Transcriptome analysis expands the potential roles of quorum sensing in biodegradation and physiological responses to microcystin
Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent g...
Saved in:
Published in | The Science of the total environment Vol. 771; p. 145437 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2021.145437 |
Cover
Abstract | Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs.
[Display omitted]
•Quorum sensing (QS) is a global gene regulatory system in microcystin degradation.•QS affects critical metabolism pathways during microcystin degradation.•QS-regulated behaviors are linked to biodegradation or responses to microcystin.•Expression of key genes in phenylacetic acid catabolism is controlled by QS. |
---|---|
AbstractList | Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs. Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs. [Display omitted] •Quorum sensing (QS) is a global gene regulatory system in microcystin degradation.•QS affects critical metabolism pathways during microcystin degradation.•QS-regulated behaviors are linked to biodegradation or responses to microcystin.•Expression of key genes in phenylacetic acid catabolism is controlled by QS. Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs.Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs. |
ArticleNumber | 145437 |
Author | Zeng, Yan-Hua Du, Xiao-Peng Zhou, Jin Cheng, Ke-Ke Cai, Zhong-Hua Zhu, Jian-Ming Wang, Yan |
Author_xml | – sequence: 1 givenname: Yan-Hua surname: Zeng fullname: Zeng, Yan-Hua organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China – sequence: 2 givenname: Ke-Ke surname: Cheng fullname: Cheng, Ke-Ke organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China – sequence: 3 givenname: Zhong-Hua surname: Cai fullname: Cai, Zhong-Hua organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China – sequence: 4 givenname: Jian-Ming surname: Zhu fullname: Zhu, Jian-Ming organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China – sequence: 5 givenname: Xiao-Peng surname: Du fullname: Du, Xiao-Peng organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China – sequence: 6 givenname: Yan surname: Wang fullname: Wang, Yan email: wangyanmary@szpt.edu.cn organization: Shenzhen Polytechnic, Shenzhen 518055, PR China – sequence: 7 givenname: Jin surname: Zhou fullname: Zhou, Jin email: zhou.jin@sz.tsinghua.edu.cn organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33736182$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkTtvFDEYRS0URDaBvwAuaWbxY_wqKKIISKRINNuPvJ5vNl7N2BPbG7Fl_jkeNqSgCW7cnHMt33uBzkIMgNAnStaUUPllv87Ol1ggPK4ZYXRNW9Fy9QatqFamoYTJM7QipNWNkUado4uc96Qepek7dM654pJqtkJPm2RDdsnPJU6AbbDjMfuM4ddsQ59xuQc8L-8Ub0ec4ggZxwE_HGI6TDhDyD7ssA9462MPu2R7W3wMNajH832NimPcebe4kOcYcvVLxJN3KbpjLj68R28HO2b48Hxfos33b5vrm-bu54_b66u7xrWkLY1uDZf9VgihuZI9OCOZbJVQbuCKUWMdaBiYcBycto6JtjdMbi1IDWYQ_BJ9PsXOKT4cIJdu8tnBONoA8ZA7ZnRNFlyb11FBeMuNZrKiH5_Rw3aCvpuTn2w6dn8LroA6AfW_OScYXhBKumXKbt-9TNktU3anKav59R-zYn_KLcn68T_8q5MPtdRHD2nhIDjofQJXuj76VzN-AyQcw6k |
CitedBy_id | crossref_primary_10_3389_fmicb_2023_1057264 crossref_primary_10_1016_j_tim_2022_06_004 crossref_primary_10_1016_j_watres_2022_119397 crossref_primary_10_1016_j_foodcont_2024_110776 crossref_primary_10_1016_j_scitotenv_2022_155403 crossref_primary_10_1016_j_chemosphere_2022_137160 crossref_primary_10_1016_j_chemosphere_2024_143436 crossref_primary_10_1016_j_watres_2024_121497 crossref_primary_10_1016_j_envres_2024_118336 crossref_primary_10_1016_j_jhazmat_2021_127764 crossref_primary_10_1016_j_scitotenv_2021_148865 crossref_primary_10_1016_j_psj_2024_103533 crossref_primary_10_1016_j_jhazmat_2023_133123 crossref_primary_10_1016_j_ecoenv_2022_113436 crossref_primary_10_1016_j_scitotenv_2022_158354 crossref_primary_10_1016_j_envpol_2023_122878 crossref_primary_10_1016_j_envres_2022_114963 crossref_primary_10_1016_j_jhazmat_2023_130941 crossref_primary_10_1080_07388551_2022_2106417 crossref_primary_10_3724_ahr_2095_0357_2024_0010 crossref_primary_10_1016_j_watres_2023_119807 |
Cites_doi | 10.1016/j.ceb.2009.09.002 10.1016/j.watres.2018.12.048 10.1371/journal.pone.0226232 10.1007/s00253-008-1752-3 10.1128/mBio.01863-16 10.1371/journal.ppat.1006504 10.1016/j.scitotenv.2017.03.285 10.1186/1471-2105-12-323 10.1186/s12864-020-6701-2 10.1016/0014-5793(90)80245-E 10.1128/AEM.00865-18 10.1021/tx700079z 10.1093/bioinformatics/bty560 10.1073/pnas.1005909107 10.1016/j.cell.2018.08.003 10.1128/AEM.68.12.5789-5795.2002 10.1128/AEM.01043-15 10.1128/JB.183.17.5187-5197.2001 10.1371/journal.pone.0111988 10.1021/tx300174e 10.1093/bioinformatics/btp616 10.1073/pnas.1214128109 10.1016/j.tim.2015.05.007 10.1371/journal.pone.0061890 10.1128/AEM.01835-14 10.1371/journal.ppat.1000093 10.1128/aem.62.11.4086-4094.1996 10.1111/febs.13258 10.3389/fcimb.2014.00188 10.1111/1462-2920.14850 10.1016/j.watres.2020.115638 10.3389/fmicb.2019.02741 10.3390/genes10040282 10.1016/j.jbiosc.2012.07.004 10.1128/JB.02557-14 10.1080/02648725.2016.1196554 10.1002/tox.10013 10.1038/nmeth.3317 10.1016/j.watres.2020.116092 10.3390/genes9030148 10.1128/JB.185.7.2080-2095.2003 10.1111/j.2517-6161.1995.tb02031.x 10.1073/pnas.1005399107 10.3390/toxins8030076 10.1016/j.tim.2016.10.001 10.1128/AEM.00635-13 10.1186/1471-2164-10-441 10.1073/pnas.1617415113 10.1038/s41579-018-0040-1 10.1021/acs.est.8b03106 10.1016/j.cell.2014.02.033 10.1128/jb.176.2.269-275.1994 10.3390/ijms11010268 10.1089/omi.2011.0118 10.1002/pmic.201000814 10.1146/annurev-micro-102215-095359 10.1128/JB.01974-14 10.1038/nature24624 10.1371/journal.pone.0062337 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2021.145437 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 33736182 10_1016_j_scitotenv_2021_145437 S0048969721005052 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 ACLOT L.6 ~HD |
ID | FETCH-LOGICAL-c404t-84936db5558376dec96264757cf37219ace8ef25c3ec8ac254d926bae68e9f53 |
IEDL.DBID | AIKHN |
ISSN | 0048-9697 1879-1026 |
IngestDate | Sat Sep 27 20:01:25 EDT 2025 Fri Sep 05 04:26:39 EDT 2025 Wed Feb 19 02:28:42 EST 2025 Tue Jul 01 04:24:48 EDT 2025 Thu Apr 24 23:12:36 EDT 2025 Fri Feb 23 02:46:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microcystin Quorum sensing Bacterial degradation Physiological response Transcriptome |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-84936db5558376dec96264757cf37219ace8ef25c3ec8ac254d926bae68e9f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33736182 |
PQID | 2503439826 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2985835389 proquest_miscellaneous_2503439826 pubmed_primary_33736182 crossref_primary_10_1016_j_scitotenv_2021_145437 crossref_citationtrail_10_1016_j_scitotenv_2021_145437 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_145437 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 2021-06-00 2021-Jun-01 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Eickhoff, Bassler (bb0075) 2018; 174 Gao, Krysciak, Petersen, Utpatel, Knapp, Schmeisser, Daniel, Voget, Jaeger, Streit (bb0095) 2015; 81 Teufel, Mascaraque, Ismail, Voss, Perera, Eisenreich, Haehnel, Fuchs (bb0265) 2010; 107 Janssen (bb0125) 2019; 151 Shimizu, Maseda, Okano, Kurashima, Kawauchi, Xue, Utsumi, Zhang, Sugiura (bb0245) 2012; 114 Manganelli, Gennaro (bb0195) 2017; 25 Zeng, Cai, Zhu, Du, Zhou (bb0295) 2020; 183 Li, Li, Li (bb0165) 2017; 595 Pandey, Jain (bb0230) 2002; 68 Wickham (bb0280) 2009 Shah, Gislason, Becker, Belmonte, Fernando, de Kievit (bb0240) 2020; 15 Whiteley, Diggle, Greenberg (bb0275) 2017; 551 Zhang, Lyu, Wang, Gu, Sun, Zhu, Wang, Huang, Yang (bb0300) 2018; 52 Bourne, Jones, Blakeley, Jones, Negri, Riddles (bb0015) 1996; 62 Chen, Zhou, Chen, Gu (bb0030) 2018; 34 Høyland-Kroghsbo, Paczkowski, Mukherjee, Broniewski, Westra, Bondy-Denomy, Bassler (bb0115) 2017; 114 Liu, Yu, Chatnaparat, Lee, Tian, Hu, Zhao (bb0175) 2020; 21 Mangwani, Kumari, Das (bb0205) 2016; 32 Huisman, Codd, Paerl, Ibelings, Verspagen, Visser (bb0120) 2018; 16 Yu, Wang, Han, He (bb0290) 2012; 16 Mou, Lu, Jacob, Sun, Heath (bb0210) 2013; 8 Bosdriesz, Molenaar, Teusink, Bruggeman (bb0010) 2015; 282 Campos, Vasconcelos (bb0025) 2010; 11 Goo, An, Kang, Hwang (bb0100) 2015; 23 Majerczyk, Brittnacher, Jacobs, Armour, Radey, Bunt, Hayden, Bydalek, Greenberg (bb0190) 2014; 196 Gan, Gan, Ahmad, Aziz, Hudson, Savka (bb0090) 2015; 4 Krysciak, Grote, Rodriguez Orbegoso, Utpatel, Förstner, Li, Schmeisser, Krishnan, Streit (bb0140) 2014; 80 Liu, Coulthurst, Pritchard, Hedley, Ravensdale, Humphris, Burr, Takle, Brurberg, Birch, Salmond, Toth (bb0170) 2008; 4 Sibanda, Kwenda, Tanui, Shyntum, Coutinho, Moleleki (bb0250) 2018; 9 Dziga, Wasylewski, Szetela, Bocheńska, Wladyka (bb0060) 2012; 25 Fuqua, Winans, Greenberg (bb0085) 1994; 176 Krausfeldt, Steffen, McKay, Bullerjahn, Boyer, Wilhelm (bb0135) 2019; 10 Chugani, Greenberg (bb0035) 2010; 107 Eberl, Riedel (bb0070) 2011; 11 Lempiäinen, Shore (bb0150) 2009; 21 Stolz (bb0260) 2009; 81 Kim, Langmead, Salzberg (bb0130) 2015; 12 Yang, Huang, Feng, Wei, Massey, Liang, Zhang, Yin, Kacew, Zhang, Pu (bb0285) 2020; 174 LaRock, Yu, Horswill, Parsek, Minion (bb0145) 2013; 8 Coutinho, Mitter, Talbi, Sessitsch, Bedmar, Halliday, James, Cámara, Venturi (bb0045) 2013; 79 Ng, How, Tee, Chan (bb0220) 2019; 10 Chugani, Kim, Phattarasukol, Brittnacher, Choi, Harwood, Greenberg (bb0040) 2012; 109 Mukherjee, Moustafa, Smith, Goldberg, Bassler (bb0215) 2017; 13 Zhang, Gao, Wang, Liu, Bai, Zhuang, Zhuang (bb0305) 2018; 84 Li, Dewey (bb0155) 2011; 12 Liu, Pan, Feng, Li, Xu, Wang, Zhou (bb0180) 2020; 22 Flores-Kim, Darwin (bb0080) 2016; 70 O’Grady, Viteri, Malott, Sokol (bb0225) 2009; 10 Deng, Wang, Liu, Cheng, Xue (bb0055) 2014; 9 Wagner, Bushnell, Passador, Brooks, Iglewski (bb0270) 2003; 185 Hawver, Giulietti, Baleja, Ng (bb0110) 2016; 7 Benjamini, Hochberg (bb0005) 1995; 57 Dziga, Zielinska, Wladyka, Bochenska, Maksylewicz, Strzalka, Meriluoto (bb0065) 2016; 8 Robinson, McCarthy, Smyth (bb0235) 2010; 26 Guengerich (bb0105) 2008; 21 Mangwani, Dash, Chauhan, Das (bb0200) 2012; 22 Davenport, Griffin, Welch (bb0050) 2015; 197 Zhou, Lyu, Richlen, Anderson, Cai (bb0310) 2016; 2 MacKintosh, Beattie, Klumpp, Cohen, Codd (bb0185) 1990; 264 Li, Burkhardt, Gross, Weissman (bb0160) 2014; 157 Bourne, Riddles, Jones, Smith, Blakeley (bb0020) 2001; 16 Sperandio, Torres, Girón, Kaper (bb0255) 2001; 183 Wagner (10.1016/j.scitotenv.2021.145437_bb0270) 2003; 185 Zhang (10.1016/j.scitotenv.2021.145437_bb0300) 2018; 52 Gao (10.1016/j.scitotenv.2021.145437_bb0095) 2015; 81 Campos (10.1016/j.scitotenv.2021.145437_bb0025) 2010; 11 Shimizu (10.1016/j.scitotenv.2021.145437_bb0245) 2012; 114 