A Spatially Constrained Generative Model and an EM Algorithm for Image Segmentation
In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with simil...
Saved in:
| Published in | IEEE transactions on neural networks Vol. 18; no. 3; pp. 798 - 808 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.05.2007
Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1045-9227 1941-0093 |
| DOI | 10.1109/TNN.2007.891190 |
Cover
| Abstract | In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with similar parameters, where similarity is defined by entropic quantities relating to the neighboring priors. In order to estimate model parameters from observations, we derive a spatially constrained EM algorithm that iteratively maximizes a lower bound on the data log-likelihood, where the penalty term is data-dependent. Our algorithm is very easy to implement and is similar to the standard EM algorithm for Gaussian mixtures with the main difference that the labels posteriors are "smoothed" over pixels between each E- and M-step by a standard image filter. Experiments on synthetic and real images show that our algorithm achieves competitive segmentation results compared to other Markov-based methods, and is in general faster |
|---|---|
| AbstractList | In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with similar parameters, where similarity is defined by entropic quantities relating to the neighboring priors. In order to estimate model parameters from observations, we derive a spatially constrained EM algorithm that iteratively maximizes a lower bound on the data log-likelihood, where the penalty term is data-dependent. Our algorithm is very easy to implement and is similar to the standard EM algorithm for Gaussian mixtures with the main difference that the labels posteriors are "smoothed" over pixels between each E- and M-step by a standard image filter. Experiments on synthetic and real images show that our algorithm achieves competitive segmentation results compared to other Markov-based methods, and is in general faster. In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with similar parameters, where similarity is defined by entropic quantities relating to the neighboring priors. In order to estimate model parameters from observations, we derive a spatially constrained EM algorithm that iteratively maximizes a lower bound on the data log-likelihood, where the penalty term is data-dependent. Our algorithm is very easy to implement and is similar to the standard EM algorithm for Gaussian mixtures with the main difference that the labels posteriors are "smoothed" over pixels between each E- and M-step by a standard image filter. Experiments on synthetic and real images show that our algorithm achieves competitive segmentation results compared to other Markov-based methods, and is in general faster In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with similar parameters, where similarity is defined by entropic quantities relating to the neighboring priors. In order to estimate model parameters from observations, we derive a spatially constrained EM algorithm that iteratively maximizes a lower bound on the data log-likelihood, where the penalty term is data-dependent. Our algorithm is very easy to implement and is similar to the standard EM algorithm for Gaussian mixtures with the main difference that the labels posteriors are "smoothed" over pixels between each E- and M-step by a standard image filter. Experiments on synthetic and real images show that our algorithm achieves competitive segmentation results compared to other Markov-based methods, and is in general faster.In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The generative model assumes that the unobserved class labels of neighboring pixels in the image are generated by prior distributions with similar parameters, where similarity is defined by entropic quantities relating to the neighboring priors. In order to estimate model parameters from observations, we derive a spatially constrained EM algorithm that iteratively maximizes a lower bound on the data log-likelihood, where the penalty term is data-dependent. Our algorithm is very easy to implement and is similar to the standard EM algorithm for Gaussian mixtures with the main difference that the labels posteriors are "smoothed" over pixels between each E- and M-step by a standard image filter. Experiments on synthetic and real images show that our algorithm achieves competitive segmentation results compared to other Markov-based methods, and is in general faster. |
| Author | Vlassis, N. Gevers, T. Diplaros, A. |
| Author_xml | – sequence: 1 givenname: A. surname: Diplaros fullname: Diplaros, A. organization: Fac. of Sci., Amsterdam Univ – sequence: 2 givenname: N. surname: Vlassis fullname: Vlassis, N. – sequence: 3 givenname: T. surname: Gevers fullname: Gevers, T. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18735253$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17526345$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtr3DAURkVJyXvdRaFo03blid6Sl8OQpoE8FpOuhSxfT11saSp5Avn31eBpCoV2IaSLzrmL7ztDRyEGQOgdJQtKSX319PCwYITohakprckbdEprQStCan5U3kTIqmZMn6CznH8QQoUk6hidUC2Z4kKeovUSr7du6t0wvOBVDHlKrg_Q4hsIkMrHM-D72MKAXWjLwdf3eDlsYuqn7yPuYsK3o9sAXsNmhDAVIYYL9LZzQ4bLw32Ovn25flp9re4eb25Xy7vKCyKmynPmladGtF41xktjdCtBdA4EU6wwANLQMmgmFYWm0Q0T2hPaNqxrlOTn6PO8d5vizx3kyY599jAMLkDcZWsMUbImUhTy039JTaSUitcF_HAAd80Ird2mfnTpxf4OrAAfD4DL3g1dcsH3-Q9nNJdM8sLJmfMp5pygs76f09kHPFhK7L5AWwq0-wLtXGDxrv7yXlf_03g_Gz0AvNKCGsa15r8AiXWjVA |
| CODEN | ITNNEP |
| CitedBy_id | crossref_primary_10_3182_20100906_3_IT_2019_00044 crossref_primary_10_1016_j_jvcir_2016_07_004 crossref_primary_10_4018_ijmtie_2013100103 crossref_primary_10_1016_j_compag_2017_06_016 crossref_primary_10_1371_journal_pone_0168449 crossref_primary_10_1007_s10851_009_0174_x crossref_primary_10_1049_iet_ipr_2016_0526 crossref_primary_10_1007_s11265_014_0898_8 crossref_primary_10_1109_LGRS_2014_2325220 crossref_primary_10_1109_TSMCB_2011_2161284 crossref_primary_10_1007_s11263_017_1061_3 crossref_primary_10_3390_info13020098 crossref_primary_10_1016_j_patcog_2022_108658 crossref_primary_10_1109_TCSVT_2012_2211176 crossref_primary_10_1007_s11222_007_9044_9 crossref_primary_10_1109_TBME_2010_2041232 crossref_primary_10_1016_j_cmpb_2017_08_017 crossref_primary_10_1016_j_media_2011_12_001 crossref_primary_10_1109_TGRS_2013_2281854 crossref_primary_10_1016_j_imavis_2011_09_001 crossref_primary_10_1109_TIP_2012_2219545 crossref_primary_10_1016_j_jvcir_2018_04_007 crossref_primary_10_1016_j_dsp_2016_08_010 crossref_primary_10_1080_2150704X_2014_882071 crossref_primary_10_1016_j_jvcir_2015_10_018 crossref_primary_10_1109_TNN_2008_915110 crossref_primary_10_1016_j_ijar_2018_08_001 crossref_primary_10_1109_TMI_2012_2221731 crossref_primary_10_1109_ACCESS_2020_2993540 crossref_primary_10_1007_s10851_017_0759_8 crossref_primary_10_3233_IDA_150794 crossref_primary_10_1016_j_asoc_2016_03_010 crossref_primary_10_1016_j_neucom_2015_11_102 crossref_primary_10_1109_TIP_2020_2975717 crossref_primary_10_1109_TNN_2010_2054109 crossref_primary_10_1002_rob_21983 crossref_primary_10_1007_s10044_017_0672_1 crossref_primary_10_1109_ACCESS_2025_3540971 crossref_primary_10_1016_j_ins_2021_06_034 crossref_primary_10_1016_j_jvcir_2016_06_022 crossref_primary_10_1016_j_neucom_2012_12_067 crossref_primary_10_1109_TCYB_2017_2716101 crossref_primary_10_1109_TSMCB_2008_919229 crossref_primary_10_1109_TNN_2010_2101614 crossref_primary_10_1049_iet_ipr_2016_0271 crossref_primary_10_1016_j_patcog_2014_01_017 crossref_primary_10_3389_fbioe_2018_00053 crossref_primary_10_4018_ijban_2015010102 crossref_primary_10_1016_j_neucom_2011_11_025 crossref_primary_10_1109_TCYB_2015_2412251 crossref_primary_10_1016_j_neucom_2017_05_069 crossref_primary_10_1080_2150704X_2015_1034883 crossref_primary_10_1016_j_robot_2018_02_017 crossref_primary_10_1016_j_patrec_2009_12_004 crossref_primary_10_3389_fmars_2024_1499002 crossref_primary_10_1016_j_jvcir_2016_08_001 crossref_primary_10_1080_13682199_2023_2210400 crossref_primary_10_1016_j_dsp_2013_06_015 crossref_primary_10_1049_iet_ipr_2012_0340 crossref_primary_10_1080_13682199_2019_1700875 crossref_primary_10_1007_s10462_010_9155_0 crossref_primary_10_1109_TMI_2011_2165342 |
| Cites_doi | 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.cviu.2003.07.004 10.1109/ICSMC.2004.1400810 10.1109/TPAMI.2003.1240112 10.1109/TPAMI.1984.4767596 10.1109/TPAMI.2002.1023800 10.1109/42.906424 10.1023/A:1007925832420 10.1109/TPAMI.2002.1008391 10.1111/j.2517-6161.1986.tb01412.x 10.1109/TPAMI.2002.1046170 10.1002/0471721182 10.1016/S0031-3203(02)00027-4 10.1109/21.141311 10.1109/TNN.2004.841773 10.1007/978-94-011-5014-9_12 10.1109/83.701161 10.2307/2987782 10.1109/TNN.2005.849822 10.1016/S0167-8655(03)00067-9 10.1109/83.826777 10.1016/S0031-3203(98)00036-3 10.1016/j.neucom.2004.04.008 10.1109/ICCV.2001.937655 10.1098/rsta.1991.0132 10.1109/TNN.2005.845141 10.1109/78.157297 10.1109/TNN.2003.820622 10.1109/TGRS.2003.809940 10.1109/TPAMI.2003.1227985 |
| ContentType | Journal Article |
| Copyright | 2007 INIST-CNRS |
| Copyright_xml | – notice: 2007 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TNN.2007.891190 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Computer Science Applied Sciences |
| EISSN | 1941-0093 |
| EndPage | 808 |
| ExternalDocumentID | 17526345 18735253 10_1109_TNN_2007_891190 4182377 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM PKN Z5M 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c404t-c32c6c184dc6b8c5887d5e4fae4262c40ee581e4272561ebb7b247c01db2fb653 |
| IEDL.DBID | RIE |
| ISSN | 1045-9227 |
| IngestDate | Fri Sep 05 11:16:39 EDT 2025 Fri Sep 05 14:33:55 EDT 2025 Wed Feb 19 02:10:07 EST 2025 Mon Jul 21 09:15:38 EDT 2025 Wed Oct 01 03:24:46 EDT 2025 Thu Apr 24 22:50:51 EDT 2025 Tue Aug 26 16:42:56 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Cluster analysis Mixed distribution Markov process expectation-maximization (EM) algorithm Lower bound hidden Markov random fields (MRFs) Probabilistic approach Similarity Image processing Prior distribution spatial clustering Neural network Modeling Competitive algorithms Optimization Image segmentation Gaussian process Classification Hidden Markov model Log file EM algorithm Bound optimization |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c404t-c32c6c184dc6b8c5887d5e4fae4262c40ee581e4272561ebb7b247c01db2fb653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 17526345 |
| PQID | 70555639 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | pascalfrancis_primary_18735253 proquest_miscellaneous_880659054 pubmed_primary_17526345 crossref_primary_10_1109_TNN_2007_891190 crossref_citationtrail_10_1109_TNN_2007_891190 proquest_miscellaneous_70555639 ieee_primary_4182377 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2007-05-01 |
| PublicationDateYYYYMMDD | 2007-05-01 |
| PublicationDate_xml | – month: 05 year: 2007 text: 2007-05-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on neural networks |
| PublicationTitleAbbrev | TNN |
| PublicationTitleAlternate | IEEE Trans Neural Netw |
| PublicationYear | 2007 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref35 stanford (ref30) 1999 ref34 ref12 ref15 ref36 ref14 ref31 sun (ref22) 2004; 1 ref33 ref11 ref32 ref10 ref1 ref17 besag (ref2) 1986; 48 ref19 ref18 li (ref4) 2001 verbeek (ref28) 2005; 63 ref24 ref23 ref26 ref25 ref20 dempster (ref16) 1977; 39 ref21 mclachlan (ref13) 2000 roweis (ref27) 2002 ref29 ref8 chellappa (ref3) 1993 ref7 ref9 ref5 geman (ref6) 1991 |
| References_xml | – volume: 39 start-page: 1 year: 1977 ident: ref16 article-title: maximum likelihood from incomplete data via the em algorithm publication-title: J Roy Statist Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref8 doi: 10.1016/j.cviu.2003.07.004 – ident: ref15 doi: 10.1109/ICSMC.2004.1400810 – ident: ref11 doi: 10.1109/TPAMI.2003.1240112 – ident: ref1 doi: 10.1109/TPAMI.1984.4767596 – ident: ref14 doi: 10.1109/TPAMI.2002.1023800 – ident: ref20 doi: 10.1109/42.906424 – ident: ref12 doi: 10.1023/A:1007925832420 – ident: ref34 doi: 10.1109/TPAMI.2002.1008391 – year: 1999 ident: ref30 publication-title: Fast automatic unsupervised image segmentation and curve detection in spatial point patterns – volume: 48 start-page: 259 year: 1986 ident: ref2 article-title: on the statistical analysis of dirty pictures publication-title: J Roy Statist Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1986.tb01412.x – ident: ref31 doi: 10.1109/TPAMI.2002.1046170 – volume: 1 start-page: 596 year: 2004 ident: ref22 article-title: bayesian image segmentation based on an inhomogeneous hidden markov random field publication-title: 17th Int Conf Pattern Recognit (ICPR) – year: 2000 ident: ref13 publication-title: Finite Mixture Models doi: 10.1002/0471721182 – ident: ref23 doi: 10.1016/S0031-3203(02)00027-4 – ident: ref33 doi: 10.1109/21.141311 – ident: ref26 doi: 10.1109/TNN.2004.841773 – ident: ref17 doi: 10.1007/978-94-011-5014-9_12 – ident: ref25 doi: 10.1109/83.701161 – ident: ref24 doi: 10.2307/2987782 – ident: ref36 doi: 10.1109/TNN.2005.849822 – ident: ref5 doi: 10.1016/S0167-8655(03)00067-9 – ident: ref7 doi: 10.1109/83.826777 – ident: ref35 doi: 10.1016/S0031-3203(98)00036-3 – volume: 63 start-page: 99 year: 2005 ident: ref28 article-title: self-organizing mixture models publication-title: Neurocomput doi: 10.1016/j.neucom.2004.04.008 – year: 1993 ident: ref3 publication-title: Markov Random Fields Theory and Application – ident: ref32 doi: 10.1109/ICCV.2001.937655 – ident: ref18 doi: 10.1098/rsta.1991.0132 – ident: ref29 doi: 10.1109/TNN.2005.845141 – year: 2001 ident: ref4 publication-title: Markov Random Field Modeling in Computer Vision – start-page: 889 year: 2002 ident: ref27 publication-title: Advances in Neural Information Processing Systems 14 – ident: ref19 doi: 10.1109/78.157297 – ident: ref10 doi: 10.1109/TNN.2003.820622 – ident: ref9 doi: 10.1109/TGRS.2003.809940 – ident: ref21 doi: 10.1109/TPAMI.2003.1227985 – start-page: 9 year: 1991 ident: ref6 publication-title: Image Analysis and Computer Vision |
| SSID | ssj0014506 |
| Score | 2.2409754 |
| Snippet | In this paper, we present a novel spatially constrained generative model and an expectation-maximization (EM) algorithm for model-based image segmentation. The... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 798 |
| SubjectTerms | Algorithms Applied sciences Artificial Intelligence Bound optimization Clustering algorithms Computer science; control theory; systems Computer Simulation Connectionism. Neural networks Constraints Exact sciences and technology expectation-maximization (EM) algorithm Hidden Markov models hidden Markov random fields (MRFs) Image color analysis Image edge detection Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image segmentation Informatics Intelligent sensors Intelligent systems Iterative algorithms Labels Likelihood Functions Mathematical models Models, Statistical Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Pixel Pixels spatial clustering |
| Title | A Spatially Constrained Generative Model and an EM Algorithm for Image Segmentation |
| URI | https://ieeexplore.ieee.org/document/4182377 https://www.ncbi.nlm.nih.gov/pubmed/17526345 https://www.proquest.com/docview/70555639 https://www.proquest.com/docview/880659054 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0093 dateEnd: 20111231 omitProxy: false ssIdentifier: ssj0014506 issn: 1045-9227 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED4kmdqhae0-1EfKoSg6VI5E8aXRKBKkBewlCZBNMF9pUFsuEnlIfn14pOykRQ10ECABFCHqjuQd7-77AD7V1PqqLKtcVsLlTFCWK1-Y3IlKyFLXXnksFJ5Mxck5-3HBL3bg66YWxjkXk8_cCG9jLN8uzQqPyg5ZidAqchd2pRKpVmsTMWA88mgG74LnNaWyh_Epi_rwbDpNWIUqzOw6cr9JTkWFJUyPNqPIroK5kbOb8Ht84rXYbnjGDeh4HybrT095J79Gq06PzN1fqI7_O7bn8Ky3RMk4qc4L2HHtAIbjNnjhi1vymcTc0HjoPoD9NfkD6deCATx9hGQ4hNMxQXLjoMzzW4IkoJF6wlmSYK1xTSVIuzYns9aGixxNyHh-uby-6n4uSDCcyfdFWNnIqbtc9NVQ7Us4Pz46-3aS93wNuWEF63JTUSNMcBmtEVoZHtYvyx3zM4ew96GNc1yV4UEGO6t0WktNmTRFaTX1WvDqFey1y9a9wYQrL2khvLfGssIWqlaCe89qppmklc1gtBZcY3owcxzYvIlOTVE3QehIsSmbJPQMvmxe-J1wPLY3HaJ4Ns16yWRw8IdmPHSjJGLKVhl8XKtKE-YoBl5mrVuubhpELOLBFMyAbGmhYnw7mM8ZvE5K9tB9r6tv__1Z7-BJOm7GHMz3sNddr9yHYCd1-iBOkHtNIgtm |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcgAOFBIe5tHuASEOOLXX-7CPEWqVQpNLU6k3K_tqEYmDWudQfj07u05aEJE4WLKl9crrmd2d2Zn5PoAPFTWuyPMilYWwKROUpaXLdGpFIWSuKlc6LBQeT8TonH294Bc78HlTC2OtDclndoC3IZZvlnqFR2WHLEdoFfkAHnLGGI_VWpuYAeOBSdP7FzytKJUdkE-eVYfTySSiFZZ-bleB_U1yKgosYrq3HQV-FcyOnN34H-Qis8V20zNsQcd7MF5_fMw8-TFYtWqgf_2F6_i_o3sGTztblAyj8jyHHdv0oD9svB--uCUfScgODcfuPdhb0z-QbjXowZN7WIZ9OBsSpDf26jy_JUgDGsgnrCER2BpXVYLEa3Mya4y_yNGYDOeXy-vv7dWCeNOZnCz82kbO7OWiq4dqXsD58dH0yyjtGBtSzTLWprqgWmjvNBotVKm5X8EMt8zNLALf-zbW8jL3D9JbWrlVSirKpM5yo6hTghcvYbdZNvY1plw5STPhnNGGZSYrq1Jw51jFFJO0MAkM1oKrdQdnjgOb18GtyaraCx1JNmUdhZ7Ap80LPyOSx_amfRTPplknmQT2_9CMu25KiaiyRQIHa1Wp_SzF0MusscvVTY2YRdwbgwmQLS3KEOH2BnQCr6KS3XXf6eqbf3_WATwaTcen9enJ5NtbeBwPnzEj8x3sttcr-95bTa3aD5PlN2zGDrM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spatially+Constrained+Generative+Model+and+an+EM+Algorithm+for+Image+Segmentation&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Diplaros%2C+A.&rft.au=Vlassis%2C+N.&rft.au=Gevers%2C+T.&rft.date=2007-05-01&rft.issn=1045-9227&rft.eissn=1941-0093&rft.volume=18&rft.issue=3&rft.spage=798&rft.epage=808&rft_id=info:doi/10.1109%2FTNN.2007.891190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNN_2007_891190 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |