A Radar Linear Feature Fitting Algorithm Combining Adaptive Clustering and Corner Detection Operator

The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real-time localization and map-matching technique. One of the research directions is autonomous navigation algorithm based on LiDAR slam. LiDAR has the advantage of having a wide range...

Full description

Saved in:
Bibliographic Details
Published inJournal of sensors Vol. 2023; no. 1
Main Authors Liu, Yiting, Sui, Lianjie, Li, Peijuan, Zhang, Lei, Wu, Qingzheng, Du, Junfeng, Liu, Yawen, Yu, Hanqi
Format Journal Article
LanguageEnglish
Published New York Hindawi 24.02.2023
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-725X
1687-7268
1687-7268
DOI10.1155/2023/6991467

Cover

Abstract The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real-time localization and map-matching technique. One of the research directions is autonomous navigation algorithm based on LiDAR slam. LiDAR has the advantage of having a wide range of accuracy and distance. However, due to the limited amount of LiDAR data available and the influence of sensor noise, it is easy to run into issues such as low accuracy of robot map construction or large positioning errors. At the moment, most of feature extraction algorithms employ an iterative calculation method with high computational complexity and a large amount of computation. Furthermore, due to the dependence of the fixed separation threshold, the algorithms for extracting the linear features of laser radar data are typically undersegment and oversegment. As a result, this paper proposes a radar linear feature fitting algorithm that combines adaptive clustering and corner detection operators. First, bilateral filtering is used to reduce noise and remove invalid data points. Second, the LiDAR data points are classified using adaptive threshold clustering of distance and density. The corner detection operator is applied to the classified data points to determine all possible corners then. Finally, the least square method is used to linearly fit each class and the identified corners within each class. The simulation and experimental results demonstrate that this method avoids the influence of noise points and a fixed segmentation threshold on corner point extraction effectively. The standard variance of length is 9.41×10−5m2 for corner feature extraction and localization in the dataset Cartographer ROS 2D Laser SLAM at Deutsches Museum. When compared to PDBS (point distance based methods) and IEPF (iterative end point fit), only about half the time is used, the accuracy of partition processing is improved by 11.6%, and the accuracy of corner detection is improved by 20.1%. The proposed algorithm can extract the corner features of data frames and linear positioning through experimental verification accurately. The features of the laser scan data that fit are more realistic. It has higher calculation efficiency and position accuracy. It ensures real-time mobile robot map construction and is appropriate for autonomous robot map algorithms developed in embedded systems.
AbstractList The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real-time localization and map-matching technique. One of the research directions is autonomous navigation algorithm based on LiDAR slam. LiDAR has the advantage of having a wide range of accuracy and distance. However, due to the limited amount of LiDAR data available and the influence of sensor noise, it is easy to run into issues such as low accuracy of robot map construction or large positioning errors. At the moment, most of feature extraction algorithms employ an iterative calculation method with high computational complexity and a large amount of computation. Furthermore, due to the dependence of the fixed separation threshold, the algorithms for extracting the linear features of laser radar data are typically undersegment and oversegment. As a result, this paper proposes a radar linear feature fitting algorithm that combines adaptive clustering and corner detection operators. First, bilateral filtering is used to reduce noise and remove invalid data points. Second, the LiDAR data points are classified using adaptive threshold clustering of distance and density. The corner detection operator is applied to the classified data points to determine all possible corners then. Finally, the least square method is used to linearly fit each class and the identified corners within each class. The simulation and experimental results demonstrate that this method avoids the influence of noise points and a fixed segmentation threshold on corner point extraction effectively. The standard variance of length is 9.41×10−5m2 for corner feature extraction and localization in the dataset Cartographer ROS 2D Laser SLAM at Deutsches Museum. When compared to PDBS (point distance based methods) and IEPF (iterative end point fit), only about half the time is used, the accuracy of partition processing is improved by 11.6%, and the accuracy of corner detection is improved by 20.1%. The proposed algorithm can extract the corner features of data frames and linear positioning through experimental verification accurately. The features of the laser scan data that fit are more realistic. It has higher calculation efficiency and position accuracy. It ensures real-time mobile robot map construction and is appropriate for autonomous robot map algorithms developed in embedded systems.
The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real‐time localization and map‐matching technique. One of the research directions is autonomous navigation algorithm based on LiDAR slam. LiDAR has the advantage of having a wide range of accuracy and distance. However, due to the limited amount of LiDAR data available and the influence of sensor noise, it is easy to run into issues such as low accuracy of robot map construction or large positioning errors. At the moment, most of feature extraction algorithms employ an iterative calculation method with high computational complexity and a large amount of computation. Furthermore, due to the dependence of the fixed separation threshold, the algorithms for extracting the linear features of laser radar data are typically undersegment and oversegment. As a result, this paper proposes a radar linear feature fitting algorithm that combines adaptive clustering and corner detection operators. First, bilateral filtering is used to reduce noise and remove invalid data points. Second, the LiDAR data points are classified using adaptive threshold clustering of distance and density. The corner detection operator is applied to the classified data points to determine all possible corners then. Finally, the least square method is used to linearly fit each class and the identified corners within each class. The simulation and experimental results demonstrate that this method avoids the influence of noise points and a fixed segmentation threshold on corner point extraction effectively. The standard variance of length is 9.41 × 10 −5 m 2 for corner feature extraction and localization in the dataset Cartographer ROS 2D Laser SLAM at Deutsches Museum. When compared to PDBS (point distance based methods) and IEPF (iterative end point fit), only about half the time is used, the accuracy of partition processing is improved by 11.6%, and the accuracy of corner detection is improved by 20.1%. The proposed algorithm can extract the corner features of data frames and linear positioning through experimental verification accurately. The features of the laser scan data that fit are more realistic. It has higher calculation efficiency and position accuracy. It ensures real‐time mobile robot map construction and is appropriate for autonomous robot map algorithms developed in embedded systems.
Author Wu, Qingzheng
Liu, Yawen
Sui, Lianjie
Yu, Hanqi
Liu, Yiting
Li, Peijuan
Zhang, Lei
Du, Junfeng
Author_xml – sequence: 1
  givenname: Yiting
  orcidid: 0000-0001-9148-3287
  surname: Liu
  fullname: Liu, Yiting
  organization: School of AutomationNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn
– sequence: 2
  givenname: Lianjie
  orcidid: 0000-0001-7806-4061
  surname: Sui
  fullname: Sui, Lianjie
  organization: The Graduate SchoolNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn
– sequence: 3
  givenname: Peijuan
  orcidid: 0000-0001-7331-9862
  surname: Li
  fullname: Li, Peijuan
  organization: Industrial Center/School of Innovation and EntrepreneurshipNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn
– sequence: 4
  givenname: Lei
  orcidid: 0000-0003-4752-0356
  surname: Zhang
  fullname: Zhang, Lei
  organization: The Graduate SchoolNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn
– sequence: 5
  givenname: Qingzheng
  orcidid: 0000-0003-4165-2083
  surname: Wu
  fullname: Wu, Qingzheng
  organization: The Graduate SchoolNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn
– sequence: 6
  givenname: Junfeng
  orcidid: 0000-0002-7258-0409
  surname: Du
  fullname: Du, Junfeng
  organization: The Graduate SchoolNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn
– sequence: 7
  givenname: Yawen
  orcidid: 0000-0002-1981-3373
  surname: Liu
  fullname: Liu, Yawen
  organization: The Graduate SchoolNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn
– sequence: 8
  givenname: Hanqi
  orcidid: 0000-0002-3399-991X
  surname: Yu
  fullname: Yu, Hanqi
  organization: Industrial Center/School of Innovation and EntrepreneurshipNanjing Institute of TechnologyNanjing 211167Chinanjit.edu.cn
BookMark eNqFkE9Lw0AQxRepYFu9-QECHjU2-zfJsUSrQqEgCt7CJjtpt6SbuNlY-u1NTPEgqKcZHr_3ZngTNDKVAYQucXCLMeczEhA6E3GMmQhP0BiLKPRDIqLR987fztCkabZBIGhI6RipufcslbTeUhvoxgKkay14C-2cNmtvXq4rq91m5yXVLtPmS1OydvoDvKRsGwe216RRHWENWO8OHOROV8Zb1WClq-w5Oi1k2cDFcU7R6-L-JXn0l6uHp2S-9HMWMOerXDLKACLGYw6SRUUk8kxRzEGEhGJFOMe8iDMmsMx5RmLFiIKCAwhFFadT5A-5ranlYS_LMq2t3kl7SHGQ9hWlfUXpsaKOvxr42lbvLTQu3VatNd2LKQkjEhEW8D71ZqByWzWNheK_UPIDz7WTfR_OSl3-ZroeTBttlNzrv098AvQ3krE
CitedBy_id crossref_primary_10_1016_j_autcon_2025_106075
Cites_doi 10.1109/TGRS.2016.2594294
10.1016/j.patcog.2015.07.004
10.19356/j.cnki.1001-3997.2013.10.074
10.1109/LGRS.2011.2180506
10.3390/S21041475
10.1109/TIP.2014.2387020
10.14016/j.cnki.jgzz.2016.09.072
10.1109/LGRS.2012.2194472
10.19356/j.cnki.1001-3997.2018.11.061
10.1016/S0921-8890(02)00233-6
10.1117/12.2580630
10.1017/S026357471400040X
10.3390/s18030837
10.1049/iet-ipr.2018.6272
10.3390/ijgi6120404
10.14569/IJACSA.2022.0130732
10.1109/JSEN.2018.2809795
10.1109/JPHOT.2016.2528118
10.1109/TMM.2008.2001384
10.16356/j.1005-2615.2021.03.006
10.1109/ACCESS.2020.3016424
10.1177/027836402320556340
10.16208/j.issn1000-7024.2021.02.030
10.1016/j.optlaseng.2019.06.011
10.1155/2022/8621103
10.1109/TIP.2014.2371234
10.16356/j.1005-2615.2012.03.010
10.1109/TCSVT.2016.2595331
10.1007/S12524-021-01358-X
ContentType Journal Article
Copyright Copyright © 2023 Yiting Liu et al.
Copyright © 2023 Yiting Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2023 Yiting Liu et al.
– notice: Copyright © 2023 Yiting Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7SP
7U5
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
D1I
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
KB.
L6V
L7M
M0N
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOI 10.1155/2023/6991467
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
Middle East & Africa Database
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-7268
Editor Pathak, Akhilesh
Editor_xml – sequence: 1
  givenname: Akhilesh
  surname: Pathak
  fullname: Pathak, Akhilesh
ExternalDocumentID 10.1155/2023/6991467
10_1155_2023_6991467
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2020 M671292
– fundername: 2021 Provincial Key R & D Program
  grantid: BE2021016-5
– fundername: Nanjing Institute of Technology
  grantid: YKJ201822
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK2019K186; BK20181017
– fundername: Jiangsu Postdoctoral Research Funding Program
  grantid: 2019 K186
– fundername: National Natural Science Foundation of China
  grantid: 61903184
GroupedDBID .4S
.DC
188
29L
2WC
3V.
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AEGXH
AENEX
AFKRA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
D1I
DWQXO
E3Z
EBS
EDO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IEA
IGS
ITC
K6V
K7-
KB.
KQ8
L6V
M0N
M7S
M~E
OK1
P62
PDBOC
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RHU
RHW
RHX
RNS
TR2
TUS
UNMZH
0R~
24P
2UF
AAMMB
AAYXX
ACCMX
ADMLS
AEFGJ
AGXDD
AIDQK
AIDYY
C1A
CITATION
EJD
H13
IL9
IPNFZ
OVT
PHGZM
PHGZT
PQGLB
PUEGO
RIG
UGNYK
7SP
7U5
7XB
8AL
8FD
8FK
JQ2
L7M
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c404t-dca434ee84595ea48f86cbd315e67231d25515f9b461ac5b29d42def5ee6d3d53
IEDL.DBID BENPR
ISSN 1687-725X
1687-7268
IngestDate Wed Oct 01 16:45:37 EDT 2025
Fri Jul 25 19:02:59 EDT 2025
Wed Oct 01 02:15:55 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Sun Jun 02 19:21:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-dca434ee84595ea48f86cbd315e67231d25515f9b461ac5b29d42def5ee6d3d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7806-4061
0000-0003-4165-2083
0000-0002-1981-3373
0000-0001-9148-3287
0000-0003-4752-0356
0000-0002-3399-991X
0000-0002-7258-0409
0000-0001-7331-9862
OpenAccessLink https://www.proquest.com/docview/2782824055?pq-origsite=%requestingapplication%&accountid=15518
PQID 2782824055
PQPubID 237780
ParticipantIDs unpaywall_primary_10_1155_2023_6991467
proquest_journals_2782824055
crossref_primary_10_1155_2023_6991467
crossref_citationtrail_10_1155_2023_6991467
hindawi_primary_10_1155_2023_6991467
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-24
PublicationDateYYYYMMDD 2023-02-24
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-24
  day: 24
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of sensors
PublicationYear 2023
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_11_31_2
e_1_2_11_30_2
e_1_2_11_13_2
e_1_2_11_12_2
e_1_2_11_11_2
e_1_2_11_10_2
e_1_2_11_6_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_1_2
Zhang L. (e_1_2_11_22_2) 2018; 47
e_1_2_11_29_2
e_1_2_11_20_2
e_1_2_11_24_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_8_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_17_2
e_1_2_11_16_2
e_1_2_11_15_2
e_1_2_11_14_2
e_1_2_11_19_2
e_1_2_11_18_2
References_xml – ident: e_1_2_11_31_2
– ident: e_1_2_11_3_2
  doi: 10.1109/TGRS.2016.2594294
– ident: e_1_2_11_4_2
  doi: 10.1016/j.patcog.2015.07.004
– ident: e_1_2_11_11_2
  doi: 10.19356/j.cnki.1001-3997.2013.10.074
– ident: e_1_2_11_16_2
  doi: 10.1109/LGRS.2011.2180506
– ident: e_1_2_11_6_2
  doi: 10.3390/S21041475
– ident: e_1_2_11_26_2
  doi: 10.1109/TIP.2014.2387020
– ident: e_1_2_11_2_2
  doi: 10.14016/j.cnki.jgzz.2016.09.072
– ident: e_1_2_11_29_2
  doi: 10.1109/LGRS.2012.2194472
– ident: e_1_2_11_12_2
  doi: 10.19356/j.cnki.1001-3997.2018.11.061
– ident: e_1_2_11_18_2
  doi: 10.1016/S0921-8890(02)00233-6
– ident: e_1_2_11_25_2
  doi: 10.1117/12.2580630
– ident: e_1_2_11_30_2
  doi: 10.1017/S026357471400040X
– ident: e_1_2_11_13_2
  doi: 10.3390/s18030837
– volume: 47
  start-page: 833
  year: 2018
  ident: e_1_2_11_22_2
  article-title: Splitting and merging based multi-model fitting for point cloud segmentation
  publication-title: Journal of Geodesy and Geoinformation Science
– ident: e_1_2_11_24_2
  doi: 10.1049/iet-ipr.2018.6272
– ident: e_1_2_11_15_2
  doi: 10.3390/ijgi6120404
– ident: e_1_2_11_14_2
  doi: 10.14569/IJACSA.2022.0130732
– ident: e_1_2_11_5_2
  doi: 10.1109/JSEN.2018.2809795
– ident: e_1_2_11_10_2
  doi: 10.1109/JPHOT.2016.2528118
– ident: e_1_2_11_28_2
  doi: 10.1109/TMM.2008.2001384
– ident: e_1_2_11_1_2
  doi: 10.16356/j.1005-2615.2021.03.006
– ident: e_1_2_11_9_2
  doi: 10.1109/ACCESS.2020.3016424
– ident: e_1_2_11_17_2
  doi: 10.1177/027836402320556340
– ident: e_1_2_11_27_2
  doi: 10.16208/j.issn1000-7024.2021.02.030
– ident: e_1_2_11_8_2
  doi: 10.1016/j.optlaseng.2019.06.011
– ident: e_1_2_11_7_2
  doi: 10.1155/2022/8621103
– ident: e_1_2_11_19_2
  doi: 10.1109/TIP.2014.2371234
– ident: e_1_2_11_20_2
  doi: 10.16356/j.1005-2615.2012.03.010
– ident: e_1_2_11_21_2
  doi: 10.1109/TCSVT.2016.2595331
– ident: e_1_2_11_23_2
  doi: 10.1007/S12524-021-01358-X
SSID ssj0063733
Score 2.279731
Snippet The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real-time localization and map-matching...
The precise environmental parameters derived from laser radar scan data can significantly accelerate the process of real‐time localization and map‐matching...
SourceID unpaywall
proquest
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Adaptive algorithms
Algorithms
Autonomous navigation
Cartography
Clustering
Corner detection
Corners
Data points
Data processing
Feature extraction
Iterative methods
Lasers
Lidar
Mathematical analysis
Radar data
Real time
Robots
Simultaneous localization and mapping
Wavelet transforms
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uIOqD-InTKXmYvkhxbZO0eyzTMQQVhoO9lTS5uUHtxj4Y_vdesnZsih-PLZcWcrnc70cu9yOkBpgTGQTS0a6UDhMgnAaw0BH1vuYhuEpZ5bmnZ9Hussce7-VNkqbfj_Ax2xl67t8JxDEY0yVSCoWp3Oq0e8WGK_zAKsa7AuMl8HivqG__MnYj82wPDOVdDDeA5c48G8uPhUzTtRzTOiD7OTik0dKbh2QLsiOyt9Yy8JjoiHYkcn-KJBIXKTUQbj4B2hraAmYapW8j5PuDd4qRnlj1BxppOTa7Gm2mc9MXwbyTmUYLo3JP72Fm67Ey-jIGe-p-Qrqth9dm28mVEhzF6mzmaCWZzwBCxhscJAv7oVCJ9l0OIkAEp5E4uLzfSJhwpeKJ19DM09DnAEL7mvunpJyNMjgjlLuBDBEUBnWtWMABA1QrOw7ZrPZZhdwWsxirvI24UbNIY0snOI_NnMf5nFfI9cp6vGyf8YNdLXfIH2bVwltxHmvT2EOQEyIw4bxCblYe_PU75__73QXZNY_2BjurkvJsModLxCCz5MquwE-9TtGA
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegEwIexrfoGMgPgxeUrml8TvoYbVQTEgMhKhXxEDm-CyuENEoTTeyvx3adsSLxId6S6OIk9n38fsr5jrEDMjFRUKwCDJUKhCQZTEkkgRwXCAmFWrvOc29O5clcvF7AwmdV2r0waEvErxSuR2eWk54vnbf287o-_LK2bD06lAbWGBMf1VhcZzsSDA4fsJ356bv0o2VY0lhOPIHFz2OZ9FnvAFtDbMWjG_6hW3DzZlfV6vu5KssrkWd2h33q33mTcPJ11LX5SF_8Us7x_z7qLtv1gJSnGw26x65RdZ_dvlKm8AHDlL9XqBpuiKsxDG5hY9cQny1d0jRPy8-rZtmefePGu-Su4wRPUdXWk_KjsrO1GOw1VaGRaCpq-DG1Lges4m9rcn_6H7L57NWHo5PAd2cItBiLNkCtRCSIEgFTICWSIpE6xygEkrFBjWjISgjFNBcyVBryyRTFBKkAIokRQvSIDapVRY8ZhzBWiQGi8Ri1iIGMU0Dt7jMMGiMxZC_7Ncq0L11uO2iUmaMwAJmdv8zP35A9v5SuNyU7fiN34JfjL2L7vS5k_ZJlEwOsEgOGAIbsxaV-_HGcvX8VfMJu2VO3b17ss0HbdPTUIJ82f-ZV_Ac8yfzY
  priority: 102
  providerName: Unpaywall
Title A Radar Linear Feature Fitting Algorithm Combining Adaptive Clustering and Corner Detection Operator
URI https://dx.doi.org/10.1155/2023/6991467
https://www.proquest.com/docview/2782824055
https://downloads.hindawi.com/journals/js/2023/6991467.pdf
UnpaywallVersion publishedVersion
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063733
  issn: 1687-7268
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063733
  issn: 1687-7268
  databaseCode: KQ8
  dateStart: 20071111
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063733
  issn: 1687-7268
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063733
  issn: 1687-7268
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063733
  issn: 1687-7268
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063733
  issn: 1687-7268
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library (Open Access Collection)
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063733
  issn: 1687-7268
  databaseCode: 24P
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED5tnRDwgPgpCmPyw-AFRWsSn5M-IBS6dRUSZaqoKE-RY1_ZpCzLSqqJ_56zm2zjgfEUxbpYis---84-3wewT-wTJSU6sKHWgVSkgiHJNFCDpcWUQmM889yXqZrM5ecFLrZg2t2FcWmVnU30htpeGLdHfhCxK0vZ_SB-rC8DxxrlTlc7Cg3dUivYD77E2DbsRK4yVg92Ph1NT2adbVZx4snlQ8VLK4lw0aXCI7pdgPhAMVzacM7fOKl7py46vjr7C4PeX1e1_n2ly_KWOxo_hkctjhTZRvFPYIuqp_DwVnXBZ2AzMdNWrwTHmzyfhUN76xWJ8ZnPdRZZ-ZN_sDk9F2wUCk8UITKra2cAxahcuxIKrk1XliVWFa3EITU-dasSX2vyB_TPYT4--jaaBC2pQmDkQDaBNVrGkiiVOETSMl2myhQ2DpFUwmDPcowR4nJYSBVqg0U0tDKytEQiZWOL8QvoVRcVvQSBYaJTxo_JwBqZIPFatsZ_x4GvjWUf3nejmJu24rgjvihzH3kg5m7M83bM-_D2WrreVNr4h9x-q5D_iO122srbZfkrv5lEfXh3rcE7-3l1dz-v4YGT9pfc5S70mtWa3jBMaYo92E7Hx3vtDOTn6Pvh8YRbZ5MFv82nJ9mPP5SB52k
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VrVDhwDdioYAPbS8o7SaxneyBw2qXZUs_kFAr9hYce5ZWhDSkiVblR_FX-EuMvUlbkCinHrhGYytxnmfeOJN5AGtIMZFjpDzjK-VxidLrI4892ZsZEaOvtVOe29uXk0P-biqmS_Cj_RfGllW2PtE5anOi7Rn5VkChLKbwI9oKyh08m1N-dvp6e0Qvcz0Ixm8OhhOvkRDwNO_xyjNa8ZAjxlz0BSoez2KpUxP6AmVE1MYQo_bFrJ9y6Sst0qBveGBwJhClCY2VhAg2im-eVamyX3MbyY4bsEw494MOLA8_jt5OWt8vw8iJ1_uStm4UiGlbai-EPWUItyTRsYWm_UUQvHlks-_58W8cd6XOC3U2V1l2KdyN78LPdqEWVS5fNusq3dTf_-gh-f-s5D240zBvNlhslfuwhPkDuH2pH-NDMAP2QRlVMsrQ6Z6Z5cd1iWx87KrD2SD7TBNXR18ZudHUSWuwgVGFDRlsmNW26YS9pnJDFmWOJRth5Yrdcva-QFfS8AgOr-XJH0MnP8nxCTDhRyomxh31jOaRQPJ-RrtxfhiakHfhVYuLRDc92q1USJa4XE2IxKIoaVDUhfVz62LRm-QvdmsNxP5httriJWkc2WlyAZYubJxj8sp5nl49z0tYmRzs7Sa72_s7z-CWHelaBPBV6FRljc-J5FXpi2ZnMfh03aj8BTBUXcE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9RAFJ4QiIoHf0JYRZwDeDFlt-3MtHswZrPLuoiiMRL2VqYzr0AopZY2G_zT_Ff8Z3wzbQFNxBMHr82bSWf6zXvfa1_fR8g6YExkEEhHu1I6TIBw-sBCR_QSzUNwlbLKcx93xWSPvZ_y6Rz50f4LY8oqW59oHbU-U-YdedfDUBZi-OG8mzRlEZ9H47f5N8coSJkvra2cRg2RHbiYYfp2_mZ7hM96w_PGW1-HE6dRGHAU67HS0UoynwGEjPc5SBYmoVCx9l0OIkDmo5Fwuzzpx0y4UvHY62vmaUg4gNC-NooR6P4XQhEIdAoLw_3Ru0kbB4QfWCF7V-AxDjw-bcvucQVGs7wrkJrV-vZXAfHOkcnEZ8e_8d17VZbLi5lM02uhb_yQ_Gw3ra54OdmsynhTff-jn-T_uauPyIOGkdNBfYQekznInpD71_o0PiV6QL9ILQuKmTveIDW8uSqAjo9t1TgdpIe4kPLolKJ7ja3kBh1omZtQQodpZZpRmGsy02hRZFDQEZS2CC6jn3KwpQ5LZO9WlrlM5rOzDFYI5W4gQ2TiQU8rFnBAr6iVHef6vvZZh7xuMRKppne7kRBJI5vDcR4ZREUNojpk49I6r3uW_MVuvYHbP8xWW-xEjYM7j66A0yGvLvF54zzPbp7nJbmL0Is-bO_uPCeLZqDtHMBWyXxZVPACuV8ZrzWHjJKD20bgL4swZok
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegEwIexrfoGMgPgxeUrml8TvoYbVQTEgMhKhXxEDm-CyuENEoTTeyvx3adsSLxId6S6OIk9n38fsr5jrEDMjFRUKwCDJUKhCQZTEkkgRwXCAmFWrvOc29O5clcvF7AwmdV2r0waEvErxSuR2eWk54vnbf287o-_LK2bD06lAbWGBMf1VhcZzsSDA4fsJ356bv0o2VY0lhOPIHFz2OZ9FnvAFtDbMWjG_6hW3DzZlfV6vu5KssrkWd2h33q33mTcPJ11LX5SF_8Us7x_z7qLtv1gJSnGw26x65RdZ_dvlKm8AHDlL9XqBpuiKsxDG5hY9cQny1d0jRPy8-rZtmefePGu-Su4wRPUdXWk_KjsrO1GOw1VaGRaCpq-DG1Lges4m9rcn_6H7L57NWHo5PAd2cItBiLNkCtRCSIEgFTICWSIpE6xygEkrFBjWjISgjFNBcyVBryyRTFBKkAIokRQvSIDapVRY8ZhzBWiQGi8Ri1iIGMU0Dt7jMMGiMxZC_7Ncq0L11uO2iUmaMwAJmdv8zP35A9v5SuNyU7fiN34JfjL2L7vS5k_ZJlEwOsEgOGAIbsxaV-_HGcvX8VfMJu2VO3b17ss0HbdPTUIJ82f-ZV_Ac8yfzY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Radar+Linear+Feature+Fitting+Algorithm+Combining+Adaptive+Clustering+and+Corner+Detection+Operator&rft.jtitle=Journal+of+sensors&rft.au=Liu%2C+Yiting&rft.au=Sui%2C+Lianjie&rft.au=Li%2C+Peijuan&rft.au=Zhang%2C+Lei&rft.date=2023-02-24&rft.issn=1687-725X&rft.eissn=1687-7268&rft.volume=2023&rft.issue=1&rft_id=info:doi/10.1155%2F2023%2F6991467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2023_6991467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-725X&client=summon