Mukherjee (10.1016/j.scitotenv.2021.145437_bb0215) 2017; 13 Zeng (10.1016/j.scitotenv.2021.145437_bb0295) 2020; 183 MacKintosh (10.1016/j.scitotenv.2021.145437_bb0185) 1990; 264 O’Grady (10.1016/j.scitotenv.2021.145437_bb0225) 2009; 10 Flores-Kim (10.1016/j.scitotenv.2021.145437_bb0080) 2016; 70 Krausfeldt (10.1016/j.scitotenv.2021.145437_bb0135) 2019; 10 Stolz (10.1016/j.scitotenv.2021.145437_bb0260) 2009; 81 Deng (10.1016/j.scitotenv.2021.145437_bb0055) 2014; 9 Mangwani (10.1016/j.scitotenv.2021.145437_bb0200) 2012; 22 Sibanda (10.1016/j.scitotenv.2021.145437_bb0250) 2018; 9 Shah (10.1016/j.scitotenv.2021.145437_bb0240) 2020; 15 Huisman (10.1016/j.scitotenv.2021.145437_bb0120) 2018; 16 Yu (10.1016/j.scitotenv.2021.145437_bb0290) 2012; 16 Bourne (10.1016/j.scitotenv.2021.145437_bb0015) 1996; 62 Majerczyk (10.1016/j.scitotenv.2021.145437_bb0190) 2014; 196 Yang (10.1016/j.scitotenv.2021.145437_bb0285) 2020; 174 Chugani (10.1016/j.scitotenv.2021.145437_bb0035) 2010; 107 Li (10.1016/j.scitotenv.2021.145437_bb0155) 2011; 12 Li (10.1016/j.scitotenv.2021.145437_bb0160) 2014; 157 Coutinho (10.1016/j.scitotenv.2021.145437_bb0045) 2013; 79 Bourne (10.1016/j.scitotenv.2021.145437_bb0020) 2001; 16 Høyland-Kroghsbo (10.1016/j.scitotenv.2021.145437_bb0115) 2017; 114 Fuqua (10.1016/j.scitotenv.2021.145437_bb0085) 1994; 176 Gan (10.1016/j.scitotenv.2021.145437_bb0090) 2015; 4 Liu (10.1016/j.scitotenv.2021.145437_bb0175) 2020; 21 Manganelli (10.1016/j.scitotenv.2021.145437_bb0195) 2017; 25 Davenport (10.1016/j.scitotenv.2021.145437_bb0050) 2015; 197 Krysciak (10.1016/j.scitotenv.2021.145437_bb0140) 2014; 80 Ng (10.1016/j.scitotenv.2021.145437_bb0220) 2019; 10 Pandey (10.1016/j.scitotenv.2021.145437_bb0230) 2002; 68 Bosdriesz (10.1016/j.scitotenv.2021.145437_bb0010) 2015; 282 Dziga (10.1016/j.scitotenv.2021.145437_bb0065) 2016; 8 Dziga (10.1016/j.scitotenv.2021.145437_bb0060) 2012; 25 Chen (10.1016/j.scitotenv.2021.145437_bb0030) 2018; 34 Eickhoff (10.1016/j.scitotenv.2021.145437_bb0075) 2018; 174 Guengerich (10.1016/j.scitotenv.2021.145437_bb0105) 2008; 21 Goo (10.1016/j.scitotenv.2021.145437_bb0100) 2015; 23 Mou (10.1016/j.scitotenv.2021.145437_bb0210) 2013; 8 Zhang (10.1016/j.scitotenv.2021.145437_bb0305) 2018; 84 Liu (10.1016/j.scitotenv.2021.145437_bb0180) 2020; 22 Robinson (10.1016/j.scitotenv.2021.145437_bb0235) 2010; 26 Eberl (10.1016/j.scitotenv.2021.145437_bb0070) 2011; 11 Mangwani (10.1016/j.scitotenv.2021.145437_bb0205) 2016; 32 Whiteley (10.1016/j.scitotenv.2021.145437_bb0275) 2017; 551 Teufel (10.1016/j.scitotenv.2021.145437_bb0265) 2010; 107 Lempiäinen (10.1016/j.scitotenv.2021.145437_bb0150) 2009; 21 LaRock (10.1016/j.scitotenv.2021.145437_bb0145) 2013; 8 Zhou (10.1016/j.scitotenv.2021.145437_bb0310) 2016; 2 Kim (10.1016/j.scitotenv.2021.145437_bb0130) 2015; 12 Chugani (10.1016/j.scitotenv.2021.145437_bb0040) 2012; 109 Liu (10.1016/j.scitotenv.2021.145437_bb0170) 2008; 4 Benjamini (10.1016/j.scitotenv.2021.145437_bb0005) 1995; 57 Janssen (10.1016/j.scitotenv.2021.145437_bb0125) 2019; 151 Li (10.1016/j.scitotenv.2021.145437_bb0165) 2017; 595 Hawver (10.1016/j.scitotenv.2021.145437_bb0110) 2016; 7 Wickham (10.1016/j.scitotenv.2021.145437_bb0280) 2009 Sperandio (10.1016/j.scitotenv.2021.145437_bb0255) 2001; 183 |
References_xml | – volume: 107 start-page: 10673 year: 2010 end-page: 10678 ident: bb0035 article-title: LuxR homolog-independent gene regulation by acyl-homoserine lactones in publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: 3070 year: 2011 end-page: 3085 ident: bb0070 article-title: Mining quorum sensing regulated proteins-role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics publication-title: Proteomics – volume: 174 start-page: 115638 year: 2020 ident: bb0285 article-title: A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium publication-title: Water Res. – volume: 10 start-page: 2741 year: 2019 ident: bb0135 article-title: Insight into the molecular mechanisms for microcystin biodegradation in Lake Erie and Lake Taihu publication-title: Front. Microbiol. – volume: 21 start-page: 70 year: 2008 end-page: 83 ident: bb0105 article-title: Cytochrome P450 and chemical toxicology publication-title: Chem. Res. Toxicol. – volume: 34 start-page: i884 year: 2018 end-page: i890 ident: bb0030 article-title: fastp: an ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinformatics – volume: 84 year: 2018 ident: bb0305 article-title: Environmental adaptability and quorum sensing: iron uptake regulation during biofilm formation by publication-title: Appl. Environ. Microbiol. – volume: 197 start-page: 2072 year: 2015 end-page: 2082 ident: bb0050 article-title: Quorum sensing is accompanied by global metabolic changes in the opportunistic human pathogen publication-title: J. Bacteriol. – volume: 32 start-page: 43 year: 2016 end-page: 73 ident: bb0205 article-title: Bacterial biofilms and quorum sensing: fidelity in bioremediation technology publication-title: Biotechnol. Genet. Eng. Rev. – volume: 7 year: 2016 ident: bb0110 article-title: Quorum sensing coordinates cooperative expression of pyruvate metabolism genes to maintain a sustainable environment for population stability publication-title: mBio – volume: 183 start-page: 116092 year: 2020 ident: bb0295 article-title: Two hierarchical LuxR-LuxI type quorum sensing systems in publication-title: Water Res. – volume: 264 start-page: 187 year: 1990 end-page: 192 ident: bb0185 article-title: Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants publication-title: FEBS Lett. – volume: 9 year: 2014 ident: bb0055 article-title: HemI: a toolkit for illustrating heatmaps publication-title: PLoS One – volume: 11 start-page: 268 year: 2010 end-page: 287 ident: bb0025 article-title: Molecular mechanisms of microcystin toxicity in animal cells publication-title: Int. J. Mol. Sci. – volume: 4 year: 2008 ident: bb0170 article-title: Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen publication-title: PLoS Pathog. – volume: 81 start-page: 793 year: 2009 end-page: 811 ident: bb0260 article-title: Molecular characteristics of xenobiotic-degrading sphingomonads publication-title: Appl. Microbiol. Biotechnol. – volume: 282 start-page: 2029 year: 2015 end-page: 2044 ident: bb0010 article-title: How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization publication-title: FEBS J. – volume: 157 start-page: 624 year: 2014 end-page: 635 ident: bb0160 article-title: Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources publication-title: Cell – volume: 68 start-page: 5789 year: 2002 end-page: 5795 ident: bb0230 article-title: Bacterial chemotaxis toward environmental pollutants: role in bioremediation publication-title: Appl. Environ. Microbiol. – volume: 114 start-page: 630 year: 2012 end-page: 634 ident: bb0245 article-title: Enzymatic pathway for biodegrading microcystin LR in publication-title: J. Biosci. Bioeng. – volume: 21 start-page: 855 year: 2009 end-page: 863 ident: bb0150 article-title: Growth control and ribosome biogenesis publication-title: Curr. Opin. Cell Biol. – volume: 16 start-page: 523 year: 2001 end-page: 534 ident: bb0020 article-title: Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR publication-title: Environ. Toxicol. – volume: 109 start-page: E2823 year: 2012 end-page: E2831 ident: bb0040 article-title: Strain-dependent diversity in the publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 174 start-page: 1328 year: 2018 end-page: 1328.e1 ident: bb0075 article-title: SnapShot: bacterial quorum sensing publication-title: Cell – volume: 12 start-page: 357 year: 2015 end-page: 360 ident: bb0130 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods – volume: 22 start-page: 329 year: 2020 end-page: 342 ident: bb0180 article-title: Evidences of aromatic degradation dominantly via the phenylacetic acid pathway in marine benthic Thermoprofundales publication-title: Environ. Microbiol. – volume: 2 start-page: 82 year: 2016 end-page: 105 ident: bb0310 article-title: Quorum sensing: the language of chemical signals and its ecological roles in algal-bacterial interactions publication-title: Crit. Rev. Plant Sci. – volume: 15 year: 2020 ident: bb0240 article-title: Investigation of the quorum-sensing regulon of the biocontrol bacterium publication-title: PLoS One – volume: 23 start-page: 567 year: 2015 end-page: 576 ident: bb0100 article-title: Control of bacterial metabolism by quorum sensing publication-title: Trends Microbiol. – volume: 196 start-page: 3862 year: 2014 end-page: 3871 ident: bb0190 article-title: Cross-species comparison of the publication-title: J. Bacteriol. – volume: 183 start-page: 5187 year: 2001 end-page: 5197 ident: bb0255 article-title: Quorum sensing is a global regulatory mechanism in enterohemorrhagic publication-title: J. Bacteriol. – volume: 9 start-page: 148 year: 2018 ident: bb0250 article-title: Transcriptome profiling reveals the EanI/R quorum sensing regulon in publication-title: Genes (Basel) – volume: 185 start-page: 2080 year: 2003 end-page: 2095 ident: bb0270 article-title: Microarray analysis of publication-title: J. Bacteriol. – volume: 10 start-page: 441 year: 2009 ident: bb0225 article-title: Reciprocal regulation by the CepIR and CciIR quorum sensing systems in publication-title: BMC Genomics – volume: 80 start-page: 5655 year: 2014 end-page: 5671 ident: bb0140 article-title: RNA sequencing analysis of the broad-host-range strain publication-title: Appl. Environ. Microbiol. – volume: 81 start-page: 7993 year: 2015 end-page: 8007 ident: bb0095 article-title: Genome-wide RNA sequencing analysis of quorum sensing-controlled regulons in the plant-associated publication-title: Appl. Environ. Microbiol. – volume: 16 start-page: 471 year: 2018 end-page: 483 ident: bb0120 article-title: Cyanobacterial blooms publication-title: Nat. Rev. Microbiol. – volume: 8 year: 2013 ident: bb0145 article-title: Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in publication-title: PLoS One – volume: 551 start-page: 313 year: 2017 end-page: 320 ident: bb0275 article-title: Progress in and promise of bacterial quorum sensing research publication-title: Nature – volume: 21 start-page: 296 year: 2020 ident: bb0175 article-title: Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in publication-title: BMC Genomics – volume: 22 start-page: 215 year: 2012 end-page: 227 ident: bb0200 article-title: Bacterial quorum sensing, functional features and potential applications in biotechnology publication-title: J. Mol. Microbiol. Biotechnol. – volume: 10 start-page: 282 year: 2019 ident: bb0220 article-title: Characterization and transcriptome studies of autoinducer synthase gene from multidrug resistant publication-title: Genes (Basel) – volume: 8 start-page: 76 year: 2016 ident: bb0065 article-title: Characterization of enzymatic activity of MlrB and MlrC proteins involved in bacterial degradation of cyanotoxins microcystins publication-title: Toxins (Basel) – volume: 4 start-page: 188 year: 2015 ident: bb0090 article-title: Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of publication-title: Front. Cell. Infect. Microbiol. – volume: 52 start-page: 11102 year: 2018 end-page: 11113 ident: bb0300 article-title: Transcriptomic analysis reveals the pathways associated with resisting and degrading microcystin in publication-title: Environ. Sci. Technol. – volume: 25 start-page: 1192 year: 2012 end-page: 1194 ident: bb0060 article-title: Verification of the role of MlrC in microcystin biodegradation by studies using a heterologously expressed enzyme publication-title: Chem. Res. Toxicol. – volume: 79 start-page: 4421 year: 2013 end-page: 4432 ident: bb0045 article-title: Regulon studies and in planta role of the BraI/R quorum-sensing system in the plant-beneficial publication-title: Appl. Environ. Microbiol. – volume: 25 start-page: 205 year: 2017 end-page: 216 ident: bb0195 article-title: Protecting from envelope stress: variations on the phage-shock-protein theme publication-title: Trends Microbiol. – volume: 151 start-page: 488 year: 2019 end-page: 499 ident: bb0125 article-title: Cyanobacterial peptides beyond microcystins-a review on co-occurrence, toxicity, and challenges for risk assessment publication-title: Water Res. – volume: 12 start-page: 323 year: 2011 ident: bb0155 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinforma. – volume: 8 year: 2013 ident: bb0210 article-title: Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in Lake Erie publication-title: PLoS One – volume: 176 start-page: 269 year: 1994 end-page: 275 ident: bb0085 article-title: Quorum sensing in bacteria: the LuxR-LuxI family of cell density responsive transcriptional regulators publication-title: J. Bacteriol. – volume: 13 year: 2017 ident: bb0215 article-title: The RhlR quorum-sensing receptor controls publication-title: PLoS Pathog. – volume: 16 start-page: 284 year: 2012 end-page: 287 ident: bb0290 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: OMICS – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bb0005 article-title: Controlling the false discovery rate-a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc.: Ser. B: Methodol. – volume: 114 start-page: 131 year: 2017 end-page: 135 ident: bb0115 article-title: Quorum sensing controls the publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2009 ident: bb0280 article-title: ggplot2: Elegant Graphics for Data Analysis – volume: 107 start-page: 14390 year: 2010 end-page: 14395 ident: bb0265 article-title: Bacterial phenylalanine and phenylacetate catabolic pathway revealed publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 70 start-page: 83 year: 2016 end-page: 101 ident: bb0080 article-title: The phage shock protein response publication-title: Annu. Rev. Microbiol. – volume: 595 start-page: 615 year: 2017 end-page: 632 ident: bb0165 article-title: Current research scenario for microcystins biodegradation-a review on fundamental knowledge, application prospects and challenges publication-title: Sci. Total Environ. – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: bb0235 article-title: edgeR: a bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 62 start-page: 4086 year: 1996 end-page: 4094 ident: bb0015 article-title: Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR publication-title: Appl. Environ. Microbiol. – volume: 21 start-page: 855 issue: 6 year: 2009 ident: 10.1016/j.scitotenv.2021.145437_bb0150 article-title: Growth control and ribosome biogenesis publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.09.002 – volume: 151 start-page: 488 year: 2019 ident: 10.1016/j.scitotenv.2021.145437_bb0125 article-title: Cyanobacterial peptides beyond microcystins-a review on co-occurrence, toxicity, and challenges for risk assessment publication-title: Water Res. doi: 10.1016/j.watres.2018.12.048 – volume: 15 issue: 2 year: 2020 ident: 10.1016/j.scitotenv.2021.145437_bb0240 article-title: Investigation of the quorum-sensing regulon of the biocontrol bacterium Pseudomonas chlororaphis strain PA23 publication-title: PLoS One doi: 10.1371/journal.pone.0226232 – volume: 81 start-page: 793 year: 2009 ident: 10.1016/j.scitotenv.2021.145437_bb0260 article-title: Molecular characteristics of xenobiotic-degrading sphingomonads publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1752-3 – volume: 7 issue: 6 year: 2016 ident: 10.1016/j.scitotenv.2021.145437_bb0110 article-title: Quorum sensing coordinates cooperative expression of pyruvate metabolism genes to maintain a sustainable environment for population stability publication-title: mBio doi: 10.1128/mBio.01863-16 – volume: 13 issue: 7 year: 2017 ident: 10.1016/j.scitotenv.2021.145437_bb0215 article-title: The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006504 – volume: 22 start-page: 215 year: 2012 ident: 10.1016/j.scitotenv.2021.145437_bb0200 article-title: Bacterial quorum sensing, functional features and potential applications in biotechnology publication-title: J. Mol. Microbiol. Biotechnol. – volume: 595 start-page: 615 year: 2017 ident: 10.1016/j.scitotenv.2021.145437_bb0165 article-title: Current research scenario for microcystins biodegradation-a review on fundamental knowledge, application prospects and challenges publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.285 – volume: 12 start-page: 323 year: 2011 ident: 10.1016/j.scitotenv.2021.145437_bb0155 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-12-323 – volume: 21 start-page: 296 issue: 1 year: 2020 ident: 10.1016/j.scitotenv.2021.145437_bb0175 article-title: Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae publication-title: BMC Genomics doi: 10.1186/s12864-020-6701-2 – volume: 264 start-page: 187 issue: 2 year: 1990 ident: 10.1016/j.scitotenv.2021.145437_bb0185 article-title: Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants publication-title: FEBS Lett. doi: 10.1016/0014-5793(90)80245-E – volume: 84 issue: 14 year: 2018 ident: 10.1016/j.scitotenv.2021.145437_bb0305 article-title: Environmental adaptability and quorum sensing: iron uptake regulation during biofilm formation by Paracoccus denitrificans publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00865-18 – volume: 21 start-page: 70 year: 2008 ident: 10.1016/j.scitotenv.2021.145437_bb0105 article-title: Cytochrome P450 and chemical toxicology publication-title: Chem. Res. Toxicol. doi: 10.1021/tx700079z – volume: 34 start-page: i884 issue: 17 year: 2018 ident: 10.1016/j.scitotenv.2021.145437_bb0030 article-title: fastp: an ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty560 – volume: 107 start-page: 10673 issue: 23 year: 2010 ident: 10.1016/j.scitotenv.2021.145437_bb0035 article-title: LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1005909107 – year: 2009 ident: 10.1016/j.scitotenv.2021.145437_bb0280 – volume: 174 start-page: 1328 issue: 5 year: 2018 ident: 10.1016/j.scitotenv.2021.145437_bb0075 article-title: SnapShot: bacterial quorum sensing publication-title: Cell doi: 10.1016/j.cell.2018.08.003 – volume: 68 start-page: 5789 issue: 12 year: 2002 ident: 10.1016/j.scitotenv.2021.145437_bb0230 article-title: Bacterial chemotaxis toward environmental pollutants: role in bioremediation publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.12.5789-5795.2002 – volume: 81 start-page: 7993 issue: 23 year: 2015 ident: 10.1016/j.scitotenv.2021.145437_bb0095 article-title: Genome-wide RNA sequencing analysis of quorum sensing-controlled regulons in the plant-associated Burkholderia glumae PG1 strain publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01043-15 – volume: 183 start-page: 5187 issue: 17 year: 2001 ident: 10.1016/j.scitotenv.2021.145437_bb0255 article-title: Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7 publication-title: J. Bacteriol. doi: 10.1128/JB.183.17.5187-5197.2001 – volume: 9 issue: 11 year: 2014 ident: 10.1016/j.scitotenv.2021.145437_bb0055 article-title: HemI: a toolkit for illustrating heatmaps publication-title: PLoS One doi: 10.1371/journal.pone.0111988 – volume: 25 start-page: 1192 year: 2012 ident: 10.1016/j.scitotenv.2021.145437_bb0060 article-title: Verification of the role of MlrC in microcystin biodegradation by studies using a heterologously expressed enzyme publication-title: Chem. Res. Toxicol. doi: 10.1021/tx300174e – volume: 26 start-page: 139 year: 2010 ident: 10.1016/j.scitotenv.2021.145437_bb0235 article-title: edgeR: a bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 109 start-page: E2823 issue: 41 year: 2012 ident: 10.1016/j.scitotenv.2021.145437_bb0040 article-title: Strain-dependent diversity in the Pseudomonas aeruginosa quorum-sensing regulon publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1214128109 – volume: 23 start-page: 567 issue: 9 year: 2015 ident: 10.1016/j.scitotenv.2021.145437_bb0100 article-title: Control of bacterial metabolism by quorum sensing publication-title: Trends Microbiol. doi: 10.1016/j.tim.2015.05.007 – volume: 8 issue: 4 year: 2013 ident: 10.1016/j.scitotenv.2021.145437_bb0210 article-title: Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in Lake Erie publication-title: PLoS One doi: 10.1371/journal.pone.0061890 – volume: 80 start-page: 5655 issue: 18 year: 2014 ident: 10.1016/j.scitotenv.2021.145437_bb0140 article-title: RNA sequencing analysis of the broad-host-range strain Sinorhizobium fredii NGR234 identifies a large set of genes linked to quorum sensing-dependent regulation in the background of a traI and ngrI deletion mutant publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01835-14 – volume: 4 issue: 6 year: 2008 ident: 10.1016/j.scitotenv.2021.145437_bb0170 article-title: Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000093 – volume: 62 start-page: 4086 year: 1996 ident: 10.1016/j.scitotenv.2021.145437_bb0015 article-title: Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.62.11.4086-4094.1996 – volume: 282 start-page: 2029 issue: 10 year: 2015 ident: 10.1016/j.scitotenv.2021.145437_bb0010 article-title: How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization publication-title: FEBS J. doi: 10.1111/febs.13258 – volume: 4 start-page: 188 year: 2015 ident: 10.1016/j.scitotenv.2021.145437_bb0090 article-title: Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2014.00188 – volume: 22 start-page: 329 issue: 1 year: 2020 ident: 10.1016/j.scitotenv.2021.145437_bb0180 article-title: Evidences of aromatic degradation dominantly via the phenylacetic acid pathway in marine benthic Thermoprofundales publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14850 – volume: 174 start-page: 115638 year: 2020 ident: 10.1016/j.scitotenv.2021.145437_bb0285 article-title: A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium publication-title: Water Res. doi: 10.1016/j.watres.2020.115638 – volume: 10 start-page: 2741 year: 2019 ident: 10.1016/j.scitotenv.2021.145437_bb0135 article-title: Insight into the molecular mechanisms for microcystin biodegradation in Lake Erie and Lake Taihu publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.02741 – volume: 10 start-page: 282 issue: 4 year: 2019 ident: 10.1016/j.scitotenv.2021.145437_bb0220 article-title: Characterization and transcriptome studies of autoinducer synthase gene from multidrug resistant Acinetobacter baumannii strain 863 publication-title: Genes (Basel) doi: 10.3390/genes10040282 – volume: 114 start-page: 630 year: 2012 ident: 10.1016/j.scitotenv.2021.145437_bb0245 article-title: Enzymatic pathway for biodegrading microcystin LR in Sphingopyxis sp. C-1 publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2012.07.004 – volume: 197 start-page: 2072 issue: 12 year: 2015 ident: 10.1016/j.scitotenv.2021.145437_bb0050 article-title: Quorum sensing is accompanied by global metabolic changes in the opportunistic human pathogen Pseudomonas aeruginosa publication-title: J. Bacteriol. doi: 10.1128/JB.02557-14 – volume: 32 start-page: 43 issue: 1–2 year: 2016 ident: 10.1016/j.scitotenv.2021.145437_bb0205 article-title: Bacterial biofilms and quorum sensing: fidelity in bioremediation technology publication-title: Biotechnol. Genet. Eng. Rev. doi: 10.1080/02648725.2016.1196554 – volume: 16 start-page: 523 year: 2001 ident: 10.1016/j.scitotenv.2021.145437_bb0020 article-title: Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR publication-title: Environ. Toxicol. doi: 10.1002/tox.10013 – volume: 12 start-page: 357 issue: 4 year: 2015 ident: 10.1016/j.scitotenv.2021.145437_bb0130 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods doi: 10.1038/nmeth.3317 – volume: 183 start-page: 116092 year: 2020 ident: 10.1016/j.scitotenv.2021.145437_bb0295 article-title: Two hierarchical LuxR-LuxI type quorum sensing systems in Novosphingobium activate microcystin degradation through transcriptional regulation of the mlr pathway publication-title: Water Res. doi: 10.1016/j.watres.2020.116092 – volume: 2 start-page: 82 year: 2016 ident: 10.1016/j.scitotenv.2021.145437_bb0310 article-title: Quorum sensing: the language of chemical signals and its ecological roles in algal-bacterial interactions publication-title: Crit. Rev. Plant Sci. – volume: 9 start-page: 148 issue: 3 year: 2018 ident: 10.1016/j.scitotenv.2021.145437_bb0250 article-title: Transcriptome profiling reveals the EanI/R quorum sensing regulon in Pantoea ananatis LMG 2665T publication-title: Genes (Basel) doi: 10.3390/genes9030148 – volume: 185 start-page: 2080 issue: 7 year: 2003 ident: 10.1016/j.scitotenv.2021.145437_bb0270 article-title: Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment publication-title: J. Bacteriol. doi: 10.1128/JB.185.7.2080-2095.2003 – volume: 57 start-page: 289 year: 1995 ident: 10.1016/j.scitotenv.2021.145437_bb0005 article-title: Controlling the false discovery rate-a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc.: Ser. B: Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 107 start-page: 14390 issue: 32 year: 2010 ident: 10.1016/j.scitotenv.2021.145437_bb0265 article-title: Bacterial phenylalanine and phenylacetate catabolic pathway revealed publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1005399107 – volume: 8 start-page: 76 year: 2016 ident: 10.1016/j.scitotenv.2021.145437_bb0065 article-title: Characterization of enzymatic activity of MlrB and MlrC proteins involved in bacterial degradation of cyanotoxins microcystins publication-title: Toxins (Basel) doi: 10.3390/toxins8030076 – volume: 25 start-page: 205 issue: 3 year: 2017 ident: 10.1016/j.scitotenv.2021.145437_bb0195 article-title: Protecting from envelope stress: variations on the phage-shock-protein theme publication-title: Trends Microbiol. doi: 10.1016/j.tim.2016.10.001 – volume: 79 start-page: 4421 issue: 14 year: 2013 ident: 10.1016/j.scitotenv.2021.145437_bb0045 article-title: Regulon studies and in planta role of the BraI/R quorum-sensing system in the plant-beneficial Burkholderia cluster publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00635-13 – volume: 10 start-page: 441 year: 2009 ident: 10.1016/j.scitotenv.2021.145437_bb0225 article-title: Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia publication-title: BMC Genomics doi: 10.1186/1471-2164-10-441 – volume: 114 start-page: 131 issue: 1 year: 2017 ident: 10.1016/j.scitotenv.2021.145437_bb0115 article-title: Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1617415113 – volume: 16 start-page: 471 issue: 8 year: 2018 ident: 10.1016/j.scitotenv.2021.145437_bb0120 article-title: Cyanobacterial blooms publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0040-1 – volume: 52 start-page: 11102 issue: 19 year: 2018 ident: 10.1016/j.scitotenv.2021.145437_bb0300 article-title: Transcriptomic analysis reveals the pathways associated with resisting and degrading microcystin in Ochromonas publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03106 – volume: 157 start-page: 624 issue: 3 year: 2014 ident: 10.1016/j.scitotenv.2021.145437_bb0160 article-title: Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources publication-title: Cell doi: 10.1016/j.cell.2014.02.033 – volume: 176 start-page: 269 year: 1994 ident: 10.1016/j.scitotenv.2021.145437_bb0085 article-title: Quorum sensing in bacteria: the LuxR-LuxI family of cell density responsive transcriptional regulators publication-title: J. Bacteriol. doi: 10.1128/jb.176.2.269-275.1994 – volume: 11 start-page: 268 issue: 1 year: 2010 ident: 10.1016/j.scitotenv.2021.145437_bb0025 article-title: Molecular mechanisms of microcystin toxicity in animal cells publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms11010268 – volume: 16 start-page: 284 issue: 5 year: 2012 ident: 10.1016/j.scitotenv.2021.145437_bb0290 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: OMICS doi: 10.1089/omi.2011.0118 – volume: 11 start-page: 3070 issue: 15 year: 2011 ident: 10.1016/j.scitotenv.2021.145437_bb0070 article-title: Mining quorum sensing regulated proteins-role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics publication-title: Proteomics doi: 10.1002/pmic.201000814 – volume: 70 start-page: 83 year: 2016 ident: 10.1016/j.scitotenv.2021.145437_bb0080 article-title: The phage shock protein response publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-102215-095359 – volume: 196 start-page: 3862 issue: 22 year: 2014 ident: 10.1016/j.scitotenv.2021.145437_bb0190 article-title: Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons publication-title: J. Bacteriol. doi: 10.1128/JB.01974-14 – volume: 551 start-page: 313 issue: 7680 year: 2017 ident: 10.1016/j.scitotenv.2021.145437_bb0275 article-title: Progress in and promise of bacterial quorum sensing research publication-title: Nature doi: 10.1038/nature24624 – volume: 8 issue: 4 year: 2013 ident: 10.1016/j.scitotenv.2021.145437_bb0145 article-title: Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis publication-title: PLoS One doi: 10.1371/journal.pone.0062337 |
SSID | ssj0000781 |
Score | 2.4783397 |
Snippet | Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 145437 |
SubjectTerms | amino acid metabolism Bacterial degradation biodegradation Biodegradation, Environmental carbohydrate metabolism catabolism cell movement environment Gene Expression Profiling genes glutathione transferase intermediate product Microcystin Microcystins phenylacetic acid Physiological response Quorum Sensing ribosomes Sphingomonadaceae - genetics Sphingomonas stress response surveys transcriptional activation Transcriptome transcriptomics xenobiotics |
Title | Transcriptome analysis expands the potential roles of quorum sensing in biodegradation and physiological responses to microcystin |
URI | https://dx.doi.org/10.1016/j.scitotenv.2021.145437 https://www.ncbi.nlm.nih.gov/pubmed/33736182 https://www.proquest.com/docview/2503439826 https://www.proquest.com/docview/2985835389 |
Volume | 771 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9RAEB7aK4IgoqfVU1tW8DX2kt1sdvtWSsvpQR-kYt-W3O5GrrTJ2cuJfRH8553Jbq4UtH3wKWzILEtm95uZ5JsZgA-68FnpUp4ILUv6zeiT0hXjpNI2G7vK-dR1BNkTOfkqPp_lZxtw2OfCEK0yYn_A9A6t4529-Db3FvM55fgKpSVVnwnt2DZhK0NrrwawdfBpOjm5BeRChcZ5As82CtyheeHUbYPu6U-MFbMUgSMX1BP970bqX05oZ4yOn8HT6EWyg7DQ57Dh6yE8Cn0lr4ewfXSbvoaPxfO7HMKT8JWOheSjF_CnM1UdcDSXnpWxQgnzvxaUAszQO2QLWjfiwAUjJuKSNRX7saISDmxJ5Pf6O5vXbDZvHJWdCB2acCLHum8mPbSyq8DFRfm2YZfEArTXiC71Szg9Pjo9nCSxKUNixVi0iRKaSzejMmGITc5bjSGRKPLCVhxVoUvrla-y3HJvVWkx_nQ6k7PSS-V1lfNtGNRN7V8Dk7xwiorrSHQjci5VWimHA0s15LTlI5C9EoyNBcupb8aF6Zlp52atPUPaM0F7IxivBRehZsfDIvu9ls2d7WfQsjws_L7fFwYPJ_1xKWvfrJYG_UuOHh-GcPc8oxW-SrQ7egSvwqZar5rzgkuMAN_8z_LewmMaBX7bOxi0Vyu_g55UO9uFzY-_0914Xug6_fJtegNuISL7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8CpolJE9oKbB0f86RdA23sODY3hEDdYJw6iZuV2g7qRJOuTadxmbT_fO_FSRHSgAPHJHZk-dnvw_693wP4rFMfZ67PI6FlRteMPspc2otybeOey53vuxogeykH38XXq-RqBU7aXBiCVTa6P-j0Wls3bw6b2TycjseU4yuUlsQ-E8qxrcILQWUOcFEf_LnDeRCbTbhmxp2Nze-BvPDHVYnO6S-MFOM-qo1EUEX0_5uoh1zQ2hSdvYGNxodkx2GYb2HFFx14GapK3nZg-_QueQ2bNbt33oHX4YyOhdSjTfhbG6pabZQTz7KGn4T531NKAGboG7IpjRu1wA0jHOKclTn7uSACBzYn6HtxzcYFG41LR6QToT4T_six-sSkVaxsFpC42L8q2YQwgPYWdUuxBcOz0-HJIGpKMkRW9EQVKaG5dCMiCUPN5LzVGBCJNEltzlEQOrNe-TxOLPdWZRajT6djOcq8VF7nCd-GtaIs_HtgkqdOEbWORCci4VL1c-XwwRKDnLa8C7IVgrENXTlVzbgxLS7th1lKz5D0TJBeF3rLjtPA2PF0l6NWyube4jNoV57u_KldFwa3Jt23ZIUvF3OD3iVHfw8DuEfaaIVTiVZHd-FdWFTLUXOeconx34fnDO8jrA-G3y7MxZfL8x14RV8C0m0X1qrZwu-hT1WN9us98w-_YSIa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+analysis+expands+the+potential+roles+of+quorum+sensing+in+biodegradation+and+physiological+responses+to+microcystin&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zeng%2C+Yan-Hua&rft.au=Cheng%2C+Ke-Ke&rft.au=Cai%2C+Zhong-Hua&rft.au=Zhu%2C+Jian-Ming&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=771&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.145437&rft.externalDocID=S0048969721005052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |