A novel interpolation method to predict soil heavy metals based on a genetic algorithm and neural network model
To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil...
        Saved in:
      
    
          | Published in | The Science of the total environment Vol. 825; p. 153948 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        15.06.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0048-9697 1879-1026 1879-1026  | 
| DOI | 10.1016/j.scitotenv.2022.153948 | 
Cover
| Abstract | To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R2) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs.
[Display omitted]
•A novel interpolation model was developed to predict soil HMs in a provincial scale.•Combining genetic algorithm and neural network model enhanced prediction accuracy.•GANN interpolation method performed advantages to 3 dominant traditional methods.•The optimized method showed lower root mean square error values and data anomalies. | 
    
|---|---|
| AbstractList | To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R²) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs. To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R ) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs. To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R2) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs. [Display omitted] •A novel interpolation model was developed to predict soil HMs in a provincial scale.•Combining genetic algorithm and neural network model enhanced prediction accuracy.•GANN interpolation method performed advantages to 3 dominant traditional methods.•The optimized method showed lower root mean square error values and data anomalies. To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R2) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs.To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R2) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs.  | 
    
| ArticleNumber | 153948 | 
    
| Author | Chen, Zhiliang Chen, Xingling Su, Chuanghong Zhu, Hanghai Yin, Guangcai Qiu, Jinrong He, Zechen Wang, Tieyu  | 
    
| Author_xml | – sequence: 1 givenname: Guangcai surname: Yin fullname: Yin, Guangcai organization: Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 2 givenname: Xingling surname: Chen fullname: Chen, Xingling organization: Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 3 givenname: Hanghai surname: Zhu fullname: Zhu, Hanghai organization: Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 4 givenname: Zhiliang surname: Chen fullname: Chen, Zhiliang organization: Research center for eco-environment restoration technology, South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510006, China – sequence: 5 givenname: Chuanghong surname: Su fullname: Su, Chuanghong organization: Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China – sequence: 6 givenname: Zechen surname: He fullname: He, Zechen organization: Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 7 givenname: Jinrong surname: Qiu fullname: Qiu, Jinrong organization: Research center for eco-environment restoration technology, South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510006, China – sequence: 8 givenname: Tieyu surname: Wang fullname: Wang, Tieyu email: wangt@stu.edu.cn organization: Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35219652$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU9vFCEYh4mpsdvWr6AcvcwKzMDMHDxsGqsmTbzYM-HPO11WBlZg1_Tbl3FbD14qlzeB5_eS_J4LdBZiAITeU7KmhIqPu3U2rsQC4bhmhLE15e3YDa_Qig792FDCxBlaEdINzSjG_hxd5Lwj9fQDfYPOW87oKDhbobjBIR7BYxcKpH30qrgY8AxlGy0uEe8TWGcKztF5vAV1fFgelc9YqwwWV1jhewhQnMHK38fkynbGKlgc4JCUr6P8juknnqMFf4VeTzUMb5_mJbq7-fzj-mtz-_3Lt-vNbWM60pVGs15zLUYGZuLj0NFeWE2GbpomawbgxAzKckqNHoUaVMennlAtwNR7brVqL9GH0959ir8OkIucXTbgvQoQD1kyISghrKf0P9C246ztxwV994Qe9AxW7pObVXqQz31W4NMJMCnmnGCSVdOfSktSzktK5OJP7uRff3LxJ0_-ar7_J__8xcvJzSkJtdWjg7RwEEy1l8AUaaN7cccjdpm8WQ | 
    
| CitedBy_id | crossref_primary_10_3390_land13122151 crossref_primary_10_1016_j_geoderma_2023_116412 crossref_primary_10_1016_j_scitotenv_2024_175787 crossref_primary_10_1021_acsestengg_3c00112 crossref_primary_10_1016_j_catena_2023_107629 crossref_primary_10_1007_s10489_024_05913_0 crossref_primary_10_1007_s11356_023_28805_1 crossref_primary_10_1016_j_jhazmat_2024_136002 crossref_primary_10_1016_j_scitotenv_2023_161976 crossref_primary_10_1016_j_ecoenv_2025_117926 crossref_primary_10_1016_j_envpol_2024_125421 crossref_primary_10_1016_j_jhazmat_2023_131650 crossref_primary_10_1007_s40333_023_0094_4 crossref_primary_10_1016_j_scitotenv_2023_162891 crossref_primary_10_1016_j_catena_2023_107658 crossref_primary_10_1109_ACCESS_2022_3220620 crossref_primary_10_1016_j_catena_2023_107579 crossref_primary_10_1080_15435075_2023_2264959 crossref_primary_10_1007_s12210_024_01240_1 crossref_primary_10_1016_j_watres_2024_121267 crossref_primary_10_1038_s41598_024_84545_3 crossref_primary_10_1007_s11600_024_01433_0 crossref_primary_10_1080_15320383_2024_2311656 crossref_primary_10_1016_j_jhazmat_2024_134392 crossref_primary_10_1007_s11270_024_07587_3 crossref_primary_10_3390_agronomy14112469 crossref_primary_10_1016_j_envpol_2023_121827 crossref_primary_10_3390_app132111647 crossref_primary_10_1016_j_oreoa_2024_100072 crossref_primary_10_1016_j_compag_2023_108254 crossref_primary_10_3390_rs14225804 crossref_primary_10_1007_s10705_023_10293_x crossref_primary_10_1016_j_jhazmat_2024_135407  | 
    
| Cites_doi | 10.3390/su10072474 10.1016/j.scitotenv.2016.11.001 10.1016/j.apgeochem.2017.07.007 10.1016/j.catena.2018.10.004 10.1109/LMAG.2021.3100317 10.1177/1687814020927208 10.1080/02626667.2019.1676429 10.1016/j.chemosphere.2017.10.151 10.1016/j.catena.2018.12.014 10.1007/s00521-011-0702-7 10.1080/03650340.2015.1062088 10.1016/j.jclepro.2020.123218 10.1016/j.jhazmat.2021.125629 10.1016/j.scitotenv.2021.146602 10.1016/j.envpol.2019.113355 10.1016/j.jenvman.2017.10.034 10.1109/ACCESS.2019.2903599 10.1016/j.scitotenv.2019.01.310 10.1016/j.compag.2019.03.017 10.1016/j.geoderma.2017.09.016 10.1016/j.cam.2004.07.034 10.1016/j.envint.2020.105519 10.1016/j.scitotenv.2018.11.244 10.1007/s41742-020-00274-1 10.1016/j.atmosenv.2019.06.044 10.1016/j.scitotenv.2020.137212 10.1016/j.enggeo.2017.10.019 10.1016/j.jfca.2014.10.012 10.1007/s00521-007-0166-y 10.1016/j.envpol.2018.02.070 10.1016/j.envpol.2019.05.122 10.3390/su9060986 10.1016/j.renene.2016.11.022 10.1016/j.atmosenv.2018.07.058 10.1016/j.ecoenv.2021.112679 10.1016/j.envres.2015.01.003 10.1080/0305215X.2020.1807017 10.1109/JSTARS.2019.2934732 10.1016/j.envpol.2017.07.021 10.1016/j.measurement.2014.08.007 10.1016/j.envpol.2017.08.114 10.1021/es405083f 10.1016/j.scitotenv.2019.134953 10.1016/j.envpol.2020.114688 10.1080/13658816.2019.1599122 10.1016/j.scitotenv.2018.12.330 10.1016/j.jhazmat.2009.06.124 10.1016/j.scitotenv.2021.149452 10.1016/j.jenvman.2018.01.074 10.3390/su13179651  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved.  | 
    
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6  | 
    
| DOI | 10.1016/j.scitotenv.2022.153948 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Public Health Biology Environmental Sciences  | 
    
| EISSN | 1879-1026 | 
    
| ExternalDocumentID | 35219652 10_1016_j_scitotenv_2022_153948 S0048969722010403  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c404t-b27b5b692ecf5984176db084fffdc8e50c8ad511cb96a8a45f701b6ecc8a5dba3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0048-9697 1879-1026  | 
    
| IngestDate | Thu Oct 02 06:33:11 EDT 2025 Sat Sep 27 22:33:29 EDT 2025 Wed Feb 19 02:27:01 EST 2025 Wed Oct 01 03:34:40 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Sat Nov 16 16:00:02 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Interpolation Soil heavy metals Genetic algorithm Neural network model  | 
    
| Language | English | 
    
| License | Copyright © 2022 Elsevier B.V. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c404t-b27b5b692ecf5984176db084fffdc8e50c8ad511cb96a8a45f701b6ecc8a5dba3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 35219652 | 
    
| PQID | 2634523791 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_2661002711 proquest_miscellaneous_2634523791 pubmed_primary_35219652 crossref_citationtrail_10_1016_j_scitotenv_2022_153948 crossref_primary_10_1016_j_scitotenv_2022_153948 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2022_153948  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-06-15 | 
    
| PublicationDateYYYYMMDD | 2022-06-15 | 
    
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | The Science of the total environment | 
    
| PublicationTitleAlternate | Sci Total Environ | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Meng, Chen, Cai, Zou, Wu, Fu, Kan (bb0135) 2015; 137 Metahni, Coudert, Gloaguen (bb0140) 2019; 252 Zhu, Cheng, Zhang, Yao, Gao, Liu (bb0270) 2020; 34 Jiang, Zhao, Zheng, Chen, Li, Ren (bb0095) 2021; 224 Liu, Hu, Tian, Huang, Zhao, Wang (bb0120) 2020; 137 Jeong, St-Hilaire, Gratton, Belanger, Saad (bb0085) 2017; 103 Zhao, Hu, Zhou, Liu, Pan, Shi, Wang, Wang (bb0260) 2018; 10 (bb0145) 2006 Wang, Guan, Sun, Wang, Ma, Shao (bb0230) 2021; 799 Qiao, Yang, Lei, Chen, Dong (bb0170) 2019; 664 Alimissis, Philippopoulos, Tzanis, Deligiorgi (bb0010) 2018; 191 Ding, Wang, Zhuang (bb0040) 2018; 212 Ding, Cheng, Wang, Zhuang (bb0035) 2017; 578 Hu, Wang, Dong, Huang, Borggaard, Hansen, Holm (bb0075) 2018; 237 Mojid, Hossain, Ashraf (bb0150) 2019; 255 Guan, Wang, Xu, Pan, Lin, Zhao, Luo (bb0055) 2018; 193 Li, Peng, Yao, Cui, Hu, You, Chi (bb0105) 2017; 231 Liu, Guan, Luo, Wang, Pan, Yang, Xiao, Lin (bb0115) 2019; 213 Wang, Wang, Liang, Qi, Li, Xu (bb0220) 2019; 160 Pham, Nguyen, Bui, Prakash, Chapi, Bui (bb0160) 2019; 173 Jiang, Lu, Zhang, Liu, Lin, Huang, Luo, Zhang, Tang, Yu (bb0090) 2015; 39 Zhang, Liu, Ren, Teuling, Zhang, Jiang, Yang, Wei, Zhong, Zheng (bb0255) 2021; 782 Bettahar, Rahmoune, Benazzouz, Merainani (bb0020) 2020; 12 Gabarron, Faz, Acosta (bb0050) 2018; 206 Tarasov, Buevich, Sergeev, Shichkin (bb0195) 2018; 88 Zhen, Pei, Xie (bb0265) 2019; 659 Correia, Wilke (bb0025) 2021; 53 Wang, Nie (bb0205) 2017; 9 Yin, Zhu, Chen, Su, He, Chen (bb0245) 2021; 13 McCall (bb0130) 2005; 184 Besharati, Mirbagheri, Pendashteh, Alavi (bb0015) 2020; 14 Wang, Cai, Wen, Luo, Wang, Liu (bb0215) 2019; 655 Yang, Qu, Ma, Liu, Wu, Liu (bb0240) 2020; 264 Zhang, Liu, Ren, Jiang, Yang, Yuan, Wang, Wei (bb0250) 2019; 12 Wang, Akeju, Zhao (bb0210) 2017; 231 Sun, Guo, Liu, Meng, Zheng, Yuan (bb0190) 2019; 175 Hosseini, Kerachian (bb0065) 2019; 64 Duan, Zhang, Li, Fang, Miao, Lin (bb0045) 2020; 276 Wu, Chen, Han, Ke, Liu (bb0235) 2020; 717 Ding, Xu, Su, Jin (bb0030) 2012; 21 Huang, W., Sun, Li, Geng, Zhao (bb0080) 2021; 415 Alexakis (bb0005) 2016; 62 Liu, Liu, Dong, Ge, Yuan, Zhu, Zhang, Zeng (bb0110) 2019; 7 Ravindra, Thind, Mor, Singh, Mor (bb0180) 2019; 255 Ha, Olson, Bian, Rogerson (bb0060) 2014; 48 Lu, Jiao, Qiu, Chen, Huang, Kang (bb0125) 2018; 310 Venkatesan, Kannan, Saravanan (bb0200) 2009; 18 Lamb, Ming, Megharaj, Naidu (bb0100) 2009; 171 Raimondo, Giordano, Grimaldi, Puliafito, Carpentieri, Zeng, Tomasello, Finocchio (bb0175) 2021; 12 Momeni, Nazir, Jahed, Armaghani, Maizir (bb0155) 2014; 57 Qi, Gao, Qi (bb0165) 2020; 263 Senol, Alaboz, Demir, Dengiz (bb0185) 2020; 13 Hou, O'Connor, Nathanail, Tian, Ma (bb0070) 2017; 231 Wang, Duan, Wang (bb0225) 2020; 710 McCall (10.1016/j.scitotenv.2022.153948_bb0130) 2005; 184 Wang (10.1016/j.scitotenv.2022.153948_bb0210) 2017; 231 Besharati (10.1016/j.scitotenv.2022.153948_bb0015) 2020; 14 Zhen (10.1016/j.scitotenv.2022.153948_bb0265) 2019; 659 Wang (10.1016/j.scitotenv.2022.153948_bb0215) 2019; 655 Pham (10.1016/j.scitotenv.2022.153948_bb0160) 2019; 173 Raimondo (10.1016/j.scitotenv.2022.153948_bb0175) 2021; 12 Zhao (10.1016/j.scitotenv.2022.153948_bb0260) 2018; 10 Hu (10.1016/j.scitotenv.2022.153948_bb0075) 2018; 237 Momeni (10.1016/j.scitotenv.2022.153948_bb0155) 2014; 57 Ravindra (10.1016/j.scitotenv.2022.153948_bb0180) 2019; 255 Wang (10.1016/j.scitotenv.2022.153948_bb0205) 2017; 9 Liu (10.1016/j.scitotenv.2022.153948_bb0115) 2019; 213 Mojid (10.1016/j.scitotenv.2022.153948_bb0150) 2019; 255 Wang (10.1016/j.scitotenv.2022.153948_bb0230) 2021; 799 Duan (10.1016/j.scitotenv.2022.153948_bb0045) 2020; 276 Hosseini (10.1016/j.scitotenv.2022.153948_bb0065) 2019; 64 Wang (10.1016/j.scitotenv.2022.153948_bb0220) 2019; 160 Correia (10.1016/j.scitotenv.2022.153948_bb0025) 2021; 53 Venkatesan (10.1016/j.scitotenv.2022.153948_bb0200) 2009; 18 Sun (10.1016/j.scitotenv.2022.153948_bb0190) 2019; 175 Alexakis (10.1016/j.scitotenv.2022.153948_bb0005) 2016; 62 (10.1016/j.scitotenv.2022.153948_bb0145) 2006 Qiao (10.1016/j.scitotenv.2022.153948_bb0170) 2019; 664 Yin (10.1016/j.scitotenv.2022.153948_bb0245) 2021; 13 Wang (10.1016/j.scitotenv.2022.153948_bb0225) 2020; 710 Jiang (10.1016/j.scitotenv.2022.153948_bb0095) 2021; 224 Huang (10.1016/j.scitotenv.2022.153948_bb0080) 2021; 415 Hou (10.1016/j.scitotenv.2022.153948_bb0070) 2017; 231 Jiang (10.1016/j.scitotenv.2022.153948_bb0090) 2015; 39 Lu (10.1016/j.scitotenv.2022.153948_bb0125) 2018; 310 Qi (10.1016/j.scitotenv.2022.153948_bb0165) 2020; 263 Bettahar (10.1016/j.scitotenv.2022.153948_bb0020) 2020; 12 Gabarron (10.1016/j.scitotenv.2022.153948_bb0050) 2018; 206 Meng (10.1016/j.scitotenv.2022.153948_bb0135) 2015; 137 Alimissis (10.1016/j.scitotenv.2022.153948_bb0010) 2018; 191 Zhang (10.1016/j.scitotenv.2022.153948_bb0250) 2019; 12 Tarasov (10.1016/j.scitotenv.2022.153948_bb0195) 2018; 88 Wu (10.1016/j.scitotenv.2022.153948_bb0235) 2020; 717 Yang (10.1016/j.scitotenv.2022.153948_bb0240) 2020; 264 Liu (10.1016/j.scitotenv.2022.153948_bb0110) 2019; 7 Metahni (10.1016/j.scitotenv.2022.153948_bb0140) 2019; 252 Lamb (10.1016/j.scitotenv.2022.153948_bb0100) 2009; 171 Zhang (10.1016/j.scitotenv.2022.153948_bb0255) 2021; 782 Ha (10.1016/j.scitotenv.2022.153948_bb0060) 2014; 48 Senol (10.1016/j.scitotenv.2022.153948_bb0185) 2020; 13 Jeong (10.1016/j.scitotenv.2022.153948_bb0085) 2017; 103 Ding (10.1016/j.scitotenv.2022.153948_bb0040) 2018; 212 Ding (10.1016/j.scitotenv.2022.153948_bb0035) 2017; 578 Ding (10.1016/j.scitotenv.2022.153948_bb0030) 2012; 21 Guan (10.1016/j.scitotenv.2022.153948_bb0055) 2018; 193 Li (10.1016/j.scitotenv.2022.153948_bb0105) 2017; 231 Liu (10.1016/j.scitotenv.2022.153948_bb0120) 2020; 137 Zhu (10.1016/j.scitotenv.2022.153948_bb0270) 2020; 34  | 
    
| References_xml | – volume: 255 year: 2019 ident: bb0150 article-title: Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties publication-title: Environ. Pollut. – volume: 237 start-page: 650 year: 2018 end-page: 661 ident: bb0075 article-title: Source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach publication-title: Environ. Pollut. – volume: 276 year: 2020 ident: bb0045 article-title: An integrated method of health risk assessment based on spatial interpolation and source apportionment publication-title: J. Clean. Prod. – volume: 137 start-page: 308 year: 2015 end-page: 315 ident: bb0135 article-title: A land use regression model for estimating the NO2 concentration in Shanghai,China publication-title: Environ. Res. – volume: 655 start-page: 92 year: 2019 end-page: 101 ident: bb0215 article-title: Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province,China publication-title: Sci. Total Environ. – volume: 252 start-page: 409 year: 2019 end-page: 419 ident: bb0140 article-title: Comparison of different interpolation methods and sequential gaussian simulation to estimate volumes of soil contaminated by As, Cr, Cu,PCP and dioxins/furans publication-title: Environ. Pollut. – volume: 213 start-page: 515 year: 2019 end-page: 525 ident: bb0115 article-title: Development of land use regression model and health risk assessment for NO2 in different functional areas: a case study of Xi'an, China publication-title: Atmos. Environ. – volume: 264 year: 2020 ident: bb0240 article-title: Comparison of the concentrations, sources, and distributions of heavy metal(loid)s in agricultural soils of two provinces in the Yangtze River Delta,China publication-title: Environ. Pollut. – volume: 171 start-page: 1150 year: 2009 end-page: 1158 ident: bb0100 article-title: Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils publication-title: J. Hazard. Mater. – volume: 175 start-page: 101 year: 2019 end-page: 109 ident: bb0190 article-title: Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan,China publication-title: Catena – volume: 184 start-page: 205 year: 2005 end-page: 222 ident: bb0130 article-title: Genetic algorithms for modelling and optimization publication-title: J. Comput. Appl. Math. – volume: 206 start-page: 192 year: 2018 end-page: 201 ident: bb0050 article-title: Use of multivariable and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment publication-title: J. Environ. Manag. – volume: 173 start-page: 302 year: 2019 end-page: 311 ident: bb0160 article-title: A novel artificial intelligence approach based on multi-layer perceptron neural network and biogeography-based optimization for predicting coefficient of consolidation of soil publication-title: Catena – volume: 193 start-page: 189 year: 2018 end-page: 197 ident: bb0055 article-title: Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, northwest China publication-title: Chemosphere – volume: 137 year: 2020 ident: bb0120 article-title: Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: a comparative study of China and South Korea publication-title: Environ. Int. – volume: 21 start-page: 333 year: 2012 end-page: 336 ident: bb0030 article-title: An optimizing method of RBF neural network based on genetic algorithm publication-title: Neural Comput. Appl. – volume: 224 year: 2021 ident: bb0095 article-title: Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities,China publication-title: Ecotoxicol. Environ. Saf. – volume: 799 year: 2021 ident: bb0230 article-title: Predicting the spatial pollution of soil heavy metals by using the distance determination coefficient method publication-title: Sci. Total Environ. – volume: 231 start-page: 1188 year: 2017 end-page: 1200 ident: bb0070 article-title: Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review publication-title: Environ. Pollut. – volume: 12 start-page: 3376 year: 2019 end-page: 3386 ident: bb0250 article-title: Drought monitoring and evaluation by ESA CCI soil moisture products over the Yellow River Basin publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 57 start-page: 122 year: 2014 end-page: 131 ident: bb0155 article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN publication-title: Measurement – volume: 659 start-page: 363 year: 2019 end-page: 371 ident: bb0265 article-title: Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil publication-title: Sci. Total Environ. – volume: 64 start-page: 1803 year: 2019 end-page: 1823 ident: bb0065 article-title: Improving the reliability of groundwater monitoring networks using combined numerical, geostatistical and neural network-based simulation models publication-title: Hydrol. Sci. J. – volume: 12 start-page: 1 year: 2020 end-page: 11 ident: bb0020 article-title: New method for gear fault diagnosis using empirical wavelet transform, Hilbert transform, and cosine similarity metric publication-title: Adv. Mech. Eng. – volume: 415 year: 2021 ident: bb0080 article-title: Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with positive matrix factorization model publication-title: J. Hazard Mater. – volume: 782 year: 2021 ident: bb0255 article-title: Reconstruction of ESA CCI satellite-derived soil moisture using an artificial neural network technology publication-title: Sci. Total Environ. – volume: 191 start-page: 205 year: 2018 end-page: 213 ident: bb0010 article-title: Spatial estimation of urban air pollution with the use of artificial neural network models publication-title: Atmos. Environ. – volume: 62 start-page: 359 year: 2016 end-page: 373 ident: bb0005 article-title: Human health risk assessment associated with Co, Cr, Mn, Ni and V contents in agricultural soils from a Mediterranean site publication-title: Arch. Agron. Soil Sci. – volume: 10 year: 2018 ident: bb0260 article-title: Estimation methods for soil mercury content using hyperspectral remote sensing publication-title: Sustainability – volume: 7 start-page: 33173 year: 2019 end-page: 33179 ident: bb0110 article-title: Recurrent neural network-based approach for sparse geomagnetic data interpolation and reconstruction publication-title: IEEE Access – volume: 14 start-page: 527 year: 2020 end-page: 539 ident: bb0015 article-title: Estimation of effluent parameters of slaughterhouse wastewater treatment with artificial neural network and B-spline quasi interpolation publication-title: Int. J. Environ. Res. – volume: 212 start-page: 23 year: 2018 end-page: 31 ident: bb0040 article-title: Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions publication-title: J. Environ. Manag. – volume: 717 year: 2020 ident: bb0235 article-title: Identifying the influencing factors controlling the spatial variation of heavy metals in suburban soil using spatial regression models publication-title: Sci. Total Environ. – volume: 310 start-page: 99 year: 2018 end-page: 106 ident: bb0125 article-title: Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You'xi County southeast China publication-title: Geoderma – volume: 255 year: 2019 ident: bb0180 article-title: Evaluation of groundwater contamination in Chandigarh: source identification and health risk assessment publication-title: Environ. Pollut. – volume: 12 year: 2021 ident: bb0175 article-title: Reliability of neural networks based on spintronic neurons publication-title: IEEE Magn. Lett. – volume: 9 start-page: 1 year: 2017 end-page: 11 ident: bb0205 article-title: Measuring spatial distribution characteristics of heavy metal contaminations in a network-constrained environment: a case study in river network of Daye,China publication-title: Sustainability – volume: 578 start-page: 577 year: 2017 end-page: 585 ident: bb0035 article-title: Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions publication-title: Sci. Total Environ. – volume: 39 start-page: 1 year: 2015 end-page: 7 ident: bb0090 article-title: Dietary intake of human essential elements from a total diet study in Shenzhen, Guangdong Province,China publication-title: J. Food Compos. Anal. – volume: 13 start-page: 1 year: 2021 end-page: 14 ident: bb0245 article-title: Spatial distribution and source apportionment of soil heavy metals in Pearl River Delta,China publication-title: Sustainability – volume: 103 start-page: 70 year: 2017 end-page: 80 ident: bb0085 article-title: A guideline to select an estimation model of daily global solar radiation between geostatistical interpolation and stochastic simulation approaches publication-title: Renew. Energ. – volume: 710 year: 2020 ident: bb0225 article-title: Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: case study in Jiangsu Province publication-title: Sci. Total Environ. – volume: 88 start-page: 188 year: 2018 end-page: 197 ident: bb0195 article-title: High variation topsoil pollution forecasting in the russian subarctic: using artificial neural networks combined with residual kriging publication-title: Appl. Geochem. – volume: 263 year: 2020 ident: bb0165 article-title: Spatial distribution of heavy metal contamination in mollisol dairy farm publication-title: Environ. Pollut. – volume: 18 start-page: 135 year: 2009 end-page: 140 ident: bb0200 article-title: A genetic algorithm-based artificial neural network model for the optimization of machining processes publication-title: Neural Comput. Appl. – volume: 160 start-page: 82 year: 2019 end-page: 90 ident: bb0220 article-title: Monitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area index publication-title: Comput. Electron. Agric. – volume: 231 start-page: 200 year: 2017 end-page: 217 ident: bb0210 article-title: Interpolation of spatially varying but sparsely measured geo-data: a comparative study publication-title: Eng. Geol. – volume: 53 start-page: 1558 year: 2021 end-page: 1573 ident: bb0025 article-title: Purposeful cross-validation: a novel cross-validation strategy for improved surrogate optimizability publication-title: Eng. Optimiz. – volume: 231 start-page: 997 year: 2017 end-page: 1004 ident: bb0105 article-title: Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation publication-title: Environ. Pollut. – volume: 48 start-page: 4999 year: 2014 end-page: 5007 ident: bb0060 article-title: Analysis of heavy metal sources in soil using kriging interpolation on principal components publication-title: Environ. Sci. Technol. – volume: 664 start-page: 392 year: 2019 end-page: 413 ident: bb0170 article-title: Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector publication-title: Sci. Total Environ. – volume: 13 start-page: 1 year: 2020 end-page: 20 ident: bb0185 article-title: Computational intelligence applied to soil quality index using GIS and geostatistical approaches in semiarid ecosystem publication-title: Arab. J. Geosci. – year: 2006 ident: bb0145 article-title: Soil testing, Part 3: Methods for Determination of Soil Mechanical Composition – volume: 34 start-page: 735 year: 2020 end-page: 758 ident: bb0270 article-title: Spatial interpolation using conditional generative adversarial neural networks publication-title: Int. J. Geogr. Inf. Sci. – volume: 10 issue: 7 year: 2018 ident: 10.1016/j.scitotenv.2022.153948_bb0260 article-title: Estimation methods for soil mercury content using hyperspectral remote sensing publication-title: Sustainability doi: 10.3390/su10072474 – volume: 578 start-page: 577 year: 2017 ident: 10.1016/j.scitotenv.2022.153948_bb0035 article-title: Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.001 – volume: 88 start-page: 188 issue: B year: 2018 ident: 10.1016/j.scitotenv.2022.153948_bb0195 article-title: High variation topsoil pollution forecasting in the russian subarctic: using artificial neural networks combined with residual kriging publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2017.07.007 – volume: 173 start-page: 302 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0160 article-title: A novel artificial intelligence approach based on multi-layer perceptron neural network and biogeography-based optimization for predicting coefficient of consolidation of soil publication-title: Catena doi: 10.1016/j.catena.2018.10.004 – volume: 12 year: 2021 ident: 10.1016/j.scitotenv.2022.153948_bb0175 article-title: Reliability of neural networks based on spintronic neurons publication-title: IEEE Magn. Lett. doi: 10.1109/LMAG.2021.3100317 – volume: 12 start-page: 1 issue: 6 year: 2020 ident: 10.1016/j.scitotenv.2022.153948_bb0020 article-title: New method for gear fault diagnosis using empirical wavelet transform, Hilbert transform, and cosine similarity metric publication-title: Adv. Mech. Eng. doi: 10.1177/1687814020927208 – volume: 64 start-page: 1803 issue: 15 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0065 article-title: Improving the reliability of groundwater monitoring networks using combined numerical, geostatistical and neural network-based simulation models publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2019.1676429 – volume: 193 start-page: 189 year: 2018 ident: 10.1016/j.scitotenv.2022.153948_bb0055 article-title: Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, northwest China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.10.151 – volume: 175 start-page: 101 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0190 article-title: Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan,China publication-title: Catena doi: 10.1016/j.catena.2018.12.014 – volume: 21 start-page: 333 issue: 2 year: 2012 ident: 10.1016/j.scitotenv.2022.153948_bb0030 article-title: An optimizing method of RBF neural network based on genetic algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-011-0702-7 – volume: 62 start-page: 359 year: 2016 ident: 10.1016/j.scitotenv.2022.153948_bb0005 article-title: Human health risk assessment associated with Co, Cr, Mn, Ni and V contents in agricultural soils from a Mediterranean site publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2015.1062088 – volume: 276 year: 2020 ident: 10.1016/j.scitotenv.2022.153948_bb0045 article-title: An integrated method of health risk assessment based on spatial interpolation and source apportionment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123218 – volume: 415 year: 2021 ident: 10.1016/j.scitotenv.2022.153948_bb0080 article-title: Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with positive matrix factorization model publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.125629 – volume: 263 issue: 2 year: 2020 ident: 10.1016/j.scitotenv.2022.153948_bb0165 article-title: Spatial distribution of heavy metal contamination in mollisol dairy farm publication-title: Environ. Pollut. – volume: 782 year: 2021 ident: 10.1016/j.scitotenv.2022.153948_bb0255 article-title: Reconstruction of ESA CCI satellite-derived soil moisture using an artificial neural network technology publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146602 – volume: 255 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0150 article-title: Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113355 – volume: 206 start-page: 192 year: 2018 ident: 10.1016/j.scitotenv.2022.153948_bb0050 article-title: Use of multivariable and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.10.034 – volume: 7 start-page: 33173 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0110 article-title: Recurrent neural network-based approach for sparse geomagnetic data interpolation and reconstruction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2903599 – volume: 664 start-page: 392 issue: 254 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0170 article-title: Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.310 – volume: 160 start-page: 82 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0220 article-title: Monitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area index publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.03.017 – volume: 310 start-page: 99 year: 2018 ident: 10.1016/j.scitotenv.2022.153948_bb0125 article-title: Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You'xi County southeast China publication-title: Geoderma doi: 10.1016/j.geoderma.2017.09.016 – volume: 13 start-page: 1 issue: 1235 year: 2020 ident: 10.1016/j.scitotenv.2022.153948_bb0185 article-title: Computational intelligence applied to soil quality index using GIS and geostatistical approaches in semiarid ecosystem publication-title: Arab. J. Geosci. – volume: 184 start-page: 205 issue: 1 year: 2005 ident: 10.1016/j.scitotenv.2022.153948_bb0130 article-title: Genetic algorithms for modelling and optimization publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2004.07.034 – volume: 137 year: 2020 ident: 10.1016/j.scitotenv.2022.153948_bb0120 article-title: Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: a comparative study of China and South Korea publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105519 – volume: 655 start-page: 92 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0215 article-title: Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province,China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.244 – volume: 14 start-page: 527 issue: 5 year: 2020 ident: 10.1016/j.scitotenv.2022.153948_bb0015 article-title: Estimation of effluent parameters of slaughterhouse wastewater treatment with artificial neural network and B-spline quasi interpolation publication-title: Int. J. Environ. Res. doi: 10.1007/s41742-020-00274-1 – volume: 213 start-page: 515 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0115 article-title: Development of land use regression model and health risk assessment for NO2 in different functional areas: a case study of Xi'an, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.06.044 – volume: 717 year: 2020 ident: 10.1016/j.scitotenv.2022.153948_bb0235 article-title: Identifying the influencing factors controlling the spatial variation of heavy metals in suburban soil using spatial regression models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137212 – volume: 231 start-page: 200 year: 2017 ident: 10.1016/j.scitotenv.2022.153948_bb0210 article-title: Interpolation of spatially varying but sparsely measured geo-data: a comparative study publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2017.10.019 – volume: 39 start-page: 1 year: 2015 ident: 10.1016/j.scitotenv.2022.153948_bb0090 article-title: Dietary intake of human essential elements from a total diet study in Shenzhen, Guangdong Province,China publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2014.10.012 – volume: 18 start-page: 135 issue: 2 year: 2009 ident: 10.1016/j.scitotenv.2022.153948_bb0200 article-title: A genetic algorithm-based artificial neural network model for the optimization of machining processes publication-title: Neural Comput. Appl. doi: 10.1007/s00521-007-0166-y – volume: 237 start-page: 650 year: 2018 ident: 10.1016/j.scitotenv.2022.153948_bb0075 article-title: Source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.02.070 – volume: 252 start-page: 409 issue: 1 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0140 article-title: Comparison of different interpolation methods and sequential gaussian simulation to estimate volumes of soil contaminated by As, Cr, Cu,PCP and dioxins/furans publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.05.122 – volume: 9 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.scitotenv.2022.153948_bb0205 article-title: Measuring spatial distribution characteristics of heavy metal contaminations in a network-constrained environment: a case study in river network of Daye,China publication-title: Sustainability doi: 10.3390/su9060986 – volume: 103 start-page: 70 year: 2017 ident: 10.1016/j.scitotenv.2022.153948_bb0085 article-title: A guideline to select an estimation model of daily global solar radiation between geostatistical interpolation and stochastic simulation approaches publication-title: Renew. Energ. doi: 10.1016/j.renene.2016.11.022 – volume: 191 start-page: 205 year: 2018 ident: 10.1016/j.scitotenv.2022.153948_bb0010 article-title: Spatial estimation of urban air pollution with the use of artificial neural network models publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.07.058 – volume: 224 year: 2021 ident: 10.1016/j.scitotenv.2022.153948_bb0095 article-title: Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities,China publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.112679 – volume: 137 start-page: 308 year: 2015 ident: 10.1016/j.scitotenv.2022.153948_bb0135 article-title: A land use regression model for estimating the NO2 concentration in Shanghai,China publication-title: Environ. Res. doi: 10.1016/j.envres.2015.01.003 – volume: 53 start-page: 1558 issue: 9 year: 2021 ident: 10.1016/j.scitotenv.2022.153948_bb0025 article-title: Purposeful cross-validation: a novel cross-validation strategy for improved surrogate optimizability publication-title: Eng. Optimiz. doi: 10.1080/0305215X.2020.1807017 – volume: 12 start-page: 3376 issue: 9 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0250 article-title: Drought monitoring and evaluation by ESA CCI soil moisture products over the Yellow River Basin publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2019.2934732 – volume: 231 start-page: 1188 year: 2017 ident: 10.1016/j.scitotenv.2022.153948_bb0070 article-title: Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.07.021 – volume: 255 issue: 1 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0180 article-title: Evaluation of groundwater contamination in Chandigarh: source identification and health risk assessment publication-title: Environ. Pollut. – volume: 57 start-page: 122 year: 2014 ident: 10.1016/j.scitotenv.2022.153948_bb0155 article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN publication-title: Measurement doi: 10.1016/j.measurement.2014.08.007 – volume: 231 start-page: 997 year: 2017 ident: 10.1016/j.scitotenv.2022.153948_bb0105 article-title: Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.08.114 – volume: 48 start-page: 4999 issue: 9 year: 2014 ident: 10.1016/j.scitotenv.2022.153948_bb0060 article-title: Analysis of heavy metal sources in soil using kriging interpolation on principal components publication-title: Environ. Sci. Technol. doi: 10.1021/es405083f – volume: 710 year: 2020 ident: 10.1016/j.scitotenv.2022.153948_bb0225 article-title: Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: case study in Jiangsu Province publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134953 – volume: 264 year: 2020 ident: 10.1016/j.scitotenv.2022.153948_bb0240 article-title: Comparison of the concentrations, sources, and distributions of heavy metal(loid)s in agricultural soils of two provinces in the Yangtze River Delta,China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114688 – volume: 34 start-page: 735 issue: 4 year: 2020 ident: 10.1016/j.scitotenv.2022.153948_bb0270 article-title: Spatial interpolation using conditional generative adversarial neural networks publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2019.1599122 – volume: 659 start-page: 363 year: 2019 ident: 10.1016/j.scitotenv.2022.153948_bb0265 article-title: Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.330 – year: 2006 ident: 10.1016/j.scitotenv.2022.153948_bb0145 – volume: 171 start-page: 1150 issue: 1–3 year: 2009 ident: 10.1016/j.scitotenv.2022.153948_bb0100 article-title: Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.06.124 – volume: 799 year: 2021 ident: 10.1016/j.scitotenv.2022.153948_bb0230 article-title: Predicting the spatial pollution of soil heavy metals by using the distance determination coefficient method publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149452 – volume: 212 start-page: 23 year: 2018 ident: 10.1016/j.scitotenv.2022.153948_bb0040 article-title: Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.01.074 – volume: 13 start-page: 1 issue: 17 year: 2021 ident: 10.1016/j.scitotenv.2022.153948_bb0245 article-title: Spatial distribution and source apportionment of soil heavy metals in Pearl River Delta,China publication-title: Sustainability doi: 10.3390/su13179651  | 
    
| SSID | ssj0000781 | 
    
| Score | 2.5466797 | 
    
| Snippet | To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 153948 | 
    
| SubjectTerms | algorithms China environment Environmental Monitoring - methods Genetic algorithm Interpolation kriging Metals, Heavy - analysis Neural network model neural networks Neural Networks, Computer prediction Risk Assessment Soil Soil heavy metals Soil Pollutants - analysis Spatial Analysis  | 
    
| Title | A novel interpolation method to predict soil heavy metals based on a genetic algorithm and neural network model | 
    
| URI | https://dx.doi.org/10.1016/j.scitotenv.2022.153948 https://www.ncbi.nlm.nih.gov/pubmed/35219652 https://www.proquest.com/docview/2634523791 https://www.proquest.com/docview/2661002711  | 
    
| Volume | 825 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: ACRLP dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIKHN dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AKRWK dateStart: 19930115 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KRRBE9LRaP8oKvqbNx-4m27ejtJwe9kEs9m3ZzWY1cibHXXrQF__2zmSTKwW1Dz6FJLPJkpnZ-W3mC-CDlE4Ky22UlVUcceNR55yPKfXJJcoUwllKcP58LmcX_NOluNyBkzEXhsIqh7U_rOn9aj1cORq-5tGyrinHlxdKqjwlhy7vK35ynlMXg8Pft2EeVMwmeJlRsZH6TowXPrdrEZtucKOYpoeo_YoaAf3ZQv0NgfaW6OwpPBkgJJuGWT6DnaqZwMPQVPJ6Anunt7lrSDYo73oCj8MvOhYyj55DO2VNu6kWrA69tkJUHAs9pVnXsuWKvDgdW7f1guGivbmmmyivjGyfY0hsGAog5UEys_jeruruxy9mGseoTCa-vAlB5qzvt_MCLs5Ov57MoqH_QlTymHeRTXMrrFRpVXqhCp7k0tm44N57VxaViMvCOARspVXSFIYLn8eJlSgUhUEem2wPdpu2qV4BQyOIQMJlXmSGSytMZmVulTFecouYYx_k-M11ORQnpx4ZCz1Gof3UW2ZpYpYOzNqHeDtwGepz3D_keGSqviNqGq3I_YPfj2KgURHJu2Kaqr1a61RmHHf1uUr-RSOp5G2eIM3LIEPbWSMSpuqO6ev_md4beERnFMuWiLew262uqneImjp70KvFATyYfpzPzuk4__JtfgPogRvU | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKtRKFWqXQqEvV-IayMN24t4QAm0pcAKJm2XHcZtqSVa7YSUu_e2dWSeLkNpy6DUeJ5ZnxvM58wLYl9JJYbmNsrKKI2486pzzMaU-uUSZQjhLCc4Xl3J8zc9uxM0aHA-5MBRW2Z_94Uxfntb9k8N-Nw-ndU05vrxQUuUpOXQ5Vfx8xkWa0w3s4NdDnAdVswluZtRsJH8U5IUv7loEpwu8KabpAaq_ok5AfzZRf4OgS1N0-go2ewzJjsIyX8Na1YxgI3SVvB_B9slD8hqS9do7H8HL8I-OhdSjLWiPWNMuqgmrQ7OtEBbHQlNp1rVsOiM3TsfmbT1heGov7mkQBZaR8XMMiQ1DCaRESGYm39tZ3f24ZaZxjOpk4sebEGXOlg133sD16cnV8TjqGzBEJY95F9k0t8JKlValF6rgSS6djQvuvXdlUYm4LIxDxFZaJU1huPB5nFiJUlEYZLLJtmG9aZvqLTC0gogkXOZFZri0wmRW5lYZ4yW3CDp2QQ57rsu-Ojk1yZjoIQztp14xSxOzdGDWLsSridNQoOPpKV8GpupHsqbRjDw9-fMgBho1kdwrpqnau7lOZYbyl-Uq-ReNpJq3eYI0O0GGVqtGKEzlHdO9_1neJ3g-vro41-dfL7-9gxc0QoFtiXgP693srvqAEKqzH5cq8htoURvG | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+interpolation+method+to+predict+soil+heavy+metals+based+on+a+genetic+algorithm+and+neural+network+model&rft.jtitle=The+Science+of+the+total+environment&rft.au=Yin%2C+Guangcai&rft.au=Chen%2C+Xingling&rft.au=Zhu%2C+Hanghai&rft.au=Chen%2C+Zhiliang&rft.date=2022-06-15&rft.issn=0048-9697&rft.volume=825+p.153948-&rft_id=info:doi/10.1016%2Fj.scitotenv.2022.153948&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |