A Spatially Constrained Generative Model and an EM Algorithm for Image Segmentation

In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with simil...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 18; no. 3; pp. 798 - 808
Main Authors Diplaros, A., Vlassis, N., Gevers, T.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2007
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1045-9227
1941-0093
DOI10.1109/TNN.2007.891190

Cover

Abstract In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with similar parameters, where similarity is defined by entropic quantities relating to the neighboring priors. In order to estimate model parameters from observations, we derive a spatially constrained EM algorithm that iteratively maximizes a lower bound on the data log-likelihood, where the penalty term is data-dependent. Our algorithm is very easy to implement and is similar to the standard EM algorithm for Gaussian mixtures with the main difference that the labels posteriors are "smoothed" over pixels between each E- and M-step by a standard image filter. Experiments on synthetic and real images show that our algorithm achieves competitive segmentation results compared to other Markov-based methods, and is in general faster
AbstractList In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with similar parameters, where similarity is defined by entropic quantities relating to the neighboring priors. In order to estimate model parameters from observations, we derive a spatially constrained EM algorithm that iteratively maximizes a lower bound on the data log-likelihood, where the penalty term is data-dependent. Our algorithm is very easy to implement and is similar to the standard EM algorithm for Gaussian mixtures with the main difference that the labels posteriors are "smoothed" over pixels between each E- and M-step by a standard image filter. Experiments on synthetic and real images show that our algorithm achieves competitive segmentation results compared to other Markov-based methods, and is in general faster.
In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with similar parameters, where similarity is defined by entropic quantities relating to the neighboring priors. In order to estimate model parameters from observations, we derive a spatially constrained EM algorithm that iteratively maximizes a lower bound on the data log-likelihood, where the penalty term is data-dependent. Our algorithm is very easy to implement and is similar to the standard EM algorithm for Gaussian mixtures with the main difference that the labels posteriors are "smoothed" over pixels between each E- and M-step by a standard image filter. Experiments on synthetic and real images show that our algorithm achieves competitive segmentation results compared to other Markov-based methods, and is in general faster
In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with similar parameters, where similarity is defined by entropic quantities relating to the neighboring priors. In order to estimate model parameters from observations, we derive a spatially constrained EM algorithm that iteratively maximizes a lower bound on the data log-likelihood, where the penalty term is data-dependent. Our algorithm is very easy to implement and is similar to the standard EM algorithm for Gaussian mixtures with the main difference that the labels posteriors are "smoothed" over pixels between each E- and M-step by a standard image filter. Experiments on synthetic and real images show that our algorithm achieves competitive segmentation results compared to other Markov-based methods, and is in general faster.In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with similar parameters, where similarity is defined by entropic quantities relating to the neighboring priors. In order to estimate model parameters from observations, we derive a spatially constrained EM algorithm that iteratively maximizes a lower bound on the data log-likelihood, where the penalty term is data-dependent. Our algorithm is very easy to implement and is similar to the standard EM algorithm for Gaussian mixtures with the main difference that the labels posteriors are "smoothed" over pixels between each E- and M-step by a standard image filter. Experiments on synthetic and real images show that our algorithm achieves competitive segmentation results compared to other Markov-based methods, and is in general faster.
Author Vlassis, N.
Gevers, T.
Diplaros, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Diplaros
  fullname: Diplaros, A.
  organization: Fac. of Sci., Amsterdam Univ
– sequence: 2
  givenname: N.
  surname: Vlassis
  fullname: Vlassis, N.
– sequence: 3
  givenname: T.
  surname: Gevers
  fullname: Gevers, T.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18735253$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17526345$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAURkVJyXvdRaFo03blid6Sl8OQpoE8FpOuhSxfT11saSp5Avn31eBpCoV2IaSLzrmL7ztDRyEGQOgdJQtKSX319PCwYITohakprckbdEprQStCan5U3kTIqmZMn6CznH8QQoUk6hidUC2Z4kKeovUSr7du6t0wvOBVDHlKrg_Q4hsIkMrHM-D72MKAXWjLwdf3eDlsYuqn7yPuYsK3o9sAXsNmhDAVIYYL9LZzQ4bLw32Ovn25flp9re4eb25Xy7vKCyKmynPmladGtF41xktjdCtBdA4EU6wwANLQMmgmFYWm0Q0T2hPaNqxrlOTn6PO8d5vizx3kyY599jAMLkDcZWsMUbImUhTy039JTaSUitcF_HAAd80Ird2mfnTpxf4OrAAfD4DL3g1dcsH3-Q9nNJdM8sLJmfMp5pygs76f09kHPFhK7L5AWwq0-wLtXGDxrv7yXlf_03g_Gz0AvNKCGsa15r8AiXWjVA
CODEN ITNNEP
CitedBy_id crossref_primary_10_3182_20100906_3_IT_2019_00044
crossref_primary_10_1016_j_jvcir_2016_07_004
crossref_primary_10_4018_ijmtie_2013100103
crossref_primary_10_1016_j_compag_2017_06_016
crossref_primary_10_1371_journal_pone_0168449
crossref_primary_10_1007_s10851_009_0174_x
crossref_primary_10_1049_iet_ipr_2016_0526
crossref_primary_10_1007_s11265_014_0898_8
crossref_primary_10_1109_LGRS_2014_2325220
crossref_primary_10_1109_TSMCB_2011_2161284
crossref_primary_10_1007_s11263_017_1061_3
crossref_primary_10_3390_info13020098
crossref_primary_10_1016_j_patcog_2022_108658
crossref_primary_10_1109_TCSVT_2012_2211176
crossref_primary_10_1007_s11222_007_9044_9
crossref_primary_10_1109_TBME_2010_2041232
crossref_primary_10_1016_j_cmpb_2017_08_017
crossref_primary_10_1016_j_media_2011_12_001
crossref_primary_10_1109_TGRS_2013_2281854
crossref_primary_10_1016_j_imavis_2011_09_001
crossref_primary_10_1109_TIP_2012_2219545
crossref_primary_10_1016_j_jvcir_2018_04_007
crossref_primary_10_1016_j_dsp_2016_08_010
crossref_primary_10_1080_2150704X_2014_882071
crossref_primary_10_1016_j_jvcir_2015_10_018
crossref_primary_10_1109_TNN_2008_915110
crossref_primary_10_1016_j_ijar_2018_08_001
crossref_primary_10_1109_TMI_2012_2221731
crossref_primary_10_1109_ACCESS_2020_2993540
crossref_primary_10_1007_s10851_017_0759_8
crossref_primary_10_3233_IDA_150794
crossref_primary_10_1016_j_asoc_2016_03_010
crossref_primary_10_1016_j_neucom_2015_11_102
crossref_primary_10_1109_TIP_2020_2975717
crossref_primary_10_1109_TNN_2010_2054109
crossref_primary_10_1002_rob_21983
crossref_primary_10_1007_s10044_017_0672_1
crossref_primary_10_1109_ACCESS_2025_3540971
crossref_primary_10_1016_j_ins_2021_06_034
crossref_primary_10_1016_j_jvcir_2016_06_022
crossref_primary_10_1016_j_neucom_2012_12_067
crossref_primary_10_1109_TCYB_2017_2716101
crossref_primary_10_1109_TSMCB_2008_919229
crossref_primary_10_1109_TNN_2010_2101614
crossref_primary_10_1049_iet_ipr_2016_0271
crossref_primary_10_1016_j_patcog_2014_01_017
crossref_primary_10_3389_fbioe_2018_00053
crossref_primary_10_4018_ijban_2015010102
crossref_primary_10_1016_j_neucom_2011_11_025
crossref_primary_10_1109_TCYB_2015_2412251
crossref_primary_10_1016_j_neucom_2017_05_069
crossref_primary_10_1080_2150704X_2015_1034883
crossref_primary_10_1016_j_robot_2018_02_017
crossref_primary_10_1016_j_patrec_2009_12_004
crossref_primary_10_3389_fmars_2024_1499002
crossref_primary_10_1016_j_jvcir_2016_08_001
crossref_primary_10_1080_13682199_2023_2210400
crossref_primary_10_1016_j_dsp_2013_06_015
crossref_primary_10_1049_iet_ipr_2012_0340
crossref_primary_10_1080_13682199_2019_1700875
crossref_primary_10_1007_s10462_010_9155_0
crossref_primary_10_1109_TMI_2011_2165342
Cites_doi 10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.cviu.2003.07.004
10.1109/ICSMC.2004.1400810
10.1109/TPAMI.2003.1240112
10.1109/TPAMI.1984.4767596
10.1109/TPAMI.2002.1023800
10.1109/42.906424
10.1023/A:1007925832420
10.1109/TPAMI.2002.1008391
10.1111/j.2517-6161.1986.tb01412.x
10.1109/TPAMI.2002.1046170
10.1002/0471721182
10.1016/S0031-3203(02)00027-4
10.1109/21.141311
10.1109/TNN.2004.841773
10.1007/978-94-011-5014-9_12
10.1109/83.701161
10.2307/2987782
10.1109/TNN.2005.849822
10.1016/S0167-8655(03)00067-9
10.1109/83.826777
10.1016/S0031-3203(98)00036-3
10.1016/j.neucom.2004.04.008
10.1109/ICCV.2001.937655
10.1098/rsta.1991.0132
10.1109/TNN.2005.845141
10.1109/78.157297
10.1109/TNN.2003.820622
10.1109/TGRS.2003.809940
10.1109/TPAMI.2003.1227985
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TNN.2007.891190
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 808
ExternalDocumentID 17526345
18735253
10_1109_TNN_2007_891190
4182377
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c404t-c32c6c184dc6b8c5887d5e4fae4262c40ee581e4272561ebb7b247c01db2fb653
IEDL.DBID RIE
ISSN 1045-9227
IngestDate Fri Sep 05 11:16:39 EDT 2025
Fri Sep 05 14:33:55 EDT 2025
Wed Feb 19 02:10:07 EST 2025
Mon Jul 21 09:15:38 EDT 2025
Wed Oct 01 03:24:46 EDT 2025
Thu Apr 24 22:50:51 EDT 2025
Tue Aug 26 16:42:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Cluster analysis
Mixed distribution
Markov process
expectation-maximization (EM) algorithm
Lower bound
hidden Markov random fields (MRFs)
Probabilistic approach
Similarity
Image processing
Prior distribution
spatial clustering
Neural network
Modeling
Competitive algorithms
Optimization
Image segmentation
Gaussian process
Classification
Hidden Markov model
Log file
EM algorithm
Bound optimization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-c32c6c184dc6b8c5887d5e4fae4262c40ee581e4272561ebb7b247c01db2fb653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 17526345
PQID 70555639
PQPubID 23479
PageCount 11
ParticipantIDs pascalfrancis_primary_18735253
proquest_miscellaneous_880659054
pubmed_primary_17526345
crossref_primary_10_1109_TNN_2007_891190
crossref_citationtrail_10_1109_TNN_2007_891190
proquest_miscellaneous_70555639
ieee_primary_4182377
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-05-01
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2007
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
stanford (ref30) 1999
ref34
ref12
ref15
ref36
ref14
ref31
sun (ref22) 2004; 1
ref33
ref11
ref32
ref10
ref1
ref17
besag (ref2) 1986; 48
ref19
ref18
li (ref4) 2001
verbeek (ref28) 2005; 63
ref24
ref23
ref26
ref25
ref20
dempster (ref16) 1977; 39
ref21
mclachlan (ref13) 2000
roweis (ref27) 2002
ref29
ref8
chellappa (ref3) 1993
ref7
ref9
ref5
geman (ref6) 1991
References_xml – volume: 39
  start-page: 1
  year: 1977
  ident: ref16
  article-title: maximum likelihood from incomplete data via the em algorithm
  publication-title: J Roy Statist Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref8
  doi: 10.1016/j.cviu.2003.07.004
– ident: ref15
  doi: 10.1109/ICSMC.2004.1400810
– ident: ref11
  doi: 10.1109/TPAMI.2003.1240112
– ident: ref1
  doi: 10.1109/TPAMI.1984.4767596
– ident: ref14
  doi: 10.1109/TPAMI.2002.1023800
– ident: ref20
  doi: 10.1109/42.906424
– ident: ref12
  doi: 10.1023/A:1007925832420
– ident: ref34
  doi: 10.1109/TPAMI.2002.1008391
– year: 1999
  ident: ref30
  publication-title: Fast automatic unsupervised image segmentation and curve detection in spatial point patterns
– volume: 48
  start-page: 259
  year: 1986
  ident: ref2
  article-title: on the statistical analysis of dirty pictures
  publication-title: J Roy Statist Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1986.tb01412.x
– ident: ref31
  doi: 10.1109/TPAMI.2002.1046170
– volume: 1
  start-page: 596
  year: 2004
  ident: ref22
  article-title: bayesian image segmentation based on an inhomogeneous hidden markov random field
  publication-title: 17th Int Conf Pattern Recognit (ICPR)
– year: 2000
  ident: ref13
  publication-title: Finite Mixture Models
  doi: 10.1002/0471721182
– ident: ref23
  doi: 10.1016/S0031-3203(02)00027-4
– ident: ref33
  doi: 10.1109/21.141311
– ident: ref26
  doi: 10.1109/TNN.2004.841773
– ident: ref17
  doi: 10.1007/978-94-011-5014-9_12
– ident: ref25
  doi: 10.1109/83.701161
– ident: ref24
  doi: 10.2307/2987782
– ident: ref36
  doi: 10.1109/TNN.2005.849822
– ident: ref5
  doi: 10.1016/S0167-8655(03)00067-9
– ident: ref7
  doi: 10.1109/83.826777
– ident: ref35
  doi: 10.1016/S0031-3203(98)00036-3
– volume: 63
  start-page: 99
  year: 2005
  ident: ref28
  article-title: self-organizing mixture models
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2004.04.008
– year: 1993
  ident: ref3
  publication-title: Markov Random Fields Theory and Application
– ident: ref32
  doi: 10.1109/ICCV.2001.937655
– ident: ref18
  doi: 10.1098/rsta.1991.0132
– ident: ref29
  doi: 10.1109/TNN.2005.845141
– year: 2001
  ident: ref4
  publication-title: Markov Random Field Modeling in Computer Vision
– start-page: 889
  year: 2002
  ident: ref27
  publication-title: Advances in Neural Information Processing Systems 14
– ident: ref19
  doi: 10.1109/78.157297
– ident: ref10
  doi: 10.1109/TNN.2003.820622
– ident: ref9
  doi: 10.1109/TGRS.2003.809940
– ident: ref21
  doi: 10.1109/TPAMI.2003.1227985
– start-page: 9
  year: 1991
  ident: ref6
  publication-title: Image Analysis and Computer Vision
SSID ssj0014506
Score 2.2409754
Snippet In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 798
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Bound optimization
Clustering algorithms
Computer science; control theory; systems
Computer Simulation
Connectionism. Neural networks
Constraints
Exact sciences and technology
expectation-maximization (EM) algorithm
Hidden Markov models
hidden Markov random fields (MRFs)
Image color analysis
Image edge detection
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image segmentation
Informatics
Intelligent sensors
Intelligent systems
Iterative algorithms
Labels
Likelihood Functions
Mathematical models
Models, Statistical
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Pixel
Pixels
spatial clustering
Title A Spatially Constrained Generative Model and an EM Algorithm for Image Segmentation
URI https://ieeexplore.ieee.org/document/4182377
https://www.ncbi.nlm.nih.gov/pubmed/17526345
https://www.proquest.com/docview/70555639
https://www.proquest.com/docview/880659054
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0093
  dateEnd: 20111231
  omitProxy: false
  ssIdentifier: ssj0014506
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED4kmdqhae0-1EfKoSg6VI5E8aXRKBKkBewlCZBNMF9pUFsuEnlIfn14pOykRQ10ECABFCHqjuQd7-77AD7V1PqqLKtcVsLlTFCWK1-Y3IlKyFLXXnksFJ5Mxck5-3HBL3bg66YWxjkXk8_cCG9jLN8uzQqPyg5ZidAqchd2pRKpVmsTMWA88mgG74LnNaWyh_Epi_rwbDpNWIUqzOw6cr9JTkWFJUyPNqPIroK5kbOb8Ht84rXYbnjGDeh4HybrT095J79Gq06PzN1fqI7_O7bn8Ky3RMk4qc4L2HHtAIbjNnjhi1vymcTc0HjoPoD9NfkD6deCATx9hGQ4hNMxQXLjoMzzW4IkoJF6wlmSYK1xTSVIuzYns9aGixxNyHh-uby-6n4uSDCcyfdFWNnIqbtc9NVQ7Us4Pz46-3aS93wNuWEF63JTUSNMcBmtEVoZHtYvyx3zM4ew96GNc1yV4UEGO6t0WktNmTRFaTX1WvDqFey1y9a9wYQrL2khvLfGssIWqlaCe89qppmklc1gtBZcY3owcxzYvIlOTVE3QehIsSmbJPQMvmxe-J1wPLY3HaJ4Ns16yWRw8IdmPHSjJGLKVhl8XKtKE-YoBl5mrVuubhpELOLBFMyAbGmhYnw7mM8ZvE5K9tB9r6tv__1Z7-BJOm7GHMz3sNddr9yHYCd1-iBOkHtNIgtm
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcgAOFBIe5tHuASEOOLXX-7CPEWqVQpNLU6k3K_tqEYmDWudQfj07u05aEJE4WLKl9crrmd2d2Zn5PoAPFTWuyPMilYWwKROUpaXLdGpFIWSuKlc6LBQeT8TonH294Bc78HlTC2OtDclndoC3IZZvlnqFR2WHLEdoFfkAHnLGGI_VWpuYAeOBSdP7FzytKJUdkE-eVYfTySSiFZZ-bleB_U1yKgosYrq3HQV-FcyOnN34H-Qis8V20zNsQcd7MF5_fMw8-TFYtWqgf_2F6_i_o3sGTztblAyj8jyHHdv0oD9svB--uCUfScgODcfuPdhb0z-QbjXowZN7WIZ9OBsSpDf26jy_JUgDGsgnrCER2BpXVYLEa3Mya4y_yNGYDOeXy-vv7dWCeNOZnCz82kbO7OWiq4dqXsD58dH0yyjtGBtSzTLWprqgWmjvNBotVKm5X8EMt8zNLALf-zbW8jL3D9JbWrlVSirKpM5yo6hTghcvYbdZNvY1plw5STPhnNGGZSYrq1Jw51jFFJO0MAkM1oKrdQdnjgOb18GtyaraCx1JNmUdhZ7Ap80LPyOSx_amfRTPplknmQT2_9CMu25KiaiyRQIHa1Wp_SzF0MusscvVTY2YRdwbgwmQLS3KEOH2BnQCr6KS3XXf6eqbf3_WATwaTcen9enJ5NtbeBwPnzEj8x3sttcr-95bTa3aD5PlN2zGDrM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spatially+Constrained+Generative+Model+and+an+EM+Algorithm+for+Image+Segmentation&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Diplaros%2C+A.&rft.au=Vlassis%2C+N.&rft.au=Gevers%2C+T.&rft.date=2007-05-01&rft.issn=1045-9227&rft.eissn=1941-0093&rft.volume=18&rft.issue=3&rft.spage=798&rft.epage=808&rft_id=info:doi/10.1109%2FTNN.2007.891190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNN_2007_891190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon