A Radar Linear Feature Fitting Algorithm Combining Adaptive Clustering and Corner Detection Operator
The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real-time localization and map-matching technique. One of the research directions is autonomous navigation algorithm based on LiDAR slam. LiDAR has the advantage of having a wide range...
Saved in:
| Published in | Journal of sensors Vol. 2023; no. 1 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Hindawi
24.02.2023
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-725X 1687-7268 1687-7268 |
| DOI | 10.1155/2023/6991467 |
Cover
| Abstract | The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real-time localization and map-matching technique. One of the research directions is autonomous navigation algorithm based on LiDAR slam. LiDAR has the advantage of having a wide range of accuracy and distance. However, due to the limited amount of LiDAR data available and the influence of sensor noise, it is easy to run into issues such as low accuracy of robot map construction or large positioning errors. At the moment, most of feature extraction algorithms employ an iterative calculation method with high computational complexity and a large amount of computation. Furthermore, due to the dependence of the fixed separation threshold, the algorithms for extracting the linear features of laser radar data are typically undersegment and oversegment. As a result, this paper proposes a radar linear feature fitting algorithm that combines adaptive clustering and corner detection operators. First, bilateral filtering is used to reduce noise and remove invalid data points. Second, the LiDAR data points are classified using adaptive threshold clustering of distance and density. The corner detection operator is applied to the classified data points to determine all possible corners then. Finally, the least square method is used to linearly fit each class and the identified corners within each class. The simulation and experimental results demonstrate that this method avoids the influence of noise points and a fixed segmentation threshold on corner point extraction effectively. The standard variance of length is 9.41×10−5m2 for corner feature extraction and localization in the dataset Cartographer ROS 2D Laser SLAM at Deutsches Museum. When compared to PDBS (point distance based methods) and IEPF (iterative end point fit), only about half the time is used, the accuracy of partition processing is improved by 11.6%, and the accuracy of corner detection is improved by 20.1%. The proposed algorithm can extract the corner features of data frames and linear positioning through experimental verification accurately. The features of the laser scan data that fit are more realistic. It has higher calculation efficiency and position accuracy. It ensures real-time mobile robot map construction and is appropriate for autonomous robot map algorithms developed in embedded systems. |
|---|---|
| AbstractList | The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real-time localization and map-matching technique. One of the research directions is autonomous navigation algorithm based on LiDAR slam. LiDAR has the advantage of having a wide range of accuracy and distance. However, due to the limited amount of LiDAR data available and the influence of sensor noise, it is easy to run into issues such as low accuracy of robot map construction or large positioning errors. At the moment, most of feature extraction algorithms employ an iterative calculation method with high computational complexity and a large amount of computation. Furthermore, due to the dependence of the fixed separation threshold, the algorithms for extracting the linear features of laser radar data are typically undersegment and oversegment. As a result, this paper proposes a radar linear feature fitting algorithm that combines adaptive clustering and corner detection operators. First, bilateral filtering is used to reduce noise and remove invalid data points. Second, the LiDAR data points are classified using adaptive threshold clustering of distance and density. The corner detection operator is applied to the classified data points to determine all possible corners then. Finally, the least square method is used to linearly fit each class and the identified corners within each class. The simulation and experimental results demonstrate that this method avoids the influence of noise points and a fixed segmentation threshold on corner point extraction effectively. The standard variance of length is 9.41×10−5m2 for corner feature extraction and localization in the dataset Cartographer ROS 2D Laser SLAM at Deutsches Museum. When compared to PDBS (point distance based methods) and IEPF (iterative end point fit), only about half the time is used, the accuracy of partition processing is improved by 11.6%, and the accuracy of corner detection is improved by 20.1%. The proposed algorithm can extract the corner features of data frames and linear positioning through experimental verification accurately. The features of the laser scan data that fit are more realistic. It has higher calculation efficiency and position accuracy. It ensures real-time mobile robot map construction and is appropriate for autonomous robot map algorithms developed in embedded systems. The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real‐time localization and map‐matching technique. One of the research directions is autonomous navigation algorithm based on LiDAR slam. LiDAR has the advantage of having a wide range of accuracy and distance. However, due to the limited amount of LiDAR data available and the influence of sensor noise, it is easy to run into issues such as low accuracy of robot map construction or large positioning errors. At the moment, most of feature extraction algorithms employ an iterative calculation method with high computational complexity and a large amount of computation. Furthermore, due to the dependence of the fixed separation threshold, the algorithms for extracting the linear features of laser radar data are typically undersegment and oversegment. As a result, this paper proposes a radar linear feature fitting algorithm that combines adaptive clustering and corner detection operators. First, bilateral filtering is used to reduce noise and remove invalid data points. Second, the LiDAR data points are classified using adaptive threshold clustering of distance and density. The corner detection operator is applied to the classified data points to determine all possible corners then. Finally, the least square method is used to linearly fit each class and the identified corners within each class. The simulation and experimental results demonstrate that this method avoids the influence of noise points and a fixed segmentation threshold on corner point extraction effectively. The standard variance of length is 9.41 × 10 −5 m 2 for corner feature extraction and localization in the dataset Cartographer ROS 2D Laser SLAM at Deutsches Museum. When compared to PDBS (point distance based methods) and IEPF (iterative end point fit), only about half the time is used, the accuracy of partition processing is improved by 11.6%, and the accuracy of corner detection is improved by 20.1%. The proposed algorithm can extract the corner features of data frames and linear positioning through experimental verification accurately. The features of the laser scan data that fit are more realistic. It has higher calculation efficiency and position accuracy. It ensures real‐time mobile robot map construction and is appropriate for autonomous robot map algorithms developed in embedded systems. |
| Author | Wu, Qingzheng Liu, Yawen Sui, Lianjie Yu, Hanqi Liu, Yiting Li, Peijuan Zhang, Lei Du, Junfeng |
| Author_xml | – sequence: 1 givenname: Yiting orcidid: 0000-0001-9148-3287 surname: Liu fullname: Liu, Yiting organization: School of AutomationNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn – sequence: 2 givenname: Lianjie orcidid: 0000-0001-7806-4061 surname: Sui fullname: Sui, Lianjie organization: The Graduate SchoolNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn – sequence: 3 givenname: Peijuan orcidid: 0000-0001-7331-9862 surname: Li fullname: Li, Peijuan organization: Industrial Center/School of Innovation and EntrepreneurshipNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn – sequence: 4 givenname: Lei orcidid: 0000-0003-4752-0356 surname: Zhang fullname: Zhang, Lei organization: The Graduate SchoolNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn – sequence: 5 givenname: Qingzheng orcidid: 0000-0003-4165-2083 surname: Wu fullname: Wu, Qingzheng organization: The Graduate SchoolNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn – sequence: 6 givenname: Junfeng orcidid: 0000-0002-7258-0409 surname: Du fullname: Du, Junfeng organization: The Graduate SchoolNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn – sequence: 7 givenname: Yawen orcidid: 0000-0002-1981-3373 surname: Liu fullname: Liu, Yawen organization: The Graduate SchoolNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn – sequence: 8 givenname: Hanqi orcidid: 0000-0002-3399-991X surname: Yu fullname: Yu, Hanqi organization: Industrial Center/School of Innovation and EntrepreneurshipNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn |
| BookMark | eNqFkE9Lw0AQxRepYFu9-QECHjU2-zfJsUSrQqEgCt7CJjtpt6SbuNlY-u1NTPEgqKcZHr_3ZngTNDKVAYQucXCLMeczEhA6E3GMmQhP0BiLKPRDIqLR987fztCkabZBIGhI6RipufcslbTeUhvoxgKkay14C-2cNmtvXq4rq91m5yXVLtPmS1OydvoDvKRsGwe216RRHWENWO8OHOROV8Zb1WClq-w5Oi1k2cDFcU7R6-L-JXn0l6uHp2S-9HMWMOerXDLKACLGYw6SRUUk8kxRzEGEhGJFOMe8iDMmsMx5RmLFiIKCAwhFFadT5A-5ranlYS_LMq2t3kl7SHGQ9hWlfUXpsaKOvxr42lbvLTQu3VatNd2LKQkjEhEW8D71ZqByWzWNheK_UPIDz7WTfR_OSl3-ZroeTBttlNzrv098AvQ3krE |
| CitedBy_id | crossref_primary_10_1016_j_autcon_2025_106075 |
| Cites_doi | 10.1109/TGRS.2016.2594294 10.1016/j.patcog.2015.07.004 10.19356/j.cnki.1001-3997.2013.10.074 10.1109/LGRS.2011.2180506 10.3390/S21041475 10.1109/TIP.2014.2387020 10.14016/j.cnki.jgzz.2016.09.072 10.1109/LGRS.2012.2194472 10.19356/j.cnki.1001-3997.2018.11.061 10.1016/S0921-8890(02)00233-6 10.1117/12.2580630 10.1017/S026357471400040X 10.3390/s18030837 10.1049/iet-ipr.2018.6272 10.3390/ijgi6120404 10.14569/IJACSA.2022.0130732 10.1109/JSEN.2018.2809795 10.1109/JPHOT.2016.2528118 10.1109/TMM.2008.2001384 10.16356/j.1005-2615.2021.03.006 10.1109/ACCESS.2020.3016424 10.1177/027836402320556340 10.16208/j.issn1000-7024.2021.02.030 10.1016/j.optlaseng.2019.06.011 10.1155/2022/8621103 10.1109/TIP.2014.2371234 10.16356/j.1005-2615.2012.03.010 10.1109/TCSVT.2016.2595331 10.1007/S12524-021-01358-X |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 Yiting Liu et al. Copyright © 2023 Yiting Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2023 Yiting Liu et al. – notice: Copyright © 2023 Yiting Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7SP 7U5 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH D1I DWQXO GNUQQ HCIFZ JQ2 K7- KB. L6V L7M M0N M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY |
| DOI | 10.1155/2023/6991467 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Middle East & Africa Database ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1687-7268 |
| Editor | Pathak, Akhilesh |
| Editor_xml | – sequence: 1 givenname: Akhilesh surname: Pathak fullname: Pathak, Akhilesh |
| ExternalDocumentID | 10.1155/2023/6991467 10_1155_2023_6991467 |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2020 M671292 – fundername: 2021 Provincial Key R & D Program grantid: BE2021016-5 – fundername: Nanjing Institute of Technology grantid: YKJ201822 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK2019K186; BK20181017 – fundername: Jiangsu Postdoctoral Research Funding Program grantid: 2019 K186 – fundername: National Natural Science Foundation of China grantid: 61903184 |
| GroupedDBID | .4S .DC 188 29L 2WC 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY AAKPC ABJCF ABUWG ACGFO ACIWK ADBBV AEGXH AENEX AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH D1I DWQXO E3Z EBS EDO GNUQQ GROUPED_DOAJ HCIFZ IAO IEA IGS ITC K6V K7- KB. KQ8 L6V M0N M7S M~E OK1 P62 PDBOC PIMPY PQQKQ PROAC PTHSS Q2X RHU RHW RHX RNS TR2 TUS UNMZH 0R~ 24P 2UF AAMMB AAYXX ACCMX ADMLS AEFGJ AGXDD AIDQK AIDYY C1A CITATION EJD H13 IL9 IPNFZ OVT PHGZM PHGZT PQGLB PUEGO RIG UGNYK 7SP 7U5 7XB 8AL 8FD 8FK JQ2 L7M PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c404t-dca434ee84595ea48f86cbd315e67231d25515f9b461ac5b29d42def5ee6d3d53 |
| IEDL.DBID | BENPR |
| ISSN | 1687-725X 1687-7268 |
| IngestDate | Wed Oct 01 16:45:37 EDT 2025 Fri Jul 25 19:02:59 EDT 2025 Wed Oct 01 02:15:55 EDT 2025 Thu Apr 24 22:58:29 EDT 2025 Sun Jun 02 19:21:16 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c404t-dca434ee84595ea48f86cbd315e67231d25515f9b461ac5b29d42def5ee6d3d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7806-4061 0000-0003-4165-2083 0000-0002-1981-3373 0000-0001-9148-3287 0000-0003-4752-0356 0000-0002-3399-991X 0000-0002-7258-0409 0000-0001-7331-9862 |
| OpenAccessLink | https://www.proquest.com/docview/2782824055?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2782824055 |
| PQPubID | 237780 |
| ParticipantIDs | unpaywall_primary_10_1155_2023_6991467 proquest_journals_2782824055 crossref_primary_10_1155_2023_6991467 crossref_citationtrail_10_1155_2023_6991467 hindawi_primary_10_1155_2023_6991467 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-24 |
| PublicationDateYYYYMMDD | 2023-02-24 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of sensors |
| PublicationYear | 2023 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_11_31_2 e_1_2_11_30_2 e_1_2_11_13_2 e_1_2_11_12_2 e_1_2_11_11_2 e_1_2_11_10_2 e_1_2_11_6_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_27_2 e_1_2_11_4_2 e_1_2_11_26_2 e_1_2_11_3_2 e_1_2_11_25_2 e_1_2_11_2_2 e_1_2_11_1_2 Zhang L. (e_1_2_11_22_2) 2018; 47 e_1_2_11_29_2 e_1_2_11_20_2 e_1_2_11_24_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_8_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_17_2 e_1_2_11_16_2 e_1_2_11_15_2 e_1_2_11_14_2 e_1_2_11_19_2 e_1_2_11_18_2 |
| References_xml | – ident: e_1_2_11_31_2 – ident: e_1_2_11_3_2 doi: 10.1109/TGRS.2016.2594294 – ident: e_1_2_11_4_2 doi: 10.1016/j.patcog.2015.07.004 – ident: e_1_2_11_11_2 doi: 10.19356/j.cnki.1001-3997.2013.10.074 – ident: e_1_2_11_16_2 doi: 10.1109/LGRS.2011.2180506 – ident: e_1_2_11_6_2 doi: 10.3390/S21041475 – ident: e_1_2_11_26_2 doi: 10.1109/TIP.2014.2387020 – ident: e_1_2_11_2_2 doi: 10.14016/j.cnki.jgzz.2016.09.072 – ident: e_1_2_11_29_2 doi: 10.1109/LGRS.2012.2194472 – ident: e_1_2_11_12_2 doi: 10.19356/j.cnki.1001-3997.2018.11.061 – ident: e_1_2_11_18_2 doi: 10.1016/S0921-8890(02)00233-6 – ident: e_1_2_11_25_2 doi: 10.1117/12.2580630 – ident: e_1_2_11_30_2 doi: 10.1017/S026357471400040X – ident: e_1_2_11_13_2 doi: 10.3390/s18030837 – volume: 47 start-page: 833 year: 2018 ident: e_1_2_11_22_2 article-title: Splitting and merging based multi-model fitting for point cloud segmentation publication-title: Journal of Geodesy and Geoinformation Science – ident: e_1_2_11_24_2 doi: 10.1049/iet-ipr.2018.6272 – ident: e_1_2_11_15_2 doi: 10.3390/ijgi6120404 – ident: e_1_2_11_14_2 doi: 10.14569/IJACSA.2022.0130732 – ident: e_1_2_11_5_2 doi: 10.1109/JSEN.2018.2809795 – ident: e_1_2_11_10_2 doi: 10.1109/JPHOT.2016.2528118 – ident: e_1_2_11_28_2 doi: 10.1109/TMM.2008.2001384 – ident: e_1_2_11_1_2 doi: 10.16356/j.1005-2615.2021.03.006 – ident: e_1_2_11_9_2 doi: 10.1109/ACCESS.2020.3016424 – ident: e_1_2_11_17_2 doi: 10.1177/027836402320556340 – ident: e_1_2_11_27_2 doi: 10.16208/j.issn1000-7024.2021.02.030 – ident: e_1_2_11_8_2 doi: 10.1016/j.optlaseng.2019.06.011 – ident: e_1_2_11_7_2 doi: 10.1155/2022/8621103 – ident: e_1_2_11_19_2 doi: 10.1109/TIP.2014.2371234 – ident: e_1_2_11_20_2 doi: 10.16356/j.1005-2615.2012.03.010 – ident: e_1_2_11_21_2 doi: 10.1109/TCSVT.2016.2595331 – ident: e_1_2_11_23_2 doi: 10.1007/S12524-021-01358-X |
| SSID | ssj0063733 |
| Score | 2.279731 |
| Snippet | The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real-time localization and map-matching... The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real‐time localization and map‐matching... |
| SourceID | unpaywall proquest crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Adaptive algorithms Algorithms Autonomous navigation Cartography Clustering Corner detection Corners Data points Data processing Feature extraction Iterative methods Lasers Lidar Mathematical analysis Radar data Real time Robots Simultaneous localization and mapping Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uIOqD-InTKXmYvkhxbZO0eyzTMQQVhoO9lTS5uUHtxj4Y_vdesnZsih-PLZcWcrnc70cu9yOkBpgTGQTS0a6UDhMgnAaw0BH1vuYhuEpZ5bmnZ9Hussce7-VNkqbfj_Ax2xl67t8JxDEY0yVSCoWp3Oq0e8WGK_zAKsa7AuMl8HivqG__MnYj82wPDOVdDDeA5c48G8uPhUzTtRzTOiD7OTik0dKbh2QLsiOyt9Yy8JjoiHYkcn-KJBIXKTUQbj4B2hraAmYapW8j5PuDd4qRnlj1BxppOTa7Gm2mc9MXwbyTmUYLo3JP72Fm67Ey-jIGe-p-Qrqth9dm28mVEhzF6mzmaCWZzwBCxhscJAv7oVCJ9l0OIkAEp5E4uLzfSJhwpeKJ19DM09DnAEL7mvunpJyNMjgjlLuBDBEUBnWtWMABA1QrOw7ZrPZZhdwWsxirvI24UbNIY0snOI_NnMf5nFfI9cp6vGyf8YNdLXfIH2bVwltxHmvT2EOQEyIw4bxCblYe_PU75__73QXZNY_2BjurkvJsModLxCCz5MquwE-9TtGA priority: 102 providerName: Hindawi Publishing – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegEwIexrfoGMgPgxeUrml8TvoYbVQTEgMhKhXxEDm-CyuENEoTTeyvx3adsSLxId6S6OIk9n38fsr5jrEDMjFRUKwCDJUKhCQZTEkkgRwXCAmFWrvOc29O5clcvF7AwmdV2r0waEvErxSuR2eWk54vnbf287o-_LK2bD06lAbWGBMf1VhcZzsSDA4fsJ356bv0o2VY0lhOPIHFz2OZ9FnvAFtDbMWjG_6hW3DzZlfV6vu5KssrkWd2h33q33mTcPJ11LX5SF_8Us7x_z7qLtv1gJSnGw26x65RdZ_dvlKm8AHDlL9XqBpuiKsxDG5hY9cQny1d0jRPy8-rZtmefePGu-Su4wRPUdXWk_KjsrO1GOw1VaGRaCpq-DG1Lges4m9rcn_6H7L57NWHo5PAd2cItBiLNkCtRCSIEgFTICWSIpE6xygEkrFBjWjISgjFNBcyVBryyRTFBKkAIokRQvSIDapVRY8ZhzBWiQGi8Ri1iIGMU0Dt7jMMGiMxZC_7Ncq0L11uO2iUmaMwAJmdv8zP35A9v5SuNyU7fiN34JfjL2L7vS5k_ZJlEwOsEgOGAIbsxaV-_HGcvX8VfMJu2VO3b17ss0HbdPTUIJ82f-ZV_Ac8yfzY priority: 102 providerName: Unpaywall |
| Title | A Radar Linear Feature Fitting Algorithm Combining Adaptive Clustering and Corner Detection Operator |
| URI | https://dx.doi.org/10.1155/2023/6991467 https://www.proquest.com/docview/2782824055 https://downloads.hindawi.com/journals/js/2023/6991467.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2023 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-7268 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063733 issn: 1687-7268 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-7268 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063733 issn: 1687-7268 databaseCode: KQ8 dateStart: 20071111 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1687-7268 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063733 issn: 1687-7268 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-7268 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063733 issn: 1687-7268 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-7268 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063733 issn: 1687-7268 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-7268 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063733 issn: 1687-7268 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library (Open Access Collection) customDbUrl: eissn: 1687-7268 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063733 issn: 1687-7268 databaseCode: 24P dateStart: 20080101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED5tnRDwgPgpCmPyw-AFRWsSn5M-IBS6dRUSZaqoKE-RY1_ZpCzLSqqJ_56zm2zjgfEUxbpYis---84-3wewT-wTJSU6sKHWgVSkgiHJNFCDpcWUQmM889yXqZrM5ecFLrZg2t2FcWmVnU30htpeGLdHfhCxK0vZ_SB-rC8DxxrlTlc7Cg3dUivYD77E2DbsRK4yVg92Ph1NT2adbVZx4snlQ8VLK4lw0aXCI7pdgPhAMVzacM7fOKl7py46vjr7C4PeX1e1_n2ly_KWOxo_hkctjhTZRvFPYIuqp_DwVnXBZ2AzMdNWrwTHmzyfhUN76xWJ8ZnPdRZZ-ZN_sDk9F2wUCk8UITKra2cAxahcuxIKrk1XliVWFa3EITU-dasSX2vyB_TPYT4--jaaBC2pQmDkQDaBNVrGkiiVOETSMl2myhQ2DpFUwmDPcowR4nJYSBVqg0U0tDKytEQiZWOL8QvoVRcVvQSBYaJTxo_JwBqZIPFatsZ_x4GvjWUf3nejmJu24rgjvihzH3kg5m7M83bM-_D2WrreVNr4h9x-q5D_iO122srbZfkrv5lEfXh3rcE7-3l1dz-v4YGT9pfc5S70mtWa3jBMaYo92E7Hx3vtDOTn6Pvh8YRbZ5MFv82nJ9mPP5SB52k |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VrVDhwDdioYAPbS8o7SaxneyBw2qXZUs_kFAr9hYce5ZWhDSkiVblR_FX-EuMvUlbkCinHrhGYytxnmfeOJN5AGtIMZFjpDzjK-VxidLrI4892ZsZEaOvtVOe29uXk0P-biqmS_Cj_RfGllW2PtE5anOi7Rn5VkChLKbwI9oKyh08m1N-dvp6e0Qvcz0Ixm8OhhOvkRDwNO_xyjNa8ZAjxlz0BSoez2KpUxP6AmVE1MYQo_bFrJ9y6Sst0qBveGBwJhClCY2VhAg2im-eVamyX3MbyY4bsEw494MOLA8_jt5OWt8vw8iJ1_uStm4UiGlbai-EPWUItyTRsYWm_UUQvHlks-_58W8cd6XOC3U2V1l2KdyN78LPdqEWVS5fNusq3dTf_-gh-f-s5D240zBvNlhslfuwhPkDuH2pH-NDMAP2QRlVMsrQ6Z6Z5cd1iWx87KrD2SD7TBNXR18ZudHUSWuwgVGFDRlsmNW26YS9pnJDFmWOJRth5Yrdcva-QFfS8AgOr-XJH0MnP8nxCTDhRyomxh31jOaRQPJ-RrtxfhiakHfhVYuLRDc92q1USJa4XE2IxKIoaVDUhfVz62LRm-QvdmsNxP5httriJWkc2WlyAZYubJxj8sp5nl49z0tYmRzs7Sa72_s7z-CWHelaBPBV6FRljc-J5FXpi2ZnMfh03aj8BTBUXcE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9RAFJ4QiIoHf0JYRZwDeDFlt-3MtHswZrPLuoiiMRL2VqYzr0AopZY2G_zT_Ff8Z3wzbQFNxBMHr82bSWf6zXvfa1_fR8g6YExkEEhHu1I6TIBw-sBCR_QSzUNwlbLKcx93xWSPvZ_y6Rz50f4LY8oqW59oHbU-U-YdedfDUBZi-OG8mzRlEZ9H47f5N8coSJkvra2cRg2RHbiYYfp2_mZ7hM96w_PGW1-HE6dRGHAU67HS0UoynwGEjPc5SBYmoVCx9l0OIkDmo5Fwuzzpx0y4UvHY62vmaUg4gNC-NooR6P4XQhEIdAoLw_3Ru0kbB4QfWCF7V-AxDjw-bcvucQVGs7wrkJrV-vZXAfHOkcnEZ8e_8d17VZbLi5lM02uhb_yQ_Gw3ra54OdmsynhTff-jn-T_uauPyIOGkdNBfYQekznInpD71_o0PiV6QL9ILQuKmTveIDW8uSqAjo9t1TgdpIe4kPLolKJ7ja3kBh1omZtQQodpZZpRmGsy02hRZFDQEZS2CC6jn3KwpQ5LZO9WlrlM5rOzDFYI5W4gQ2TiQU8rFnBAr6iVHef6vvZZh7xuMRKppne7kRBJI5vDcR4ZREUNojpk49I6r3uW_MVuvYHbP8xWW-xEjYM7j66A0yGvLvF54zzPbp7nJbmL0Is-bO_uPCeLZqDtHMBWyXxZVPACuV8ZrzWHjJKD20bgL4swZok |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegEwIexrfoGMgPgxeUrml8TvoYbVQTEgMhKhXxEDm-CyuENEoTTeyvx3adsSLxId6S6OIk9n38fsr5jrEDMjFRUKwCDJUKhCQZTEkkgRwXCAmFWrvOc29O5clcvF7AwmdV2r0waEvErxSuR2eWk54vnbf287o-_LK2bD06lAbWGBMf1VhcZzsSDA4fsJ356bv0o2VY0lhOPIHFz2OZ9FnvAFtDbMWjG_6hW3DzZlfV6vu5KssrkWd2h33q33mTcPJ11LX5SF_8Us7x_z7qLtv1gJSnGw26x65RdZ_dvlKm8AHDlL9XqBpuiKsxDG5hY9cQny1d0jRPy8-rZtmefePGu-Su4wRPUdXWk_KjsrO1GOw1VaGRaCpq-DG1Lges4m9rcn_6H7L57NWHo5PAd2cItBiLNkCtRCSIEgFTICWSIpE6xygEkrFBjWjISgjFNBcyVBryyRTFBKkAIokRQvSIDapVRY8ZhzBWiQGi8Ri1iIGMU0Dt7jMMGiMxZC_7Ncq0L11uO2iUmaMwAJmdv8zP35A9v5SuNyU7fiN34JfjL2L7vS5k_ZJlEwOsEgOGAIbsxaV-_HGcvX8VfMJu2VO3b17ss0HbdPTUIJ82f-ZV_Ac8yfzY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Radar+Linear+Feature+Fitting+Algorithm+Combining+Adaptive+Clustering+and+Corner+Detection+Operator&rft.jtitle=Journal+of+sensors&rft.au=Liu%2C+Yiting&rft.au=Sui%2C+Lianjie&rft.au=Li%2C+Peijuan&rft.au=Zhang%2C+Lei&rft.date=2023-02-24&rft.issn=1687-725X&rft.eissn=1687-7268&rft.volume=2023&rft.issue=1&rft_id=info:doi/10.1155%2F2023%2F6991467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2023_6991467 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-725X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-725X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-725X&client=summon |