo_2018_10_092
crossref_primary_10_1109_TIFS_2016_2567318
crossref_primary_10_1109_TIFS_2015_2408431
crossref_primary_10_1016_j_neucom_2019_11_084
crossref_primary_10_1016_j_ins_2017_12_025
crossref_primary_10_1007_s00521_020_04711_2
crossref_primary_10_1016_j_cviu_2016_10_012
crossref_primary_10_1016_j_asoc_2021_108365
crossref_primary_10_1117_1_JEI_27_5_053050
crossref_primary_10_1007_s11042_018_5679_0
crossref_primary_10_1109_ACCESS_2019_2909039
crossref_primary_10_1109_ACCESS_2021_3092646
crossref_primary_10_1016_j_image_2017_09_006
crossref_primary_10_1109_TIP_2017_2675341
crossref_primary_10_1007_s00371_014_0962_1
crossref_primary_10_1109_TSP_2014_2385660
crossref_primary_10_1016_j_neucom_2024_128708
crossref_primary_10_1016_j_patcog_2022_108585
crossref_primary_10_1016_j_patrec_2017_05_013
crossref_primary_10_1016_j_neucom_2019_02_053
crossref_primary_10_1016_j_patrec_2019_05_018
crossref_primary_10_1007_s10489_021_02338_x
crossref_primary_10_3233_JIFS_211106
crossref_primary_10_1007_s11042_016_4035_5
crossref_primary_10_1109_TPAMI_2013_194
crossref_primary_10_1155_2021_6633832
crossref_primary_10_1007_s11042_022_12427_9
crossref_primary_10_1007_s40305_019_00262_z
crossref_primary_10_1109_ACCESS_2020_3016599
crossref_primary_10_1016_j_neucom_2019_09_025
crossref_primary_10_1016_j_neucom_2017_09_022
crossref_primary_10_1007_s11263_014_0722_8
crossref_primary_10_1016_j_ijleo_2013_11_042
crossref_primary_10_1109_ACCESS_2017_2730281
crossref_primary_10_1109_TCBB_2018_2886334
crossref_primary_10_1007_s41095_016_0073_1
crossref_primary_10_1109_TPAMI_2014_2359453
crossref_primary_10_1016_j_knosys_2016_06_001
crossref_primary_10_1016_j_jvcir_2019_02_007
crossref_primary_10_1109_TIFS_2015_2512561
crossref_primary_10_1631_FITEE_1500085
crossref_primary_10_1016_j_patcog_2016_11_023
crossref_primary_10_1007_s11760_019_01436_1
crossref_primary_10_1016_j_neucom_2015_02_067
crossref_primary_10_1007_s11760_017_1077_8
crossref_primary_10_1080_19361610_2019_1581877
crossref_primary_10_32604_cmc_2022_019975
crossref_primary_10_1109_MSP_2015_2410783
crossref_primary_10_1109_TIP_2017_2716180
crossref_primary_10_1515_jisys_2023_0334
crossref_primary_10_1016_j_trit_2017_03_001
crossref_primary_10_1007_s11263_014_0750_4
crossref_primary_10_1007_s00138_018_0941_z
crossref_primary_10_1007_s00500_016_2064_7
crossref_primary_10_1016_j_ijleo_2014_04_044
crossref_primary_10_1016_j_compeleceng_2022_108162
crossref_primary_10_1049_iet_cvi_2019_0017
crossref_primary_10_1109_ACCESS_2016_2635147
crossref_primary_10_1049_iet_bmt_2018_5242
crossref_primary_10_1016_j_patcog_2016_11_016
crossref_primary_10_1016_j_amc_2017_07_058
crossref_primary_10_1007_s13042_019_00992_9
crossref_primary_10_1016_j_patcog_2014_06_020
crossref_primary_10_1016_j_eswa_2018_11_016
crossref_primary_10_1016_j_imavis_2016_11_009
crossref_primary_10_1007_s11042_019_07830_8
crossref_primary_10_1049_joe_2018_8304
crossref_primary_10_1007_s10586_017_0859_7
crossref_primary_10_1007_s13369_018_3501_y
crossref_primary_10_1049_iet_spr_2015_0213
crossref_primary_10_1007_s00138_016_0820_4
crossref_primary_10_1016_j_patrec_2015_09_010
crossref_primary_10_1109_TIFS_2019_2919950
crossref_primary_10_1049_joe_2018_8306
crossref_primary_10_1109_TNNLS_2020_2985099
crossref_primary_10_1049_iet_cvi_2018_5488
crossref_primary_10_3906_elk_1702_49
crossref_primary_10_1109_ACCESS_2022_3185137
crossref_primary_10_1117_1_JRS_16_036514
crossref_primary_10_1016_j_ins_2016_05_031
crossref_primary_10_1016_j_neucom_2016_02_083
crossref_primary_10_1109_JIOT_2020_3031390
crossref_primary_10_1142_S0218001416560036
crossref_primary_10_1117_1_JEI_26_5_053001
crossref_primary_10_1145_2733383
crossref_primary_10_1109_TCYB_2014_2376934
crossref_primary_10_1007_s10489_023_05026_0
crossref_primary_10_1109_TAFFC_2021_3077489
crossref_primary_10_1007_s11633_016_0974_6
crossref_primary_10_1007_s11042_018_6053_y
crossref_primary_10_1016_j_neucom_2017_02_010
crossref_primary_10_1007_s00371_020_01802_y
crossref_primary_10_1142_S0218213020500153
crossref_primary_10_1007_s11042_018_7002_5
crossref_primary_10_1016_j_ins_2014_07_035
crossref_primary_10_1109_TIFS_2018_2849883
crossref_primary_10_1016_j_patcog_2018_03_021
crossref_primary_10_3390_s20144045
crossref_primary_10_1007_s11042_019_08211_x
crossref_primary_10_1016_j_patcog_2018_03_016
crossref_primary_10_1109_TIP_2016_2545249
crossref_primary_10_1016_j_neucom_2020_10_081
crossref_primary_10_1142_S0218126622501079
crossref_primary_10_1016_j_jvcir_2014_09_013
crossref_primary_10_1109_TCSVT_2020_3047140
crossref_primary_10_1016_j_neucom_2014_07_058
crossref_primary_10_1109_ACCESS_2018_2862159
crossref_primary_10_1016_j_dsp_2019_04_006
crossref_primary_10_1016_j_patcog_2020_107737
crossref_primary_10_1007_s13042_016_0520_4
crossref_primary_10_1049_iet_cvi_2016_0186
crossref_primary_10_26634_jip_4_4_14161
crossref_primary_10_1016_j_patcog_2016_10_021
crossref_primary_10_1007_s13042_019_00986_7
crossref_primary_10_1016_j_patcog_2017_01_021
crossref_primary_10_1016_j_patrec_2017_07_006
crossref_primary_10_3390_app12063144
crossref_primary_10_1016_j_jvcir_2015_01_001
crossref_primary_10_1109_JSTARS_2015_2437073
crossref_primary_10_1109_TCSVT_2013_2241353
crossref_primary_10_1007_s10489_020_02100_9
crossref_primary_10_1016_j_neunet_2017_06_013
crossref_primary_10_1049_cit2_12092
crossref_primary_10_1016_j_dsp_2020_102809
crossref_primary_10_1109_TPAMI_2017_2757923
crossref_primary_10_1016_j_patcog_2016_08_007
crossref_primary_10_3390_app9061189
crossref_primary_10_1109_ACCESS_2019_2901376
crossref_primary_10_1109_TIP_2015_2475625
crossref_primary_10_1007_s11042_016_3349_7
crossref_primary_10_1007_s11263_014_0749_x
crossref_primary_10_1109_TNNLS_2017_2742528
crossref_primary_10_1016_j_jvcir_2017_04_007
crossref_primary_10_1109_ACCESS_2019_2929939
crossref_primary_10_1007_s10044_021_01046_z
crossref_primary_10_1016_j_ins_2017_02_017
crossref_primary_10_12677_CSA_2022_126158
crossref_primary_10_1016_j_ins_2022_07_070
crossref_primary_10_1109_ACCESS_2021_3089836
crossref_primary_10_1109_TGRS_2014_2334608
crossref_primary_10_1109_ACCESS_2019_2921538
crossref_primary_10_1016_j_imavis_2021_104212
crossref_primary_10_1016_j_patrec_2017_02_007
crossref_primary_10_1109_TCSVT_2015_2473415
crossref_primary_10_1109_TIFS_2018_2833052
crossref_primary_10_1016_j_patcog_2016_10_029
crossref_primary_10_1109_TCSVT_2019_2923262
crossref_primary_10_1016_j_future_2016_07_007
crossref_primary_10_1016_j_neucom_2015_03_009
crossref_primary_10_1016_j_patcog_2017_10_001
crossref_primary_10_1109_ACCESS_2019_2960928
crossref_primary_10_1177_1729881420967577
crossref_primary_10_3103_S0146411619060099
crossref_primary_10_1007_s11760_018_1394_6
crossref_primary_10_1016_j_patrec_2018_05_027
crossref_primary_10_1109_TNNLS_2021_3103194
crossref_primary_10_1007_s00521_017_2897_8
crossref_primary_10_1109_TIFS_2015_2426144
crossref_primary_10_1007_s13042_017_0782_5
crossref_primary_10_1109_ACCESS_2019_2903333
crossref_primary_10_1155_2014_415856
crossref_primary_10_1007_s13042_021_01353_1
crossref_primary_10_1016_j_patcog_2016_08_024
crossref_primary_10_1016_j_neucom_2014_09_035
crossref_primary_10_1016_j_procs_2018_05_021
crossref_primary_10_1016_j_engappai_2020_104052
crossref_primary_10_1109_TCYB_2017_2739338
crossref_primary_10_1007_s13369_018_3132_3
crossref_primary_10_1109_TPAMI_2018_2800008
crossref_primary_10_1007_s11042_022_12625_5
crossref_primary_10_1109_TCSVT_2017_2748379
crossref_primary_10_1007_s40747_022_00868_6
crossref_primary_10_1155_2013_373858
crossref_primary_10_1109_LSP_2019_2892236
crossref_primary_10_1109_TIFS_2018_2866295
crossref_primary_10_1016_j_patcog_2015_02_009
crossref_primary_10_1109_ACCESS_2015_2430359
crossref_primary_10_1109_TMM_2017_2685179
crossref_primary_10_1016_j_neucom_2022_06_113
crossref_primary_10_1142_S021800142056008X
crossref_primary_10_1587_transinf_2017EDL8124
crossref_primary_10_1016_j_patcog_2017_10_020
crossref_primary_10_1109_LGRS_2015_2493242
crossref_primary_10_1109_TCYB_2014_2307067
crossref_primary_10_1109_TBIOM_2022_3226270
crossref_primary_10_1016_j_neucom_2020_06_136
crossref_primary_10_1007_s11704_019_7200_y
crossref_primary_10_1007_s10489_017_0956_6
crossref_primary_10_1016_j_patcog_2017_09_019
crossref_primary_10_3390_s19010043
crossref_primary_10_1080_09500340_2016_1260780
crossref_primary_10_3390_electronics11172723
crossref_primary_10_1016_j_patcog_2013_10_017
crossref_primary_10_1049_iet_spr_2017_0514
crossref_primary_10_1109_ACCESS_2017_2695239
crossref_primary_10_1016_j_procs_2022_10_022
crossref_primary_10_1007_s00521_024_10582_8
crossref_primary_10_1080_09500340_2018_1455923
crossref_primary_10_1007_s11277_021_09298_y
crossref_primary_10_1080_09720529_2020_1726079
crossref_primary_10_1080_10584587_2021_1911298
crossref_primary_10_1109_TIFS_2020_2965301
crossref_primary_10_1007_s10044_018_0704_5
crossref_primary_10_3390_rs11222676
crossref_primary_10_1007_s13369_020_04538_y
crossref_primary_10_1016_j_patrec_2017_12_020
crossref_primary_10_1109_TIP_2015_2409738
crossref_primary_10_1016_j_cogsys_2018_09_009
crossref_primary_10_3390_app10020601
crossref_primary_10_1371_journal_pone_0142403
crossref_primary_10_1371_journal_pone_0159084
crossref_primary_10_3390_info16020107
crossref_primary_10_1007_s00371_017_1468_4
crossref_primary_10_1109_TIP_2018_2887346
crossref_primary_10_1109_ACCESS_2020_3041154
crossref_primary_10_1007_s11042_023_18007_9
crossref_primary_10_1016_j_jvcir_2014_07_007
crossref_primary_10_1007_s12652_015_0321_8
crossref_primary_10_1007_s00500_015_1692_7
crossref_primary_10_1016_j_neucom_2015_07_133
crossref_primary_10_1016_j_neucom_2017_01_082
crossref_primary_10_1109_TNNLS_2016_2573644
crossref_primary_10_1109_ACCESS_2017_2784842
crossref_primary_10_7240_jeps_938188
crossref_primary_10_1016_j_patcog_2015_09_035
crossref_primary_10_1016_j_patcog_2018_11_008
crossref_primary_10_1016_j_patcog_2017_03_001
crossref_primary_10_3233_JIFS_179723
crossref_primary_10_1016_j_patrec_2023_05_002
crossref_primary_10_1007_s00500_014_1561_9
crossref_primary_10_1016_j_compeleceng_2022_108342
crossref_primary_10_1007_s11432_016_9009_6
crossref_primary_10_1016_j_cogsys_2020_09_004
crossref_primary_10_1109_ACCESS_2020_2983837
crossref_primary_10_1007_s00521_015_1843_x
crossref_primary_10_3390_electronics10212666
crossref_primary_10_1016_j_patrec_2019_10_015
crossref_primary_10_1016_j_patcog_2020_107204
crossref_primary_10_1109_TCYB_2019_2931067
crossref_primary_10_3390_s19040759
crossref_primary_10_1109_TIFS_2017_2680403
crossref_primary_10_1109_TPAMI_2016_2527652
crossref_primary_10_1109_ACCESS_2020_3017479
crossref_primary_10_1109_TITS_2019_2945923
crossref_primary_10_1016_j_patcog_2023_110170
crossref_primary_10_1007_s00371_021_02121_6
crossref_primary_10_1049_iet_cvi_2014_0279
crossref_primary_10_1049_iet_ipr_2018_5263
crossref_primary_10_1007_s11063_020_10316_6
crossref_primary_10_1016_j_patcog_2014_03_015
crossref_primary_10_1109_TIFS_2014_2361028
crossref_primary_10_1016_j_knosys_2019_05_033
crossref_primary_10_1049_ipr2_12381
crossref_primary_10_1016_j_patcog_2022_109199
crossref_primary_10_1016_j_jvcir_2018_03_004
crossref_primary_10_1007_s11432_021_3319_4
crossref_primary_10_1016_j_patcog_2019_01_005
crossref_primary_10_1007_s12559_016_9420_x
crossref_primary_10_1016_j_knosys_2020_105768
crossref_primary_10_1016_j_neucom_2015_01_024
crossref_primary_10_1109_TIM_2021_3137159
crossref_primary_10_1117_1_JEI_26_3_033009
crossref_primary_10_1007_s10462_017_9554_6
crossref_primary_10_1049_ipr2_12155
crossref_primary_10_1109_JIOT_2021_3080084
crossref_primary_10_1016_j_patcog_2019_107129
crossref_primary_10_1109_TNNLS_2016_2522431
crossref_primary_10_1007_s10489_022_03522_3
crossref_primary_10_1007_s13042_019_00929_2
crossref_primary_10_1587_transinf_E96_D_2290
crossref_primary_10_1109_LSP_2017_2726105
crossref_primary_10_1371_journal_pone_0113198
crossref_primary_10_1016_j_jvcir_2016_05_019
crossref_primary_10_1007_s12652_021_03255_0
crossref_primary_10_1016_j_patcog_2017_03_024
crossref_primary_10_1016_j_sigpro_2019_03_007
crossref_primary_10_3390_app12115590
crossref_primary_10_1007_s11042_017_5062_6
crossref_primary_10_1016_j_patrec_2015_05_005
crossref_primary_10_1631_FITEE_1900552
crossref_primary_10_1016_j_patcog_2016_12_028
crossref_primary_10_1016_j_patcog_2020_107300
crossref_primary_10_1016_j_patrec_2015_05_001
crossref_primary_10_1371_journal_pone_0147976
crossref_primary_10_1109_TBIOM_2019_2949364
crossref_primary_10_1016_j_compeleceng_2022_108003
crossref_primary_10_1007_s11042_016_4180_x
crossref_primary_10_1007_s11042_018_6071_9
crossref_primary_10_1007_s10462_022_10240_2
crossref_primary_10_1109_TNSRE_2022_3204533
crossref_primary_10_1007_s11042_024_19831_3
crossref_primary_10_1007_s00371_020_01827_3
crossref_primary_10_1007_s11263_021_01536_x
crossref_primary_10_1049_iet_spr_2016_0067
crossref_primary_10_1016_j_sigpro_2018_06_005
crossref_primary_10_1049_iet_cvi_2014_0379
crossref_primary_10_1109_TNNLS_2016_2572204
crossref_primary_10_1016_j_neucom_2016_11_079
crossref_primary_10_1109_ACCESS_2020_2999030
crossref_primary_10_1016_j_patcog_2015_09_024
crossref_primary_10_1016_j_neucom_2015_02_032
crossref_primary_10_1016_j_image_2022_116889
crossref_primary_10_1016_j_patcog_2016_01_010
crossref_primary_10_1016_j_imavis_2016_08_009
crossref_primary_10_1016_j_patcog_2017_03_010
crossref_primary_10_1587_transinf_2014EDP7352
crossref_primary_10_1016_j_jvcir_2015_03_001
crossref_primary_10_1016_j_patcog_2016_12_017
crossref_primary_10_1049_iet_cvi_2016_0322
crossref_primary_10_1109_TGRS_2019_2916329
crossref_primary_10_3390_math10050752
crossref_primary_10_1109_TCYB_2015_2508645
crossref_primary_10_1109_TIP_2016_2539502
crossref_primary_10_1109_TITS_2015_2459594
crossref_primary_10_1080_15476286_2020_1734382
crossref_primary_10_1137_19M1253873
crossref_primary_10_1007_s11042_017_5475_2
crossref_primary_10_1016_j_ins_2016_02_001
crossref_primary_10_1016_j_patcog_2015_10_002
crossref_primary_10_1007_s11042_018_7132_9
crossref_primary_10_1109_TGRS_2013_2274875
crossref_primary_10_1007_s11633_015_0901_2
crossref_primary_10_3390_s21030728
Cites_doi 10.1109/TIT.2008.929958
10.1109/TIP.2002.999679
10.1093/imanum/20.3.389
10.1109/TIP.2006.881969
10.1109/34.598228
10.1126/science.1157523
10.1109/TPAMI.2007.70783
10.1016/j.patcog.2009.12.026
10.1109/ICIP.2010.5651933
10.1109/34.879790
10.1109/TPAMI.2011.112
10.1016/j.patcog.2009.12.004
10.1109/TPAMI.2008.79
10.1109/34.531802
10.18772/10539/20690
10.1109/TPAMI.2005.55
10.1109/CVPR.2009.5206654
10.1109/34.927464
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2012.30
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 1870
ExternalDocumentID 2747798251
22813959
27252005
10_1109_TPAMI_2012_30
6133293
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c404t-e579620dc063edf5610d8a5158c093e539e6e85d648d53493d71fb4e6ff423e13
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 20:40:33 EDT 2025
Thu Oct 02 05:36:43 EDT 2025
Mon Jun 30 05:11:20 EDT 2025
Mon Jul 21 06:01:58 EDT 2025
Mon Jul 21 09:15:26 EDT 2025
Wed Oct 01 06:38:55 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
Tue Aug 26 17:18:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords undersampled problem
Computer vision
Dictionaries
Image processing
Face recognition
Autoregressive model
Regression analysis
Pattern recognition
Luminance
Experimental result
feature extraction
Classification
Facies
Database
Selection criterion
Illumination
Sparse representation
Large scale
Age
Pattern extraction
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-e579620dc063edf5610d8a5158c093e539e6e85d648d53493d71fb4e6ff423e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 22813959
PQID 1036862099
PQPubID 85458
PageCount 7
ParticipantIDs pascalfrancis_primary_27252005
crossref_citationtrail_10_1109_TPAMI_2012_30
proquest_miscellaneous_1136377754
proquest_miscellaneous_1027371456
ieee_primary_6133293
pubmed_primary_22813959
proquest_journals_1036862099
crossref_primary_10_1109_TPAMI_2012_30
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2012
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref20
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
He (ref5)
Yang (ref14) 2010
References_xml – ident: ref11
  doi: 10.1109/TIT.2008.929958
– ident: ref3
  doi: 10.1109/TIP.2002.999679
– ident: ref15
  doi: 10.1093/imanum/20.3.389
– ident: ref19
  doi: 10.1109/TIP.2006.881969
– ident: ref1
  doi: 10.1109/34.598228
– volume-title: Proc. Conf. Advances in Neural Information Processing System
  ident: ref5
  article-title: Locality Preserving Projections
– ident: ref20
  doi: 10.1126/science.1157523
– ident: ref6
  doi: 10.1109/TPAMI.2007.70783
– ident: ref16
  doi: 10.1016/j.patcog.2009.12.026
– ident: ref18
  doi: 10.1109/ICIP.2010.5651933
– ident: ref10
  doi: 10.1109/34.879790
– ident: ref13
  doi: 10.1109/TPAMI.2011.112
– year: 2010
  ident: ref14
  article-title: Fast l1-Minimization Algorithms and an Application in Robust Face Recognition: A Review
– ident: ref17
  doi: 10.1016/j.patcog.2009.12.004
– ident: ref7
  doi: 10.1109/TPAMI.2008.79
– ident: ref2
  doi: 10.1109/34.531802
– ident: ref9
  doi: 10.18772/10539/20690
– ident: ref4
  doi: 10.1109/TPAMI.2005.55
– ident: ref8
  doi: 10.1109/CVPR.2009.5206654
– ident: ref12
  doi: 10.1109/34.927464
SSID ssj0014503
Score 2.5890129
Snippet Sparse Representation-Based Classification (SRC) is a face recognition breakthrough in recent years which has successfully addressed the recognition problem...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1864
SubjectTerms Algorithms
Applied sciences
Approximation
Artificial intelligence
Biometric Identification - methods
Classification
Computer science; control theory; systems
Databases, Factual
Detection, estimation, filtering, equalization, prediction
Dictionaries
Error analysis
Exact sciences and technology
Face
Face - anatomy & histology
Face recognition
Facial Expression
feature extraction
Female
Galleries
Humans
Illumination
Image Processing, Computer-Assisted - methods
Information, signal and communications theory
Lighting
Male
Pattern recognition. Digital image processing. Computational geometry
Signal and communications theory
Signal, noise
sparse representation
Studies
Telecommunications and information theory
Training
undersampled problem
Title Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary
URI https://ieeexplore.ieee.org/document/6133293
https://www.ncbi.nlm.nih.gov/pubmed/22813959
https://www.proquest.com/docview/1036862099
https://www.proquest.com/docview/1027371456
https://www.proquest.com/docview/1136377754
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSxxBEC7UU3KIieYxaqQDISdnne3HPHIT46KBDcFo8Db0dNeAJMwGd1fQX29Vz0MTYshtoAumu6uK-rq76iuA96lBlHVlYo1WxVpWWVzJpI4rX0ldW8bAfKE__ZIen-vPF-ZiBfaGWhhEDMlnOOLP8JbvZ27JV2X7FHoUhadVWM3ytK3VGl4MtAldkAnBkIfTMeKeT3P_7OvB9ISzuORIcec3KXPCPcxO-iAUhd4qnBlp57Q5ddvV4nHYGcLPZB2m_cTbrJMfo-WiGrnbPzgd_3dlz-FZh0PFQWs4L2AFmw1Y73s8iM7lN-DpA8LCTZgedXfm4tvp4UcRmibNLRMMezGxDsVpn480a8T1pRUnfHfsGKGL73QqJzWKT5ehlMJe3byE88nR2eFx3DVkiJ1O9CJGLlyViXeEa9DXDL18bgkR5S4pFBpVYIq58anOvVG6UD4b15XGtK4JteFYvYK1ZtbgGxAUIkyuPMHJXGlnXDHGLOUsR2TCOukj2Ot1U7qOrZybZvwsw6klKcqg1ZK1Wqokgg-D-K-WpuMxwU3e_UGo2_gIdn9T_DAuM8nEVCaCnd4Sys7L5_QHxQU2BLIjeDcMk3_yo4ttcLZkGQKIGZln-g-ZsUpVxlyEEbxurex-Ap2xbv194tvwhFfWZr3twNriaolvCSYtqt3gH3ctUQrv
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFqggVKMhDg126wfeXCrSle70FSobFFvUWJPpIpqF3V3keDXM-M8WhBF3CJ5pNieGc1ne-YbgDexQZR1ZUKNpQq1rJKwklEdVq6Sui4ZA_OFfn4Sj8_0h3NzvgZ7fS0MIvrkMxzwp3_Ld3O74quyfQo9isLTHbhrtNamqdbq3wy08X2QCcOQj9NB4ppRc3_66SCfcB6XHCju_SZlSsiH-UlvBCPfXYVzI8sFbU_d9LW4HXj6ADTagLybepN38nWwWlYD-_MPVsf_XdsjeNgiUXHQmM5jWMPZJmx0XR5E6_Sb8OAGZeEW5Eftrbn4fHr4Tvi2SYuSKYadGJUWxWmXkTSfie8XpZjw7bFljC6-0LmcFCneX_hiivLqxxM4Gx1ND8dh25IhtDrSyxC5dFVGzhKyQVcz-HJpSZgotVGm0KgMY0yNi3XqjNKZcsmwrjTGdU24DYfqKazP5jPcBkFBwqTKEaBMlbbGZkNMYs5zRKasky6AvU43hW35yrltxmXhzy1RVnitFqzVQkUBvO3FvzVEHbcJbvHu90Ltxgew-5vi-3GZSKamMgHsdJZQtH6-oD8oLrEhmB3A636YPJSfXcoZzlcsQxAxIfOM_yEzVLFKmI0wgGeNlV1PoDXW53-f-Cu4N57mx8Xx5OTjC7jPq2xy4HZgfXm1wpcEmpbVrveVX0guDjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+SRC%3A+Undersampled+Face+Recognition+via+Intraclass+Variant+Dictionary&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Deng%2C+Weihong&rft.au=Hu%2C+Jiani&rft.au=Guo%2C+Jun&rft.date=2012-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=34&rft.issue=9&rft.spage=1864&rft_id=info:doi/10.1109%2FTPAMI.2012.30&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2747798251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon