Transcriptome analysis expands the potential roles of quorum sensing in biodegradation and physiological responses to microcystin

Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent g...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 771; p. 145437
Main Authors Zeng, Yan-Hua, Cheng, Ke-Ke, Cai, Zhong-Hua, Zhu, Jian-Ming, Du, Xiao-Peng, Wang, Yan, Zhou, Jin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2021
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2021.145437

Cover

Abstract Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs. [Display omitted] •Quorum sensing (QS) is a global gene regulatory system in microcystin degradation.•QS affects critical metabolism pathways during microcystin degradation.•QS-regulated behaviors are linked to biodegradation or responses to microcystin.•Expression of key genes in phenylacetic acid catabolism is controlled by QS.
AbstractList Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs.
Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs. [Display omitted] •Quorum sensing (QS) is a global gene regulatory system in microcystin degradation.•QS affects critical metabolism pathways during microcystin degradation.•QS-regulated behaviors are linked to biodegradation or responses to microcystin.•Expression of key genes in phenylacetic acid catabolism is controlled by QS.
Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs.Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs.
ArticleNumber 145437
Author Zeng, Yan-Hua
Du, Xiao-Peng
Zhou, Jin
Cheng, Ke-Ke
Cai, Zhong-Hua
Zhu, Jian-Ming
Wang, Yan
Author_xml – sequence: 1
  givenname: Yan-Hua
  surname: Zeng
  fullname: Zeng, Yan-Hua
  organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
– sequence: 2
  givenname: Ke-Ke
  surname: Cheng
  fullname: Cheng, Ke-Ke
  organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
– sequence: 3
  givenname: Zhong-Hua
  surname: Cai
  fullname: Cai, Zhong-Hua
  organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
– sequence: 4
  givenname: Jian-Ming
  surname: Zhu
  fullname: Zhu, Jian-Ming
  organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
– sequence: 5
  givenname: Xiao-Peng
  surname: Du
  fullname: Du, Xiao-Peng
  organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
– sequence: 6
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  email: wangyanmary@szpt.edu.cn
  organization: Shenzhen Polytechnic, Shenzhen 518055, PR China
– sequence: 7
  givenname: Jin
  surname: Zhou
  fullname: Zhou, Jin
  email: zhou.jin@sz.tsinghua.edu.cn
  organization: Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33736182$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtvFDEYRS0URDaBvwAuaWbxY_wqKKIISKRINNuPvJ5vNl7N2BPbG7Fl_jkeNqSgCW7cnHMt33uBzkIMgNAnStaUUPllv87Ol1ggPK4ZYXRNW9Fy9QatqFamoYTJM7QipNWNkUado4uc96Qepek7dM654pJqtkJPm2RDdsnPJU6AbbDjMfuM4ddsQ59xuQc8L-8Ub0ec4ggZxwE_HGI6TDhDyD7ssA9462MPu2R7W3wMNajH832NimPcebe4kOcYcvVLxJN3KbpjLj68R28HO2b48Hxfos33b5vrm-bu54_b66u7xrWkLY1uDZf9VgihuZI9OCOZbJVQbuCKUWMdaBiYcBycto6JtjdMbi1IDWYQ_BJ9PsXOKT4cIJdu8tnBONoA8ZA7ZnRNFlyb11FBeMuNZrKiH5_Rw3aCvpuTn2w6dn8LroA6AfW_OScYXhBKumXKbt-9TNktU3anKav59R-zYn_KLcn68T_8q5MPtdRHD2nhIDjofQJXuj76VzN-AyQcw6k
CitedBy_id crossref_primary_10_3389_fmicb_2023_1057264
crossref_primary_10_1016_j_tim_2022_06_004
crossref_primary_10_1016_j_watres_2022_119397
crossref_primary_10_1016_j_foodcont_2024_110776
crossref_primary_10_1016_j_scitotenv_2022_155403
crossref_primary_10_1016_j_chemosphere_2022_137160
crossref_primary_10_1016_j_chemosphere_2024_143436
crossref_primary_10_1016_j_watres_2024_121497
crossref_primary_10_1016_j_envres_2024_118336
crossref_primary_10_1016_j_jhazmat_2021_127764
crossref_primary_10_1016_j_scitotenv_2021_148865
crossref_primary_10_1016_j_psj_2024_103533
crossref_primary_10_1016_j_jhazmat_2023_133123
crossref_primary_10_1016_j_ecoenv_2022_113436
crossref_primary_10_1016_j_scitotenv_2022_158354
crossref_primary_10_1016_j_envpol_2023_122878
crossref_primary_10_1016_j_envres_2022_114963
crossref_primary_10_1016_j_jhazmat_2023_130941
crossref_primary_10_1080_07388551_2022_2106417
crossref_primary_10_3724_ahr_2095_0357_2024_0010
crossref_primary_10_1016_j_watres_2023_119807
Cites_doi 10.1016/j.ceb.2009.09.002
10.1016/j.watres.2018.12.048
10.1371/journal.pone.0226232
10.1007/s00253-008-1752-3
10.1128/mBio.01863-16
10.1371/journal.ppat.1006504
10.1016/j.scitotenv.2017.03.285
10.1186/1471-2105-12-323
10.1186/s12864-020-6701-2
10.1016/0014-5793(90)80245-E
10.1128/AEM.00865-18
10.1021/tx700079z
10.1093/bioinformatics/bty560
10.1073/pnas.1005909107
10.1016/j.cell.2018.08.003
10.1128/AEM.68.12.5789-5795.2002
10.1128/AEM.01043-15
10.1128/JB.183.17.5187-5197.2001
10.1371/journal.pone.0111988
10.1021/tx300174e
10.1093/bioinformatics/btp616
10.1073/pnas.1214128109
10.1016/j.tim.2015.05.007
10.1371/journal.pone.0061890
10.1128/AEM.01835-14
10.1371/journal.ppat.1000093
10.1128/aem.62.11.4086-4094.1996
10.1111/febs.13258
10.3389/fcimb.2014.00188
10.1111/1462-2920.14850
10.1016/j.watres.2020.115638
10.3389/fmicb.2019.02741
10.3390/genes10040282
10.1016/j.jbiosc.2012.07.004
10.1128/JB.02557-14
10.1080/02648725.2016.1196554
10.1002/tox.10013
10.1038/nmeth.3317
10.1016/j.watres.2020.116092
10.3390/genes9030148
10.1128/JB.185.7.2080-2095.2003
10.1111/j.2517-6161.1995.tb02031.x
10.1073/pnas.1005399107
10.3390/toxins8030076
10.1016/j.tim.2016.10.001
10.1128/AEM.00635-13
10.1186/1471-2164-10-441
10.1073/pnas.1617415113
10.1038/s41579-018-0040-1
10.1021/acs.est.8b03106
10.1016/j.cell.2014.02.033
10.1128/jb.176.2.269-275.1994
10.3390/ijms11010268
10.1089/omi.2011.0118
10.1002/pmic.201000814
10.1146/annurev-micro-102215-095359
10.1128/JB.01974-14
10.1038/nature24624
10.1371/journal.pone.0062337
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2021.145437
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 33736182
10_1016_j_scitotenv_2021_145437
S0048969721005052
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
ACLOT
L.6
~HD
ID FETCH-LOGICAL-c404t-84936db5558376dec96264757cf37219ace8ef25c3ec8ac254d926bae68e9f53
IEDL.DBID AIKHN
ISSN 0048-9697
1879-1026
IngestDate Sat Sep 27 20:01:25 EDT 2025
Fri Sep 05 04:26:39 EDT 2025
Wed Feb 19 02:28:42 EST 2025
Tue Jul 01 04:24:48 EDT 2025
Thu Apr 24 23:12:36 EDT 2025
Fri Feb 23 02:46:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microcystin
Quorum sensing
Bacterial degradation
Physiological response
Transcriptome
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-84936db5558376dec96264757cf37219ace8ef25c3ec8ac254d926bae68e9f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33736182
PQID 2503439826
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2985835389
proquest_miscellaneous_2503439826
pubmed_primary_33736182
crossref_primary_10_1016_j_scitotenv_2021_145437
crossref_citationtrail_10_1016_j_scitotenv_2021_145437
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_145437
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
2021-06-00
2021-Jun-01
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Eickhoff, Bassler (bb0075) 2018; 174
Gao, Krysciak, Petersen, Utpatel, Knapp, Schmeisser, Daniel, Voget, Jaeger, Streit (bb0095) 2015; 81
Teufel, Mascaraque, Ismail, Voss, Perera, Eisenreich, Haehnel, Fuchs (bb0265) 2010; 107
Janssen (bb0125) 2019; 151
Shimizu, Maseda, Okano, Kurashima, Kawauchi, Xue, Utsumi, Zhang, Sugiura (bb0245) 2012; 114
Manganelli, Gennaro (bb0195) 2017; 25
Zeng, Cai, Zhu, Du, Zhou (bb0295) 2020; 183
Li, Li, Li (bb0165) 2017; 595
Pandey, Jain (bb0230) 2002; 68
Wickham (bb0280) 2009
Shah, Gislason, Becker, Belmonte, Fernando, de Kievit (bb0240) 2020; 15
Whiteley, Diggle, Greenberg (bb0275) 2017; 551
Zhang, Lyu, Wang, Gu, Sun, Zhu, Wang, Huang, Yang (bb0300) 2018; 52
Bourne, Jones, Blakeley, Jones, Negri, Riddles (bb0015) 1996; 62
Chen, Zhou, Chen, Gu (bb0030) 2018; 34
Høyland-Kroghsbo, Paczkowski, Mukherjee, Broniewski, Westra, Bondy-Denomy, Bassler (bb0115) 2017; 114
Liu, Yu, Chatnaparat, Lee, Tian, Hu, Zhao (bb0175) 2020; 21
Mangwani, Kumari, Das (bb0205) 2016; 32
Huisman, Codd, Paerl, Ibelings, Verspagen, Visser (bb0120) 2018; 16
Yu, Wang, Han, He (bb0290) 2012; 16
Mou, Lu, Jacob, Sun, Heath (bb0210) 2013; 8
Bosdriesz, Molenaar, Teusink, Bruggeman (bb0010) 2015; 282
Campos, Vasconcelos (bb0025) 2010; 11
Goo, An, Kang, Hwang (bb0100) 2015; 23
Majerczyk, Brittnacher, Jacobs, Armour, Radey, Bunt, Hayden, Bydalek, Greenberg (bb0190) 2014; 196
Gan, Gan, Ahmad, Aziz, Hudson, Savka (bb0090) 2015; 4
Krysciak, Grote, Rodriguez Orbegoso, Utpatel, Förstner, Li, Schmeisser, Krishnan, Streit (bb0140) 2014; 80
Liu, Coulthurst, Pritchard, Hedley, Ravensdale, Humphris, Burr, Takle, Brurberg, Birch, Salmond, Toth (bb0170) 2008; 4
Sibanda, Kwenda, Tanui, Shyntum, Coutinho, Moleleki (bb0250) 2018; 9
Dziga, Wasylewski, Szetela, Bocheńska, Wladyka (bb0060) 2012; 25
Fuqua, Winans, Greenberg (bb0085) 1994; 176
Krausfeldt, Steffen, McKay, Bullerjahn, Boyer, Wilhelm (bb0135) 2019; 10
Chugani, Greenberg (bb0035) 2010; 107
Eberl, Riedel (bb0070) 2011; 11
Lempiäinen, Shore (bb0150) 2009; 21
Stolz (bb0260) 2009; 81
Kim, Langmead, Salzberg (bb0130) 2015; 12
Yang, Huang, Feng, Wei, Massey, Liang, Zhang, Yin, Kacew, Zhang, Pu (bb0285) 2020; 174
LaRock, Yu, Horswill, Parsek, Minion (bb0145) 2013; 8
Coutinho, Mitter, Talbi, Sessitsch, Bedmar, Halliday, James, Cámara, Venturi (bb0045) 2013; 79
Ng, How, Tee, Chan (bb0220) 2019; 10
Chugani, Kim, Phattarasukol, Brittnacher, Choi, Harwood, Greenberg (bb0040) 2012; 109
Mukherjee, Moustafa, Smith, Goldberg, Bassler (bb0215) 2017; 13
Zhang, Gao, Wang, Liu, Bai, Zhuang, Zhuang (bb0305) 2018; 84
Li, Dewey (bb0155) 2011; 12
Liu, Pan, Feng, Li, Xu, Wang, Zhou (bb0180) 2020; 22
Flores-Kim, Darwin (bb0080) 2016; 70
O’Grady, Viteri, Malott, Sokol (bb0225) 2009; 10
Deng, Wang, Liu, Cheng, Xue (bb0055) 2014; 9
Wagner, Bushnell, Passador, Brooks, Iglewski (bb0270) 2003; 185
Hawver, Giulietti, Baleja, Ng (bb0110) 2016; 7
Benjamini, Hochberg (bb0005) 1995; 57
Dziga, Zielinska, Wladyka, Bochenska, Maksylewicz, Strzalka, Meriluoto (bb0065) 2016; 8
Robinson, McCarthy, Smyth (bb0235) 2010; 26
Guengerich (bb0105) 2008; 21
Mangwani, Dash, Chauhan, Das (bb0200) 2012; 22
Davenport, Griffin, Welch (bb0050) 2015; 197
Zhou, Lyu, Richlen, Anderson, Cai (bb0310) 2016; 2
MacKintosh, Beattie, Klumpp, Cohen, Codd (bb0185) 1990; 264
Li, Burkhardt, Gross, Weissman (bb0160) 2014; 157
Bourne, Riddles, Jones, Smith, Blakeley (bb0020) 2001; 16
Sperandio, Torres, Girón, Kaper (bb0255) 2001; 183
Wagner (10.1016/j.scitotenv.2021.145437_bb0270) 2003; 185
Zhang (10.1016/j.scitotenv.2021.145437_bb0300) 2018; 52
Gao (10.1016/j.scitotenv.2021.145437_bb0095) 2015; 81
Campos (10.1016/j.scitotenv.2021.145437_bb0025) 2010; 11
Shimizu (10.1016/j.scitotenv.2021.145437_bb0245) 2012; 114
Mukherjee (10.1016/j.scitotenv.2021.145437_bb0215) 2017; 13
Zeng (10.1016/j.scitotenv.2021.145437_bb0295) 2020; 183
MacKintosh (10.1016/j.scitotenv.2021.145437_bb0185) 1990; 264
O’Grady (10.1016/j.scitotenv.2021.145437_bb0225) 2009; 10
Flores-Kim (10.1016/j.scitotenv.2021.145437_bb0080) 2016; 70
Krausfeldt (10.1016/j.scitotenv.2021.145437_bb0135) 2019; 10
Stolz (10.1016/j.scitotenv.2021.145437_bb0260) 2009; 81
Deng (10.1016/j.scitotenv.2021.145437_bb0055) 2014; 9
Mangwani (10.1016/j.scitotenv.2021.145437_bb0200) 2012; 22
Sibanda (10.1016/j.scitotenv.2021.145437_bb0250) 2018; 9
Shah (10.1016/j.scitotenv.2021.145437_bb0240) 2020; 15
Huisman (10.1016/j.scitotenv.2021.145437_bb0120) 2018; 16
Yu (10.1016/j.scitotenv.2021.145437_bb0290) 2012; 16
Bourne (10.1016/j.scitotenv.2021.145437_bb0015) 1996; 62
Majerczyk (10.1016/j.scitotenv.2021.145437_bb0190) 2014; 196
Yang (10.1016/j.scitotenv.2021.145437_bb0285) 2020; 174
Chugani (10.1016/j.scitotenv.2021.145437_bb0035) 2010; 107
Li (10.1016/j.scitotenv.2021.145437_bb0155) 2011; 12
Li (10.1016/j.scitotenv.2021.145437_bb0160) 2014; 157
Coutinho (10.1016/j.scitotenv.2021.145437_bb0045) 2013; 79
Bourne (10.1016/j.scitotenv.2021.145437_bb0020) 2001; 16
Høyland-Kroghsbo (10.1016/j.scitotenv.2021.145437_bb0115) 2017; 114
Fuqua (10.1016/j.scitotenv.2021.145437_bb0085) 1994; 176
Gan (10.1016/j.scitotenv.2021.145437_bb0090) 2015; 4
Liu (10.1016/j.scitotenv.2021.145437_bb0175) 2020; 21
Manganelli (10.1016/j.scitotenv.2021.145437_bb0195) 2017; 25
Davenport (10.1016/j.scitotenv.2021.145437_bb0050) 2015; 197
Krysciak (10.1016/j.scitotenv.2021.145437_bb0140) 2014; 80
Ng (10.1016/j.scitotenv.2021.145437_bb0220) 2019; 10
Pandey (10.1016/j.scitotenv.2021.145437_bb0230) 2002; 68
Bosdriesz (10.1016/j.scitotenv.2021.145437_bb0010) 2015; 282
Dziga (10.1016/j.scitotenv.2021.145437_bb0065) 2016; 8
Dziga (10.1016/j.scitotenv.2021.145437_bb0060) 2012; 25
Chen (10.1016/j.scitotenv.2021.145437_bb0030) 2018; 34
Eickhoff (10.1016/j.scitotenv.2021.145437_bb0075) 2018; 174
Guengerich (10.1016/j.scitotenv.2021.145437_bb0105) 2008; 21
Goo (10.1016/j.scitotenv.2021.145437_bb0100) 2015; 23
Mou (10.1016/j.scitotenv.2021.145437_bb0210) 2013; 8
Zhang (10.1016/j.scitotenv.2021.145437_bb0305) 2018; 84
Liu (10.1016/j.scitotenv.2021.145437_bb0180) 2020; 22
Robinson (10.1016/j.scitotenv.2021.145437_bb0235) 2010; 26
Eberl (10.1016/j.scitotenv.2021.145437_bb0070) 2011; 11
Mangwani (10.1016/j.scitotenv.2021.145437_bb0205) 2016; 32
Whiteley (10.1016/j.scitotenv.2021.145437_bb0275) 2017; 551
Teufel (10.1016/j.scitotenv.2021.145437_bb0265) 2010; 107
Lempiäinen (10.1016/j.scitotenv.2021.145437_bb0150) 2009; 21
LaRock (10.1016/j.scitotenv.2021.145437_bb0145) 2013; 8
Zhou (10.1016/j.scitotenv.2021.145437_bb0310) 2016; 2
Kim (10.1016/j.scitotenv.2021.145437_bb0130) 2015; 12
Chugani (10.1016/j.scitotenv.2021.145437_bb0040) 2012; 109
Liu (10.1016/j.scitotenv.2021.145437_bb0170) 2008; 4
Benjamini (10.1016/j.scitotenv.2021.145437_bb0005) 1995; 57
Janssen (10.1016/j.scitotenv.2021.145437_bb0125) 2019; 151
Li (10.1016/j.scitotenv.2021.145437_bb0165) 2017; 595
Hawver (10.1016/j.scitotenv.2021.145437_bb0110) 2016; 7
Wickham (10.1016/j.scitotenv.2021.145437_bb0280) 2009
Sperandio (10.1016/j.scitotenv.2021.145437_bb0255) 2001; 183
References_xml – volume: 107
  start-page: 10673
  year: 2010
  end-page: 10678
  ident: bb0035
  article-title: LuxR homolog-independent gene regulation by acyl-homoserine lactones in
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: 3070
  year: 2011
  end-page: 3085
  ident: bb0070
  article-title: Mining quorum sensing regulated proteins-role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics
  publication-title: Proteomics
– volume: 174
  start-page: 115638
  year: 2020
  ident: bb0285
  article-title: A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium
  publication-title: Water Res.
– volume: 10
  start-page: 2741
  year: 2019
  ident: bb0135
  article-title: Insight into the molecular mechanisms for microcystin biodegradation in Lake Erie and Lake Taihu
  publication-title: Front. Microbiol.
– volume: 21
  start-page: 70
  year: 2008
  end-page: 83
  ident: bb0105
  article-title: Cytochrome P450 and chemical toxicology
  publication-title: Chem. Res. Toxicol.
– volume: 34
  start-page: i884
  year: 2018
  end-page: i890
  ident: bb0030
  article-title: fastp: an ultra-fast all-in-one FASTQ preprocessor
  publication-title: Bioinformatics
– volume: 84
  year: 2018
  ident: bb0305
  article-title: Environmental adaptability and quorum sensing: iron uptake regulation during biofilm formation by
  publication-title: Appl. Environ. Microbiol.
– volume: 197
  start-page: 2072
  year: 2015
  end-page: 2082
  ident: bb0050
  article-title: Quorum sensing is accompanied by global metabolic changes in the opportunistic human pathogen
  publication-title: J. Bacteriol.
– volume: 32
  start-page: 43
  year: 2016
  end-page: 73
  ident: bb0205
  article-title: Bacterial biofilms and quorum sensing: fidelity in bioremediation technology
  publication-title: Biotechnol. Genet. Eng. Rev.
– volume: 7
  year: 2016
  ident: bb0110
  article-title: Quorum sensing coordinates cooperative expression of pyruvate metabolism genes to maintain a sustainable environment for population stability
  publication-title: mBio
– volume: 183
  start-page: 116092
  year: 2020
  ident: bb0295
  article-title: Two hierarchical LuxR-LuxI type quorum sensing systems in
  publication-title: Water Res.
– volume: 264
  start-page: 187
  year: 1990
  end-page: 192
  ident: bb0185
  article-title: Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants
  publication-title: FEBS Lett.
– volume: 9
  year: 2014
  ident: bb0055
  article-title: HemI: a toolkit for illustrating heatmaps
  publication-title: PLoS One
– volume: 11
  start-page: 268
  year: 2010
  end-page: 287
  ident: bb0025
  article-title: Molecular mechanisms of microcystin toxicity in animal cells
  publication-title: Int. J. Mol. Sci.
– volume: 4
  year: 2008
  ident: bb0170
  article-title: Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen
  publication-title: PLoS Pathog.
– volume: 81
  start-page: 793
  year: 2009
  end-page: 811
  ident: bb0260
  article-title: Molecular characteristics of xenobiotic-degrading sphingomonads
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 282
  start-page: 2029
  year: 2015
  end-page: 2044
  ident: bb0010
  article-title: How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization
  publication-title: FEBS J.
– volume: 157
  start-page: 624
  year: 2014
  end-page: 635
  ident: bb0160
  article-title: Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources
  publication-title: Cell
– volume: 68
  start-page: 5789
  year: 2002
  end-page: 5795
  ident: bb0230
  article-title: Bacterial chemotaxis toward environmental pollutants: role in bioremediation
  publication-title: Appl. Environ. Microbiol.
– volume: 114
  start-page: 630
  year: 2012
  end-page: 634
  ident: bb0245
  article-title: Enzymatic pathway for biodegrading microcystin LR in
  publication-title: J. Biosci. Bioeng.
– volume: 21
  start-page: 855
  year: 2009
  end-page: 863
  ident: bb0150
  article-title: Growth control and ribosome biogenesis
  publication-title: Curr. Opin. Cell Biol.
– volume: 16
  start-page: 523
  year: 2001
  end-page: 534
  ident: bb0020
  article-title: Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR
  publication-title: Environ. Toxicol.
– volume: 109
  start-page: E2823
  year: 2012
  end-page: E2831
  ident: bb0040
  article-title: Strain-dependent diversity in the
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 174
  start-page: 1328
  year: 2018
  end-page: 1328.e1
  ident: bb0075
  article-title: SnapShot: bacterial quorum sensing
  publication-title: Cell
– volume: 12
  start-page: 357
  year: 2015
  end-page: 360
  ident: bb0130
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
– volume: 22
  start-page: 329
  year: 2020
  end-page: 342
  ident: bb0180
  article-title: Evidences of aromatic degradation dominantly via the phenylacetic acid pathway in marine benthic Thermoprofundales
  publication-title: Environ. Microbiol.
– volume: 2
  start-page: 82
  year: 2016
  end-page: 105
  ident: bb0310
  article-title: Quorum sensing: the language of chemical signals and its ecological roles in algal-bacterial interactions
  publication-title: Crit. Rev. Plant Sci.
– volume: 15
  year: 2020
  ident: bb0240
  article-title: Investigation of the quorum-sensing regulon of the biocontrol bacterium
  publication-title: PLoS One
– volume: 23
  start-page: 567
  year: 2015
  end-page: 576
  ident: bb0100
  article-title: Control of bacterial metabolism by quorum sensing
  publication-title: Trends Microbiol.
– volume: 196
  start-page: 3862
  year: 2014
  end-page: 3871
  ident: bb0190
  article-title: Cross-species comparison of the
  publication-title: J. Bacteriol.
– volume: 183
  start-page: 5187
  year: 2001
  end-page: 5197
  ident: bb0255
  article-title: Quorum sensing is a global regulatory mechanism in enterohemorrhagic
  publication-title: J. Bacteriol.
– volume: 9
  start-page: 148
  year: 2018
  ident: bb0250
  article-title: Transcriptome profiling reveals the EanI/R quorum sensing regulon in
  publication-title: Genes (Basel)
– volume: 185
  start-page: 2080
  year: 2003
  end-page: 2095
  ident: bb0270
  article-title: Microarray analysis of
  publication-title: J. Bacteriol.
– volume: 10
  start-page: 441
  year: 2009
  ident: bb0225
  article-title: Reciprocal regulation by the CepIR and CciIR quorum sensing systems in
  publication-title: BMC Genomics
– volume: 80
  start-page: 5655
  year: 2014
  end-page: 5671
  ident: bb0140
  article-title: RNA sequencing analysis of the broad-host-range strain
  publication-title: Appl. Environ. Microbiol.
– volume: 81
  start-page: 7993
  year: 2015
  end-page: 8007
  ident: bb0095
  article-title: Genome-wide RNA sequencing analysis of quorum sensing-controlled regulons in the plant-associated
  publication-title: Appl. Environ. Microbiol.
– volume: 16
  start-page: 471
  year: 2018
  end-page: 483
  ident: bb0120
  article-title: Cyanobacterial blooms
  publication-title: Nat. Rev. Microbiol.
– volume: 8
  year: 2013
  ident: bb0145
  article-title: Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in
  publication-title: PLoS One
– volume: 551
  start-page: 313
  year: 2017
  end-page: 320
  ident: bb0275
  article-title: Progress in and promise of bacterial quorum sensing research
  publication-title: Nature
– volume: 21
  start-page: 296
  year: 2020
  ident: bb0175
  article-title: Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in
  publication-title: BMC Genomics
– volume: 22
  start-page: 215
  year: 2012
  end-page: 227
  ident: bb0200
  article-title: Bacterial quorum sensing, functional features and potential applications in biotechnology
  publication-title: J. Mol. Microbiol. Biotechnol.
– volume: 10
  start-page: 282
  year: 2019
  ident: bb0220
  article-title: Characterization and transcriptome studies of autoinducer synthase gene from multidrug resistant
  publication-title: Genes (Basel)
– volume: 8
  start-page: 76
  year: 2016
  ident: bb0065
  article-title: Characterization of enzymatic activity of MlrB and MlrC proteins involved in bacterial degradation of cyanotoxins microcystins
  publication-title: Toxins (Basel)
– volume: 4
  start-page: 188
  year: 2015
  ident: bb0090
  article-title: Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 52
  start-page: 11102
  year: 2018
  end-page: 11113
  ident: bb0300
  article-title: Transcriptomic analysis reveals the pathways associated with resisting and degrading microcystin in
  publication-title: Environ. Sci. Technol.
– volume: 25
  start-page: 1192
  year: 2012
  end-page: 1194
  ident: bb0060
  article-title: Verification of the role of MlrC in microcystin biodegradation by studies using a heterologously expressed enzyme
  publication-title: Chem. Res. Toxicol.
– volume: 79
  start-page: 4421
  year: 2013
  end-page: 4432
  ident: bb0045
  article-title: Regulon studies and in planta role of the BraI/R quorum-sensing system in the plant-beneficial
  publication-title: Appl. Environ. Microbiol.
– volume: 25
  start-page: 205
  year: 2017
  end-page: 216
  ident: bb0195
  article-title: Protecting from envelope stress: variations on the phage-shock-protein theme
  publication-title: Trends Microbiol.
– volume: 151
  start-page: 488
  year: 2019
  end-page: 499
  ident: bb0125
  article-title: Cyanobacterial peptides beyond microcystins-a review on co-occurrence, toxicity, and challenges for risk assessment
  publication-title: Water Res.
– volume: 12
  start-page: 323
  year: 2011
  ident: bb0155
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinforma.
– volume: 8
  year: 2013
  ident: bb0210
  article-title: Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in Lake Erie
  publication-title: PLoS One
– volume: 176
  start-page: 269
  year: 1994
  end-page: 275
  ident: bb0085
  article-title: Quorum sensing in bacteria: the LuxR-LuxI family of cell density responsive transcriptional regulators
  publication-title: J. Bacteriol.
– volume: 13
  year: 2017
  ident: bb0215
  article-title: The RhlR quorum-sensing receptor controls
  publication-title: PLoS Pathog.
– volume: 16
  start-page: 284
  year: 2012
  end-page: 287
  ident: bb0290
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bb0005
  article-title: Controlling the false discovery rate-a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc.: Ser. B: Methodol.
– volume: 114
  start-page: 131
  year: 2017
  end-page: 135
  ident: bb0115
  article-title: Quorum sensing controls the
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2009
  ident: bb0280
  article-title: ggplot2: Elegant Graphics for Data Analysis
– volume: 107
  start-page: 14390
  year: 2010
  end-page: 14395
  ident: bb0265
  article-title: Bacterial phenylalanine and phenylacetate catabolic pathway revealed
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 70
  start-page: 83
  year: 2016
  end-page: 101
  ident: bb0080
  article-title: The phage shock protein response
  publication-title: Annu. Rev. Microbiol.
– volume: 595
  start-page: 615
  year: 2017
  end-page: 632
  ident: bb0165
  article-title: Current research scenario for microcystins biodegradation-a review on fundamental knowledge, application prospects and challenges
  publication-title: Sci. Total Environ.
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: bb0235
  article-title: edgeR: a bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 62
  start-page: 4086
  year: 1996
  end-page: 4094
  ident: bb0015
  article-title: Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR
  publication-title: Appl. Environ. Microbiol.
– volume: 21
  start-page: 855
  issue: 6
  year: 2009
  ident: 10.1016/j.scitotenv.2021.145437_bb0150
  article-title: Growth control and ribosome biogenesis
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2009.09.002
– volume: 151
  start-page: 488
  year: 2019
  ident: 10.1016/j.scitotenv.2021.145437_bb0125
  article-title: Cyanobacterial peptides beyond microcystins-a review on co-occurrence, toxicity, and challenges for risk assessment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.12.048
– volume: 15
  issue: 2
  year: 2020
  ident: 10.1016/j.scitotenv.2021.145437_bb0240
  article-title: Investigation of the quorum-sensing regulon of the biocontrol bacterium Pseudomonas chlororaphis strain PA23
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0226232
– volume: 81
  start-page: 793
  year: 2009
  ident: 10.1016/j.scitotenv.2021.145437_bb0260
  article-title: Molecular characteristics of xenobiotic-degrading sphingomonads
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1752-3
– volume: 7
  issue: 6
  year: 2016
  ident: 10.1016/j.scitotenv.2021.145437_bb0110
  article-title: Quorum sensing coordinates cooperative expression of pyruvate metabolism genes to maintain a sustainable environment for population stability
  publication-title: mBio
  doi: 10.1128/mBio.01863-16
– volume: 13
  issue: 7
  year: 2017
  ident: 10.1016/j.scitotenv.2021.145437_bb0215
  article-title: The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006504
– volume: 22
  start-page: 215
  year: 2012
  ident: 10.1016/j.scitotenv.2021.145437_bb0200
  article-title: Bacterial quorum sensing, functional features and potential applications in biotechnology
  publication-title: J. Mol. Microbiol. Biotechnol.
– volume: 595
  start-page: 615
  year: 2017
  ident: 10.1016/j.scitotenv.2021.145437_bb0165
  article-title: Current research scenario for microcystins biodegradation-a review on fundamental knowledge, application prospects and challenges
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.285
– volume: 12
  start-page: 323
  year: 2011
  ident: 10.1016/j.scitotenv.2021.145437_bb0155
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-12-323
– volume: 21
  start-page: 296
  issue: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2021.145437_bb0175
  article-title: Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-6701-2
– volume: 264
  start-page: 187
  issue: 2
  year: 1990
  ident: 10.1016/j.scitotenv.2021.145437_bb0185
  article-title: Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(90)80245-E
– volume: 84
  issue: 14
  year: 2018
  ident: 10.1016/j.scitotenv.2021.145437_bb0305
  article-title: Environmental adaptability and quorum sensing: iron uptake regulation during biofilm formation by Paracoccus denitrificans
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00865-18
– volume: 21
  start-page: 70
  year: 2008
  ident: 10.1016/j.scitotenv.2021.145437_bb0105
  article-title: Cytochrome P450 and chemical toxicology
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx700079z
– volume: 34
  start-page: i884
  issue: 17
  year: 2018
  ident: 10.1016/j.scitotenv.2021.145437_bb0030
  article-title: fastp: an ultra-fast all-in-one FASTQ preprocessor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty560
– volume: 107
  start-page: 10673
  issue: 23
  year: 2010
  ident: 10.1016/j.scitotenv.2021.145437_bb0035
  article-title: LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1005909107
– year: 2009
  ident: 10.1016/j.scitotenv.2021.145437_bb0280
– volume: 174
  start-page: 1328
  issue: 5
  year: 2018
  ident: 10.1016/j.scitotenv.2021.145437_bb0075
  article-title: SnapShot: bacterial quorum sensing
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.003
– volume: 68
  start-page: 5789
  issue: 12
  year: 2002
  ident: 10.1016/j.scitotenv.2021.145437_bb0230
  article-title: Bacterial chemotaxis toward environmental pollutants: role in bioremediation
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.12.5789-5795.2002
– volume: 81
  start-page: 7993
  issue: 23
  year: 2015
  ident: 10.1016/j.scitotenv.2021.145437_bb0095
  article-title: Genome-wide RNA sequencing analysis of quorum sensing-controlled regulons in the plant-associated Burkholderia glumae PG1 strain
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01043-15
– volume: 183
  start-page: 5187
  issue: 17
  year: 2001
  ident: 10.1016/j.scitotenv.2021.145437_bb0255
  article-title: Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.183.17.5187-5197.2001
– volume: 9
  issue: 11
  year: 2014
  ident: 10.1016/j.scitotenv.2021.145437_bb0055
  article-title: HemI: a toolkit for illustrating heatmaps
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111988
– volume: 25
  start-page: 1192
  year: 2012
  ident: 10.1016/j.scitotenv.2021.145437_bb0060
  article-title: Verification of the role of MlrC in microcystin biodegradation by studies using a heterologously expressed enzyme
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx300174e
– volume: 26
  start-page: 139
  year: 2010
  ident: 10.1016/j.scitotenv.2021.145437_bb0235
  article-title: edgeR: a bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 109
  start-page: E2823
  issue: 41
  year: 2012
  ident: 10.1016/j.scitotenv.2021.145437_bb0040
  article-title: Strain-dependent diversity in the Pseudomonas aeruginosa quorum-sensing regulon
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1214128109
– volume: 23
  start-page: 567
  issue: 9
  year: 2015
  ident: 10.1016/j.scitotenv.2021.145437_bb0100
  article-title: Control of bacterial metabolism by quorum sensing
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2015.05.007
– volume: 8
  issue: 4
  year: 2013
  ident: 10.1016/j.scitotenv.2021.145437_bb0210
  article-title: Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in Lake Erie
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061890
– volume: 80
  start-page: 5655
  issue: 18
  year: 2014
  ident: 10.1016/j.scitotenv.2021.145437_bb0140
  article-title: RNA sequencing analysis of the broad-host-range strain Sinorhizobium fredii NGR234 identifies a large set of genes linked to quorum sensing-dependent regulation in the background of a traI and ngrI deletion mutant
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01835-14
– volume: 4
  issue: 6
  year: 2008
  ident: 10.1016/j.scitotenv.2021.145437_bb0170
  article-title: Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000093
– volume: 62
  start-page: 4086
  year: 1996
  ident: 10.1016/j.scitotenv.2021.145437_bb0015
  article-title: Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.62.11.4086-4094.1996
– volume: 282
  start-page: 2029
  issue: 10
  year: 2015
  ident: 10.1016/j.scitotenv.2021.145437_bb0010
  article-title: How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization
  publication-title: FEBS J.
  doi: 10.1111/febs.13258
– volume: 4
  start-page: 188
  year: 2015
  ident: 10.1016/j.scitotenv.2021.145437_bb0090
  article-title: Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2014.00188
– volume: 22
  start-page: 329
  issue: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2021.145437_bb0180
  article-title: Evidences of aromatic degradation dominantly via the phenylacetic acid pathway in marine benthic Thermoprofundales
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14850
– volume: 174
  start-page: 115638
  year: 2020
  ident: 10.1016/j.scitotenv.2021.145437_bb0285
  article-title: A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115638
– volume: 10
  start-page: 2741
  year: 2019
  ident: 10.1016/j.scitotenv.2021.145437_bb0135
  article-title: Insight into the molecular mechanisms for microcystin biodegradation in Lake Erie and Lake Taihu
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02741
– volume: 10
  start-page: 282
  issue: 4
  year: 2019
  ident: 10.1016/j.scitotenv.2021.145437_bb0220
  article-title: Characterization and transcriptome studies of autoinducer synthase gene from multidrug resistant Acinetobacter baumannii strain 863
  publication-title: Genes (Basel)
  doi: 10.3390/genes10040282
– volume: 114
  start-page: 630
  year: 2012
  ident: 10.1016/j.scitotenv.2021.145437_bb0245
  article-title: Enzymatic pathway for biodegrading microcystin LR in Sphingopyxis sp. C-1
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2012.07.004
– volume: 197
  start-page: 2072
  issue: 12
  year: 2015
  ident: 10.1016/j.scitotenv.2021.145437_bb0050
  article-title: Quorum sensing is accompanied by global metabolic changes in the opportunistic human pathogen Pseudomonas aeruginosa
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.02557-14
– volume: 32
  start-page: 43
  issue: 1–2
  year: 2016
  ident: 10.1016/j.scitotenv.2021.145437_bb0205
  article-title: Bacterial biofilms and quorum sensing: fidelity in bioremediation technology
  publication-title: Biotechnol. Genet. Eng. Rev.
  doi: 10.1080/02648725.2016.1196554
– volume: 16
  start-page: 523
  year: 2001
  ident: 10.1016/j.scitotenv.2021.145437_bb0020
  article-title: Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR
  publication-title: Environ. Toxicol.
  doi: 10.1002/tox.10013
– volume: 12
  start-page: 357
  issue: 4
  year: 2015
  ident: 10.1016/j.scitotenv.2021.145437_bb0130
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3317
– volume: 183
  start-page: 116092
  year: 2020
  ident: 10.1016/j.scitotenv.2021.145437_bb0295
  article-title: Two hierarchical LuxR-LuxI type quorum sensing systems in Novosphingobium activate microcystin degradation through transcriptional regulation of the mlr pathway
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116092
– volume: 2
  start-page: 82
  year: 2016
  ident: 10.1016/j.scitotenv.2021.145437_bb0310
  article-title: Quorum sensing: the language of chemical signals and its ecological roles in algal-bacterial interactions
  publication-title: Crit. Rev. Plant Sci.
– volume: 9
  start-page: 148
  issue: 3
  year: 2018
  ident: 10.1016/j.scitotenv.2021.145437_bb0250
  article-title: Transcriptome profiling reveals the EanI/R quorum sensing regulon in Pantoea ananatis LMG 2665T
  publication-title: Genes (Basel)
  doi: 10.3390/genes9030148
– volume: 185
  start-page: 2080
  issue: 7
  year: 2003
  ident: 10.1016/j.scitotenv.2021.145437_bb0270
  article-title: Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.7.2080-2095.2003
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.scitotenv.2021.145437_bb0005
  article-title: Controlling the false discovery rate-a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc.: Ser. B: Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 107
  start-page: 14390
  issue: 32
  year: 2010
  ident: 10.1016/j.scitotenv.2021.145437_bb0265
  article-title: Bacterial phenylalanine and phenylacetate catabolic pathway revealed
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1005399107
– volume: 8
  start-page: 76
  year: 2016
  ident: 10.1016/j.scitotenv.2021.145437_bb0065
  article-title: Characterization of enzymatic activity of MlrB and MlrC proteins involved in bacterial degradation of cyanotoxins microcystins
  publication-title: Toxins (Basel)
  doi: 10.3390/toxins8030076
– volume: 25
  start-page: 205
  issue: 3
  year: 2017
  ident: 10.1016/j.scitotenv.2021.145437_bb0195
  article-title: Protecting from envelope stress: variations on the phage-shock-protein theme
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2016.10.001
– volume: 79
  start-page: 4421
  issue: 14
  year: 2013
  ident: 10.1016/j.scitotenv.2021.145437_bb0045
  article-title: Regulon studies and in planta role of the BraI/R quorum-sensing system in the plant-beneficial Burkholderia cluster
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00635-13
– volume: 10
  start-page: 441
  year: 2009
  ident: 10.1016/j.scitotenv.2021.145437_bb0225
  article-title: Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-441
– volume: 114
  start-page: 131
  issue: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2021.145437_bb0115
  article-title: Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1617415113
– volume: 16
  start-page: 471
  issue: 8
  year: 2018
  ident: 10.1016/j.scitotenv.2021.145437_bb0120
  article-title: Cyanobacterial blooms
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0040-1
– volume: 52
  start-page: 11102
  issue: 19
  year: 2018
  ident: 10.1016/j.scitotenv.2021.145437_bb0300
  article-title: Transcriptomic analysis reveals the pathways associated with resisting and degrading microcystin in Ochromonas
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03106
– volume: 157
  start-page: 624
  issue: 3
  year: 2014
  ident: 10.1016/j.scitotenv.2021.145437_bb0160
  article-title: Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.033
– volume: 176
  start-page: 269
  year: 1994
  ident: 10.1016/j.scitotenv.2021.145437_bb0085
  article-title: Quorum sensing in bacteria: the LuxR-LuxI family of cell density responsive transcriptional regulators
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.176.2.269-275.1994
– volume: 11
  start-page: 268
  issue: 1
  year: 2010
  ident: 10.1016/j.scitotenv.2021.145437_bb0025
  article-title: Molecular mechanisms of microcystin toxicity in animal cells
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms11010268
– volume: 16
  start-page: 284
  issue: 5
  year: 2012
  ident: 10.1016/j.scitotenv.2021.145437_bb0290
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
– volume: 11
  start-page: 3070
  issue: 15
  year: 2011
  ident: 10.1016/j.scitotenv.2021.145437_bb0070
  article-title: Mining quorum sensing regulated proteins-role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics
  publication-title: Proteomics
  doi: 10.1002/pmic.201000814
– volume: 70
  start-page: 83
  year: 2016
  ident: 10.1016/j.scitotenv.2021.145437_bb0080
  article-title: The phage shock protein response
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-102215-095359
– volume: 196
  start-page: 3862
  issue: 22
  year: 2014
  ident: 10.1016/j.scitotenv.2021.145437_bb0190
  article-title: Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01974-14
– volume: 551
  start-page: 313
  issue: 7680
  year: 2017
  ident: 10.1016/j.scitotenv.2021.145437_bb0275
  article-title: Progress in and promise of bacterial quorum sensing research
  publication-title: Nature
  doi: 10.1038/nature24624
– volume: 8
  issue: 4
  year: 2013
  ident: 10.1016/j.scitotenv.2021.145437_bb0145
  article-title: Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0062337
SSID ssj0000781
Score 2.4783397
Snippet Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 145437
SubjectTerms amino acid metabolism
Bacterial degradation
biodegradation
Biodegradation, Environmental
carbohydrate metabolism
catabolism
cell movement
environment
Gene Expression Profiling
genes
glutathione transferase
intermediate product
Microcystin
Microcystins
phenylacetic acid
Physiological response
Quorum Sensing
ribosomes
Sphingomonadaceae - genetics
Sphingomonas
stress response
surveys
transcriptional activation
Transcriptome
transcriptomics
xenobiotics
Title Transcriptome analysis expands the potential roles of quorum sensing in biodegradation and physiological responses to microcystin
URI https://dx.doi.org/10.1016/j.scitotenv.2021.145437
https://www.ncbi.nlm.nih.gov/pubmed/33736182
https://www.proquest.com/docview/2503439826
https://www.proquest.com/docview/2985835389
Volume 771
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9RAEB7aK4IgoqfVU1tW8DX2kt1sdvtWSsvpQR-kYt-W3O5GrrTJ2cuJfRH8553Jbq4UtH3wKWzILEtm95uZ5JsZgA-68FnpUp4ILUv6zeiT0hXjpNI2G7vK-dR1BNkTOfkqPp_lZxtw2OfCEK0yYn_A9A6t4529-Db3FvM55fgKpSVVnwnt2DZhK0NrrwawdfBpOjm5BeRChcZ5As82CtyheeHUbYPu6U-MFbMUgSMX1BP970bqX05oZ4yOn8HT6EWyg7DQ57Dh6yE8Cn0lr4ewfXSbvoaPxfO7HMKT8JWOheSjF_CnM1UdcDSXnpWxQgnzvxaUAszQO2QLWjfiwAUjJuKSNRX7saISDmxJ5Pf6O5vXbDZvHJWdCB2acCLHum8mPbSyq8DFRfm2YZfEArTXiC71Szg9Pjo9nCSxKUNixVi0iRKaSzejMmGITc5bjSGRKPLCVhxVoUvrla-y3HJvVWkx_nQ6k7PSS-V1lfNtGNRN7V8Dk7xwiorrSHQjci5VWimHA0s15LTlI5C9EoyNBcupb8aF6Zlp52atPUPaM0F7IxivBRehZsfDIvu9ls2d7WfQsjws_L7fFwYPJ_1xKWvfrJYG_UuOHh-GcPc8oxW-SrQ7egSvwqZar5rzgkuMAN_8z_LewmMaBX7bOxi0Vyu_g55UO9uFzY-_0914Xug6_fJtegNuISL7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8CpolJE9oKbB0f86RdA23sODY3hEDdYJw6iZuV2g7qRJOuTadxmbT_fO_FSRHSgAPHJHZk-dnvw_693wP4rFMfZ67PI6FlRteMPspc2otybeOey53vuxogeykH38XXq-RqBU7aXBiCVTa6P-j0Wls3bw6b2TycjseU4yuUlsQ-E8qxrcILQWUOcFEf_LnDeRCbTbhmxp2Nze-BvPDHVYnO6S-MFOM-qo1EUEX0_5uoh1zQ2hSdvYGNxodkx2GYb2HFFx14GapK3nZg-_QueQ2bNbt33oHX4YyOhdSjTfhbG6pabZQTz7KGn4T531NKAGboG7IpjRu1wA0jHOKclTn7uSACBzYn6HtxzcYFG41LR6QToT4T_six-sSkVaxsFpC42L8q2YQwgPYWdUuxBcOz0-HJIGpKMkRW9EQVKaG5dCMiCUPN5LzVGBCJNEltzlEQOrNe-TxOLPdWZRajT6djOcq8VF7nCd-GtaIs_HtgkqdOEbWORCci4VL1c-XwwRKDnLa8C7IVgrENXTlVzbgxLS7th1lKz5D0TJBeF3rLjtPA2PF0l6NWyube4jNoV57u_KldFwa3Jt23ZIUvF3OD3iVHfw8DuEfaaIVTiVZHd-FdWFTLUXOeconx34fnDO8jrA-G3y7MxZfL8x14RV8C0m0X1qrZwu-hT1WN9us98w-_YSIa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+analysis+expands+the+potential+roles+of+quorum+sensing+in+biodegradation+and+physiological+responses+to+microcystin&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zeng%2C+Yan-Hua&rft.au=Cheng%2C+Ke-Ke&rft.au=Cai%2C+Zhong-Hua&rft.au=Zhu%2C+Jian-Ming&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=771&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.145437&rft.externalDocID=S0048969721005052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon