A novel interpolation method to predict soil heavy metals based on a genetic algorithm and neural network model

To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 825; p. 153948
Main Authors Yin, Guangcai, Chen, Xingling, Zhu, Hanghai, Chen, Zhiliang, Su, Chuanghong, He, Zechen, Qiu, Jinrong, Wang, Tieyu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.06.2022
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2022.153948

Cover

Abstract To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R2) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs. [Display omitted] •A novel interpolation model was developed to predict soil HMs in a provincial scale.•Combining genetic algorithm and neural network model enhanced prediction accuracy.•GANN interpolation method performed advantages to 3 dominant traditional methods.•The optimized method showed lower root mean square error values and data anomalies.
AbstractList To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R²) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs.
To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R ) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs.
To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R2) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs. [Display omitted] •A novel interpolation model was developed to predict soil HMs in a provincial scale.•Combining genetic algorithm and neural network model enhanced prediction accuracy.•GANN interpolation method performed advantages to 3 dominant traditional methods.•The optimized method showed lower root mean square error values and data anomalies.
To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R2) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs.To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R2) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs.
ArticleNumber 153948
Author Chen, Zhiliang
Chen, Xingling
Su, Chuanghong
Zhu, Hanghai
Yin, Guangcai
Qiu, Jinrong
He, Zechen
Wang, Tieyu
Author_xml – sequence: 1
  givenname: Guangcai
  surname: Yin
  fullname: Yin, Guangcai
  organization: Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 2
  givenname: Xingling
  surname: Chen
  fullname: Chen, Xingling
  organization: Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 3
  givenname: Hanghai
  surname: Zhu
  fullname: Zhu, Hanghai
  organization: Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 4
  givenname: Zhiliang
  surname: Chen
  fullname: Chen, Zhiliang
  organization: Research center for eco-environment restoration technology, South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510006, China
– sequence: 5
  givenname: Chuanghong
  surname: Su
  fullname: Su, Chuanghong
  organization: Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
– sequence: 6
  givenname: Zechen
  surname: He
  fullname: He, Zechen
  organization: Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 7
  givenname: Jinrong
  surname: Qiu
  fullname: Qiu, Jinrong
  organization: Research center for eco-environment restoration technology, South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510006, China
– sequence: 8
  givenname: Tieyu
  surname: Wang
  fullname: Wang, Tieyu
  email: wangt@stu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35219652$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vFCEYh4mpsdvWr6AcvcwKzMDMHDxsGqsmTbzYM-HPO11WBlZg1_Tbl3FbD14qlzeB5_eS_J4LdBZiAITeU7KmhIqPu3U2rsQC4bhmhLE15e3YDa_Qig792FDCxBlaEdINzSjG_hxd5Lwj9fQDfYPOW87oKDhbobjBIR7BYxcKpH30qrgY8AxlGy0uEe8TWGcKztF5vAV1fFgelc9YqwwWV1jhewhQnMHK38fkynbGKlgc4JCUr6P8juknnqMFf4VeTzUMb5_mJbq7-fzj-mtz-_3Lt-vNbWM60pVGs15zLUYGZuLj0NFeWE2GbpomawbgxAzKckqNHoUaVMennlAtwNR7brVqL9GH0959ir8OkIucXTbgvQoQD1kyISghrKf0P9C246ztxwV994Qe9AxW7pObVXqQz31W4NMJMCnmnGCSVdOfSktSzktK5OJP7uRff3LxJ0_-ar7_J__8xcvJzSkJtdWjg7RwEEy1l8AUaaN7cccjdpm8WQ
CitedBy_id crossref_primary_10_3390_land13122151
crossref_primary_10_1016_j_geoderma_2023_116412
crossref_primary_10_1016_j_scitotenv_2024_175787
crossref_primary_10_1021_acsestengg_3c00112
crossref_primary_10_1016_j_catena_2023_107629
crossref_primary_10_1007_s10489_024_05913_0
crossref_primary_10_1007_s11356_023_28805_1
crossref_primary_10_1016_j_jhazmat_2024_136002
crossref_primary_10_1016_j_scitotenv_2023_161976
crossref_primary_10_1016_j_ecoenv_2025_117926
crossref_primary_10_1016_j_envpol_2024_125421
crossref_primary_10_1016_j_jhazmat_2023_131650
crossref_primary_10_1007_s40333_023_0094_4
crossref_primary_10_1016_j_scitotenv_2023_162891
crossref_primary_10_1016_j_catena_2023_107658
crossref_primary_10_1109_ACCESS_2022_3220620
crossref_primary_10_1016_j_catena_2023_107579
crossref_primary_10_1080_15435075_2023_2264959
crossref_primary_10_1007_s12210_024_01240_1
crossref_primary_10_1016_j_watres_2024_121267
crossref_primary_10_1038_s41598_024_84545_3
crossref_primary_10_1007_s11600_024_01433_0
crossref_primary_10_1080_15320383_2024_2311656
crossref_primary_10_1016_j_jhazmat_2024_134392
crossref_primary_10_1007_s11270_024_07587_3
crossref_primary_10_3390_agronomy14112469
crossref_primary_10_1016_j_envpol_2023_121827
crossref_primary_10_3390_app132111647
crossref_primary_10_1016_j_oreoa_2024_100072
crossref_primary_10_1016_j_compag_2023_108254
crossref_primary_10_3390_rs14225804
crossref_primary_10_1007_s10705_023_10293_x
crossref_primary_10_1016_j_jhazmat_2024_135407
Cites_doi 10.3390/su10072474
10.1016/j.scitotenv.2016.11.001
10.1016/j.apgeochem.2017.07.007
10.1016/j.catena.2018.10.004
10.1109/LMAG.2021.3100317
10.1177/1687814020927208
10.1080/02626667.2019.1676429
10.1016/j.chemosphere.2017.10.151
10.1016/j.catena.2018.12.014
10.1007/s00521-011-0702-7
10.1080/03650340.2015.1062088
10.1016/j.jclepro.2020.123218
10.1016/j.jhazmat.2021.125629
10.1016/j.scitotenv.2021.146602
10.1016/j.envpol.2019.113355
10.1016/j.jenvman.2017.10.034
10.1109/ACCESS.2019.2903599
10.1016/j.scitotenv.2019.01.310
10.1016/j.compag.2019.03.017
10.1016/j.geoderma.2017.09.016
10.1016/j.cam.2004.07.034
10.1016/j.envint.2020.105519
10.1016/j.scitotenv.2018.11.244
10.1007/s41742-020-00274-1
10.1016/j.atmosenv.2019.06.044
10.1016/j.scitotenv.2020.137212
10.1016/j.enggeo.2017.10.019
10.1016/j.jfca.2014.10.012
10.1007/s00521-007-0166-y
10.1016/j.envpol.2018.02.070
10.1016/j.envpol.2019.05.122
10.3390/su9060986
10.1016/j.renene.2016.11.022
10.1016/j.atmosenv.2018.07.058
10.1016/j.ecoenv.2021.112679
10.1016/j.envres.2015.01.003
10.1080/0305215X.2020.1807017
10.1109/JSTARS.2019.2934732
10.1016/j.envpol.2017.07.021
10.1016/j.measurement.2014.08.007
10.1016/j.envpol.2017.08.114
10.1021/es405083f
10.1016/j.scitotenv.2019.134953
10.1016/j.envpol.2020.114688
10.1080/13658816.2019.1599122
10.1016/j.scitotenv.2018.12.330
10.1016/j.jhazmat.2009.06.124
10.1016/j.scitotenv.2021.149452
10.1016/j.jenvman.2018.01.074
10.3390/su13179651
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2022.153948
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 35219652
10_1016_j_scitotenv_2022_153948
S0048969722010403
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c404t-b27b5b692ecf5984176db084fffdc8e50c8ad511cb96a8a45f701b6ecc8a5dba3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Oct 02 06:33:11 EDT 2025
Sat Sep 27 22:33:29 EDT 2025
Wed Feb 19 02:27:01 EST 2025
Wed Oct 01 03:34:40 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Sat Nov 16 16:00:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interpolation
Soil heavy metals
Genetic algorithm
Neural network model
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-b27b5b692ecf5984176db084fffdc8e50c8ad511cb96a8a45f701b6ecc8a5dba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35219652
PQID 2634523791
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2661002711
proquest_miscellaneous_2634523791
pubmed_primary_35219652
crossref_citationtrail_10_1016_j_scitotenv_2022_153948
crossref_primary_10_1016_j_scitotenv_2022_153948
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2022_153948
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-15
PublicationDateYYYYMMDD 2022-06-15
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Meng, Chen, Cai, Zou, Wu, Fu, Kan (bb0135) 2015; 137
Metahni, Coudert, Gloaguen (bb0140) 2019; 252
Zhu, Cheng, Zhang, Yao, Gao, Liu (bb0270) 2020; 34
Jiang, Zhao, Zheng, Chen, Li, Ren (bb0095) 2021; 224
Liu, Hu, Tian, Huang, Zhao, Wang (bb0120) 2020; 137
Jeong, St-Hilaire, Gratton, Belanger, Saad (bb0085) 2017; 103
Zhao, Hu, Zhou, Liu, Pan, Shi, Wang, Wang (bb0260) 2018; 10
(bb0145) 2006
Wang, Guan, Sun, Wang, Ma, Shao (bb0230) 2021; 799
Qiao, Yang, Lei, Chen, Dong (bb0170) 2019; 664
Alimissis, Philippopoulos, Tzanis, Deligiorgi (bb0010) 2018; 191
Ding, Wang, Zhuang (bb0040) 2018; 212
Ding, Cheng, Wang, Zhuang (bb0035) 2017; 578
Hu, Wang, Dong, Huang, Borggaard, Hansen, Holm (bb0075) 2018; 237
Mojid, Hossain, Ashraf (bb0150) 2019; 255
Guan, Wang, Xu, Pan, Lin, Zhao, Luo (bb0055) 2018; 193
Li, Peng, Yao, Cui, Hu, You, Chi (bb0105) 2017; 231
Liu, Guan, Luo, Wang, Pan, Yang, Xiao, Lin (bb0115) 2019; 213
Wang, Wang, Liang, Qi, Li, Xu (bb0220) 2019; 160
Pham, Nguyen, Bui, Prakash, Chapi, Bui (bb0160) 2019; 173
Jiang, Lu, Zhang, Liu, Lin, Huang, Luo, Zhang, Tang, Yu (bb0090) 2015; 39
Zhang, Liu, Ren, Teuling, Zhang, Jiang, Yang, Wei, Zhong, Zheng (bb0255) 2021; 782
Bettahar, Rahmoune, Benazzouz, Merainani (bb0020) 2020; 12
Gabarron, Faz, Acosta (bb0050) 2018; 206
Tarasov, Buevich, Sergeev, Shichkin (bb0195) 2018; 88
Zhen, Pei, Xie (bb0265) 2019; 659
Correia, Wilke (bb0025) 2021; 53
Wang, Nie (bb0205) 2017; 9
Yin, Zhu, Chen, Su, He, Chen (bb0245) 2021; 13
McCall (bb0130) 2005; 184
Besharati, Mirbagheri, Pendashteh, Alavi (bb0015) 2020; 14
Wang, Cai, Wen, Luo, Wang, Liu (bb0215) 2019; 655
Yang, Qu, Ma, Liu, Wu, Liu (bb0240) 2020; 264
Zhang, Liu, Ren, Jiang, Yang, Yuan, Wang, Wei (bb0250) 2019; 12
Wang, Akeju, Zhao (bb0210) 2017; 231
Sun, Guo, Liu, Meng, Zheng, Yuan (bb0190) 2019; 175
Hosseini, Kerachian (bb0065) 2019; 64
Duan, Zhang, Li, Fang, Miao, Lin (bb0045) 2020; 276
Wu, Chen, Han, Ke, Liu (bb0235) 2020; 717
Ding, Xu, Su, Jin (bb0030) 2012; 21
Huang, W., Sun, Li, Geng, Zhao (bb0080) 2021; 415
Alexakis (bb0005) 2016; 62
Liu, Liu, Dong, Ge, Yuan, Zhu, Zhang, Zeng (bb0110) 2019; 7
Ravindra, Thind, Mor, Singh, Mor (bb0180) 2019; 255
Ha, Olson, Bian, Rogerson (bb0060) 2014; 48
Lu, Jiao, Qiu, Chen, Huang, Kang (bb0125) 2018; 310
Venkatesan, Kannan, Saravanan (bb0200) 2009; 18
Lamb, Ming, Megharaj, Naidu (bb0100) 2009; 171
Raimondo, Giordano, Grimaldi, Puliafito, Carpentieri, Zeng, Tomasello, Finocchio (bb0175) 2021; 12
Momeni, Nazir, Jahed, Armaghani, Maizir (bb0155) 2014; 57
Qi, Gao, Qi (bb0165) 2020; 263
Senol, Alaboz, Demir, Dengiz (bb0185) 2020; 13
Hou, O'Connor, Nathanail, Tian, Ma (bb0070) 2017; 231
Wang, Duan, Wang (bb0225) 2020; 710
McCall (10.1016/j.scitotenv.2022.153948_bb0130) 2005; 184
Wang (10.1016/j.scitotenv.2022.153948_bb0210) 2017; 231
Besharati (10.1016/j.scitotenv.2022.153948_bb0015) 2020; 14
Zhen (10.1016/j.scitotenv.2022.153948_bb0265) 2019; 659
Wang (10.1016/j.scitotenv.2022.153948_bb0215) 2019; 655
Pham (10.1016/j.scitotenv.2022.153948_bb0160) 2019; 173
Raimondo (10.1016/j.scitotenv.2022.153948_bb0175) 2021; 12
Zhao (10.1016/j.scitotenv.2022.153948_bb0260) 2018; 10
Hu (10.1016/j.scitotenv.2022.153948_bb0075) 2018; 237
Momeni (10.1016/j.scitotenv.2022.153948_bb0155) 2014; 57
Ravindra (10.1016/j.scitotenv.2022.153948_bb0180) 2019; 255
Wang (10.1016/j.scitotenv.2022.153948_bb0205) 2017; 9
Liu (10.1016/j.scitotenv.2022.153948_bb0115) 2019; 213
Mojid (10.1016/j.scitotenv.2022.153948_bb0150) 2019; 255
Wang (10.1016/j.scitotenv.2022.153948_bb0230) 2021; 799
Duan (10.1016/j.scitotenv.2022.153948_bb0045) 2020; 276
Hosseini (10.1016/j.scitotenv.2022.153948_bb0065) 2019; 64
Wang (10.1016/j.scitotenv.2022.153948_bb0220) 2019; 160
Correia (10.1016/j.scitotenv.2022.153948_bb0025) 2021; 53
Venkatesan (10.1016/j.scitotenv.2022.153948_bb0200) 2009; 18
Sun (10.1016/j.scitotenv.2022.153948_bb0190) 2019; 175
Alexakis (10.1016/j.scitotenv.2022.153948_bb0005) 2016; 62
(10.1016/j.scitotenv.2022.153948_bb0145) 2006
Qiao (10.1016/j.scitotenv.2022.153948_bb0170) 2019; 664
Yin (10.1016/j.scitotenv.2022.153948_bb0245) 2021; 13
Wang (10.1016/j.scitotenv.2022.153948_bb0225) 2020; 710
Jiang (10.1016/j.scitotenv.2022.153948_bb0095) 2021; 224
Huang (10.1016/j.scitotenv.2022.153948_bb0080) 2021; 415
Hou (10.1016/j.scitotenv.2022.153948_bb0070) 2017; 231
Jiang (10.1016/j.scitotenv.2022.153948_bb0090) 2015; 39
Lu (10.1016/j.scitotenv.2022.153948_bb0125) 2018; 310
Qi (10.1016/j.scitotenv.2022.153948_bb0165) 2020; 263
Bettahar (10.1016/j.scitotenv.2022.153948_bb0020) 2020; 12
Gabarron (10.1016/j.scitotenv.2022.153948_bb0050) 2018; 206
Meng (10.1016/j.scitotenv.2022.153948_bb0135) 2015; 137
Alimissis (10.1016/j.scitotenv.2022.153948_bb0010) 2018; 191
Zhang (10.1016/j.scitotenv.2022.153948_bb0250) 2019; 12
Tarasov (10.1016/j.scitotenv.2022.153948_bb0195) 2018; 88
Wu (10.1016/j.scitotenv.2022.153948_bb0235) 2020; 717
Yang (10.1016/j.scitotenv.2022.153948_bb0240) 2020; 264
Liu (10.1016/j.scitotenv.2022.153948_bb0110) 2019; 7
Metahni (10.1016/j.scitotenv.2022.153948_bb0140) 2019; 252
Lamb (10.1016/j.scitotenv.2022.153948_bb0100) 2009; 171
Zhang (10.1016/j.scitotenv.2022.153948_bb0255) 2021; 782
Ha (10.1016/j.scitotenv.2022.153948_bb0060) 2014; 48
Senol (10.1016/j.scitotenv.2022.153948_bb0185) 2020; 13
Jeong (10.1016/j.scitotenv.2022.153948_bb0085) 2017; 103
Ding (10.1016/j.scitotenv.2022.153948_bb0040) 2018; 212
Ding (10.1016/j.scitotenv.2022.153948_bb0035) 2017; 578
Ding (10.1016/j.scitotenv.2022.153948_bb0030) 2012; 21
Guan (10.1016/j.scitotenv.2022.153948_bb0055) 2018; 193
Li (10.1016/j.scitotenv.2022.153948_bb0105) 2017; 231
Liu (10.1016/j.scitotenv.2022.153948_bb0120) 2020; 137
Zhu (10.1016/j.scitotenv.2022.153948_bb0270) 2020; 34
References_xml – volume: 255
  year: 2019
  ident: bb0150
  article-title: Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties
  publication-title: Environ. Pollut.
– volume: 237
  start-page: 650
  year: 2018
  end-page: 661
  ident: bb0075
  article-title: Source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach
  publication-title: Environ. Pollut.
– volume: 276
  year: 2020
  ident: bb0045
  article-title: An integrated method of health risk assessment based on spatial interpolation and source apportionment
  publication-title: J. Clean. Prod.
– volume: 137
  start-page: 308
  year: 2015
  end-page: 315
  ident: bb0135
  article-title: A land use regression model for estimating the NO2 concentration in Shanghai,China
  publication-title: Environ. Res.
– volume: 655
  start-page: 92
  year: 2019
  end-page: 101
  ident: bb0215
  article-title: Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province,China
  publication-title: Sci. Total Environ.
– volume: 252
  start-page: 409
  year: 2019
  end-page: 419
  ident: bb0140
  article-title: Comparison of different interpolation methods and sequential gaussian simulation to estimate volumes of soil contaminated by As, Cr, Cu,PCP and dioxins/furans
  publication-title: Environ. Pollut.
– volume: 213
  start-page: 515
  year: 2019
  end-page: 525
  ident: bb0115
  article-title: Development of land use regression model and health risk assessment for NO2 in different functional areas: a case study of Xi'an, China
  publication-title: Atmos. Environ.
– volume: 264
  year: 2020
  ident: bb0240
  article-title: Comparison of the concentrations, sources, and distributions of heavy metal(loid)s in agricultural soils of two provinces in the Yangtze River Delta,China
  publication-title: Environ. Pollut.
– volume: 171
  start-page: 1150
  year: 2009
  end-page: 1158
  ident: bb0100
  article-title: Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils
  publication-title: J. Hazard. Mater.
– volume: 175
  start-page: 101
  year: 2019
  end-page: 109
  ident: bb0190
  article-title: Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan,China
  publication-title: Catena
– volume: 184
  start-page: 205
  year: 2005
  end-page: 222
  ident: bb0130
  article-title: Genetic algorithms for modelling and optimization
  publication-title: J. Comput. Appl. Math.
– volume: 206
  start-page: 192
  year: 2018
  end-page: 201
  ident: bb0050
  article-title: Use of multivariable and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment
  publication-title: J. Environ. Manag.
– volume: 173
  start-page: 302
  year: 2019
  end-page: 311
  ident: bb0160
  article-title: A novel artificial intelligence approach based on multi-layer perceptron neural network and biogeography-based optimization for predicting coefficient of consolidation of soil
  publication-title: Catena
– volume: 193
  start-page: 189
  year: 2018
  end-page: 197
  ident: bb0055
  article-title: Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, northwest China
  publication-title: Chemosphere
– volume: 137
  year: 2020
  ident: bb0120
  article-title: Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: a comparative study of China and South Korea
  publication-title: Environ. Int.
– volume: 21
  start-page: 333
  year: 2012
  end-page: 336
  ident: bb0030
  article-title: An optimizing method of RBF neural network based on genetic algorithm
  publication-title: Neural Comput. Appl.
– volume: 224
  year: 2021
  ident: bb0095
  article-title: Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities,China
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 799
  year: 2021
  ident: bb0230
  article-title: Predicting the spatial pollution of soil heavy metals by using the distance determination coefficient method
  publication-title: Sci. Total Environ.
– volume: 231
  start-page: 1188
  year: 2017
  end-page: 1200
  ident: bb0070
  article-title: Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review
  publication-title: Environ. Pollut.
– volume: 12
  start-page: 3376
  year: 2019
  end-page: 3386
  ident: bb0250
  article-title: Drought monitoring and evaluation by ESA CCI soil moisture products over the Yellow River Basin
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 57
  start-page: 122
  year: 2014
  end-page: 131
  ident: bb0155
  article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN
  publication-title: Measurement
– volume: 659
  start-page: 363
  year: 2019
  end-page: 371
  ident: bb0265
  article-title: Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil
  publication-title: Sci. Total Environ.
– volume: 64
  start-page: 1803
  year: 2019
  end-page: 1823
  ident: bb0065
  article-title: Improving the reliability of groundwater monitoring networks using combined numerical, geostatistical and neural network-based simulation models
  publication-title: Hydrol. Sci. J.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 11
  ident: bb0020
  article-title: New method for gear fault diagnosis using empirical wavelet transform, Hilbert transform, and cosine similarity metric
  publication-title: Adv. Mech. Eng.
– volume: 415
  year: 2021
  ident: bb0080
  article-title: Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with positive matrix factorization model
  publication-title: J. Hazard Mater.
– volume: 782
  year: 2021
  ident: bb0255
  article-title: Reconstruction of ESA CCI satellite-derived soil moisture using an artificial neural network technology
  publication-title: Sci. Total Environ.
– volume: 191
  start-page: 205
  year: 2018
  end-page: 213
  ident: bb0010
  article-title: Spatial estimation of urban air pollution with the use of artificial neural network models
  publication-title: Atmos. Environ.
– volume: 62
  start-page: 359
  year: 2016
  end-page: 373
  ident: bb0005
  article-title: Human health risk assessment associated with Co, Cr, Mn, Ni and V contents in agricultural soils from a Mediterranean site
  publication-title: Arch. Agron. Soil Sci.
– volume: 10
  year: 2018
  ident: bb0260
  article-title: Estimation methods for soil mercury content using hyperspectral remote sensing
  publication-title: Sustainability
– volume: 7
  start-page: 33173
  year: 2019
  end-page: 33179
  ident: bb0110
  article-title: Recurrent neural network-based approach for sparse geomagnetic data interpolation and reconstruction
  publication-title: IEEE Access
– volume: 14
  start-page: 527
  year: 2020
  end-page: 539
  ident: bb0015
  article-title: Estimation of effluent parameters of slaughterhouse wastewater treatment with artificial neural network and B-spline quasi interpolation
  publication-title: Int. J. Environ. Res.
– volume: 212
  start-page: 23
  year: 2018
  end-page: 31
  ident: bb0040
  article-title: Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions
  publication-title: J. Environ. Manag.
– volume: 717
  year: 2020
  ident: bb0235
  article-title: Identifying the influencing factors controlling the spatial variation of heavy metals in suburban soil using spatial regression models
  publication-title: Sci. Total Environ.
– volume: 310
  start-page: 99
  year: 2018
  end-page: 106
  ident: bb0125
  article-title: Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You'xi County southeast China
  publication-title: Geoderma
– volume: 255
  year: 2019
  ident: bb0180
  article-title: Evaluation of groundwater contamination in Chandigarh: source identification and health risk assessment
  publication-title: Environ. Pollut.
– volume: 12
  year: 2021
  ident: bb0175
  article-title: Reliability of neural networks based on spintronic neurons
  publication-title: IEEE Magn. Lett.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 11
  ident: bb0205
  article-title: Measuring spatial distribution characteristics of heavy metal contaminations in a network-constrained environment: a case study in river network of Daye,China
  publication-title: Sustainability
– volume: 578
  start-page: 577
  year: 2017
  end-page: 585
  ident: bb0035
  article-title: Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions
  publication-title: Sci. Total Environ.
– volume: 39
  start-page: 1
  year: 2015
  end-page: 7
  ident: bb0090
  article-title: Dietary intake of human essential elements from a total diet study in Shenzhen, Guangdong Province,China
  publication-title: J. Food Compos. Anal.
– volume: 13
  start-page: 1
  year: 2021
  end-page: 14
  ident: bb0245
  article-title: Spatial distribution and source apportionment of soil heavy metals in Pearl River Delta,China
  publication-title: Sustainability
– volume: 103
  start-page: 70
  year: 2017
  end-page: 80
  ident: bb0085
  article-title: A guideline to select an estimation model of daily global solar radiation between geostatistical interpolation and stochastic simulation approaches
  publication-title: Renew. Energ.
– volume: 710
  year: 2020
  ident: bb0225
  article-title: Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: case study in Jiangsu Province
  publication-title: Sci. Total Environ.
– volume: 88
  start-page: 188
  year: 2018
  end-page: 197
  ident: bb0195
  article-title: High variation topsoil pollution forecasting in the russian subarctic: using artificial neural networks combined with residual kriging
  publication-title: Appl. Geochem.
– volume: 263
  year: 2020
  ident: bb0165
  article-title: Spatial distribution of heavy metal contamination in mollisol dairy farm
  publication-title: Environ. Pollut.
– volume: 18
  start-page: 135
  year: 2009
  end-page: 140
  ident: bb0200
  article-title: A genetic algorithm-based artificial neural network model for the optimization of machining processes
  publication-title: Neural Comput. Appl.
– volume: 160
  start-page: 82
  year: 2019
  end-page: 90
  ident: bb0220
  article-title: Monitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area index
  publication-title: Comput. Electron. Agric.
– volume: 231
  start-page: 200
  year: 2017
  end-page: 217
  ident: bb0210
  article-title: Interpolation of spatially varying but sparsely measured geo-data: a comparative study
  publication-title: Eng. Geol.
– volume: 53
  start-page: 1558
  year: 2021
  end-page: 1573
  ident: bb0025
  article-title: Purposeful cross-validation: a novel cross-validation strategy for improved surrogate optimizability
  publication-title: Eng. Optimiz.
– volume: 231
  start-page: 997
  year: 2017
  end-page: 1004
  ident: bb0105
  article-title: Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation
  publication-title: Environ. Pollut.
– volume: 48
  start-page: 4999
  year: 2014
  end-page: 5007
  ident: bb0060
  article-title: Analysis of heavy metal sources in soil using kriging interpolation on principal components
  publication-title: Environ. Sci. Technol.
– volume: 664
  start-page: 392
  year: 2019
  end-page: 413
  ident: bb0170
  article-title: Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 1
  year: 2020
  end-page: 20
  ident: bb0185
  article-title: Computational intelligence applied to soil quality index using GIS and geostatistical approaches in semiarid ecosystem
  publication-title: Arab. J. Geosci.
– year: 2006
  ident: bb0145
  article-title: Soil testing, Part 3: Methods for Determination of Soil Mechanical Composition
– volume: 34
  start-page: 735
  year: 2020
  end-page: 758
  ident: bb0270
  article-title: Spatial interpolation using conditional generative adversarial neural networks
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 10
  issue: 7
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153948_bb0260
  article-title: Estimation methods for soil mercury content using hyperspectral remote sensing
  publication-title: Sustainability
  doi: 10.3390/su10072474
– volume: 578
  start-page: 577
  year: 2017
  ident: 10.1016/j.scitotenv.2022.153948_bb0035
  article-title: Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.001
– volume: 88
  start-page: 188
  issue: B
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153948_bb0195
  article-title: High variation topsoil pollution forecasting in the russian subarctic: using artificial neural networks combined with residual kriging
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2017.07.007
– volume: 173
  start-page: 302
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0160
  article-title: A novel artificial intelligence approach based on multi-layer perceptron neural network and biogeography-based optimization for predicting coefficient of consolidation of soil
  publication-title: Catena
  doi: 10.1016/j.catena.2018.10.004
– volume: 12
  year: 2021
  ident: 10.1016/j.scitotenv.2022.153948_bb0175
  article-title: Reliability of neural networks based on spintronic neurons
  publication-title: IEEE Magn. Lett.
  doi: 10.1109/LMAG.2021.3100317
– volume: 12
  start-page: 1
  issue: 6
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153948_bb0020
  article-title: New method for gear fault diagnosis using empirical wavelet transform, Hilbert transform, and cosine similarity metric
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814020927208
– volume: 64
  start-page: 1803
  issue: 15
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0065
  article-title: Improving the reliability of groundwater monitoring networks using combined numerical, geostatistical and neural network-based simulation models
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2019.1676429
– volume: 193
  start-page: 189
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153948_bb0055
  article-title: Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, northwest China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.10.151
– volume: 175
  start-page: 101
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0190
  article-title: Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan,China
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.014
– volume: 21
  start-page: 333
  issue: 2
  year: 2012
  ident: 10.1016/j.scitotenv.2022.153948_bb0030
  article-title: An optimizing method of RBF neural network based on genetic algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-011-0702-7
– volume: 62
  start-page: 359
  year: 2016
  ident: 10.1016/j.scitotenv.2022.153948_bb0005
  article-title: Human health risk assessment associated with Co, Cr, Mn, Ni and V contents in agricultural soils from a Mediterranean site
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2015.1062088
– volume: 276
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153948_bb0045
  article-title: An integrated method of health risk assessment based on spatial interpolation and source apportionment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123218
– volume: 415
  year: 2021
  ident: 10.1016/j.scitotenv.2022.153948_bb0080
  article-title: Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with positive matrix factorization model
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.125629
– volume: 263
  issue: 2
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153948_bb0165
  article-title: Spatial distribution of heavy metal contamination in mollisol dairy farm
  publication-title: Environ. Pollut.
– volume: 782
  year: 2021
  ident: 10.1016/j.scitotenv.2022.153948_bb0255
  article-title: Reconstruction of ESA CCI satellite-derived soil moisture using an artificial neural network technology
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146602
– volume: 255
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0150
  article-title: Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113355
– volume: 206
  start-page: 192
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153948_bb0050
  article-title: Use of multivariable and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.10.034
– volume: 7
  start-page: 33173
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0110
  article-title: Recurrent neural network-based approach for sparse geomagnetic data interpolation and reconstruction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903599
– volume: 664
  start-page: 392
  issue: 254
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0170
  article-title: Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.310
– volume: 160
  start-page: 82
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0220
  article-title: Monitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area index
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.03.017
– volume: 310
  start-page: 99
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153948_bb0125
  article-title: Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You'xi County southeast China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.09.016
– volume: 13
  start-page: 1
  issue: 1235
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153948_bb0185
  article-title: Computational intelligence applied to soil quality index using GIS and geostatistical approaches in semiarid ecosystem
  publication-title: Arab. J. Geosci.
– volume: 184
  start-page: 205
  issue: 1
  year: 2005
  ident: 10.1016/j.scitotenv.2022.153948_bb0130
  article-title: Genetic algorithms for modelling and optimization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.07.034
– volume: 137
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153948_bb0120
  article-title: Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: a comparative study of China and South Korea
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105519
– volume: 655
  start-page: 92
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0215
  article-title: Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province,China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.244
– volume: 14
  start-page: 527
  issue: 5
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153948_bb0015
  article-title: Estimation of effluent parameters of slaughterhouse wastewater treatment with artificial neural network and B-spline quasi interpolation
  publication-title: Int. J. Environ. Res.
  doi: 10.1007/s41742-020-00274-1
– volume: 213
  start-page: 515
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0115
  article-title: Development of land use regression model and health risk assessment for NO2 in different functional areas: a case study of Xi'an, China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.06.044
– volume: 717
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153948_bb0235
  article-title: Identifying the influencing factors controlling the spatial variation of heavy metals in suburban soil using spatial regression models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137212
– volume: 231
  start-page: 200
  year: 2017
  ident: 10.1016/j.scitotenv.2022.153948_bb0210
  article-title: Interpolation of spatially varying but sparsely measured geo-data: a comparative study
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2017.10.019
– volume: 39
  start-page: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2022.153948_bb0090
  article-title: Dietary intake of human essential elements from a total diet study in Shenzhen, Guangdong Province,China
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2014.10.012
– volume: 18
  start-page: 135
  issue: 2
  year: 2009
  ident: 10.1016/j.scitotenv.2022.153948_bb0200
  article-title: A genetic algorithm-based artificial neural network model for the optimization of machining processes
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-007-0166-y
– volume: 237
  start-page: 650
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153948_bb0075
  article-title: Source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.02.070
– volume: 252
  start-page: 409
  issue: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0140
  article-title: Comparison of different interpolation methods and sequential gaussian simulation to estimate volumes of soil contaminated by As, Cr, Cu,PCP and dioxins/furans
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.05.122
– volume: 9
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.scitotenv.2022.153948_bb0205
  article-title: Measuring spatial distribution characteristics of heavy metal contaminations in a network-constrained environment: a case study in river network of Daye,China
  publication-title: Sustainability
  doi: 10.3390/su9060986
– volume: 103
  start-page: 70
  year: 2017
  ident: 10.1016/j.scitotenv.2022.153948_bb0085
  article-title: A guideline to select an estimation model of daily global solar radiation between geostatistical interpolation and stochastic simulation approaches
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2016.11.022
– volume: 191
  start-page: 205
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153948_bb0010
  article-title: Spatial estimation of urban air pollution with the use of artificial neural network models
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.07.058
– volume: 224
  year: 2021
  ident: 10.1016/j.scitotenv.2022.153948_bb0095
  article-title: Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities,China
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2021.112679
– volume: 137
  start-page: 308
  year: 2015
  ident: 10.1016/j.scitotenv.2022.153948_bb0135
  article-title: A land use regression model for estimating the NO2 concentration in Shanghai,China
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2015.01.003
– volume: 53
  start-page: 1558
  issue: 9
  year: 2021
  ident: 10.1016/j.scitotenv.2022.153948_bb0025
  article-title: Purposeful cross-validation: a novel cross-validation strategy for improved surrogate optimizability
  publication-title: Eng. Optimiz.
  doi: 10.1080/0305215X.2020.1807017
– volume: 12
  start-page: 3376
  issue: 9
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0250
  article-title: Drought monitoring and evaluation by ESA CCI soil moisture products over the Yellow River Basin
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2019.2934732
– volume: 231
  start-page: 1188
  year: 2017
  ident: 10.1016/j.scitotenv.2022.153948_bb0070
  article-title: Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.07.021
– volume: 255
  issue: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0180
  article-title: Evaluation of groundwater contamination in Chandigarh: source identification and health risk assessment
  publication-title: Environ. Pollut.
– volume: 57
  start-page: 122
  year: 2014
  ident: 10.1016/j.scitotenv.2022.153948_bb0155
  article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.007
– volume: 231
  start-page: 997
  year: 2017
  ident: 10.1016/j.scitotenv.2022.153948_bb0105
  article-title: Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.08.114
– volume: 48
  start-page: 4999
  issue: 9
  year: 2014
  ident: 10.1016/j.scitotenv.2022.153948_bb0060
  article-title: Analysis of heavy metal sources in soil using kriging interpolation on principal components
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405083f
– volume: 710
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153948_bb0225
  article-title: Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: case study in Jiangsu Province
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134953
– volume: 264
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153948_bb0240
  article-title: Comparison of the concentrations, sources, and distributions of heavy metal(loid)s in agricultural soils of two provinces in the Yangtze River Delta,China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114688
– volume: 34
  start-page: 735
  issue: 4
  year: 2020
  ident: 10.1016/j.scitotenv.2022.153948_bb0270
  article-title: Spatial interpolation using conditional generative adversarial neural networks
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2019.1599122
– volume: 659
  start-page: 363
  year: 2019
  ident: 10.1016/j.scitotenv.2022.153948_bb0265
  article-title: Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.330
– year: 2006
  ident: 10.1016/j.scitotenv.2022.153948_bb0145
– volume: 171
  start-page: 1150
  issue: 1–3
  year: 2009
  ident: 10.1016/j.scitotenv.2022.153948_bb0100
  article-title: Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.06.124
– volume: 799
  year: 2021
  ident: 10.1016/j.scitotenv.2022.153948_bb0230
  article-title: Predicting the spatial pollution of soil heavy metals by using the distance determination coefficient method
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149452
– volume: 212
  start-page: 23
  year: 2018
  ident: 10.1016/j.scitotenv.2022.153948_bb0040
  article-title: Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.01.074
– volume: 13
  start-page: 1
  issue: 17
  year: 2021
  ident: 10.1016/j.scitotenv.2022.153948_bb0245
  article-title: Spatial distribution and source apportionment of soil heavy metals in Pearl River Delta,China
  publication-title: Sustainability
  doi: 10.3390/su13179651
SSID ssj0000781
Score 2.5466797
Snippet To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 153948
SubjectTerms algorithms
China
environment
Environmental Monitoring - methods
Genetic algorithm
Interpolation
kriging
Metals, Heavy - analysis
Neural network model
neural networks
Neural Networks, Computer
prediction
Risk Assessment
Soil
Soil heavy metals
Soil Pollutants - analysis
Spatial Analysis
Title A novel interpolation method to predict soil heavy metals based on a genetic algorithm and neural network model
URI https://dx.doi.org/10.1016/j.scitotenv.2022.153948
https://www.ncbi.nlm.nih.gov/pubmed/35219652
https://www.proquest.com/docview/2634523791
https://www.proquest.com/docview/2661002711
Volume 825
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: ACRLP
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIKHN
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AKRWK
  dateStart: 19930115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KRRBE9LRaP8oKvqbNx-4m27ejtJwe9kEs9m3ZzWY1cibHXXrQF__2zmSTKwW1Dz6FJLPJkpnZ-W3mC-CDlE4Ky22UlVUcceNR55yPKfXJJcoUwllKcP58LmcX_NOluNyBkzEXhsIqh7U_rOn9aj1cORq-5tGyrinHlxdKqjwlhy7vK35ynlMXg8Pft2EeVMwmeJlRsZH6TowXPrdrEZtucKOYpoeo_YoaAf3ZQv0NgfaW6OwpPBkgJJuGWT6DnaqZwMPQVPJ6Anunt7lrSDYo73oCj8MvOhYyj55DO2VNu6kWrA69tkJUHAs9pVnXsuWKvDgdW7f1guGivbmmmyivjGyfY0hsGAog5UEys_jeruruxy9mGseoTCa-vAlB5qzvt_MCLs5Ov57MoqH_QlTymHeRTXMrrFRpVXqhCp7k0tm44N57VxaViMvCOARspVXSFIYLn8eJlSgUhUEem2wPdpu2qV4BQyOIQMJlXmSGSytMZmVulTFecouYYx_k-M11ORQnpx4ZCz1Gof3UW2ZpYpYOzNqHeDtwGepz3D_keGSqviNqGq3I_YPfj2KgURHJu2Kaqr1a61RmHHf1uUr-RSOp5G2eIM3LIEPbWSMSpuqO6ev_md4beERnFMuWiLew262uqneImjp70KvFATyYfpzPzuk4__JtfgPogRvU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKtRKFWqXQqEvV-IayMN24t4QAm0pcAKJm2XHcZtqSVa7YSUu_e2dWSeLkNpy6DUeJ5ZnxvM58wLYl9JJYbmNsrKKI2486pzzMaU-uUSZQjhLCc4Xl3J8zc9uxM0aHA-5MBRW2Z_94Uxfntb9k8N-Nw-ndU05vrxQUuUpOXQ5Vfx8xkWa0w3s4NdDnAdVswluZtRsJH8U5IUv7loEpwu8KabpAaq_ok5AfzZRf4OgS1N0-go2ewzJjsIyX8Na1YxgI3SVvB_B9slD8hqS9do7H8HL8I-OhdSjLWiPWNMuqgmrQ7OtEBbHQlNp1rVsOiM3TsfmbT1heGov7mkQBZaR8XMMiQ1DCaRESGYm39tZ3f24ZaZxjOpk4sebEGXOlg133sD16cnV8TjqGzBEJY95F9k0t8JKlValF6rgSS6djQvuvXdlUYm4LIxDxFZaJU1huPB5nFiJUlEYZLLJtmG9aZvqLTC0gogkXOZFZri0wmRW5lYZ4yW3CDp2QQ57rsu-Ojk1yZjoIQztp14xSxOzdGDWLsSridNQoOPpKV8GpupHsqbRjDw9-fMgBho1kdwrpqnau7lOZYbyl-Uq-ReNpJq3eYI0O0GGVqtGKEzlHdO9_1neJ3g-vro41-dfL7-9gxc0QoFtiXgP693srvqAEKqzH5cq8htoURvG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+interpolation+method+to+predict+soil+heavy+metals+based+on+a+genetic+algorithm+and+neural+network+model&rft.jtitle=The+Science+of+the+total+environment&rft.au=Yin%2C+Guangcai&rft.au=Chen%2C+Xingling&rft.au=Zhu%2C+Hanghai&rft.au=Chen%2C+Zhiliang&rft.date=2022-06-15&rft.issn=0048-9697&rft.volume=825+p.153948-&rft_id=info:doi/10.1016%2Fj.scitotenv.2022.153948&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon