Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces
It is well-known, both theoretically and experimentally, that alloying Mg H 2 with transition elements can significantly improve the thermodynamic and kinetic properties for H 2 desorption, as well as the H 2 intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen d...
Saved in:
Published in | The Journal of chemical physics Vol. 128; no. 9; pp. 094703 - 094703-11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
07.03.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 |
DOI | 10.1063/1.2835541 |
Cover
Abstract | It is well-known, both theoretically and experimentally, that alloying
Mg
H
2
with transition elements can significantly improve the thermodynamic and kinetic properties for
H
2
desorption, as well as the
H
2
intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when
Ni
∕
Ti
are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote
H
2
dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg. |
---|---|
AbstractList | It is well-known, both theoretically and experimentally, that alloying MgH(2) with transition elements can significantly improve the thermodynamic and kinetic properties for H(2) desorption, as well as the H(2) intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when NiTi are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H(2) dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg. It is well-known, both theoretically and experimentally, that alloying MgH2 with transition elements can significantly improve the thermodynamic and kinetic properties for H2 desorption, as well as the H2 intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when Ni∕Ti are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H2 dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg. It is well-known, both theoretically and experimentally, that alloying MgH(2) with transition elements can significantly improve the thermodynamic and kinetic properties for H(2) desorption, as well as the H(2) intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when NiTi are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H(2) dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg.It is well-known, both theoretically and experimentally, that alloying MgH(2) with transition elements can significantly improve the thermodynamic and kinetic properties for H(2) desorption, as well as the H(2) intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when NiTi are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H(2) dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg. It is well-known, both theoretically and experimentally, that alloying Mg H 2 with transition elements can significantly improve the thermodynamic and kinetic properties for H 2 desorption, as well as the H 2 intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when Ni ∕ Ti are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H 2 dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg. |
Author | Pozzo, M. Amieiro, A. French, S. Alfè, D. Pratt, A. |
Author_xml | – sequence: 1 givenname: M. surname: Pozzo fullname: Pozzo, M. organization: Material Simulation Laboratory, University College London, Gower Street, London WC1E 6BT,United Kingdom – sequence: 2 givenname: D. surname: Alfè fullname: Alfè, D. email: d.alfe@ucl.ac.uk. organization: Material Simulation Laboratory, University College London, Gower Street, London WC1E 6BT,United Kingdom – sequence: 3 givenname: A. surname: Amieiro fullname: Amieiro, A. email: URL: http://www.matthey.com. organization: Material Simulation Laboratory, University College London, Gower Street, London WC1E 6BT,United Kingdom – sequence: 4 givenname: S. surname: French fullname: French, S. email: URL: http://www.matthey.com. organization: Material Simulation Laboratory, University College London, Gower Street, London WC1E 6BT,United Kingdom – sequence: 5 givenname: A. surname: Pratt fullname: Pratt, A. email: URL: http://www.matthey.com. organization: Material Simulation Laboratory, University College London, Gower Street, London WC1E 6BT,United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18331106$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLAzEUhYNU7EMX_gHpSuxi2rxmkmwEKWoLVTd1HTKTpESmk5rMLPrvnb5EROHC5V6-c-Dc2wedylcGgGsExwhmZILGmJM0pegM9BDkImGZgB3QgxCjRGQw64J-jB8QQsQwvQBdxAlBrbQH5rOtDn5lqqF2MfrCqdr5aqgq3S6sbeJuauvVJfvl0iXab4wevqzudn6jYWyCVYWJl-DcqjKaq2MfgPenx-V0lizenufTh0VSUEjrRMOC4hxjnZnccpoqIyjVmlptECFGGK0Uy6iwOUSUZ1grhoUyChImGOKYDMDtwXcT_GdjYi3XLhamLFVlfBMlg4RzJtIWvDmCTb42Wm6CW6uwlafwLTA5AEXwMQZjZeHqff46KFdKBOUOk0gez9sqRr8U36Z_sPcHNp5c_4dPT5A_nkC-AKGUjIU |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_3390_inorganics9050036 crossref_primary_10_1016_j_ijhydene_2011_07_062 crossref_primary_10_1016_j_ssc_2023_115170 crossref_primary_10_1016_S1003_6326_08_60282_4 crossref_primary_10_1016_j_apsusc_2016_10_101 crossref_primary_10_2139_ssrn_4192650 crossref_primary_10_1016_j_apsusc_2019_03_316 crossref_primary_10_1002_chem_202100552 crossref_primary_10_1016_j_ijhydene_2011_04_093 crossref_primary_10_1021_acs_chemmater_1c03714 crossref_primary_10_1021_ct300143a crossref_primary_10_5006_2274 crossref_primary_10_1016_j_physleta_2009_12_011 crossref_primary_10_1016_j_est_2023_108217 crossref_primary_10_1021_jacs_2c00830 crossref_primary_10_1016_j_electacta_2016_04_128 crossref_primary_10_1016_j_susc_2012_03_008 crossref_primary_10_1063_1_4839595 crossref_primary_10_1016_j_surfin_2022_102085 crossref_primary_10_1088_0953_8984_21_9_095004 crossref_primary_10_1039_C9CP02491C crossref_primary_10_1007_s00339_010_5976_6 crossref_primary_10_1103_PhysRevB_77_104103 crossref_primary_10_1016_j_apsusc_2009_02_012 crossref_primary_10_1088_0953_8984_25_6_065504 crossref_primary_10_1149_2_1061913jes crossref_primary_10_55713_jmmm_v34i2_1825 crossref_primary_10_1016_j_ijhydene_2011_09_065 crossref_primary_10_1016_j_ijhydene_2019_01_012 crossref_primary_10_2139_ssrn_4192657 crossref_primary_10_1016_j_ijhydene_2023_01_273 crossref_primary_10_1063_1_4929565 crossref_primary_10_1016_j_physleta_2017_09_035 crossref_primary_10_1080_14786435_2020_1782499 crossref_primary_10_1016_j_comptc_2022_113907 crossref_primary_10_1021_acscatal_4c02534 crossref_primary_10_1016_j_jma_2021_03_002 crossref_primary_10_1016_j_susc_2008_11_017 crossref_primary_10_1149_2_099310jes crossref_primary_10_1016_j_est_2024_112410 crossref_primary_10_1016_j_ijhydene_2013_04_157 crossref_primary_10_1016_j_ijhydene_2019_08_016 crossref_primary_10_1016_j_ijhydene_2015_12_157 crossref_primary_10_1016_j_apsusc_2019_02_124 crossref_primary_10_1021_acs_jpcb_9b09730 crossref_primary_10_1021_jp810688f crossref_primary_10_1103_PhysRevB_91_155431 crossref_primary_10_1002_pssb_200945298 crossref_primary_10_1103_PhysRevB_78_245313 crossref_primary_10_1021_jp409706r crossref_primary_10_1021_jp9002092 crossref_primary_10_1063_1_3182851 crossref_primary_10_1063_1_2916828 crossref_primary_10_1063_1_4775496 crossref_primary_10_1016_j_apsusc_2014_02_153 crossref_primary_10_1039_B815553B crossref_primary_10_1016_j_ijhydene_2019_09_125 crossref_primary_10_1016_j_matchemphys_2020_123417 crossref_primary_10_1063_1_3000673 crossref_primary_10_1016_j_cej_2024_156057 crossref_primary_10_1016_j_ijhydene_2019_09_045 crossref_primary_10_1021_acs_jpcc_1c10535 crossref_primary_10_1016_j_actamat_2019_09_047 crossref_primary_10_1016_j_ijhydene_2017_08_086 crossref_primary_10_1039_C5CP02005K crossref_primary_10_1016_j_jallcom_2014_04_160 |
Cites_doi | 10.1103/PhysRevLett.46.257 10.1088/0953-8984/13/48/303 10.1016/S0010-4655(98)00195-7 10.1021/jp052804c 10.1103/PhysRevB.62.8295 10.1103/PhysRevLett.68.2632 10.1016/S0925-8388(99)00073-0 10.1016/0039-6028(89)90010-1 10.1016/0039-6028(79)90119-5 10.1016/S0039-6028(00)00457-X 10.1016/S0925-8388(02)01199-4 10.1016/S0925-8388(98)00829-9 10.1016/0039-6028(96)80007-0 10.1103/PhysRevLett.77.3865 10.1016/0039-6028(77)90442-3 10.1016/j.jallcom.2004.03.143 10.1063/1.2374892 10.1016/S0925-8388(01)01173-2 10.1016/S0169-4332(96)00195-X 10.1103/PhysRevB.70.035412 10.1103/PhysRevB.62.17012 10.1016/S0927-0256(03)00104-6 10.1016/j.jallcom.2003.09.031 10.1021/jp046540q 10.1016/0009-2614(91)90436-D 10.1103/PhysRevB.40.3616 10.1016/0039-6028(94)91111-8 10.1103/PhysRevLett.81.2819 10.1103/PhysRevB.50.17953 10.1016/0039-6028(81)90472-6 10.1103/PhysRevB.13.5188 10.1016/0039-6028(94)00731-4 10.1063/1.1323224 10.1063/1.1329672 10.1103/PhysRev.71.809 10.1103/PhysRevB.68.024102 10.1088/0953-8984/15/8/312 10.1143/JPSJ.73.745 10.1103/PhysRevB.59.1758 10.1063/1.2717172 10.1103/PhysRevB.71.024101 10.1103/PhysRevLett.86.3068 10.1103/PhysRevB.69.094205 10.1016/S0360-3199(03)00045-4 10.1016/S0925-8388(99)00442-9 10.1103/PhysRevB.54.11169 10.1016/0009-2614(93)87239-Y 10.1038/35104634 10.1016/S0925-8388(99)00628-3 10.1021/jp044576c 10.1063/1.1329672 10.1142/3816 10.1021/jp063286o 10.1063/1.1323224 10.1016/j.jallcom.2006.03.095 10.1016/0925-8388(95)01623-6 10.1021/ja0722776 10.1016/0039-6028(94)00731-4 |
ContentType | Journal Article |
Copyright | 2008 American Institute of Physics |
Copyright_xml | – notice: 2008 American Institute of Physics |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1063/1.2835541 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
EndPage | 094703-11 |
ExternalDocumentID | 18331106 10_1063_1_2835541 |
Genre | Journal Article |
GrantInformation_xml | – fundername: EPSRC-GB |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 2WC 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS ADXHL BDMKI CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c404t-d0c42b22d6ebf845ae944dd4fde133e9edaa7649fb014862da729aea037971823 |
ISSN | 0021-9606 |
IngestDate | Fri Jul 11 10:47:21 EDT 2025 Thu Apr 03 06:58:16 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Tue Jul 01 04:36:53 EDT 2025 Fri Jun 21 00:19:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-d0c42b22d6ebf845ae944dd4fde133e9edaa7649fb014862da729aea037971823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18331106 |
PQID | 70388795 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_70388795 pubmed_primary_18331106 crossref_citationtrail_10_1063_1_2835541 crossref_primary_10_1063_1_2835541 scitation_primary_10_1063_1_2835541Hydrogen_dissociatio |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-03-07 |
PublicationDateYYYYMMDD | 2008-03-07 |
PublicationDate_xml | – month: 03 year: 2008 text: 2008-03-07 day: 07 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2008 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Hjelmberg, H. 1979; 81 Alfè, D. 1999; 118 Schwarz, R. 1999; 24 Jahnátek, M.; Krajčí, M.; Hafner, J. 2005; 71 Greeley, J.; Mavrikakis, M. 2005; 109 Wright, A.; Feibelman, P.; Atlas, S. 1994; 302 Mills, G.; Jonsson, H.; Schenter, G.; Henkelman, G.; Johnsson, H.; Henkelman, G.; Uberuaga, B.; Johnsson, H. 1995 2000 2000; 324 113 113 Liang, G. 2004; 370 Birch, F. 1947; 71 Shang, C.; Bououdina, M.; Song, Y.; Guo, Z. 2004; 29 Du, A.; Smith, S.; Yao, X.; Lu, G. 2007; 129 Vegge, T. 2004; 70 Tyson, W.; Miller, W. 1977; 62 Monkhorst, H.; Pack, J. 1976; 13 Bobet, J.-L.; Even, C.; Nakamura, Y.; Akiba, E.; Darriet, B. 2000; 298 Errandonea, D.; Meng, Y.; Häusermann, D.; Uchida, T. 2003; 15 Kresse, G.; Furthmüller, J. 1996; 54 Kokalj, A. 2003; 28 Hammer, B.; Nørskov, J. 1995; 343 Mehta, S.; Price, G.; Alfè, D. 2006; 125 Ismail; Hofmann, Ph.; Plummer, E.; Bungaro, C.; Kress, W. 2000; 62 Du, A.; Smith, S.; Yao, X.; Lu, G. 2006; 110 Methfessel, M.; Paxton, A. 1989; 40 Blöchl, P. 1994; 50 Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. 1999; 292 Kresse, G. 2000; 62 Song, Y.; Guo, Z.; Yang, R. 2004; 69 Du, A.; Smith, S.; Yao, X.; Lu, G. 2005; 109 Pozzo, M.; Carlini, G.; Rosei, R.; Alfè, D. 2007; 126 Nørskov, J.; Høumoller, A.; Johansson, P.; Lundqvist, B. 1981; 46 Zaluski, L.; Zaluska, A.; Tessier, P.; Ström-Olsen, J.; Schulz, R. 1995; 227 Mavrikakis, M.; Hammer, B.; Nørskov, J. 1998; 81 Vohra, Y.; Spencer, P. 2001; 86 Arboleda, N.; Kasai, H.; Nobuhara, K.; Dino, W.; Nakanishi, H. 2004; 73 Sprunger, P.; Plummer, E. 1991; 187 Vegge, T.; Hedegaard-Jensen, L.; Bonde, J.; Munter, T.; Nørskov, J. 2005; 386 Schlapbach, L.; Züttel, A. 2001; 414 Nobuhara, K.; Kasai, H.; Dinõ, W.; Nakanishi, H. 2004; 566-568 Yavari, A.; de Castro, J.; Heunen, G.; Vaughan, G. 2003; 353 Zope, R.; Mishin, Y. 2003; 68 Wachowicz, E.; Kiejna, A. 2001; 13 Kresse, G.; Joubert, J. 1999; 59 Perdew, J.; Burke, K.; Ernzerhof, M. 1996; 77 Hanada, N.; Ichigawa, T.; Fujii, H. 2005; 109 Kresse, G.; Hafner, J. 2000; 459 Bird, D.; Clarke, L.; Payne, M.; Stich, I. 1993; 212 Zaluska, A.; Zaluski, L.; Ström-Olsen, J. 1999; 288 Hayden, B.; Schweitzer, E.; Kötz, R.; Bradshaw, A. 1981; 111 Rendulic, K.; Anger, G.; Winkler, A. 1989; 208 Bobet, J.-L.; Aymonier, C.; Mesguich, D.; Cansell, F.; Asano, K.; Akiba, E. 2007; 429 Davis, H.; Hannon, J.; Ray, K.; Plummer, E. 1992; 68 Bogdanovic, B.; Bohmhammel, K.; Christ, B.; Reiser, A.; Schlichte, K.; Vehlen, R.; Wolf, U. 1999; 282 Johansson, P. 1981; 104 Oelerich, W.; Klassen, T.; Bormann, R. 2001; 322 (2023070401421785500_c59) 1998; 81 (2023070401421785500_c37) 2001; 13 (2023070401421785500_c14) 2004; 370 (2023070401421785500_c27) 1996; 54 (2023070401421785500_c33) 1989; 40 (2023070401421785500_c39) 1976 (2023070401421785500_c57) 1989; 208 (2023070401421785500_c8) 2001; 322 (2023070401421785500_c53) 2007; 126 (2023070401421785500_c9) 1995; 227 (2023070401421785500_c58) 2004; 566–568 (2023070401421785500_c28) 1994; 50 (2023070401421785500_c38) 2006; 125 (2023070401421785500_c16) 2005; 386 (2023070401421785500_c29) 1999; 59 (2023070401421785500_c41) 2003; 15 (2023070401421785500_c36) 1947; 71 (2023070401421785500_c49) 2005; 71 (2023070401421785500_c30) 1996; 77 (2023070401421785500_c5) 1999; 282 (2023070401421785500_c15) 2004; 69 Berne (2023070401421785500_c35b) 1998 (2023070401421785500_c56) 2000; 62 (2023070401421785500_c25) 1993; 212 (2023070401421785500_c20) 2005; 109 (2023070401421785500_c19) 2007; 129 (2023070401421785500_c22) 1979; 81 (2023070401421785500_c32) 1976; 13 (2023070401421785500_c21) 2006; 110 (2023070401421785500_c47) 2001; 86 (2023070401421785500_c54) 1992; 68 (2023070401421785500_c11) 1999; 288 (2023070401421785500_c17) 2005; 109 2023070401421785500_c40 (2023070401421785500_c1) 2001; 414 (2023070401421785500_c12) 2004; 29 (2023070401421785500_c48) 2003; 68 (2023070401421785500_c10) 1999; 292 (2023070401421785500_c44) 2000; 62 (2023070401421785500_c6) 1991; 187 (2023070401421785500_c46) 1977; 62 (2023070401421785500_c42) 1996 (2023070401421785500_c31) 1999; 118 Lide (2023070401421785500_c50) 2002 (2023070401421785500_c13) 2003; 353 (2023070401421785500_c35d) 2000; 113 (2023070401421785500_c45) 1981; 111 (2023070401421785500_c51) 2000; 459 (2023070401421785500_c23) 1981; 104 (2023070401421785500_c2) 1999; 24 2023070401421785500_c34b (2023070401421785500_c24) 1981; 46 (2023070401421785500_c18) 2007; 429 (2023070401421785500_c7) 1995; 343 (2023070401421785500_c43) 1994; 302 Cahn (2023070401421785500_c4) 1994 (2023070401421785500_c35a) 1995; 324 (2023070401421785500_c35c) 2000; 113 (2023070401421785500_c3) 2000; 298 (2023070401421785500_c55) 2004; 73 (2023070401421785500_c52) 2005; 109 (2023070401421785500_c26) 2004; 70 (2023070401421785500_c34a) 2003; 28 |
References_xml | – volume: 46 start-page: 257 year: 1981 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.46.257 – volume: 13 start-page: 10767 year: 2001 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/13/48/303 – volume: 118 start-page: 31 year: 1999 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(98)00195-7 – volume: 109 start-page: 18037 year: 2005 publication-title: J. Phys. Chem. B doi: 10.1021/jp052804c – volume: 62 start-page: 8295 year: 2000 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.8295 – volume: 68 start-page: 2632 year: 1992 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.2632 – volume: 288 start-page: 217 year: 1999 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(99)00073-0 – volume: 208 start-page: 404 year: 1989 publication-title: Surf. Sci. doi: 10.1016/0039-6028(89)90010-1 – volume: 81 start-page: 539 year: 1979 publication-title: Surf. Sci. doi: 10.1016/0039-6028(79)90119-5 – volume: 459 start-page: 287 year: 2000 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(00)00457-X – volume: 353 start-page: 246 year: 2003 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(02)01199-4 – volume: 282 start-page: 84 year: 1999 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(98)00829-9 – volume: 343 start-page: 211 year: 1995 publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)80007-0 – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 298 start-page: 279 year: 2000 publication-title: J. Alloys Compd. – volume: 62 start-page: 267 year: 1977 publication-title: Surf. Sci. doi: 10.1016/0039-6028(77)90442-3 – volume: 386 start-page: 1 year: 2005 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2004.03.143 – volume: 125 start-page: 194507 year: 2006 publication-title: J. Chem. Phys. doi: 10.1063/1.2374892 – volume: 322 start-page: L5 year: 2001 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(01)01173-2 – volume: 129 start-page: 10201 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 104 start-page: 510 year: 1981 publication-title: Surf. Sci. doi: 10.1016/S0169-4332(96)00195-X – volume: 70 start-page: 035412 year: 2004 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.035412 – volume: 62 start-page: 17012 year: 2000 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.17012 – volume: 28 start-page: 155 year: 2003 publication-title: Comput. Mater. Sci. doi: 10.1016/S0927-0256(03)00104-6 – volume: 370 start-page: 123 year: 2004 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2003.09.031 – volume: 109 start-page: 3460 year: 2005 publication-title: J. Phys. Chem. B doi: 10.1021/jp046540q – volume: 187 start-page: 559 year: 1991 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(91)90436-D – volume: 40 start-page: 3616 year: 1989 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.3616 – volume: 227 start-page: 53 year: 1995 publication-title: J. Alloys Compd. – volume: 302 start-page: 215 year: 1994 publication-title: Surf. Sci. doi: 10.1016/0039-6028(94)91111-8 – volume: 429 start-page: 250 year: 2007 publication-title: J. Alloys Compd. – volume: 81 start-page: 2819 year: 1998 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2819 – volume: 50 start-page: 17953 year: 1994 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 111 start-page: 26 year: 1981 publication-title: Surf. Sci. doi: 10.1016/0039-6028(81)90472-6 – volume: 109 start-page: 7188 year: 2005 publication-title: J. Phys. Chem. B – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 324 113 113 start-page: 305 9978 9901 year: 1995 2000 2000 publication-title: Surf. Sci. J. Chem. Phys. J. Chem. Phys. doi: 10.1016/0039-6028(94)00731-4 10.1063/1.1323224 10.1063/1.1329672 – volume: 71 start-page: 809 year: 1947 publication-title: Phys. Rev. doi: 10.1103/PhysRev.71.809 – volume: 68 start-page: 024102 year: 2003 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.024102 – volume: 110 start-page: 21747 year: 2006 publication-title: J. Phys. Chem. B – volume: 15 start-page: 1277 year: 2003 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/15/8/312 – volume: 73 start-page: 745 year: 2004 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.73.745 – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 126 start-page: 164706 year: 2007 publication-title: J. Chem. Phys. doi: 10.1063/1.2717172 – volume: 71 start-page: 024101 year: 2005 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.024101 – volume: 86 start-page: 3068 year: 2001 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.3068 – volume: 24 start-page: 40 year: 1999 publication-title: MRS Bull. – volume: 69 start-page: 094205 year: 2004 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.094205 – volume: 29 start-page: 73 year: 2004 publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(03)00045-4 – volume: 292 start-page: 247 year: 1999 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(99)00442-9 – volume: 54 start-page: 11169 year: 1996 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 212 start-page: 518 year: 1993 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)87239-Y – volume: 566-568 start-page: 703 year: 2004 publication-title: Surf. Sci. – volume: 414 start-page: 353 year: 2001 publication-title: Nature (London) doi: 10.1038/35104634 – volume: 81 start-page: 539 year: 1979 ident: 2023070401421785500_c22 publication-title: Surf. Sci. doi: 10.1016/0039-6028(79)90119-5 – volume: 62 start-page: 8295 year: 2000 ident: 2023070401421785500_c56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.8295 – volume: 288 start-page: 217 year: 1999 ident: 2023070401421785500_c11 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(99)00073-0 – volume: 343 start-page: 211 year: 1995 ident: 2023070401421785500_c7 publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)80007-0 – volume: 62 start-page: 267 year: 1977 ident: 2023070401421785500_c46 publication-title: Surf. Sci. doi: 10.1016/0039-6028(77)90442-3 – volume: 386 start-page: 1 year: 2005 ident: 2023070401421785500_c16 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2004.03.143 – volume: 104 start-page: 510 year: 1981 ident: 2023070401421785500_c23 publication-title: Surf. Sci. doi: 10.1016/S0169-4332(96)00195-X – ident: 2023070401421785500_c40 – volume: 68 start-page: 2632 year: 1992 ident: 2023070401421785500_c54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.2632 – volume: 298 start-page: 279 year: 2000 ident: 2023070401421785500_c3 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(99)00628-3 – volume: 282 start-page: 84 year: 1999 ident: 2023070401421785500_c5 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(98)00829-9 – volume: 109 start-page: 7188 year: 2005 ident: 2023070401421785500_c17 publication-title: J. Phys. Chem. B doi: 10.1021/jp044576c – volume: 109 start-page: 3460 year: 2005 ident: 2023070401421785500_c52 publication-title: J. Phys. Chem. B doi: 10.1021/jp046540q – volume: 68 start-page: 024102 year: 2003 ident: 2023070401421785500_c48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.024102 – volume-title: Introduction to Solid State Physics year: 1996 ident: 2023070401421785500_c42 – volume: 292 start-page: 247 year: 1999 ident: 2023070401421785500_c10 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(99)00442-9 – volume: 46 start-page: 257 year: 1981 ident: 2023070401421785500_c24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.46.257 – volume: 459 start-page: 287 year: 2000 ident: 2023070401421785500_c51 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(00)00457-X – volume: 28 start-page: 155 year: 2003 ident: 2023070401421785500_c34a publication-title: Comput. Mater. Sci. doi: 10.1016/S0927-0256(03)00104-6 – volume: 77 start-page: 3865 year: 1996 ident: 2023070401421785500_c30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 29 start-page: 73 year: 2004 ident: 2023070401421785500_c12 publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(03)00045-4 – volume: 73 start-page: 745 year: 2004 ident: 2023070401421785500_c55 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.73.745 – volume: 113 start-page: 9901 year: 2000 ident: 2023070401421785500_c35d publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume-title: Classical and Quantum Dynamics in Condensed Phase Simulations year: 1998 ident: 2023070401421785500_c35b doi: 10.1142/3816 – volume-title: CRC Handbook of Chemistry and Physics year: 2002 ident: 2023070401421785500_c50 – volume: 208 start-page: 404 year: 1989 ident: 2023070401421785500_c57 publication-title: Surf. Sci. doi: 10.1016/0039-6028(89)90010-1 – volume: 125 start-page: 194507 year: 2006 ident: 2023070401421785500_c38 publication-title: J. Chem. Phys. doi: 10.1063/1.2374892 – volume: 71 start-page: 024101 year: 2005 ident: 2023070401421785500_c49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.024101 – volume: 110 start-page: 21747 year: 2006 ident: 2023070401421785500_c21 publication-title: J. Phys. Chem. B doi: 10.1021/jp063286o – volume-title: Solid State Physics year: 1976 ident: 2023070401421785500_c39 – volume: 59 start-page: 1758 year: 1999 ident: 2023070401421785500_c29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – start-page: 333 volume-title: Material Science and Technology year: 1994 ident: 2023070401421785500_c4 – volume: 40 start-page: 3616 year: 1989 ident: 2023070401421785500_c33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.3616 – volume: 113 start-page: 9978 year: 2000 ident: 2023070401421785500_c35c publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 429 start-page: 250 year: 2007 ident: 2023070401421785500_c18 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2006.03.095 – ident: 2023070401421785500_c34b – volume: 86 start-page: 3068 year: 2001 ident: 2023070401421785500_c47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.3068 – volume: 322 start-page: L5 year: 2001 ident: 2023070401421785500_c8 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(01)01173-2 – volume: 69 start-page: 094205 year: 2004 ident: 2023070401421785500_c15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.094205 – volume: 81 start-page: 2819 year: 1998 ident: 2023070401421785500_c59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2819 – volume: 227 start-page: 53 year: 1995 ident: 2023070401421785500_c9 publication-title: J. Alloys Compd. doi: 10.1016/0925-8388(95)01623-6 – volume: 129 start-page: 10201 year: 2007 ident: 2023070401421785500_c19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0722776 – volume: 62 start-page: 17012 year: 2000 ident: 2023070401421785500_c44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.17012 – volume: 370 start-page: 123 year: 2004 ident: 2023070401421785500_c14 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2003.09.031 – volume: 109 start-page: 18037 year: 2005 ident: 2023070401421785500_c20 publication-title: J. Phys. Chem. B doi: 10.1021/jp052804c – volume: 324 start-page: 305 year: 1995 ident: 2023070401421785500_c35a publication-title: Surf. Sci. doi: 10.1016/0039-6028(94)00731-4 – volume: 111 start-page: 26 year: 1981 ident: 2023070401421785500_c45 publication-title: Surf. Sci. doi: 10.1016/0039-6028(81)90472-6 – volume: 126 start-page: 164706 year: 2007 ident: 2023070401421785500_c53 publication-title: J. Chem. Phys. doi: 10.1063/1.2717172 – volume: 71 start-page: 809 year: 1947 ident: 2023070401421785500_c36 publication-title: Phys. Rev. doi: 10.1103/PhysRev.71.809 – volume: 13 start-page: 5188 year: 1976 ident: 2023070401421785500_c32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 302 start-page: 215 year: 1994 ident: 2023070401421785500_c43 publication-title: Surf. Sci. doi: 10.1016/0039-6028(94)91111-8 – volume: 212 start-page: 518 year: 1993 ident: 2023070401421785500_c25 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)87239-Y – volume: 54 start-page: 11169 year: 1996 ident: 2023070401421785500_c27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 118 start-page: 31 year: 1999 ident: 2023070401421785500_c31 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(98)00195-7 – volume: 15 start-page: 1277 year: 2003 ident: 2023070401421785500_c41 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/15/8/312 – volume: 353 start-page: 246 year: 2003 ident: 2023070401421785500_c13 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(02)01199-4 – volume: 414 start-page: 353 year: 2001 ident: 2023070401421785500_c1 publication-title: Nature (London) doi: 10.1038/35104634 – volume: 13 start-page: 10767 year: 2001 ident: 2023070401421785500_c37 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/13/48/303 – volume: 70 start-page: 035412 year: 2004 ident: 2023070401421785500_c26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.035412 – volume: 187 start-page: 559 year: 1991 ident: 2023070401421785500_c6 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(91)90436-D – volume: 50 start-page: 17953 year: 1994 ident: 2023070401421785500_c28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 566–568 start-page: 703 year: 2004 ident: 2023070401421785500_c58 publication-title: Surf. Sci. – volume: 24 start-page: 40 year: 1999 ident: 2023070401421785500_c2 publication-title: MRS Bull. |
SSID | ssj0001724 |
Score | 2.2177627 |
Snippet | It is well-known, both theoretically and experimentally, that alloying
Mg
H
2
with transition elements can significantly improve the thermodynamic and kinetic... It is well-known, both theoretically and experimentally, that alloying MgH2 with transition elements can significantly improve the thermodynamic and kinetic... It is well-known, both theoretically and experimentally, that alloying MgH(2) with transition elements can significantly improve the thermodynamic and kinetic... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 094703 |
SubjectTerms | Alloys Diffusion Hydrogen - chemistry Magnesium - chemistry Nickel - chemistry Semiconductors Surface Properties Titanium - chemistry |
Title | Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces |
URI | http://dx.doi.org/10.1063/1.2835541 https://www.ncbi.nlm.nih.gov/pubmed/18331106 https://www.proquest.com/docview/70388795 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExo8IBhf5TNCPAwhj8R24vixGqCCKJpEJ-0tcmIHKm1J1Y8H-tdztmM3ZZsESFFUOamT3O_i_Hznu0PojRRpXkkhgLlJjRkpUyx4XGKuOIllXsJmPLqTb9n4lH05S8-29TttdMmqPKo2V8aV_A-q0Aa4mijZf0A2dAoN8BvwhT0gDPu_wnj8Sy1aOGrcLEHK1h1g6p6sl5YMNoA2to3TGVbtHBjmBN7vPLbZ88W75XpRm3VZfZq6DRizVLXyWQWcHSTQ8JN2s2l3TKqj89q63vOdxcSji5medQE1QWFMmOHPrfHVWx5sKJ4rURsiARJsZkA7oynJe2ojemMjTCS5zWdwedgGnmQsCEcm-VvqEmH14JtfWPxg8KFAVv5InO1mMt2hm2iP8CwjA7Q3-jD5-j18k4Gmdfm43R37HFMZfR-uavLHdv3skpRLM487aB_4iVsq0WMj03vobodNNHI6cR_d0M0B2j_21fsO0K0TB9UD9NlrSdTXkggUIgpaEsEGWmIbvZZEkx-H5pneRl5DHqLTTx-nx2PcFdDAFYvZCqu4grePEJXpss5ZKrVgTClWK51QqoVWUvKMibo0duWMKAlTLallTLkAzkLoIzRo2kY_QVElJE0IkF34MxN5LMsqAZ4jqRKsSrkYokMvscKLxhQ5OS_sKoeMFknRyXmIXodT5y6lylUnvfJiL0ByxoslG92ulwU3-Yu4SIfosUNj20mH3hDxAM_1V_DCL3rCf3ptn8_QbedNIJikz9FgtVjrF0BHV-XLTtd-A6XhgS8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+dissociation+and+diffusion+on+Ni-+and+Ti-doped+Mg%280001%29+surfaces&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Pozzo%2C+M&rft.au=Alf%C3%A8%2C+D&rft.au=Amieiro%2C+A&rft.au=French%2C+S&rft.date=2008-03-07&rft.issn=0021-9606&rft.volume=128&rft.issue=9&rft.spage=094703&rft_id=info:doi/10.1063%2F1.2835541&rft_id=info%3Apmid%2F18331106&rft.externalDocID=18331106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |