Semi-surrogate modelling of droplets evaporation process via XGBoost integrated CFD simulations

The applications of machine learning (ML) based approach are emerging as possible tools to accelerate CFD simulations. This study proposed a semi-surrogate model for CFD with integration of the cutting-edge ML algorithm, eXtreme Gradient Boosting (XGB), which enlightened a possible pathway to effect...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 895; p. 164968
Main Authors Yan, Yihuan, Li, Xueren, Sun, Weijie, Fang, Xiang, He, Fajiang, Tu, Jiyuan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.10.2023
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2023.164968

Cover

Abstract The applications of machine learning (ML) based approach are emerging as possible tools to accelerate CFD simulations. This study proposed a semi-surrogate model for CFD with integration of the cutting-edge ML algorithm, eXtreme Gradient Boosting (XGB), which enlightened a possible pathway to effectively and efficiently solve and predict those costly but highly repetitive fluid dynamics-related problems. Droplet evaporation, a complex but essential phenomenon in respiratory droplets transport, was studied as the practical case using the proposed model. Droplets evaporation and dynamic size distributions were firstly tracked under various combinations of indoor humidity and temperature using traditional Eulerian-Lagrangian CFD framework, followed by generating several datasets for XGB training. The trained XGB was then used to interpret the evaporated droplets size over time under new combinations of indoor conditions. Outcomes revealed that well-trained XGB-base semi-surrogate model was capable of interpreting complex non-linear relationships between droplets dynamic parameters (diameter and time) and indoor parameters (humidity and temperature). For each specific parameter, the predictive error of well-trained XGB could retain below 5 % and its prediction speed was found nearly 1 million times faster than that of new CFD simulations. Successful applications of XGB in conjunction with CFD demonstrated its great potential on providing rapid and more efficient predictions of complex, costly and repetitive fluid dynamics-related phenomenons (e.g. droplets evaporation). Also, the XGB predicted droplets evaporation data from this study could be further applied as initial conditions into new simulations via the User-defined function (UDF). [Display omitted] •A semi-surrogate model is developed via integrating XGBoost and CFD approach.•Droplet dynamic characteristic is properly predicted using the semisurrogate model.•Well-trained model is able to have less than 5 % errors in predicting specific data.•Using XGBoost on predicting droplet diameters is 1 million faster than using CFD.•Semi-surrogate model enables a cost-effective prediction of large-scale problems.
AbstractList The applications of machine learning (ML) based approach are emerging as possible tools to accelerate CFD simulations. This study proposed a semi-surrogate model for CFD with integration of the cutting-edge ML algorithm, eXtreme Gradient Boosting (XGB), which enlightened a possible pathway to effectively and efficiently solve and predict those costly but highly repetitive fluid dynamics-related problems. Droplet evaporation, a complex but essential phenomenon in respiratory droplets transport, was studied as the practical case using the proposed model. Droplets evaporation and dynamic size distributions were firstly tracked under various combinations of indoor humidity and temperature using traditional Eulerian-Lagrangian CFD framework, followed by generating several datasets for XGB training. The trained XGB was then used to interpret the evaporated droplets size over time under new combinations of indoor conditions. Outcomes revealed that well-trained XGB-base semi-surrogate model was capable of interpreting complex non-linear relationships between droplets dynamic parameters (diameter and time) and indoor parameters (humidity and temperature). For each specific parameter, the predictive error of well-trained XGB could retain below 5 % and its prediction speed was found nearly 1 million times faster than that of new CFD simulations. Successful applications of XGB in conjunction with CFD demonstrated its great potential on providing rapid and more efficient predictions of complex, costly and repetitive fluid dynamics-related phenomenons (e.g. droplets evaporation). Also, the XGB predicted droplets evaporation data from this study could be further applied as initial conditions into new simulations via the User-defined function (UDF).
The applications of machine learning (ML) based approach are emerging as possible tools to accelerate CFD simulations. This study proposed a semi-surrogate model for CFD with integration of the cutting-edge ML algorithm, eXtreme Gradient Boosting (XGB), which enlightened a possible pathway to effectively and efficiently solve and predict those costly but highly repetitive fluid dynamics-related problems. Droplet evaporation, a complex but essential phenomenon in respiratory droplets transport, was studied as the practical case using the proposed model. Droplets evaporation and dynamic size distributions were firstly tracked under various combinations of indoor humidity and temperature using traditional Eulerian-Lagrangian CFD framework, followed by generating several datasets for XGB training. The trained XGB was then used to interpret the evaporated droplets size over time under new combinations of indoor conditions. Outcomes revealed that well-trained XGB-base semi-surrogate model was capable of interpreting complex non-linear relationships between droplets dynamic parameters (diameter and time) and indoor parameters (humidity and temperature). For each specific parameter, the predictive error of well-trained XGB could retain below 5 % and its prediction speed was found nearly 1 million times faster than that of new CFD simulations. Successful applications of XGB in conjunction with CFD demonstrated its great potential on providing rapid and more efficient predictions of complex, costly and repetitive fluid dynamics-related phenomenons (e.g. droplets evaporation). Also, the XGB predicted droplets evaporation data from this study could be further applied as initial conditions into new simulations via the User-defined function (UDF).The applications of machine learning (ML) based approach are emerging as possible tools to accelerate CFD simulations. This study proposed a semi-surrogate model for CFD with integration of the cutting-edge ML algorithm, eXtreme Gradient Boosting (XGB), which enlightened a possible pathway to effectively and efficiently solve and predict those costly but highly repetitive fluid dynamics-related problems. Droplet evaporation, a complex but essential phenomenon in respiratory droplets transport, was studied as the practical case using the proposed model. Droplets evaporation and dynamic size distributions were firstly tracked under various combinations of indoor humidity and temperature using traditional Eulerian-Lagrangian CFD framework, followed by generating several datasets for XGB training. The trained XGB was then used to interpret the evaporated droplets size over time under new combinations of indoor conditions. Outcomes revealed that well-trained XGB-base semi-surrogate model was capable of interpreting complex non-linear relationships between droplets dynamic parameters (diameter and time) and indoor parameters (humidity and temperature). For each specific parameter, the predictive error of well-trained XGB could retain below 5 % and its prediction speed was found nearly 1 million times faster than that of new CFD simulations. Successful applications of XGB in conjunction with CFD demonstrated its great potential on providing rapid and more efficient predictions of complex, costly and repetitive fluid dynamics-related phenomenons (e.g. droplets evaporation). Also, the XGB predicted droplets evaporation data from this study could be further applied as initial conditions into new simulations via the User-defined function (UDF).
The applications of machine learning (ML) based approach are emerging as possible tools to accelerate CFD simulations. This study proposed a semi-surrogate model for CFD with integration of the cutting-edge ML algorithm, eXtreme Gradient Boosting (XGB), which enlightened a possible pathway to effectively and efficiently solve and predict those costly but highly repetitive fluid dynamics-related problems. Droplet evaporation, a complex but essential phenomenon in respiratory droplets transport, was studied as the practical case using the proposed model. Droplets evaporation and dynamic size distributions were firstly tracked under various combinations of indoor humidity and temperature using traditional Eulerian-Lagrangian CFD framework, followed by generating several datasets for XGB training. The trained XGB was then used to interpret the evaporated droplets size over time under new combinations of indoor conditions. Outcomes revealed that well-trained XGB-base semi-surrogate model was capable of interpreting complex non-linear relationships between droplets dynamic parameters (diameter and time) and indoor parameters (humidity and temperature). For each specific parameter, the predictive error of well-trained XGB could retain below 5 % and its prediction speed was found nearly 1 million times faster than that of new CFD simulations. Successful applications of XGB in conjunction with CFD demonstrated its great potential on providing rapid and more efficient predictions of complex, costly and repetitive fluid dynamics-related phenomenons (e.g. droplets evaporation). Also, the XGB predicted droplets evaporation data from this study could be further applied as initial conditions into new simulations via the User-defined function (UDF). [Display omitted] •A semi-surrogate model is developed via integrating XGBoost and CFD approach.•Droplet dynamic characteristic is properly predicted using the semisurrogate model.•Well-trained model is able to have less than 5 % errors in predicting specific data.•Using XGBoost on predicting droplet diameters is 1 million faster than using CFD.•Semi-surrogate model enables a cost-effective prediction of large-scale problems.
The applications of machine learning (ML) based approach are emerging as possible tools to accelerate CFD simulations. This study proposed a semi-surrogate model for CFD with integration of the cutting-edge ML algorithm, eXtreme Gradient Boosting (XGB), which enlightened a possible pathway to effectively and efficiently solve and predict those costly but highly repetitive fluid dynamics-related problems. Droplet evaporation, a complex but essential phenomenon in respiratory droplets transport, was studied as the practical case using the proposed model. Droplets evaporation and dynamic size distributions were firstly tracked under various combinations of indoor humidity and temperature using traditional Eulerian-Lagrangian CFD framework, followed by generating several datasets for XGB training. The trained XGB was then used to interpret the evaporated droplets size over time under new combinations of indoor conditions. Outcomes revealed that well-trained XGB-base semi-surrogate model was capable of interpreting complex non-linear relationships between droplets dynamic parameters (diameter and time) and indoor parameters (humidity and temperature). For each specific parameter, the predictive error of well-trained XGB could retain below 5 % and its prediction speed was found nearly 1 million times faster than that of new CFD simulations. Successful applications of XGB in conjunction with CFD demonstrated its great potential on providing rapid and more efficient predictions of complex, costly and repetitive fluid dynamics-related phenomenons (e.g. droplets evaporation). Also, the XGB predicted droplets evaporation data from this study could be further applied as initial conditions into new simulations via the User-defined function (UDF).
ArticleNumber 164968
Author Li, Xueren
He, Fajiang
Yan, Yihuan
Sun, Weijie
Tu, Jiyuan
Fang, Xiang
Author_xml – sequence: 1
  givenname: Yihuan
  surname: Yan
  fullname: Yan, Yihuan
  email: yihuan.yan@outlook.com
  organization: School of Air Transportation / Flying, Shanghai University of Engineering Science, Shanghai 201620, China
– sequence: 2
  givenname: Xueren
  surname: Li
  fullname: Li, Xueren
  organization: School of Engineering, RMIT Unversity, PO Box 71, Bundoora, VIC 3083, Australia
– sequence: 3
  givenname: Weijie
  surname: Sun
  fullname: Sun, Weijie
  organization: Department of Computing Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
– sequence: 4
  givenname: Xiang
  surname: Fang
  fullname: Fang, Xiang
  organization: School of Air Transportation / Flying, Shanghai University of Engineering Science, Shanghai 201620, China
– sequence: 5
  givenname: Fajiang
  surname: He
  fullname: He, Fajiang
  organization: School of Air Transportation / Flying, Shanghai University of Engineering Science, Shanghai 201620, China
– sequence: 6
  givenname: Jiyuan
  surname: Tu
  fullname: Tu, Jiyuan
  organization: School of Engineering, RMIT Unversity, PO Box 71, Bundoora, VIC 3083, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37356762$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtv2zAUhYkgReI8_kLLsYscvikNHVLnCQTo0AbIRtDklUFDEl2SMpB_HzlOOnQxlzvwO-c-zhk6HuIACH2jZE4JVVfreXahxALDds4I43OqRKPqIzSjtW4qSpg6RjNCRF01qtGn6CznNZmerukJOuWaS6UVmyHzG_pQ5TGluLIFcB89dF0YVji22Ke46aBkDFu7icmWEAe8SdFBzngbLH65_xljLjgMBVbTP3i8uLvBOfRj907nC_SltV2Gy496jp7vbv8sHqqnX_ePi-unygkiSmW1bTnlynollfTEydYRsO2StVJrsqROSFoLzbRomGDWO-d40ypuuaROUn6Ovu99p_H-jpCL6UN20yp2gDhmw4kgXFPO5UGU1azRREi9c_36gY7LHrzZpNDb9Go-7zcBP_aASzHnBK2ZYnnfvCQbOkOJ2eVl1uZfXmaXl9nnNen1f_rPFoeV13slTFfdBkg7DgYHPiRwxfgYDnq8AdfptdQ
CitedBy_id crossref_primary_10_3390_atmos15060679
crossref_primary_10_3390_w16050638
crossref_primary_10_3390_app14177886
crossref_primary_10_1016_j_ejrh_2025_102206
crossref_primary_10_1080_19942060_2024_2421002
crossref_primary_10_1007_s00704_024_05327_5
crossref_primary_10_1016_j_applthermaleng_2024_122787
crossref_primary_10_1016_j_buildenv_2024_112173
crossref_primary_10_1016_j_scitotenv_2023_168814
crossref_primary_10_1016_j_jclepro_2025_145268
crossref_primary_10_1177_1420326X241244721
Cites_doi 10.1177/1420326X16688049
10.1063/5.0026360
10.1016/j.apm.2011.05.052
10.1080/15459620590918466
10.1016/j.atmosenv.2005.09.044
10.1016/0893-6080(89)90020-8
10.1016/j.ijheatmasstransfer.2019.119083
10.1016/j.jclepro.2020.123285
10.1016/j.buildenv.2015.06.018
10.1177/1420326X13499596
10.1016/j.scitotenv.2022.154856
10.1007/s12273-020-0664-8
10.1115/1.3124648
10.1016/j.buildenv.2018.10.039
10.1016/j.ijsu.2020.02.034
10.1016/j.buildenv.2017.11.025
10.1016/j.buildenv.2017.05.013
10.1146/annurev-fluid-010719-060214
10.1146/annurev-fluid-010816-060042
10.1007/s12273-019-0538-0
10.1177/1420326X211032247
10.1016/j.jaerosci.2008.10.003
10.1080/10407799508928838
10.1016/j.scitotenv.2020.142090
10.1016/j.enbuild.2010.04.006
10.1016/j.enbuild.2016.06.030
10.1016/j.buildenv.2014.08.002
10.1016/j.compbiomed.2020.104103
10.1016/j.neucom.2016.12.038
10.1016/j.cja.2014.12.007
10.1016/0045-7930(94)00032-T
10.1016/j.buildenv.2022.109272
10.1016/j.enbuild.2020.110525
10.1016/j.buildenv.2021.108315
10.1016/j.buildenv.2007.01.005
10.2514/3.12149
10.3390/aerospace7040036
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2023.164968
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 37356762
10_1016_j_scitotenv_2023_164968
S004896972303591X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
WUQ
XPP
ZXP
ZY4
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c404t-a7af3136ad6565d0c5fc0eafb2f5770b1c4518472749242adccc39f63a351c513
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Sat Sep 27 23:26:22 EDT 2025
Mon Sep 29 05:25:04 EDT 2025
Wed Feb 19 02:23:17 EST 2025
Thu Oct 02 04:26:32 EDT 2025
Thu Apr 24 22:57:55 EDT 2025
Fri Feb 23 02:35:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CFD
ANN
DNN
AI
Supervised machine learning algorithm
Droplets evaporation
RANS
XGB
Semi-surrogate model
RH
UDF
eXtreme gradient boosting (XGB)
ML
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-a7af3136ad6565d0c5fc0eafb2f5770b1c4518472749242adccc39f63a351c513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37356762
PQID 2829704571
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3040371335
proquest_miscellaneous_2829704571
pubmed_primary_37356762
crossref_citationtrail_10_1016_j_scitotenv_2023_164968
crossref_primary_10_1016_j_scitotenv_2023_164968
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_164968
PublicationCentury 2000
PublicationDate 2023-10-15
PublicationDateYYYYMMDD 2023-10-15
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Giannakas, Troussas, Krouska, Sgouropoulou, Voyiatzis (bb0050) 2021
Wei, Li (bb0160) 2015; 93
Vinuesa, Brunton (bb0150) 2021
Ge, Chen, Xu, Cui (bb0040) 2021; 31
Inthavong (bb0065) 2020; 2 (2)
Yan, Fang, Li, Tao, Yan, Tu (bb0180) 2022
Zhou, Ooka (bb0215) 2020; 13
Zhou, Ooka (bb0220) 2021; 230
Tu, Yeoh, Liu (bb0140) 2018
Calzolari, Liu (bb0015) 2021; 206
Warey, Kaushik, Khalighi, Cruse, Venkatesan (bb0155) 2020; 148
Shih, Liou, Shabbir, Yang, Zhu (bb0125) 1995; 24
Yeoh, Tu (bb0185) 2019
Yu, Haghighat, Fung, Yoshino (bb0190) 2010; 42
Peng, Chen, Liu (bb0115) 2020; 746
Menter (bb0105) 1994; 32
Brunton, Noack, Koumoutsakos (bb0010) 2020; 52
Yan, Li, Tu (bb0175) 2019; 148
Zhao, Yang, Yang, Liu (bb0205) 2008; 43
Alfonsi (bb0005) 2009; 62
Vachhani, Kleinstreuer (bb0145) 2021; 128
Kumari, Toshniwal (bb0070) 2021; 279
Zhang, You (bb0200) 2014; 82
Li, Yan, Zhao, Tu, Liu, Li, Wang (bb0075) 2018; 27
Li, Shang, Yan, Yang, Tu (bb0080) 2018; 128
Chen (bb0025) 1995; 28
Zhiyin (bb0210) 2015; 28
Zhang, You (bb0195) 2013; 23
Liu, Wang, Liu, Zeng, Liu, Alsaadi (bb0100) 2017; 234
Chen, Guestrin (bb0030) 2016
Sohrabi, Alsafi, O’Neill, Khan, Kerwan, Al-Jabir, Iosifidis, Agha (bb0130) 2020; 76
Rowley, Dawson (bb0120) 2017; 49
Chao, Wan, Morawska, Johnson, Ristovski, Hargreaves, Mengersen, Corbett, Li, Xie, Katoshevski (bb0020) 2009; 40
Goodfellow, Bengio, Courville (bb0055) 2016
Ge, Zhao, Choi, Deng, Feng, Cui (bb0045) 2022; 831
Yan, Li, Yang, Tu (bb0165) 2016; 127
Hornik, Stinchcombe, White (bb0060) 1989; 2
Yan, Li, Shang, Tu (bb0170) 2017; 121
Li, Dai, Chen, Lin (bb0085) 2019; 12
Li, Leong, Xu, Ge, Kang, Lim (bb0095) 2020; 32
Chen, Yu, Lai (bb0035) 2006; 40
Nicas, Nazaroff, Hubbard (bb0110) 2005; 2
Li, Qin, He, Paoli (bb0090) 2020; 7
Stavrakakis, Zervas, Sarimveis, Markatos (bb0135) 2012; 36
Rowley (10.1016/j.scitotenv.2023.164968_bb0120) 2017; 49
Yu (10.1016/j.scitotenv.2023.164968_bb0190) 2010; 42
Li (10.1016/j.scitotenv.2023.164968_bb0095) 2020; 32
Zhang (10.1016/j.scitotenv.2023.164968_bb0195) 2013; 23
Menter (10.1016/j.scitotenv.2023.164968_bb0105) 1994; 32
Kumari (10.1016/j.scitotenv.2023.164968_bb0070) 2021; 279
Tu (10.1016/j.scitotenv.2023.164968_bb0140) 2018
Ge (10.1016/j.scitotenv.2023.164968_bb0040) 2021; 31
Peng (10.1016/j.scitotenv.2023.164968_bb0115) 2020; 746
Goodfellow (10.1016/j.scitotenv.2023.164968_bb0055) 2016
Sohrabi (10.1016/j.scitotenv.2023.164968_bb0130) 2020; 76
Zhou (10.1016/j.scitotenv.2023.164968_bb0220) 2021; 230
Chao (10.1016/j.scitotenv.2023.164968_bb0020) 2009; 40
Chen (10.1016/j.scitotenv.2023.164968_bb0035) 2006; 40
Li (10.1016/j.scitotenv.2023.164968_bb0090) 2020; 7
Shih (10.1016/j.scitotenv.2023.164968_bb0125) 1995; 24
Brunton (10.1016/j.scitotenv.2023.164968_bb0010) 2020; 52
Calzolari (10.1016/j.scitotenv.2023.164968_bb0015) 2021; 206
Ge (10.1016/j.scitotenv.2023.164968_bb0045) 2022; 831
Li (10.1016/j.scitotenv.2023.164968_bb0075) 2018; 27
Yan (10.1016/j.scitotenv.2023.164968_bb0180) 2022
Giannakas (10.1016/j.scitotenv.2023.164968_bb0050) 2021
Li (10.1016/j.scitotenv.2023.164968_bb0085) 2019; 12
Zhang (10.1016/j.scitotenv.2023.164968_bb0200) 2014; 82
Chen (10.1016/j.scitotenv.2023.164968_bb0025) 1995; 28
Chen (10.1016/j.scitotenv.2023.164968_bb0030) 2016
Vinuesa (10.1016/j.scitotenv.2023.164968_bb0150) 2021
Inthavong (10.1016/j.scitotenv.2023.164968_bb0065) 2020; 2 (2)
Warey (10.1016/j.scitotenv.2023.164968_bb0155) 2020; 148
Zhiyin (10.1016/j.scitotenv.2023.164968_bb0210) 2015; 28
Vachhani (10.1016/j.scitotenv.2023.164968_bb0145) 2021; 128
Zhao (10.1016/j.scitotenv.2023.164968_bb0205) 2008; 43
Yeoh (10.1016/j.scitotenv.2023.164968_bb0185) 2019
Liu (10.1016/j.scitotenv.2023.164968_bb0100) 2017; 234
Nicas (10.1016/j.scitotenv.2023.164968_bb0110) 2005; 2
Li (10.1016/j.scitotenv.2023.164968_bb0080) 2018; 128
Alfonsi (10.1016/j.scitotenv.2023.164968_bb0005) 2009; 62
Yan (10.1016/j.scitotenv.2023.164968_bb0165) 2016; 127
Stavrakakis (10.1016/j.scitotenv.2023.164968_bb0135) 2012; 36
Wei (10.1016/j.scitotenv.2023.164968_bb0160) 2015; 93
Zhou (10.1016/j.scitotenv.2023.164968_bb0215) 2020; 13
Hornik (10.1016/j.scitotenv.2023.164968_bb0060) 1989; 2
Yan (10.1016/j.scitotenv.2023.164968_bb0170) 2017; 121
Yan (10.1016/j.scitotenv.2023.164968_bb0175) 2019; 148
References_xml – volume: 12
  start-page: 665
  year: 2019
  end-page: 681
  ident: bb0085
  article-title: An ann-based fast building energy consumption prediction method for complex architectural form at the early design stage
  publication-title: Build. Simul.
– volume: 127
  start-page: 611
  year: 2016
  end-page: 626
  ident: bb0165
  article-title: Evaluation of manikin simplification methods for cfd simulations in occupied indoor environments
  publication-title: Energy Build.
– volume: 40
  start-page: 357
  year: 2006
  end-page: 367
  ident: bb0035
  article-title: Modeling particle distribution and deposition in indoor environments with a new drift–flux model
  publication-title: Atmos. Environ.
– volume: 148
  start-page: 96
  year: 2019
  end-page: 106
  ident: bb0175
  article-title: Thermal effect of human body on cough droplets evaporation and dispersion in an enclosed space
  publication-title: Build. Environ.
– volume: 82
  start-page: 20
  year: 2014
  end-page: 26
  ident: bb0200
  article-title: A simulation-based inverse design of preset aircraft cabin environment
  publication-title: Build. Environ.
– volume: 128
  year: 2021
  ident: bb0145
  article-title: Comparison of micron- and nano-particle transport in the human nasal cavity with a focus on the olfactory region
  publication-title: Comput. Biol. Med.
– volume: 206
  year: 2021
  ident: bb0015
  article-title: Deep learning to replace, improve, or aid cfd analysis in built environment applications: a review
  publication-title: Build. Environ.
– volume: 2 (2)
  start-page: 59
  year: 2020
  end-page: 78
  ident: bb0065
  article-title: From indoor exposure to inhaled particle deposition: a multiphase journey of inhaled particles
  publication-title: Experimental and Computational Multiphase Flow
– volume: 62
  year: 2009
  ident: bb0005
  article-title: Reynolds-averaged navier–stokes equations for turbulence modeling
  publication-title: Appl. Mech. Rev.
– volume: 279
  year: 2021
  ident: bb0070
  article-title: Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance
  publication-title: J. Clean. Prod.
– volume: 31
  start-page: 1271
  year: 2021
  end-page: 1286
  ident: bb0040
  article-title: Large-eddy simulation of droplet-laden cough jets with a realistic manikin model
  publication-title: Indoor Built Environ.
– volume: 27
  start-page: 606
  year: 2018
  end-page: 621
  ident: bb0075
  article-title: Assessment of turbulence models and air supply opening models for cfd modelling of airflow and gaseous contaminant distributions in aircraft cabins
  publication-title: Indoor Built Environ.
– year: 2022
  ident: bb0180
  article-title: Evaporation flow characteristics of respiratory droplets: dynamic property under multifarious ambient conditions
  publication-title: Build. Environ.
– volume: 49
  start-page: 387
  year: 2017
  end-page: 417
  ident: bb0120
  article-title: Model reduction for flow analysis and control
  publication-title: Annu. Rev. Fluid Mech.
– volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  ident: bb0105
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
– volume: 24
  start-page: 227
  year: 1995
  end-page: 238
  ident: bb0125
  article-title: A new k- eddy viscosity model for high Reynolds number turbulent flows
  publication-title: Comput. Fluids
– volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  ident: bb0010
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 128
  start-page: 68
  year: 2018
  end-page: 76
  ident: bb0080
  article-title: Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component eulerian-lagrangian approach
  publication-title: Build. Environ.
– volume: 28
  start-page: 11
  year: 2015
  end-page: 24
  ident: bb0210
  article-title: Large-eddy simulation: past, present and the future
  publication-title: Chin. J. Aeronaut.
– start-page: 343
  year: 2021
  end-page: 349
  ident: bb0050
  article-title: XGBoost and Deep Neural Network Comparison: The Case of Teams’ Performance, Lecture Notes in Computer Science
– volume: 831
  year: 2022
  ident: bb0045
  article-title: Effects of face shield on an emitter during a cough process: a large-eddy simulation study
  publication-title: Sci. Total Environ.
– year: 2019
  ident: bb0185
  article-title: Computational Techniques for Multiphase Flows
– volume: 43
  start-page: 388
  year: 2008
  end-page: 397
  ident: bb0205
  article-title: Particle dispersion and deposition in ventilated rooms: testing and evaluation of different eulerian and lagrangian models
  publication-title: Build. Environ.
– volume: 121
  start-page: 79
  year: 2017
  end-page: 92
  ident: bb0170
  article-title: Evaluation of airborne disease infection risks in an airliner cabin using the lagrangian-based wells-riley approach
  publication-title: Build. Environ.
– year: 2018
  ident: bb0140
  article-title: Computational Fluid Dynamics: A Practical Approach
– volume: 42
  start-page: 1637
  year: 2010
  end-page: 1646
  ident: bb0190
  article-title: A decision tree method for building energy demand modeling
  publication-title: Energy Build.
– volume: 746
  year: 2020
  ident: bb0115
  article-title: The role of computational fluid dynamics tools on investigation of pathogen transmission: prevention and control
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: 36
  year: 2020
  ident: bb0090
  article-title: Fast evaluation of aircraft icing severity using machine learning based on xgboost
  publication-title: Aerospace
– volume: 28
  start-page: 353
  year: 1995
  end-page: 369
  ident: bb0025
  article-title: Comparison of different
  publication-title: Numer. Heat Transf. B Fundam.
– volume: 13
  start-page: 1409
  year: 2020
  end-page: 1423
  ident: bb0215
  article-title: Comparison of different deep neural network architectures for isothermal indoor airflow prediction
  publication-title: Build. Simul.
– volume: 230
  year: 2021
  ident: bb0220
  article-title: Influence of data preprocessing on neural network performance for reproducing cfd simulations of non-isothermal indoor airflow distribution
  publication-title: Energy Build.
– volume: 23
  start-page: 1187
  year: 2013
  end-page: 1195
  ident: bb0195
  article-title: Applying neural networks to solve the inverse problem of indoor environment
  publication-title: Indoor Built Environ.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bb0060
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– volume: 36
  start-page: 193
  year: 2012
  end-page: 211
  ident: bb0135
  article-title: Optimization of window-openings design for thermal comfort in naturally ventilated buildings
  publication-title: Appl. Math. Model.
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: bb0100
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– year: 2016
  ident: bb0055
  article-title: Deep learning, adaptive computation and machine learning
– volume: 93
  start-page: 86
  year: 2015
  end-page: 96
  ident: bb0160
  article-title: Enhanced spread of expiratory droplets by turbulence in a cough jet
  publication-title: Build. Environ.
– volume: 32
  year: 2020
  ident: bb0095
  article-title: Dispersion of evaporating cough droplets in tropical outdoor environment
  publication-title: Phys. Fluids
– volume: 40
  start-page: 122
  year: 2009
  end-page: 133
  ident: bb0020
  article-title: Characterization of expiration air jets and droplet size distributions immediately at the mouth opening
  publication-title: J. Aerosol Sci.
– volume: 148
  year: 2020
  ident: bb0155
  article-title: Data-driven prediction of vehicle cabin thermal comfort: using machine learning and high-fidelity simulation results
  publication-title: Int. J. Heat Mass Transf.
– volume: 2
  start-page: 143
  year: 2005
  end-page: 154
  ident: bb0110
  article-title: Toward understanding the risk of secondary airborne infection: emission of respirable pathogens
  publication-title: J. Occup. Environ. Hyg.
– volume: 76
  start-page: 71
  year: 2020
  end-page: 76
  ident: bb0130
  article-title: World health organization declares global emergency: a review of the 2019 novel coronavirus (covid-19)
  publication-title: Int. J. Surg.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bb0030
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2021
  ident: bb0150
  article-title: The Potential of Machine Learning to Enhance Computational Fluid Dynamics
– volume: 27
  start-page: 606
  issue: 5
  year: 2018
  ident: 10.1016/j.scitotenv.2023.164968_bb0075
  article-title: Assessment of turbulence models and air supply opening models for cfd modelling of airflow and gaseous contaminant distributions in aircraft cabins
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X16688049
– start-page: 343
  year: 2021
  ident: 10.1016/j.scitotenv.2023.164968_bb0050
– volume: 32
  issue: 11
  year: 2020
  ident: 10.1016/j.scitotenv.2023.164968_bb0095
  article-title: Dispersion of evaporating cough droplets in tropical outdoor environment
  publication-title: Phys. Fluids
  doi: 10.1063/5.0026360
– volume: 36
  start-page: 193
  issue: 1
  year: 2012
  ident: 10.1016/j.scitotenv.2023.164968_bb0135
  article-title: Optimization of window-openings design for thermal comfort in naturally ventilated buildings
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.05.052
– year: 2019
  ident: 10.1016/j.scitotenv.2023.164968_bb0185
– volume: 2
  start-page: 143
  issue: 3
  year: 2005
  ident: 10.1016/j.scitotenv.2023.164968_bb0110
  article-title: Toward understanding the risk of secondary airborne infection: emission of respirable pathogens
  publication-title: J. Occup. Environ. Hyg.
  doi: 10.1080/15459620590918466
– volume: 40
  start-page: 357
  issue: 2
  year: 2006
  ident: 10.1016/j.scitotenv.2023.164968_bb0035
  article-title: Modeling particle distribution and deposition in indoor environments with a new drift–flux model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.09.044
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.scitotenv.2023.164968_bb0060
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 148
  year: 2020
  ident: 10.1016/j.scitotenv.2023.164968_bb0155
  article-title: Data-driven prediction of vehicle cabin thermal comfort: using machine learning and high-fidelity simulation results
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.119083
– year: 2016
  ident: 10.1016/j.scitotenv.2023.164968_bb0055
– volume: 279
  year: 2021
  ident: 10.1016/j.scitotenv.2023.164968_bb0070
  article-title: Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123285
– volume: 93
  start-page: 86
  year: 2015
  ident: 10.1016/j.scitotenv.2023.164968_bb0160
  article-title: Enhanced spread of expiratory droplets by turbulence in a cough jet
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.06.018
– volume: 23
  start-page: 1187
  issue: 8
  year: 2013
  ident: 10.1016/j.scitotenv.2023.164968_bb0195
  article-title: Applying neural networks to solve the inverse problem of indoor environment
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X13499596
– volume: 831
  year: 2022
  ident: 10.1016/j.scitotenv.2023.164968_bb0045
  article-title: Effects of face shield on an emitter during a cough process: a large-eddy simulation study
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.154856
– volume: 13
  start-page: 1409
  issue: 6
  year: 2020
  ident: 10.1016/j.scitotenv.2023.164968_bb0215
  article-title: Comparison of different deep neural network architectures for isothermal indoor airflow prediction
  publication-title: Build. Simul.
  doi: 10.1007/s12273-020-0664-8
– volume: 62
  issue: 4
  year: 2009
  ident: 10.1016/j.scitotenv.2023.164968_bb0005
  article-title: Reynolds-averaged navier–stokes equations for turbulence modeling
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.3124648
– start-page: 785
  year: 2016
  ident: 10.1016/j.scitotenv.2023.164968_bb0030
  article-title: Xgboost: a scalable tree boosting system
– volume: 148
  start-page: 96
  year: 2019
  ident: 10.1016/j.scitotenv.2023.164968_bb0175
  article-title: Thermal effect of human body on cough droplets evaporation and dispersion in an enclosed space
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.10.039
– volume: 76
  start-page: 71
  year: 2020
  ident: 10.1016/j.scitotenv.2023.164968_bb0130
  article-title: World health organization declares global emergency: a review of the 2019 novel coronavirus (covid-19)
  publication-title: Int. J. Surg.
  doi: 10.1016/j.ijsu.2020.02.034
– volume: 128
  start-page: 68
  year: 2018
  ident: 10.1016/j.scitotenv.2023.164968_bb0080
  article-title: Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component eulerian-lagrangian approach
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.11.025
– volume: 121
  start-page: 79
  year: 2017
  ident: 10.1016/j.scitotenv.2023.164968_bb0170
  article-title: Evaluation of airborne disease infection risks in an airliner cabin using the lagrangian-based wells-riley approach
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.05.013
– volume: 52
  start-page: 477
  issue: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2023.164968_bb0010
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 49
  start-page: 387
  issue: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2023.164968_bb0120
  article-title: Model reduction for flow analysis and control
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010816-060042
– volume: 12
  start-page: 665
  issue: 4
  year: 2019
  ident: 10.1016/j.scitotenv.2023.164968_bb0085
  article-title: An ann-based fast building energy consumption prediction method for complex architectural form at the early design stage
  publication-title: Build. Simul.
  doi: 10.1007/s12273-019-0538-0
– volume: 31
  start-page: 1271
  issue: 5
  year: 2021
  ident: 10.1016/j.scitotenv.2023.164968_bb0040
  article-title: Large-eddy simulation of droplet-laden cough jets with a realistic manikin model
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X211032247
– volume: 40
  start-page: 122
  issue: 2
  year: 2009
  ident: 10.1016/j.scitotenv.2023.164968_bb0020
  article-title: Characterization of expiration air jets and droplet size distributions immediately at the mouth opening
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2008.10.003
– volume: 28
  start-page: 353
  issue: 3
  year: 1995
  ident: 10.1016/j.scitotenv.2023.164968_bb0025
  article-title: Comparison of different k−ε models for indoor air flow computations
  publication-title: Numer. Heat Transf. B Fundam.
  doi: 10.1080/10407799508928838
– volume: 746
  year: 2020
  ident: 10.1016/j.scitotenv.2023.164968_bb0115
  article-title: The role of computational fluid dynamics tools on investigation of pathogen transmission: prevention and control
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142090
– volume: 2 (2)
  start-page: 59
  year: 2020
  ident: 10.1016/j.scitotenv.2023.164968_bb0065
  article-title: From indoor exposure to inhaled particle deposition: a multiphase journey of inhaled particles
– volume: 42
  start-page: 1637
  issue: 10
  year: 2010
  ident: 10.1016/j.scitotenv.2023.164968_bb0190
  article-title: A decision tree method for building energy demand modeling
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.04.006
– volume: 127
  start-page: 611
  year: 2016
  ident: 10.1016/j.scitotenv.2023.164968_bb0165
  article-title: Evaluation of manikin simplification methods for cfd simulations in occupied indoor environments
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.06.030
– volume: 82
  start-page: 20
  year: 2014
  ident: 10.1016/j.scitotenv.2023.164968_bb0200
  article-title: A simulation-based inverse design of preset aircraft cabin environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.08.002
– volume: 128
  year: 2021
  ident: 10.1016/j.scitotenv.2023.164968_bb0145
  article-title: Comparison of micron- and nano-particle transport in the human nasal cavity with a focus on the olfactory region
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104103
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.scitotenv.2023.164968_bb0100
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 28
  start-page: 11
  issue: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2023.164968_bb0210
  article-title: Large-eddy simulation: past, present and the future
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2014.12.007
– volume: 24
  start-page: 227
  issue: 3
  year: 1995
  ident: 10.1016/j.scitotenv.2023.164968_bb0125
  article-title: A new k- eddy viscosity model for high Reynolds number turbulent flows
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(94)00032-T
– year: 2022
  ident: 10.1016/j.scitotenv.2023.164968_bb0180
  article-title: Evaporation flow characteristics of respiratory droplets: dynamic property under multifarious ambient conditions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109272
– volume: 230
  year: 2021
  ident: 10.1016/j.scitotenv.2023.164968_bb0220
  article-title: Influence of data preprocessing on neural network performance for reproducing cfd simulations of non-isothermal indoor airflow distribution
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110525
– volume: 206
  year: 2021
  ident: 10.1016/j.scitotenv.2023.164968_bb0015
  article-title: Deep learning to replace, improve, or aid cfd analysis in built environment applications: a review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108315
– year: 2021
  ident: 10.1016/j.scitotenv.2023.164968_bb0150
– volume: 43
  start-page: 388
  issue: 4
  year: 2008
  ident: 10.1016/j.scitotenv.2023.164968_bb0205
  article-title: Particle dispersion and deposition in ventilated rooms: testing and evaluation of different eulerian and lagrangian models
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2007.01.005
– volume: 32
  start-page: 1598
  issue: 8
  year: 1994
  ident: 10.1016/j.scitotenv.2023.164968_bb0105
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
  doi: 10.2514/3.12149
– year: 2018
  ident: 10.1016/j.scitotenv.2023.164968_bb0140
– volume: 7
  start-page: 36
  issue: 4
  year: 2020
  ident: 10.1016/j.scitotenv.2023.164968_bb0090
  article-title: Fast evaluation of aircraft icing severity using machine learning based on xgboost
  publication-title: Aerospace
  doi: 10.3390/aerospace7040036
SSID ssj0000781
Score 2.5081217
Snippet The applications of machine learning (ML) based approach are emerging as possible tools to accelerate CFD simulations. This study proposed a semi-surrogate...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 164968
SubjectTerms algorithms
CFD
data collection
droplets
Droplets evaporation
environment
evaporation
eXtreme gradient boosting (XGB)
humidity
prediction
Semi-surrogate model
Supervised machine learning algorithm
temperature
Title Semi-surrogate modelling of droplets evaporation process via XGBoost integrated CFD simulations
URI https://dx.doi.org/10.1016/j.scitotenv.2023.164968
https://www.ncbi.nlm.nih.gov/pubmed/37356762
https://www.proquest.com/docview/2829704571
https://www.proquest.com/docview/3040371335
Volume 895
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: ACRLP
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIKHN
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AKRWK
  dateStart: 19930115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLemISQkhKAwKB-Tkbimi-uPLNxGWSlU7ABM9GbZjiNlYk3VpJV22d_Oe7HTaRLTDpwiR7Zl-fl92e-9HyEfhCxTyz1LlM1VIpQxyTFozcQUWOnE20J28G3fz9TsXHxbyMUemfS5MBhWGWV_kOmdtI5_juJuHq2qCnN8YTqFqFlYho4tMINdZIhiMLq-CfPAYjbhlRkYG3rfivGCedsabNPtCFHER-A65Fhz9d8a6i4LtNNE06fkSTQh6UlY5TOy55cD8jCASl4NyMHpTe4adIvM2wzI43BFR0Pm0XOif_rLKmk263WNd2m0A8XB7HRal7RYY2R521C_Nat4TOgqZBXQbWXo4sunum5auqs3UdDJ9DNtqssICNa8IOfT01-TWRLxFhInUtEmJjMlZ1yZAow8WaROli71prTjUmZZapkTEhxCsHgEeG1jUzjneF4qbrhkTjJ-QPaX9dK_ItSOpc9kAducG3FsVe7B4bXG51YVPjdsSFS_x9rFYuSIifFH91FnF3pHHI3E0YE4Q5LuBq5CPY77h3zsiahvHS0NWuP-we97smtgPHxNMUtfbxqNT9AZGMQZu7sPBxHJ8RpADsnLcGZ2q-YZlwpU0ev_Wd4b8ghbqEyZfEv22_XGvwMrqbWHHRsckgcnX-ezM_zOf_ye_wXzhxVp
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH8aQwikCUFhUD6NxDVdXMfOwg3KSoFtFzapN8tOHCkTa6omrbQLfzvvxU6nSUw7cE1sy_Lz-_L7-AF8TGQZW-F4pGymokQZEx2i1oxMQZ1OnC1kB992cqpm58mPuZzvwKSvhaG0yiD7vUzvpHX4chBO82BZVVTji8spQs2iNnR8fg_uJ3Kckgc2-nOd50HdbHyYGTkbh99I8sKF2xqN082IYMRH6Dtk1HT13yrqNhO0U0XTJ_A42JDss9_mU9hxiwE88KiSVwPYP7ouXsNhgXubAez5NzrmS4-egf7lLquoWa9WNT2msQ4Vh8rTWV2yYkWp5W3D3MYswz1hS19WwDaVYfNvX-q6adm24UTBJtOvrKkuAyJY8xzOp0dnk1kUABeiPImTNjKpKQUXyhRo5ckizmWZx86UdlzKNI0tzxOJHiGaPAm6bWNT5HkuslIJIyTPJRf7sLuoF-4lMDuWLpUFHnNmkkOrMocerzUus6pwmeFDUP0Z6zx0IydQjN-6Tzu70FviaCKO9sQZQryduPQNOe6e8qknor5xtzSqjbsnf-jJrpHzKJxiFq5eN5pi0ClaxCm_fYxAGSnoHUAO4YW_M9tdi1RIhbro1f9s7z08nJ2dHOvj76c_X8Mj-kOalcs3sNuu1u4tmkytfdexxF-JVRVb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-surrogate+modelling+of+droplets+evaporation+process+via+XGBoost+integrated+CFD+simulations&rft.jtitle=The+Science+of+the+total+environment&rft.au=Yan%2C+Yihuan&rft.au=Li%2C+Xueren&rft.au=Sun%2C+Weijie&rft.au=Fang%2C+Xiang&rft.date=2023-10-15&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=895&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.164968&rft.externalDocID=S004896972303591X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon