Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces

It is well-known, both theoretically and experimentally, that alloying Mg H 2 with transition elements can significantly improve the thermodynamic and kinetic properties for H 2 desorption, as well as the H 2 intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen d...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 128; no. 9; pp. 094703 - 094703-11
Main Authors Pozzo, M., Alfè, D., Amieiro, A., French, S., Pratt, A.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 07.03.2008
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
DOI10.1063/1.2835541

Cover

Abstract It is well-known, both theoretically and experimentally, that alloying Mg H 2 with transition elements can significantly improve the thermodynamic and kinetic properties for H 2 desorption, as well as the H 2 intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when Ni ∕ Ti are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H 2 dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg.
AbstractList It is well-known, both theoretically and experimentally, that alloying MgH(2) with transition elements can significantly improve the thermodynamic and kinetic properties for H(2) desorption, as well as the H(2) intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when NiTi are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H(2) dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg.
It is well-known, both theoretically and experimentally, that alloying MgH2 with transition elements can significantly improve the thermodynamic and kinetic properties for H2 desorption, as well as the H2 intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when Ni∕Ti are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H2 dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg.
It is well-known, both theoretically and experimentally, that alloying MgH(2) with transition elements can significantly improve the thermodynamic and kinetic properties for H(2) desorption, as well as the H(2) intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when NiTi are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H(2) dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg.It is well-known, both theoretically and experimentally, that alloying MgH(2) with transition elements can significantly improve the thermodynamic and kinetic properties for H(2) desorption, as well as the H(2) intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when NiTi are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H(2) dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg.
It is well-known, both theoretically and experimentally, that alloying Mg H 2 with transition elements can significantly improve the thermodynamic and kinetic properties for H 2 desorption, as well as the H 2 intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when Ni ∕ Ti are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H 2 dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg.
Author Pozzo, M.
Amieiro, A.
French, S.
Alfè, D.
Pratt, A.
Author_xml – sequence: 1
  givenname: M.
  surname: Pozzo
  fullname: Pozzo, M.
  organization: Material Simulation Laboratory, University College London, Gower Street, London WC1E 6BT,United Kingdom
– sequence: 2
  givenname: D.
  surname: Alfè
  fullname: Alfè, D.
  email: d.alfe@ucl.ac.uk.
  organization: Material Simulation Laboratory, University College London, Gower Street, London WC1E 6BT,United Kingdom
– sequence: 3
  givenname: A.
  surname: Amieiro
  fullname: Amieiro, A.
  email: URL: http://www.matthey.com.
  organization: Material Simulation Laboratory, University College London, Gower Street, London WC1E 6BT,United Kingdom
– sequence: 4
  givenname: S.
  surname: French
  fullname: French, S.
  email: URL: http://www.matthey.com.
  organization: Material Simulation Laboratory, University College London, Gower Street, London WC1E 6BT,United Kingdom
– sequence: 5
  givenname: A.
  surname: Pratt
  fullname: Pratt, A.
  email: URL: http://www.matthey.com.
  organization: Material Simulation Laboratory, University College London, Gower Street, London WC1E 6BT,United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18331106$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLAzEUhYNU7EMX_gHpSuxi2rxmkmwEKWoLVTd1HTKTpESmk5rMLPrvnb5EROHC5V6-c-Dc2wedylcGgGsExwhmZILGmJM0pegM9BDkImGZgB3QgxCjRGQw64J-jB8QQsQwvQBdxAlBrbQH5rOtDn5lqqF2MfrCqdr5aqgq3S6sbeJuauvVJfvl0iXab4wevqzudn6jYWyCVYWJl-DcqjKaq2MfgPenx-V0lizenufTh0VSUEjrRMOC4hxjnZnccpoqIyjVmlptECFGGK0Uy6iwOUSUZ1grhoUyChImGOKYDMDtwXcT_GdjYi3XLhamLFVlfBMlg4RzJtIWvDmCTb42Wm6CW6uwlafwLTA5AEXwMQZjZeHqff46KFdKBOUOk0gez9sqRr8U36Z_sPcHNp5c_4dPT5A_nkC-AKGUjIU
CODEN JCPSA6
CitedBy_id crossref_primary_10_3390_inorganics9050036
crossref_primary_10_1016_j_ijhydene_2011_07_062
crossref_primary_10_1016_j_ssc_2023_115170
crossref_primary_10_1016_S1003_6326_08_60282_4
crossref_primary_10_1016_j_apsusc_2016_10_101
crossref_primary_10_2139_ssrn_4192650
crossref_primary_10_1016_j_apsusc_2019_03_316
crossref_primary_10_1002_chem_202100552
crossref_primary_10_1016_j_ijhydene_2011_04_093
crossref_primary_10_1021_acs_chemmater_1c03714
crossref_primary_10_1021_ct300143a
crossref_primary_10_5006_2274
crossref_primary_10_1016_j_physleta_2009_12_011
crossref_primary_10_1016_j_est_2023_108217
crossref_primary_10_1021_jacs_2c00830
crossref_primary_10_1016_j_electacta_2016_04_128
crossref_primary_10_1016_j_susc_2012_03_008
crossref_primary_10_1063_1_4839595
crossref_primary_10_1016_j_surfin_2022_102085
crossref_primary_10_1088_0953_8984_21_9_095004
crossref_primary_10_1039_C9CP02491C
crossref_primary_10_1007_s00339_010_5976_6
crossref_primary_10_1103_PhysRevB_77_104103
crossref_primary_10_1016_j_apsusc_2009_02_012
crossref_primary_10_1088_0953_8984_25_6_065504
crossref_primary_10_1149_2_1061913jes
crossref_primary_10_55713_jmmm_v34i2_1825
crossref_primary_10_1016_j_ijhydene_2011_09_065
crossref_primary_10_1016_j_ijhydene_2019_01_012
crossref_primary_10_2139_ssrn_4192657
crossref_primary_10_1016_j_ijhydene_2023_01_273
crossref_primary_10_1063_1_4929565
crossref_primary_10_1016_j_physleta_2017_09_035
crossref_primary_10_1080_14786435_2020_1782499
crossref_primary_10_1016_j_comptc_2022_113907
crossref_primary_10_1021_acscatal_4c02534
crossref_primary_10_1016_j_jma_2021_03_002
crossref_primary_10_1016_j_susc_2008_11_017
crossref_primary_10_1149_2_099310jes
crossref_primary_10_1016_j_est_2024_112410
crossref_primary_10_1016_j_ijhydene_2013_04_157
crossref_primary_10_1016_j_ijhydene_2019_08_016
crossref_primary_10_1016_j_ijhydene_2015_12_157
crossref_primary_10_1016_j_apsusc_2019_02_124
crossref_primary_10_1021_acs_jpcb_9b09730
crossref_primary_10_1021_jp810688f
crossref_primary_10_1103_PhysRevB_91_155431
crossref_primary_10_1002_pssb_200945298
crossref_primary_10_1103_PhysRevB_78_245313
crossref_primary_10_1021_jp409706r
crossref_primary_10_1021_jp9002092
crossref_primary_10_1063_1_3182851
crossref_primary_10_1063_1_2916828
crossref_primary_10_1063_1_4775496
crossref_primary_10_1016_j_apsusc_2014_02_153
crossref_primary_10_1039_B815553B
crossref_primary_10_1016_j_ijhydene_2019_09_125
crossref_primary_10_1016_j_matchemphys_2020_123417
crossref_primary_10_1063_1_3000673
crossref_primary_10_1016_j_cej_2024_156057
crossref_primary_10_1016_j_ijhydene_2019_09_045
crossref_primary_10_1021_acs_jpcc_1c10535
crossref_primary_10_1016_j_actamat_2019_09_047
crossref_primary_10_1016_j_ijhydene_2017_08_086
crossref_primary_10_1039_C5CP02005K
crossref_primary_10_1016_j_jallcom_2014_04_160
Cites_doi 10.1103/PhysRevLett.46.257
10.1088/0953-8984/13/48/303
10.1016/S0010-4655(98)00195-7
10.1021/jp052804c
10.1103/PhysRevB.62.8295
10.1103/PhysRevLett.68.2632
10.1016/S0925-8388(99)00073-0
10.1016/0039-6028(89)90010-1
10.1016/0039-6028(79)90119-5
10.1016/S0039-6028(00)00457-X
10.1016/S0925-8388(02)01199-4
10.1016/S0925-8388(98)00829-9
10.1016/0039-6028(96)80007-0
10.1103/PhysRevLett.77.3865
10.1016/0039-6028(77)90442-3
10.1016/j.jallcom.2004.03.143
10.1063/1.2374892
10.1016/S0925-8388(01)01173-2
10.1016/S0169-4332(96)00195-X
10.1103/PhysRevB.70.035412
10.1103/PhysRevB.62.17012
10.1016/S0927-0256(03)00104-6
10.1016/j.jallcom.2003.09.031
10.1021/jp046540q
10.1016/0009-2614(91)90436-D
10.1103/PhysRevB.40.3616
10.1016/0039-6028(94)91111-8
10.1103/PhysRevLett.81.2819
10.1103/PhysRevB.50.17953
10.1016/0039-6028(81)90472-6
10.1103/PhysRevB.13.5188
10.1016/0039-6028(94)00731-4 10.1063/1.1323224 10.1063/1.1329672
10.1103/PhysRev.71.809
10.1103/PhysRevB.68.024102
10.1088/0953-8984/15/8/312
10.1143/JPSJ.73.745
10.1103/PhysRevB.59.1758
10.1063/1.2717172
10.1103/PhysRevB.71.024101
10.1103/PhysRevLett.86.3068
10.1103/PhysRevB.69.094205
10.1016/S0360-3199(03)00045-4
10.1016/S0925-8388(99)00442-9
10.1103/PhysRevB.54.11169
10.1016/0009-2614(93)87239-Y
10.1038/35104634
10.1016/S0925-8388(99)00628-3
10.1021/jp044576c
10.1063/1.1329672
10.1142/3816
10.1021/jp063286o
10.1063/1.1323224
10.1016/j.jallcom.2006.03.095
10.1016/0925-8388(95)01623-6
10.1021/ja0722776
10.1016/0039-6028(94)00731-4
ContentType Journal Article
Copyright 2008 American Institute of Physics
Copyright_xml – notice: 2008 American Institute of Physics
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1063/1.2835541
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
EndPage 094703-11
ExternalDocumentID 18331106
10_1063_1_2835541
Genre Journal Article
GrantInformation_xml – fundername: EPSRC-GB
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
2WC
4.4
53G
5VS
6TJ
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
ADXHL
BDMKI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c404t-d0c42b22d6ebf845ae944dd4fde133e9edaa7649fb014862da729aea037971823
ISSN 0021-9606
IngestDate Fri Jul 11 10:47:21 EDT 2025
Thu Apr 03 06:58:16 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Tue Jul 01 04:36:53 EDT 2025
Fri Jun 21 00:19:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-d0c42b22d6ebf845ae944dd4fde133e9edaa7649fb014862da729aea037971823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18331106
PQID 70388795
PQPubID 23479
ParticipantIDs proquest_miscellaneous_70388795
pubmed_primary_18331106
crossref_citationtrail_10_1063_1_2835541
crossref_primary_10_1063_1_2835541
scitation_primary_10_1063_1_2835541Hydrogen_dissociatio
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-03-07
PublicationDateYYYYMMDD 2008-03-07
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-07
  day: 07
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2008
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Hjelmberg, H. 1979; 81
Alfè, D. 1999; 118
Schwarz, R. 1999; 24
Jahnátek, M.; Krajčí, M.; Hafner, J. 2005; 71
Greeley, J.; Mavrikakis, M. 2005; 109
Wright, A.; Feibelman, P.; Atlas, S. 1994; 302
Mills, G.; Jonsson, H.; Schenter, G.; Henkelman, G.; Johnsson, H.; Henkelman, G.; Uberuaga, B.; Johnsson, H. 1995 2000 2000; 324 113 113
Liang, G. 2004; 370
Birch, F. 1947; 71
Shang, C.; Bououdina, M.; Song, Y.; Guo, Z. 2004; 29
Du, A.; Smith, S.; Yao, X.; Lu, G. 2007; 129
Vegge, T. 2004; 70
Tyson, W.; Miller, W. 1977; 62
Monkhorst, H.; Pack, J. 1976; 13
Bobet, J.-L.; Even, C.; Nakamura, Y.; Akiba, E.; Darriet, B. 2000; 298
Errandonea, D.; Meng, Y.; Häusermann, D.; Uchida, T. 2003; 15
Kresse, G.; Furthmüller, J. 1996; 54
Kokalj, A. 2003; 28
Hammer, B.; Nørskov, J. 1995; 343
Mehta, S.; Price, G.; Alfè, D. 2006; 125
Ismail; Hofmann, Ph.; Plummer, E.; Bungaro, C.; Kress, W. 2000; 62
Du, A.; Smith, S.; Yao, X.; Lu, G. 2006; 110
Methfessel, M.; Paxton, A. 1989; 40
Blöchl, P. 1994; 50
Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. 1999; 292
Kresse, G. 2000; 62
Song, Y.; Guo, Z.; Yang, R. 2004; 69
Du, A.; Smith, S.; Yao, X.; Lu, G. 2005; 109
Pozzo, M.; Carlini, G.; Rosei, R.; Alfè, D. 2007; 126
Nørskov, J.; Høumoller, A.; Johansson, P.; Lundqvist, B. 1981; 46
Zaluski, L.; Zaluska, A.; Tessier, P.; Ström-Olsen, J.; Schulz, R. 1995; 227
Mavrikakis, M.; Hammer, B.; Nørskov, J. 1998; 81
Vohra, Y.; Spencer, P. 2001; 86
Arboleda, N.; Kasai, H.; Nobuhara, K.; Dino, W.; Nakanishi, H. 2004; 73
Sprunger, P.; Plummer, E. 1991; 187
Vegge, T.; Hedegaard-Jensen, L.; Bonde, J.; Munter, T.; Nørskov, J. 2005; 386
Schlapbach, L.; Züttel, A. 2001; 414
Nobuhara, K.; Kasai, H.; Dinõ, W.; Nakanishi, H. 2004; 566-568
Yavari, A.; de Castro, J.; Heunen, G.; Vaughan, G. 2003; 353
Zope, R.; Mishin, Y. 2003; 68
Wachowicz, E.; Kiejna, A. 2001; 13
Kresse, G.; Joubert, J. 1999; 59
Perdew, J.; Burke, K.; Ernzerhof, M. 1996; 77
Hanada, N.; Ichigawa, T.; Fujii, H. 2005; 109
Kresse, G.; Hafner, J. 2000; 459
Bird, D.; Clarke, L.; Payne, M.; Stich, I. 1993; 212
Zaluska, A.; Zaluski, L.; Ström-Olsen, J. 1999; 288
Hayden, B.; Schweitzer, E.; Kötz, R.; Bradshaw, A. 1981; 111
Rendulic, K.; Anger, G.; Winkler, A. 1989; 208
Bobet, J.-L.; Aymonier, C.; Mesguich, D.; Cansell, F.; Asano, K.; Akiba, E. 2007; 429
Davis, H.; Hannon, J.; Ray, K.; Plummer, E. 1992; 68
Bogdanovic, B.; Bohmhammel, K.; Christ, B.; Reiser, A.; Schlichte, K.; Vehlen, R.; Wolf, U. 1999; 282
Johansson, P. 1981; 104
Oelerich, W.; Klassen, T.; Bormann, R. 2001; 322
(2023070401421785500_c59) 1998; 81
(2023070401421785500_c37) 2001; 13
(2023070401421785500_c14) 2004; 370
(2023070401421785500_c27) 1996; 54
(2023070401421785500_c33) 1989; 40
(2023070401421785500_c39) 1976
(2023070401421785500_c57) 1989; 208
(2023070401421785500_c8) 2001; 322
(2023070401421785500_c53) 2007; 126
(2023070401421785500_c9) 1995; 227
(2023070401421785500_c58) 2004; 566–568
(2023070401421785500_c28) 1994; 50
(2023070401421785500_c38) 2006; 125
(2023070401421785500_c16) 2005; 386
(2023070401421785500_c29) 1999; 59
(2023070401421785500_c41) 2003; 15
(2023070401421785500_c36) 1947; 71
(2023070401421785500_c49) 2005; 71
(2023070401421785500_c30) 1996; 77
(2023070401421785500_c5) 1999; 282
(2023070401421785500_c15) 2004; 69
Berne (2023070401421785500_c35b) 1998
(2023070401421785500_c56) 2000; 62
(2023070401421785500_c25) 1993; 212
(2023070401421785500_c20) 2005; 109
(2023070401421785500_c19) 2007; 129
(2023070401421785500_c22) 1979; 81
(2023070401421785500_c32) 1976; 13
(2023070401421785500_c21) 2006; 110
(2023070401421785500_c47) 2001; 86
(2023070401421785500_c54) 1992; 68
(2023070401421785500_c11) 1999; 288
(2023070401421785500_c17) 2005; 109
2023070401421785500_c40
(2023070401421785500_c1) 2001; 414
(2023070401421785500_c12) 2004; 29
(2023070401421785500_c48) 2003; 68
(2023070401421785500_c10) 1999; 292
(2023070401421785500_c44) 2000; 62
(2023070401421785500_c6) 1991; 187
(2023070401421785500_c46) 1977; 62
(2023070401421785500_c42) 1996
(2023070401421785500_c31) 1999; 118
Lide (2023070401421785500_c50) 2002
(2023070401421785500_c13) 2003; 353
(2023070401421785500_c35d) 2000; 113
(2023070401421785500_c45) 1981; 111
(2023070401421785500_c51) 2000; 459
(2023070401421785500_c23) 1981; 104
(2023070401421785500_c2) 1999; 24
2023070401421785500_c34b
(2023070401421785500_c24) 1981; 46
(2023070401421785500_c18) 2007; 429
(2023070401421785500_c7) 1995; 343
(2023070401421785500_c43) 1994; 302
Cahn (2023070401421785500_c4) 1994
(2023070401421785500_c35a) 1995; 324
(2023070401421785500_c35c) 2000; 113
(2023070401421785500_c3) 2000; 298
(2023070401421785500_c55) 2004; 73
(2023070401421785500_c52) 2005; 109
(2023070401421785500_c26) 2004; 70
(2023070401421785500_c34a) 2003; 28
References_xml – volume: 46
  start-page: 257
  year: 1981
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.46.257
– volume: 13
  start-page: 10767
  year: 2001
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/13/48/303
– volume: 118
  start-page: 31
  year: 1999
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(98)00195-7
– volume: 109
  start-page: 18037
  year: 2005
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp052804c
– volume: 62
  start-page: 8295
  year: 2000
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.8295
– volume: 68
  start-page: 2632
  year: 1992
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.2632
– volume: 288
  start-page: 217
  year: 1999
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(99)00073-0
– volume: 208
  start-page: 404
  year: 1989
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(89)90010-1
– volume: 81
  start-page: 539
  year: 1979
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(79)90119-5
– volume: 459
  start-page: 287
  year: 2000
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(00)00457-X
– volume: 353
  start-page: 246
  year: 2003
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(02)01199-4
– volume: 282
  start-page: 84
  year: 1999
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(98)00829-9
– volume: 343
  start-page: 211
  year: 1995
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)80007-0
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 298
  start-page: 279
  year: 2000
  publication-title: J. Alloys Compd.
– volume: 62
  start-page: 267
  year: 1977
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(77)90442-3
– volume: 386
  start-page: 1
  year: 2005
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2004.03.143
– volume: 125
  start-page: 194507
  year: 2006
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2374892
– volume: 322
  start-page: L5
  year: 2001
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(01)01173-2
– volume: 129
  start-page: 10201
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 104
  start-page: 510
  year: 1981
  publication-title: Surf. Sci.
  doi: 10.1016/S0169-4332(96)00195-X
– volume: 70
  start-page: 035412
  year: 2004
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.035412
– volume: 62
  start-page: 17012
  year: 2000
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.17012
– volume: 28
  start-page: 155
  year: 2003
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/S0927-0256(03)00104-6
– volume: 370
  start-page: 123
  year: 2004
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2003.09.031
– volume: 109
  start-page: 3460
  year: 2005
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp046540q
– volume: 187
  start-page: 559
  year: 1991
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(91)90436-D
– volume: 40
  start-page: 3616
  year: 1989
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.3616
– volume: 227
  start-page: 53
  year: 1995
  publication-title: J. Alloys Compd.
– volume: 302
  start-page: 215
  year: 1994
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(94)91111-8
– volume: 429
  start-page: 250
  year: 2007
  publication-title: J. Alloys Compd.
– volume: 81
  start-page: 2819
  year: 1998
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 50
  start-page: 17953
  year: 1994
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 111
  start-page: 26
  year: 1981
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(81)90472-6
– volume: 109
  start-page: 7188
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 324 113 113
  start-page: 305 9978 9901
  year: 1995 2000 2000
  publication-title: Surf. Sci. J. Chem. Phys. J. Chem. Phys.
  doi: 10.1016/0039-6028(94)00731-4 10.1063/1.1323224 10.1063/1.1329672
– volume: 71
  start-page: 809
  year: 1947
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.71.809
– volume: 68
  start-page: 024102
  year: 2003
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.024102
– volume: 110
  start-page: 21747
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 15
  start-page: 1277
  year: 2003
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/15/8/312
– volume: 73
  start-page: 745
  year: 2004
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.73.745
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 126
  start-page: 164706
  year: 2007
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2717172
– volume: 71
  start-page: 024101
  year: 2005
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.024101
– volume: 86
  start-page: 3068
  year: 2001
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.3068
– volume: 24
  start-page: 40
  year: 1999
  publication-title: MRS Bull.
– volume: 69
  start-page: 094205
  year: 2004
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.094205
– volume: 29
  start-page: 73
  year: 2004
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(03)00045-4
– volume: 292
  start-page: 247
  year: 1999
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(99)00442-9
– volume: 54
  start-page: 11169
  year: 1996
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 212
  start-page: 518
  year: 1993
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)87239-Y
– volume: 566-568
  start-page: 703
  year: 2004
  publication-title: Surf. Sci.
– volume: 414
  start-page: 353
  year: 2001
  publication-title: Nature (London)
  doi: 10.1038/35104634
– volume: 81
  start-page: 539
  year: 1979
  ident: 2023070401421785500_c22
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(79)90119-5
– volume: 62
  start-page: 8295
  year: 2000
  ident: 2023070401421785500_c56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.8295
– volume: 288
  start-page: 217
  year: 1999
  ident: 2023070401421785500_c11
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(99)00073-0
– volume: 343
  start-page: 211
  year: 1995
  ident: 2023070401421785500_c7
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)80007-0
– volume: 62
  start-page: 267
  year: 1977
  ident: 2023070401421785500_c46
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(77)90442-3
– volume: 386
  start-page: 1
  year: 2005
  ident: 2023070401421785500_c16
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2004.03.143
– volume: 104
  start-page: 510
  year: 1981
  ident: 2023070401421785500_c23
  publication-title: Surf. Sci.
  doi: 10.1016/S0169-4332(96)00195-X
– ident: 2023070401421785500_c40
– volume: 68
  start-page: 2632
  year: 1992
  ident: 2023070401421785500_c54
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.2632
– volume: 298
  start-page: 279
  year: 2000
  ident: 2023070401421785500_c3
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(99)00628-3
– volume: 282
  start-page: 84
  year: 1999
  ident: 2023070401421785500_c5
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(98)00829-9
– volume: 109
  start-page: 7188
  year: 2005
  ident: 2023070401421785500_c17
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp044576c
– volume: 109
  start-page: 3460
  year: 2005
  ident: 2023070401421785500_c52
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp046540q
– volume: 68
  start-page: 024102
  year: 2003
  ident: 2023070401421785500_c48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.024102
– volume-title: Introduction to Solid State Physics
  year: 1996
  ident: 2023070401421785500_c42
– volume: 292
  start-page: 247
  year: 1999
  ident: 2023070401421785500_c10
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(99)00442-9
– volume: 46
  start-page: 257
  year: 1981
  ident: 2023070401421785500_c24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.46.257
– volume: 459
  start-page: 287
  year: 2000
  ident: 2023070401421785500_c51
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(00)00457-X
– volume: 28
  start-page: 155
  year: 2003
  ident: 2023070401421785500_c34a
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/S0927-0256(03)00104-6
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2023070401421785500_c30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 29
  start-page: 73
  year: 2004
  ident: 2023070401421785500_c12
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(03)00045-4
– volume: 73
  start-page: 745
  year: 2004
  ident: 2023070401421785500_c55
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.73.745
– volume: 113
  start-page: 9901
  year: 2000
  ident: 2023070401421785500_c35d
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume-title: Classical and Quantum Dynamics in Condensed Phase Simulations
  year: 1998
  ident: 2023070401421785500_c35b
  doi: 10.1142/3816
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2002
  ident: 2023070401421785500_c50
– volume: 208
  start-page: 404
  year: 1989
  ident: 2023070401421785500_c57
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(89)90010-1
– volume: 125
  start-page: 194507
  year: 2006
  ident: 2023070401421785500_c38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2374892
– volume: 71
  start-page: 024101
  year: 2005
  ident: 2023070401421785500_c49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.024101
– volume: 110
  start-page: 21747
  year: 2006
  ident: 2023070401421785500_c21
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp063286o
– volume-title: Solid State Physics
  year: 1976
  ident: 2023070401421785500_c39
– volume: 59
  start-page: 1758
  year: 1999
  ident: 2023070401421785500_c29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– start-page: 333
  volume-title: Material Science and Technology
  year: 1994
  ident: 2023070401421785500_c4
– volume: 40
  start-page: 3616
  year: 1989
  ident: 2023070401421785500_c33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.3616
– volume: 113
  start-page: 9978
  year: 2000
  ident: 2023070401421785500_c35c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 429
  start-page: 250
  year: 2007
  ident: 2023070401421785500_c18
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2006.03.095
– ident: 2023070401421785500_c34b
– volume: 86
  start-page: 3068
  year: 2001
  ident: 2023070401421785500_c47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.3068
– volume: 322
  start-page: L5
  year: 2001
  ident: 2023070401421785500_c8
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(01)01173-2
– volume: 69
  start-page: 094205
  year: 2004
  ident: 2023070401421785500_c15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.094205
– volume: 81
  start-page: 2819
  year: 1998
  ident: 2023070401421785500_c59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 227
  start-page: 53
  year: 1995
  ident: 2023070401421785500_c9
  publication-title: J. Alloys Compd.
  doi: 10.1016/0925-8388(95)01623-6
– volume: 129
  start-page: 10201
  year: 2007
  ident: 2023070401421785500_c19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0722776
– volume: 62
  start-page: 17012
  year: 2000
  ident: 2023070401421785500_c44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.17012
– volume: 370
  start-page: 123
  year: 2004
  ident: 2023070401421785500_c14
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2003.09.031
– volume: 109
  start-page: 18037
  year: 2005
  ident: 2023070401421785500_c20
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp052804c
– volume: 324
  start-page: 305
  year: 1995
  ident: 2023070401421785500_c35a
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(94)00731-4
– volume: 111
  start-page: 26
  year: 1981
  ident: 2023070401421785500_c45
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(81)90472-6
– volume: 126
  start-page: 164706
  year: 2007
  ident: 2023070401421785500_c53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2717172
– volume: 71
  start-page: 809
  year: 1947
  ident: 2023070401421785500_c36
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.71.809
– volume: 13
  start-page: 5188
  year: 1976
  ident: 2023070401421785500_c32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 302
  start-page: 215
  year: 1994
  ident: 2023070401421785500_c43
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(94)91111-8
– volume: 212
  start-page: 518
  year: 1993
  ident: 2023070401421785500_c25
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)87239-Y
– volume: 54
  start-page: 11169
  year: 1996
  ident: 2023070401421785500_c27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 118
  start-page: 31
  year: 1999
  ident: 2023070401421785500_c31
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(98)00195-7
– volume: 15
  start-page: 1277
  year: 2003
  ident: 2023070401421785500_c41
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/15/8/312
– volume: 353
  start-page: 246
  year: 2003
  ident: 2023070401421785500_c13
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(02)01199-4
– volume: 414
  start-page: 353
  year: 2001
  ident: 2023070401421785500_c1
  publication-title: Nature (London)
  doi: 10.1038/35104634
– volume: 13
  start-page: 10767
  year: 2001
  ident: 2023070401421785500_c37
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/13/48/303
– volume: 70
  start-page: 035412
  year: 2004
  ident: 2023070401421785500_c26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.035412
– volume: 187
  start-page: 559
  year: 1991
  ident: 2023070401421785500_c6
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(91)90436-D
– volume: 50
  start-page: 17953
  year: 1994
  ident: 2023070401421785500_c28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 566–568
  start-page: 703
  year: 2004
  ident: 2023070401421785500_c58
  publication-title: Surf. Sci.
– volume: 24
  start-page: 40
  year: 1999
  ident: 2023070401421785500_c2
  publication-title: MRS Bull.
SSID ssj0001724
Score 2.2177627
Snippet It is well-known, both theoretically and experimentally, that alloying Mg H 2 with transition elements can significantly improve the thermodynamic and kinetic...
It is well-known, both theoretically and experimentally, that alloying MgH2 with transition elements can significantly improve the thermodynamic and kinetic...
It is well-known, both theoretically and experimentally, that alloying MgH(2) with transition elements can significantly improve the thermodynamic and kinetic...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 094703
SubjectTerms Alloys
Diffusion
Hydrogen - chemistry
Magnesium - chemistry
Nickel - chemistry
Semiconductors
Surface Properties
Titanium - chemistry
Title Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces
URI http://dx.doi.org/10.1063/1.2835541
https://www.ncbi.nlm.nih.gov/pubmed/18331106
https://www.proquest.com/docview/70388795
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 0021-9606
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExo8IBhf5TNCPAwhj8R24vixGqCCKJpEJ-0tcmIHKm1J1Y8H-tdztmM3ZZsESFFUOamT3O_i_Hznu0PojRRpXkkhgLlJjRkpUyx4XGKuOIllXsJmPLqTb9n4lH05S8-29TttdMmqPKo2V8aV_A-q0Aa4mijZf0A2dAoN8BvwhT0gDPu_wnj8Sy1aOGrcLEHK1h1g6p6sl5YMNoA2to3TGVbtHBjmBN7vPLbZ88W75XpRm3VZfZq6DRizVLXyWQWcHSTQ8JN2s2l3TKqj89q63vOdxcSji5medQE1QWFMmOHPrfHVWx5sKJ4rURsiARJsZkA7oynJe2ojemMjTCS5zWdwedgGnmQsCEcm-VvqEmH14JtfWPxg8KFAVv5InO1mMt2hm2iP8CwjA7Q3-jD5-j18k4Gmdfm43R37HFMZfR-uavLHdv3skpRLM487aB_4iVsq0WMj03vobodNNHI6cR_d0M0B2j_21fsO0K0TB9UD9NlrSdTXkggUIgpaEsEGWmIbvZZEkx-H5pneRl5DHqLTTx-nx2PcFdDAFYvZCqu4grePEJXpss5ZKrVgTClWK51QqoVWUvKMibo0duWMKAlTLallTLkAzkLoIzRo2kY_QVElJE0IkF34MxN5LMsqAZ4jqRKsSrkYokMvscKLxhQ5OS_sKoeMFknRyXmIXodT5y6lylUnvfJiL0ByxoslG92ulwU3-Yu4SIfosUNj20mH3hDxAM_1V_DCL3rCf3ptn8_QbedNIJikz9FgtVjrF0BHV-XLTtd-A6XhgS8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+dissociation+and+diffusion+on+Ni-+and+Ti-doped+Mg%280001%29+surfaces&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Pozzo%2C+M&rft.au=Alf%C3%A8%2C+D&rft.au=Amieiro%2C+A&rft.au=French%2C+S&rft.date=2008-03-07&rft.issn=0021-9606&rft.volume=128&rft.issue=9&rft.spage=094703&rft_id=info:doi/10.1063%2F1.2835541&rft_id=info%3Apmid%2F18331106&rft.externalDocID=18331106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon