Is the Corpus Ready for Machine Translation? A Case Study with Python to Pseudo-Code Corpus

The availability of data is the driving force behind most of the state-of-the-art techniques for machine translation tasks. Understandably, this availability of data motivates researchers to propose new techniques and claim about the superiority of their techniques over the existing ones by using su...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering Vol. 48; no. 2; pp. 1845 - 1858
Main Authors Rai, Sawan, Belwal, Ramesh Chandra, Gupta, Atul
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-567X
1319-8025
2191-4281
2191-4281
DOI10.1007/s13369-022-07049-0

Cover

Abstract The availability of data is the driving force behind most of the state-of-the-art techniques for machine translation tasks. Understandably, this availability of data motivates researchers to propose new techniques and claim about the superiority of their techniques over the existing ones by using suitable evaluation measures. However, the performance of underlying learning algorithms can be greatly influenced by the correctness and the consistency of the corpus. We present our investigations for the relevance of a publicly available python to pseudo-code parallel corpus for automated documentation task, and the studies performed using this corpus. We found that the corpus had many visible issues like overlapping of instances, inconsistency in translation styles, incompleteness, and misspelled words. We show that these discrepancies can significantly influence the performance of the learning algorithms to the extent that they could have caused previous studies to draw incorrect conclusions. We performed our experimental study using statistical machine translation and neural machine translation models. We have recorded a significant difference ( ∼  10% on BLEU score) in the models’ performance after removing the issues from the corpus.
AbstractList The availability of data is the driving force behind most of the state-of-the-art techniques for machine translation tasks. Understandably, this availability of data motivates researchers to propose new techniques and claim about the superiority of their techniques over the existing ones by using suitable evaluation measures. However, the performance of underlying learning algorithms can be greatly influenced by the correctness and the consistency of the corpus. We present our investigations for the relevance of a publicly available python to pseudo-code parallel corpus for automated documentation task, and the studies performed using this corpus. We found that the corpus had many visible issues like overlapping of instances, inconsistency in translation styles, incompleteness, and misspelled words. We show that these discrepancies can significantly influence the performance of the learning algorithms to the extent that they could have caused previous studies to draw incorrect conclusions. We performed our experimental study using statistical machine translation and neural machine translation models. We have recorded a significant difference (∼ 10% on BLEU score) in the models’ performance after removing the issues from the corpus.
The availability of data is the driving force behind most of the state-of-the-art techniques for machine translation tasks. Understandably, this availability of data motivates researchers to propose new techniques and claim about the superiority of their techniques over the existing ones by using suitable evaluation measures. However, the performance of underlying learning algorithms can be greatly influenced by the correctness and the consistency of the corpus. We present our investigations for the relevance of a publicly available python to pseudo-code parallel corpus for automated documentation task, and the studies performed using this corpus. We found that the corpus had many visible issues like overlapping of instances, inconsistency in translation styles, incompleteness, and misspelled words. We show that these discrepancies can significantly influence the performance of the learning algorithms to the extent that they could have caused previous studies to draw incorrect conclusions. We performed our experimental study using statistical machine translation and neural machine translation models. We have recorded a significant difference ( $$\sim $$ ∼ 10% on BLEU score) in the models’ performance after removing the issues from the corpus.
The availability of data is the driving force behind most of the state-of-the-art techniques for machine translation tasks. Understandably, this availability of data motivates researchers to propose new techniques and claim about the superiority of their techniques over the existing ones by using suitable evaluation measures. However, the performance of underlying learning algorithms can be greatly influenced by the correctness and the consistency of the corpus. We present our investigations for the relevance of a publicly available python to pseudo-code parallel corpus for automated documentation task, and the studies performed using this corpus. We found that the corpus had many visible issues like overlapping of instances, inconsistency in translation styles, incompleteness, and misspelled words. We show that these discrepancies can significantly influence the performance of the learning algorithms to the extent that they could have caused previous studies to draw incorrect conclusions. We performed our experimental study using statistical machine translation and neural machine translation models. We have recorded a significant difference (  10% on BLEU score) in the models' performance after removing the issues from the corpus.
The availability of data is the driving force behind most of the state-of-the-art techniques for machine translation tasks. Understandably, this availability of data motivates researchers to propose new techniques and claim about the superiority of their techniques over the existing ones by using suitable evaluation measures. However, the performance of underlying learning algorithms can be greatly influenced by the correctness and the consistency of the corpus. We present our investigations for the relevance of a publicly available python to pseudo-code parallel corpus for automated documentation task, and the studies performed using this corpus. We found that the corpus had many visible issues like overlapping of instances, inconsistency in translation styles, incompleteness, and misspelled words. We show that these discrepancies can significantly influence the performance of the learning algorithms to the extent that they could have caused previous studies to draw incorrect conclusions. We performed our experimental study using statistical machine translation and neural machine translation models. We have recorded a significant difference ( ∼  10% on BLEU score) in the models’ performance after removing the issues from the corpus.
