Convergence analysis of ensemble Kalman inversion: the linear, noisy case
We present an analysis of ensemble Kalman inversion, based on the continuous time limit of the algorithm. The analysis of the dynamical behaviour of the ensemble allows us to establish well-posedness and convergence results for a fixed ensemble size. We will build on recent results on the convergenc...
Saved in:
Published in | Applicable analysis Vol. 97; no. 1; pp. 107 - 123 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.01.2018
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0003-6811 1563-504X |
DOI | 10.1080/00036811.2017.1386784 |
Cover
Summary: | We present an analysis of ensemble Kalman inversion, based on the continuous time limit of the algorithm. The analysis of the dynamical behaviour of the ensemble allows us to establish well-posedness and convergence results for a fixed ensemble size. We will build on recent results on the convergence in the noise-free case and generalise them to the case of noisy observational data, in particular the influence of the noise on the convergence will be investigated, both theoretically and numerically. We focus on linear inverse problems where a very complete theoretical analysis is possible. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0003-6811 1563-504X |
DOI: | 10.1080/00036811.2017.1386784 |