Author Rai, Sawan
Belwal, Ramesh Chandra
Gupta, Atul
Author_xml – sequence: 1
  givenname: Sawan
  orcidid: 0000-0002-2590-1097
  surname: Rai
  fullname: Rai, Sawan
  email: sawanrai@iiitdmj.ac.in
  organization: PDPM Indian Institute of Information Technology Design and Manufacturing
– sequence: 2
  givenname: Ramesh Chandra
  surname: Belwal
  fullname: Belwal, Ramesh Chandra
  organization: PDPM Indian Institute of Information Technology Design and Manufacturing
– sequence: 3
  givenname: Atul
  surname: Gupta
  fullname: Gupta, Atul
  organization: PDPM Indian Institute of Information Technology Design and Manufacturing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35874184$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1rFTEYhYNUbK39Ay4k4Hpqvj82Shm0FioWrSC4CJlJphOZJtckY7n_3um9t1ZdFFd5IeecN-fJU7AXU_QAPMfoGCMkXxVMqdANIqRBErFlegQOCNa4YUThvc1MGy7k131wVEroEFNUc4zpE7BPuZIMK3YAvp0VWEcP25RXc4GfvHVrOKQMP9h-DNHDy2xjmWwNKb6BJ7C1xcPPdV5UN6GO8GJdxxRhTfCi-Nmlpk3uLu0ZeDzYqfij3XkIvrx7e9m-b84_np61J-dNzxCrjRKd5KofuCWaCWeZVghTTK0gHPdKC6-5k1j4XiIhOupc1wnpOkoHzr0a6CGg29w5ruz6xk6TWeVwbfPaYGRuaZktLbPQMhtaBi2u11vXau6uvet9rNneO5MN5u-bGEZzlX4aTbTA5Dbg5S4gpx-zL9V8T3OOS1NDpGRcIEzkonrx55rf-XdfsAjUVtDnVEr2g-lD3fBetobp4QrkH-t_9d7RKos4Xvl8_-wHXL8AYYK6pQ
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3302695
crossref_primary_10_1016_j_engappai_2023_107713
Cites_doi 10.1515/CLLT.2008.010
10.1145/3468264.3468611
10.3115/v1/W14-4012
10.1109/APSEC.2018.00101
10.21236/ADA460212
10.1162/neco.1989.1.2.270
10.1109/ASWEC.2018.00011
10.18653/v1/D13-1176
10.1109/ase.2015.36
10.1162/neco.1997.9.8.1735
10.1017/CBO9780511815829
10.1145/3340531.3412048
10.1145/1380584.1380586
10.1109/SERVICES-I.2009.56
10.1109/ICSE.2019.00087
10.1145/2487575.2487600
10.3115/v1/D14-1179
10.1007/978-3-319-18032-8_20
10.1016/0885-064X(88)90021-0
10.3115/1073083.1073135
10.1109/TCSS.2019.2956481
10.4324/9780203856949-35
10.1145/3488560.3502182
10.18653/v1/W17-3204
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2022
King Fahd University of Petroleum & Minerals 2022.
Copyright Springer Nature B.V. 2023
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2022
– notice: King Fahd University of Petroleum & Minerals 2022.
– notice: Copyright Springer Nature B.V. 2023
DBID AAYXX
CITATION
NPM
5PM
ADTOC
UNPAY
DOI 10.1007/s13369-022-07049-0
DatabaseName CrossRef
PubMed
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
DatabaseTitleList

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 1858
ExternalDocumentID 10.1007/s13369-022-07049-0
PMC9296120
35874184
10_1007_s13369_022_07049_0
Genre Journal Article
GroupedDBID 0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AAPKM
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACSTC
ACUHS
ACZOJ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
ATHPR
AXYYD
AYFIA
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
~8M
AAYXX
CITATION
NPM
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c404t-86b758cf5a2946da49801313a6251c896e95d716ec7066b3ddbb67db33f55e8f3
IEDL.DBID UNPAY
ISSN 2193-567X
1319-8025
2191-4281
IngestDate Sun Oct 26 02:54:30 EDT 2025
Tue Sep 30 16:36:33 EDT 2025
Mon Jun 30 09:08:21 EDT 2025
Thu Jan 02 22:55:01 EST 2025
Wed Oct 01 06:35:11 EDT 2025
Thu Apr 24 23:07:03 EDT 2025
Mon Jul 21 06:07:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Parallel corpus
Python code
Statistical machine translation
Pseudo-code
Neural machine translation
Language English
License King Fahd University of Petroleum & Minerals 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-86b758cf5a2946da49801313a6251c896e95d716ec7066b3ddbb67db33f55e8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Report-3
ObjectType-Case Study-4
ORCID 0000-0002-2590-1097
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s13369-022-07049-0.pdf
PMID 35874184
PQID 2774560127
PQPubID 2044268
PageCount 14
ParticipantIDs unpaywall_primary_10_1007_s13369_022_07049_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9296120
proquest_journals_2774560127
pubmed_primary_35874184
crossref_citationtrail_10_1007_s13369_022_07049_0
crossref_primary_10_1007_s13369_022_07049_0
springer_journals_10_1007_s13369_022_07049_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering
PublicationTitleAbbrev Arab J Sci Eng
PublicationTitleAlternate Arab J Sci Eng
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References 7049_CR31
7049_CR10
7049_CR32
7049_CR7
7049_CR6
7049_CR5
7049_CR3
7049_CR2
7049_CR1
7049_CR19
7049_CR17
7049_CR39
7049_CR18
7049_CR15
7049_CR37
RJ Williams (7049_CR38) 1989; 1
7049_CR13
7049_CR14
7049_CR36
7049_CR9
7049_CR11
7049_CR33
7049_CR8
7049_CR12
7049_CR34
7049_CR20
7049_CR21
H Voormann (7049_CR35) 2008; 4
7049_CR40
A Lopez (7049_CR25) 2008; 40
P Koehn (7049_CR22) 2009
S Hochreiter (7049_CR16) 1997; 9
7049_CR28
7049_CR29
7049_CR26
7049_CR27
7049_CR24
J An (7049_CR4) 2020; 7
FJ Pineda (7049_CR30) 1988; 4
7049_CR23
References_xml – ident: 7049_CR14
– volume: 4
  start-page: 235
  issue: 2
  year: 2008
  ident: 7049_CR35
  publication-title: Corpus Linguist. Linguist. Theory
  doi: 10.1515/CLLT.2008.010
– ident: 7049_CR8
  doi: 10.1145/3468264.3468611
– ident: 7049_CR9
  doi: 10.3115/v1/W14-4012
– ident: 7049_CR12
– ident: 7049_CR39
  doi: 10.1109/APSEC.2018.00101
– ident: 7049_CR15
  doi: 10.21236/ADA460212
– ident: 7049_CR26
– ident: 7049_CR3
– volume: 1
  start-page: 270
  issue: 2
  year: 1989
  ident: 7049_CR38
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.270
– ident: 7049_CR1
  doi: 10.1109/ASWEC.2018.00011
– ident: 7049_CR20
  doi: 10.18653/v1/D13-1176
– ident: 7049_CR28
  doi: 10.1109/ase.2015.36
– ident: 7049_CR34
– ident: 7049_CR7
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 7049_CR16
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 7049_CR17
– volume-title: Statistical Machine Translation
  year: 2009
  ident: 7049_CR22
  doi: 10.1017/CBO9780511815829
– ident: 7049_CR31
  doi: 10.1145/3340531.3412048
– ident: 7049_CR13
– ident: 7049_CR40
– volume: 40
  start-page: 8
  issue: 3
  year: 2008
  ident: 7049_CR25
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/1380584.1380586
– ident: 7049_CR36
  doi: 10.1109/SERVICES-I.2009.56
– ident: 7049_CR11
– ident: 7049_CR24
  doi: 10.1109/ICSE.2019.00087
– ident: 7049_CR5
  doi: 10.1145/2487575.2487600
– ident: 7049_CR10
  doi: 10.3115/v1/D14-1179
– ident: 7049_CR2
– ident: 7049_CR27
– ident: 7049_CR19
  doi: 10.1007/978-3-319-18032-8_20
– volume: 4
  start-page: 216
  issue: 3
  year: 1988
  ident: 7049_CR30
  publication-title: J. Complex.
  doi: 10.1016/0885-064X(88)90021-0
– ident: 7049_CR33
– ident: 7049_CR29
  doi: 10.3115/1073083.1073135
– volume: 7
  start-page: 84
  issue: 1
  year: 2020
  ident: 7049_CR4
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2019.2956481
– ident: 7049_CR6
– ident: 7049_CR21
  doi: 10.4324/9780203856949-35
– ident: 7049_CR32
  doi: 10.1145/3488560.3502182
– ident: 7049_CR18
– ident: 7049_CR37
– ident: 7049_CR23
  doi: 10.18653/v1/W17-3204
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.288574
Snippet The availability of data is the driving force behind most of the state-of-the-art techniques for machine translation tasks. Understandably, this availability...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1845
SubjectTerms Algorithms
Availability
Computer Engineering and Computer Science
Engineering
Humanities and Social Sciences
Machine learning
Machine translation
multidisciplinary
Research Article-Computer Engineering and Computer Science
Science
Title Is the Corpus Ready for Machine Translation? A Case Study with Python to Pseudo-Code Corpus
URI https://link.springer.com/article/10.1007/s13369-022-07049-0
https://www.ncbi.nlm.nih.gov/pubmed/35874184
https://www.proquest.com/docview/2774560127
https://pubmed.ncbi.nlm.nih.gov/PMC9296120
https://link.springer.com/content/pdf/10.1007/s13369-022-07049-0.pdf
UnpaywallVersion publishedVersion
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2191-4281
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0001916267
  issn: 2191-4281
  databaseCode: ABDBF
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2191-4281
  databaseCode: AFBBN
  dateStart: 20110101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: AGYKE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: U2A
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFLZm2gPMgUUsUxgqH7gx7jTxEvuEOh3KgNSqByoVcYjiJQJRpRVNhMqv5zlbKYNGIC6RpTje8ix_z_78PYRemsgHtLUB4TyNCNNuSBRVmhgllbERs9r4Df3pTFwv2PslXx6hq-YuTMl2b44kqzsNXqUpyy82Nr3YX3yjVCjimehgsgxSA3h9jLqCAyLvoO5iNh999HHlwB0hgLCDKk0JF9Gyvjvz54IO16cboPMmd7I9QD1Bd4psk-y-J6vVL2vU5D5yTe8qasrXQZHrgfnxm_Dj_3b_AbpXg1g8qqzuITpy2SP06d0WA5rEXhu52GLPzt9hgMR4WvI1HS6XxYp69xqP8BjWT-xpjDvsN4PxfOdlDHC-xvOtK-yajNe2Ke0xWkzefBhfkzp0AzFsyHIihQZHxKQ8CRUTNmFKemEfmoC7FRiphFPcgqvmTASYR1NrtRaR1ZSmnDuZ0ieok60zd4pwmirBNXdBSiUzUibSMh0mVEijreash4Lmh8Wm1jX34TVW8V6R2Q9XDMMVl8MVD3voVfvNplL1uDX3WWMHcT3Dt3EIuNl7s2HUQ08rk2iLolx6USBoWnRgLG0Gr-l9-Cb78rnU9ga0CpgTqjxvrGBf5W0tPG9N7y869Ozfsj9Hd0OAdhVX_Qx18m-FewFQLNd91B1dXl1O-uj47TKA52w-7dez7yeonCtH
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JbxMxFH4q6QE4sIgtUJAP3KjTzHgZ-4SiQFWQWuVApCAOo_EyAhFNomZGVfj1PM8WQlEF4mbJHm_zLH_P_t5ngNc2CQ_auogKkSeUGz-mmmlDrVbauoQ7Y8OB_vmFPJvzjwuxOIB3XSxMzXbvriSbmIag0lSUJ2uXn-wC3xiTmgYmOposx9QIs2_BoRSIyAdwOL-YTT6Hd-XQHaGIsKMmzaiQyaKNnflzRfv70zXQeZ072V-g3oXbVbHOtlfZcvnLHnV6H3w3uoaa8n1UlWZkf_wm_Pi_w38A91oQSyaN1T2EA188gi8fNgTRJAnayNWGBHb-liAkJuc1X9OTeltsqHdvyYRMcf8kgca4JeEwmMy2QcaAlCsy2_jKreh05braHsP89P2n6Rltn26glo95SZU06IjYXGSx5tJlXKsg7MMydLciq7T0Wjh01bxNEPMY5pwxMnGGsVwIr3L2BAbFqvDPgOS5lsIIH-VMcatUphw3ccakssYZwYcQdT8sta2ueXheY5nuFJnDdKU4XWk9Xel4CG_6b9aNqseNpY86O0jbFb5JY8TNwZuNkyE8bUyir4oJFUSBsGvJnrH0BYKm935O8e1rre2NaBUxJzZ53FnBrsmbenjcm95fDOj5vxV_AXdihHYNV_0IBuVl5V8iFCvNq3al_QRw2yfY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+the+Corpus+Ready+for+Machine+Translation%3F+A+Case+Study+with+Python+to+Pseudo-Code+Corpus&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.date=2023-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=48&rft.issue=2&rft.spage=1845&rft.epage=1858&rft_id=info:doi/10.1007%2Fs13369-022-07049-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon