Investigating FAM-N pulses for signal enhancement in MQMAS NMR of quadrupolar nuclei

Although a popular choice for obtaining high-resolution solid-state NMR spectra of quadrupolar nuclei, the inherently low sensitivity of the multiple-quantum magic-angle spinning (MQMAS) experiment has limited its application for nuclei with low receptivity or when the available sample volume is lim...

Full description

Saved in:
Bibliographic Details
Published inSolid state nuclear magnetic resonance Vol. 84; pp. 89 - 102
Main Authors Colaux, Henri, Dawson, Daniel M., Ashbrook, Sharon E.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.07.2017
Subjects
Online AccessGet full text
ISSN0926-2040
1527-3326
1527-3326
DOI10.1016/j.ssnmr.2017.01.001

Cover

Abstract Although a popular choice for obtaining high-resolution solid-state NMR spectra of quadrupolar nuclei, the inherently low sensitivity of the multiple-quantum magic-angle spinning (MQMAS) experiment has limited its application for nuclei with low receptivity or when the available sample volume is limited. A number of methods have been introduced in the literature to attempt to address this problem. Recently, we have introduced an alternative, automated approach, based on numerical simulations, for generating amplitude-modulated pulses (termed FAM-N pulses) to enhance the efficiency of the triple- to single-quantum conversion step within MQMAS. This results in efficient pulses that can be used without experimental reoptimisation, ensuring that this method is particularly suitable for challenging nuclei and systems. In this work, we investigate the applicability of FAM-N pulses to a wider variety of systems, and their robustness under more challenging experimental conditions. These include experiments performed under fast MAS, nuclei with higher spin quantum numbers, samples with multiple distinct sites, low-γ nuclei and nuclei subject to large quadrupolar interactions. [Display omitted] •High-throughput optimisation of FAM-N pulses for MQMAS NMR of quadrupolar nuclei.•Applicability of FAM-N pulses to higher spin systems and efficiency under fast MAS.•Application of FAM-N to more challenging systems without experimental re-optimisation.•Investigation into the differences between experimental and theoretical enhancements.
AbstractList Although a popular choice for obtaining high-resolution solid-state NMR spectra of quadrupolar nuclei, the inherently low sensitivity of the multiple-quantum magic-angle spinning (MQMAS) experiment has limited its application for nuclei with low receptivity or when the available sample volume is limited. A number of methods have been introduced in the literature to attempt to address this problem. Recently, we have introduced an alternative, automated approach, based on numerical simulations, for generating amplitude-modulated pulses (termed FAM-N pulses) to enhance the efficiency of the triple- to single-quantum conversion step within MQMAS. This results in efficient pulses that can be used without experimental reoptimisation, ensuring that this method is particularly suitable for challenging nuclei and systems. In this work, we investigate the applicability of FAM-N pulses to a wider variety of systems, and their robustness under more challenging experimental conditions. These include experiments performed under fast MAS, nuclei with higher spin quantum numbers, samples with multiple distinct sites, low-γ nuclei and nuclei subject to large quadrupolar interactions.Although a popular choice for obtaining high-resolution solid-state NMR spectra of quadrupolar nuclei, the inherently low sensitivity of the multiple-quantum magic-angle spinning (MQMAS) experiment has limited its application for nuclei with low receptivity or when the available sample volume is limited. A number of methods have been introduced in the literature to attempt to address this problem. Recently, we have introduced an alternative, automated approach, based on numerical simulations, for generating amplitude-modulated pulses (termed FAM-N pulses) to enhance the efficiency of the triple- to single-quantum conversion step within MQMAS. This results in efficient pulses that can be used without experimental reoptimisation, ensuring that this method is particularly suitable for challenging nuclei and systems. In this work, we investigate the applicability of FAM-N pulses to a wider variety of systems, and their robustness under more challenging experimental conditions. These include experiments performed under fast MAS, nuclei with higher spin quantum numbers, samples with multiple distinct sites, low-γ nuclei and nuclei subject to large quadrupolar interactions.
Although a popular choice for obtaining high-resolution solid-state NMR spectra of quadrupolar nuclei, the inherently low sensitivity of the multiple-quantum magic-angle spinning (MQMAS) experiment has limited its application for nuclei with low receptivity or when the available sample volume is limited. A number of methods have been introduced in the literature to attempt to address this problem. Recently, we have introduced an alternative, automated approach, based on numerical simulations, for generating amplitude-modulated pulses (termed FAM-N pulses) to enhance the efficiency of the triple- to single-quantum conversion step within MQMAS. This results in efficient pulses that can be used without experimental reoptimisation, ensuring that this method is particularly suitable for challenging nuclei and systems. In this work, we investigate the applicability of FAM-N pulses to a wider variety of systems, and their robustness under more challenging experimental conditions. These include experiments performed under fast MAS, nuclei with higher spin quantum numbers, samples with multiple distinct sites, low-γ nuclei and nuclei subject to large quadrupolar interactions.
Although a popular choice for obtaining high-resolution solid-state NMR spectra of quadrupolar nuclei, the inherently low sensitivity of the multiple-quantum magic-angle spinning (MQMAS) experiment has limited its application for nuclei with low receptivity or when the available sample volume is limited. A number of methods have been introduced in the literature to attempt to address this problem. Recently, we have introduced an alternative, automated approach, based on numerical simulations, for generating amplitude-modulated pulses (termed FAM-N pulses) to enhance the efficiency of the triple- to single-quantum conversion step within MQMAS. This results in efficient pulses that can be used without experimental reoptimisation, ensuring that this method is particularly suitable for challenging nuclei and systems. In this work, we investigate the applicability of FAM-N pulses to a wider variety of systems, and their robustness under more challenging experimental conditions. These include experiments performed under fast MAS, nuclei with higher spin quantum numbers, samples with multiple distinct sites, low-γ nuclei and nuclei subject to large quadrupolar interactions. [Display omitted] •High-throughput optimisation of FAM-N pulses for MQMAS NMR of quadrupolar nuclei.•Applicability of FAM-N pulses to higher spin systems and efficiency under fast MAS.•Application of FAM-N to more challenging systems without experimental re-optimisation.•Investigation into the differences between experimental and theoretical enhancements.
Author Ashbrook, Sharon E.
Dawson, Daniel M.
Colaux, Henri
Author_xml – sequence: 1
  givenname: Henri
  surname: Colaux
  fullname: Colaux, Henri
– sequence: 2
  givenname: Daniel M.
  surname: Dawson
  fullname: Dawson, Daniel M.
– sequence: 3
  givenname: Sharon E.
  surname: Ashbrook
  fullname: Ashbrook, Sharon E.
  email: sema@st-andrews.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28131696$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLeFX4CEfOSSdPwRZ33gsKooVOoWAeVsOY6zeOXYqZ0U9d_jsqUHDsBpLu_zauaZE3QUYrAIvSZQEyDibF_nHMZUUyBtDaQGIM_QijS0rRij4gitQFJRUeBwjE5y3gNAS5h4gY7pmjAipFihm8twZ_Psdnp2YYcvNtvqGk-LzzbjISac3S5oj234roOxow0zdgFvP283X_H19guOA75ddJ-WKXqdcFiMt-4lej7oUvHqcZ6ibxfvb84_VlefPlyeb64qw4HPVUvLMB2jTMPQ244MnDVsve4IlabTAxghQMueG2pZ2zSccSl012sCXSM5Z6eIH3qXMOn7H9p7NSU36nSvCKgHSWqvfklSD5IUEFUkFeztAZtSvF3K9Wp02VjvdbBxyYqsBZVMgmhL9M1jdOlG2z_V_xZYAvIQMCnmnOygjJuLyxjmpJ3_xx7sD_b_tn93oGwxe-dsUtk4W57Tu2TNrPro_sr_BLEQrLI
CitedBy_id crossref_primary_10_1002_mrc_5116
crossref_primary_10_1146_annurev_anchem_061417_125852
crossref_primary_10_1016_j_jmro_2024_100177
crossref_primary_10_1002_chem_202101421
crossref_primary_10_1016_j_jmr_2020_106873
crossref_primary_10_1021_acs_jpclett_4c00563
crossref_primary_10_1016_j_ssnmr_2019_03_002
crossref_primary_10_1063_1_5038547
crossref_primary_10_1515_psr_2019_0086
Cites_doi 10.1021/jp047868m
10.1016/j.ssnmr.2006.09.002
10.1039/c39880001483
10.1021/ja9614676
10.1016/j.jmr.2004.03.021
10.1021/jp049603d
10.1016/0009-2614(96)00809-3
10.1006/jmre.2000.2174
10.1016/S0926-2040(99)00053-3
10.1039/c3ce40875b
10.1039/c1cp20258h
10.1016/S0009-2614(98)01402-X
10.1080/00268978800101571
10.1021/ja9939791
10.1016/j.jmr.2007.05.020
10.1016/S0066-4103(04)54003-6
10.1021/ja036777k
10.1016/0375-9601(78)90023-3
10.1007/b98650
10.1021/ja057682g
10.1016/j.ssnmr.2007.09.003
10.1006/jmre.1997.1275
10.1103/PhysRev.94.630
10.1006/jmre.2000.2190
10.1039/ft9918702453
10.1021/ja00124a023
10.1016/0009-2614(88)87362-7
10.1063/1.1716296
10.1021/jp992798i
10.1021/jp111531e
10.1021/jp505752c
10.1063/1.480804
10.2138/am.2010.3403
10.1016/S0926-2040(97)00027-1
10.1006/jmre.1996.1059
10.1016/j.ssnmr.2005.09.003
10.1021/ja0203869
10.1063/1.3263904
10.1016/S0926-2040(00)00081-3
10.1016/j.cplett.2005.01.023
10.1006/jmre.2000.2179
10.1021/cm060590l
10.2138/am-1996-5-602
10.1006/jmre.1997.1217
10.1002/mrc.1238
10.1016/0926-2040(95)01210-9
10.1016/S0009-2614(02)01681-0
10.1021/ja054035g
10.1016/j.jmr.2004.11.001
10.1016/S0926-2040(99)00054-5
10.1016/S1090-7807(03)00016-8
10.1246/cl.1984.293
10.1016/S0009-2614(99)00446-7
10.1016/j.pnmrs.2004.04.002
10.1063/1.1333407
10.1021/jp304868w
10.1021/ja101860r
10.1021/jp310878b
10.1016/S0009-2614(00)00298-0
10.1016/S0926-2040(96)01284-2
10.1016/S0926-2040(99)00011-9
ContentType Journal Article
Copyright 2017 The Authors
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 The Authors
– notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.ssnmr.2017.01.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1527-3326
EndPage 102
ExternalDocumentID 10.1016/j.ssnmr.2017.01.001
28131696
10_1016_j_ssnmr_2017_01_001
S092620401630087X
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M35
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSK
SSM
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c404t-72404cb323a0fdeb1f435388b129cbaf0c660a9d4c2e375543496abda10b59443
IEDL.DBID .~1
ISSN 0926-2040
1527-3326
IngestDate Sun Oct 26 03:51:25 EDT 2025
Sun Sep 28 00:42:42 EDT 2025
Wed Feb 19 02:40:22 EST 2025
Wed Oct 01 02:37:57 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Fri Feb 23 02:35:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MQMAS
Quadrupolar nuclei
Fast-amplitude modulation
Challenging systems
Solid-state MAS NMR spectroscopy
FAM-N pulses
Language English
License This is an open access article under the CC BY license.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-72404cb323a0fdeb1f435388b129cbaf0c660a9d4c2e375543496abda10b59443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S092620401630087X
PMID 28131696
PQID 1862939067
PQPubID 23479
PageCount 14
ParticipantIDs unpaywall_primary_10_1016_j_ssnmr_2017_01_001
proquest_miscellaneous_1862939067
pubmed_primary_28131696
crossref_citationtrail_10_1016_j_ssnmr_2017_01_001
crossref_primary_10_1016_j_ssnmr_2017_01_001
elsevier_sciencedirect_doi_10_1016_j_ssnmr_2017_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July-August 2017
2017-07-00
2017 Jul - Aug
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July-August 2017
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Solid state nuclear magnetic resonance
PublicationTitleAlternate Solid State Nucl Magn Reson
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Colaux, Dawson, Ashbrook (bib37) 2014; 118
Ashbrook, Wimperis (bib61) 2003; 162
Derighetti, Hafner, Marxer, Rager (bib65) 1978; 66
Larsen, Farnan (bib53) 2004; 108
Morais, Lopes, Fernandez, Rocha (bib38) 2003; 41
Davis, Brouwer, Lipton, Gan, Mueller (bib67) 2001; 95
Antonijevic, Ashbrook, Biedesek, Walton, Wimperis, Yang (bib17) 2006; 128
Kim, Hsieh, Stebbins (bib54) 2006; 18
Bak, Rasmussen, Nielsen (bib40) 2000; 147
Ashbrook, Wimperis (bib49) 2009; 131
Vosegaard, Florian, Massiot, Grandinetti (bib29) 2001; 114
Johnston, Griffin, Walton, Dawson, Lightfoot, Ashbrook (bib55) 2011; 13
Tabeta, Saito (bib43) 1984; 13
Ashbrook, Wimperis (bib36) 2000; 147
Amoureux, Fernandez (bib12) 1998; 10
Pruski, Wiench, Amoureux (bib26) 2000; 147
Massiot, Touzo, Trumeau, Virlet, Florian, Grandinetti (bib39) 1996; 6
Gan, Kwak (bib19) 2004; 168
Carr, Purcell (bib32) 1954; 94
Lapina, Khabibulin, Romanenko, Gan, Zuev, Krasil’nikov, Fedorov (bib47) 2005; 28
Ashbrook, Griffin (bib64) 2013; 79
Rocha, Morais, Fernandez (bib9) 2005; 246
Trebosc, Amoureux, Gan (bib18) 2007; 31
Siegel, Nakashima, Wasylishen (bib25) 2005; 403
MATLAB Release 2011b, The MathWorks, Inc., Natick, Massachusetts, United States.
Pruski, Lang, Fernandez, Amoureux (bib35) 1997; 7
Ashbrook, Dawson, Griffin (bib2) 2014
Brown, Wimperis (bib7) 1997; 128
Engelhardt, Kentgens, Koller, Samoson (bib50) 1999; 15
Llor, Virlet (bib4) 1988; 152
Amoureux, Delevoye, Steuernagel, Gan, Ganapathy, Montagne (bib20) 2005; 172
Vosegaard, Kehlet, Khaneja, Glaser, Nielsen (bib31) 2005; 127
Brown, Wimperis (bib42) 1997; 124
Pike, Malde, Ashbrook, McManus, Wimperis (bib48) 2000; 16
Barrie (bib45) 1998; 102
Samoson, Lippmaa, Pines (bib5) 1988; 65
Massiot, Vosegaard, Magneron, Trumeau, Montouillout, Berthet, Loiseau, Bujoli (bib58) 1999; 15
Alemany, Steuernagel, Amoureux, Callender, Barron (bib59) 1999; 14
Meiboom, Gill (bib33) 1958; 29
O’Dell, Ratcliffe (bib69) 2011; 115
Madhu, Goldbourt, Frydman, Vega (bib23) 2000; 112
Kentgens, Verhagen (bib21) 1999; 300
Kanellopoulos, Freude, Kentgens (bib10) 2007; 32
Ashbrook, Wimperis (bib52) 2002; 124
Goldburt, Madhu, Vega (bib24) 2000; 320
Goldburt, Madhu (bib8) 2005; 54
Johnston, Mitchell, Blanc, Lightfoot, Ashbrook (bib46) 2013; 117
Koczor, Rohonczy (bib30) 2016; 75
Amoureux, Pruski, Lang, Fernandez (bib13) 1998; 131
MacKenzie, Smith (bib1) 2002
Ashbrook, Berry, Hibberson, Steuernagel, Wimperis (bib16) 2003; 125
Gan (bib14) 2000; 122
Gan, Srinivasan, Quine, Steuernagel, Knott (bib60) 2003; 367
Dupree, Smith (bib44) 1988
Ball, Wimperis (bib27) 2007; 187
Johnston, Tang, Parker, Knight, Lightfoot, Ashbrook (bib56) 2010; 132
Madhu, Goldbourt, Frydman, Vega (bib22) 1999; 307
Larsen, Nielsen (bib34) 1999; 103
Winkler, Blaha, Schwarz (bib66) 1996; 81
Pontryagin, Boltyanskii, Gamkreldze, Mishchenko (bib68) 1962
Dowell, Ashbrook, Wimperis (bib62) 2004; 108
Perras, Korobkov, Bryce (bib51) 2013; 15
Ashbrook, Wimperis (bib15) 2004; 45
Amoureux, Fernandez, Frydman (bib11) 1996; 259
(bib3) 2012
Wu, Rovnyak, Griffin (bib28) 1996; 118
Bastow (bib63) 1991; 87
Frydman, Harwood (bib6) 1995; 117
Amri, Ashbrook, Dawson, Griffin, Walton, Wimperis (bib57) 2012; 116
Barrie (10.1016/j.ssnmr.2017.01.001_bib45) 1998; 102
Ashbrook (10.1016/j.ssnmr.2017.01.001_bib64) 2013; 79
Larsen (10.1016/j.ssnmr.2017.01.001_bib53) 2004; 108
Kanellopoulos (10.1016/j.ssnmr.2017.01.001_bib10) 2007; 32
Engelhardt (10.1016/j.ssnmr.2017.01.001_bib50) 1999; 15
Ashbrook (10.1016/j.ssnmr.2017.01.001_bib49) 2009; 131
Goldburt (10.1016/j.ssnmr.2017.01.001_bib24) 2000; 320
Massiot (10.1016/j.ssnmr.2017.01.001_bib39) 1996; 6
Pruski (10.1016/j.ssnmr.2017.01.001_bib26) 2000; 147
Koczor (10.1016/j.ssnmr.2017.01.001_bib30) 2016; 75
Vosegaard (10.1016/j.ssnmr.2017.01.001_bib29) 2001; 114
Vosegaard (10.1016/j.ssnmr.2017.01.001_bib31) 2005; 127
Pontryagin (10.1016/j.ssnmr.2017.01.001_bib68) 1962
Kim (10.1016/j.ssnmr.2017.01.001_bib54) 2006; 18
MacKenzie (10.1016/j.ssnmr.2017.01.001_bib1) 2002
Gan (10.1016/j.ssnmr.2017.01.001_bib14) 2000; 122
Wu (10.1016/j.ssnmr.2017.01.001_bib28) 1996; 118
Morais (10.1016/j.ssnmr.2017.01.001_bib38) 2003; 41
Winkler (10.1016/j.ssnmr.2017.01.001_bib66) 1996; 81
Ashbrook (10.1016/j.ssnmr.2017.01.001_bib15) 2004; 45
Dowell (10.1016/j.ssnmr.2017.01.001_bib62) 2004; 108
Amoureux (10.1016/j.ssnmr.2017.01.001_bib11) 1996; 259
Amri (10.1016/j.ssnmr.2017.01.001_bib57) 2012; 116
Siegel (10.1016/j.ssnmr.2017.01.001_bib25) 2005; 403
Amoureux (10.1016/j.ssnmr.2017.01.001_bib12) 1998; 10
Perras (10.1016/j.ssnmr.2017.01.001_bib51) 2013; 15
Gan (10.1016/j.ssnmr.2017.01.001_bib19) 2004; 168
Bastow (10.1016/j.ssnmr.2017.01.001_bib63) 1991; 87
Ashbrook (10.1016/j.ssnmr.2017.01.001_bib16) 2003; 125
Ball (10.1016/j.ssnmr.2017.01.001_bib27) 2007; 187
Ashbrook (10.1016/j.ssnmr.2017.01.001_bib2) 2014
Johnston (10.1016/j.ssnmr.2017.01.001_bib55) 2011; 13
Johnston (10.1016/j.ssnmr.2017.01.001_bib46) 2013; 117
Kentgens (10.1016/j.ssnmr.2017.01.001_bib21) 1999; 300
Bak (10.1016/j.ssnmr.2017.01.001_bib40) 2000; 147
Johnston (10.1016/j.ssnmr.2017.01.001_bib56) 2010; 132
Madhu (10.1016/j.ssnmr.2017.01.001_bib23) 2000; 112
Meiboom (10.1016/j.ssnmr.2017.01.001_bib33) 1958; 29
Ashbrook (10.1016/j.ssnmr.2017.01.001_bib52) 2002; 124
(10.1016/j.ssnmr.2017.01.001_bib3) 2012
Tabeta (10.1016/j.ssnmr.2017.01.001_bib43) 1984; 13
Antonijevic (10.1016/j.ssnmr.2017.01.001_bib17) 2006; 128
Lapina (10.1016/j.ssnmr.2017.01.001_bib47) 2005; 28
Goldburt (10.1016/j.ssnmr.2017.01.001_bib8) 2005; 54
Trebosc (10.1016/j.ssnmr.2017.01.001_bib18) 2007; 31
Davis (10.1016/j.ssnmr.2017.01.001_bib67) 2001; 95
Pruski (10.1016/j.ssnmr.2017.01.001_bib35) 1997; 7
Dupree (10.1016/j.ssnmr.2017.01.001_bib44) 1988
Gan (10.1016/j.ssnmr.2017.01.001_bib60) 2003; 367
Ashbrook (10.1016/j.ssnmr.2017.01.001_bib36) 2000; 147
Larsen (10.1016/j.ssnmr.2017.01.001_bib34) 1999; 103
Llor (10.1016/j.ssnmr.2017.01.001_bib4) 1988; 152
O’Dell (10.1016/j.ssnmr.2017.01.001_bib69) 2011; 115
Samoson (10.1016/j.ssnmr.2017.01.001_bib5) 1988; 65
Brown (10.1016/j.ssnmr.2017.01.001_bib42) 1997; 124
Colaux (10.1016/j.ssnmr.2017.01.001_bib37) 2014; 118
Frydman (10.1016/j.ssnmr.2017.01.001_bib6) 1995; 117
Alemany (10.1016/j.ssnmr.2017.01.001_bib59) 1999; 14
Carr (10.1016/j.ssnmr.2017.01.001_bib32) 1954; 94
Massiot (10.1016/j.ssnmr.2017.01.001_bib58) 1999; 15
Brown (10.1016/j.ssnmr.2017.01.001_bib7) 1997; 128
10.1016/j.ssnmr.2017.01.001_bib41
Derighetti (10.1016/j.ssnmr.2017.01.001_bib65) 1978; 66
Amoureux (10.1016/j.ssnmr.2017.01.001_bib20) 2005; 172
Ashbrook (10.1016/j.ssnmr.2017.01.001_bib61) 2003; 162
Amoureux (10.1016/j.ssnmr.2017.01.001_bib13) 1998; 131
Rocha (10.1016/j.ssnmr.2017.01.001_bib9) 2005; 246
Madhu (10.1016/j.ssnmr.2017.01.001_bib22) 1999; 307
Pike (10.1016/j.ssnmr.2017.01.001_bib48) 2000; 16
References_xml – volume: 168
  start-page: 346
  year: 2004
  end-page: 351
  ident: bib19
  article-title: Enhancing MQMAS sensitivity using signals from multiple coherence transfer pathways
  publication-title: J. Magn. Reson.
– volume: 115
  start-page: 747
  year: 2011
  end-page: 752
  ident: bib69
  article-title: Crystal structure based design of signal enhancement schemes for solid-state NMR of insensitive half-integer quadrupolar nuclei
  publication-title: J. Phys. Chem. A
– volume: 10
  start-page: 211
  year: 1998
  end-page: 223
  ident: bib12
  article-title: Triple, quintuple and higher order multiple quantum MAS NMR of quadrupolar nuclei
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 31
  start-page: 1
  year: 2007
  end-page: 9
  ident: bib18
  article-title: Comparison of high-resolution solid-state NMR MQMAS and STMAS methods for half-integer quadrupolar nuclei
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 45
  start-page: 53
  year: 2004
  end-page: 108
  ident: bib15
  article-title: High-resolution NMR of quadrupolar nuclei in solids: the satellite-transition magic angle spinning (STMAS) experiment
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 15
  start-page: 8727
  year: 2013
  end-page: 8738
  ident: bib51
  article-title: NMR crystallography of sodium diphosphates: combining dipolar, shielding, quadrupolar, diffraction, and computational information
  publication-title: CrystEngComm
– volume: 66
  start-page: 150
  year: 1978
  end-page: 152
  ident: bib65
  article-title: NMR of
  publication-title: Phys. Lett. A
– volume: 81
  start-page: 545
  year: 1996
  end-page: 549
  ident: bib66
  article-title: calculation of electric-field-gradient tensors of forsterite
  publication-title: Am. Mineral.
– volume: 41
  start-page: 679
  year: 2003
  end-page: 688
  ident: bib38
  article-title: Assessing the potential of fast amplitude modulation pulses for improving triple-quantum magic angle spinning NMR spectra of half-integer quadrupolar nuclei
  publication-title: Magn. Reson. Chem.
– volume: 65
  start-page: 1013
  year: 1988
  end-page: 1018
  ident: bib5
  article-title: High resolution solid-state NMR
  publication-title: Mol. Phys.
– volume: 18
  start-page: 3855
  year: 2006
  end-page: 3859
  ident: bib54
  article-title: Scandium coordination in solid oxides and stabilized zirconia:
  publication-title: Chem. Mater.
– volume: 94
  start-page: 630
  year: 1954
  end-page: 638
  ident: bib32
  article-title: Effects of diffusion on free precession in nuclear magnetic resonance experiments
  publication-title: Phys. Rev.
– volume: 132
  start-page: 8732
  year: 2010
  end-page: 8746
  ident: bib56
  article-title: The polar phase of NaNbO
  publication-title: J. Am. Chem. Soc.
– volume: 172
  start-page: 268
  year: 2005
  end-page: 278
  ident: bib20
  article-title: Increasing the sensitivity of 2D high-resolution NMR methods applied to quadrupolar nuclei
  publication-title: J. Magn. Reson.
– volume: 103
  start-page: 10825
  year: 1999
  end-page: 11083
  ident: bib34
  article-title: Effects of finite Rf pulses and sample spinning speed in multiple-quantum magic-angle spinning (MQ-MAS) and multiple-quantum quadrupolar carr-purcell-meiboom-gill magic-angle spinning (MQ-QCPMG-MAS) nuclear magnetic resonance of half-integer quadrupolar nuclei
  publication-title: J. Phys. Chem. A
– volume: 79
  start-page: 242
  year: 2013
  end-page: 332
  ident: bib64
  article-title: Solid-state NMR of high-pressure silicates in the Earth's mantle
  publication-title: Ann. Rep. NMR Spectrosc.
– volume: 114
  start-page: 4618
  year: 2001
  end-page: 4624
  ident: bib29
  article-title: Multiple quantum magic-angle spinning using rotary resonance excitation
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 7565
  year: 2011
  end-page: 7576
  ident: bib55
  article-title: Nb NMR and DFT investigation of the polymorphs of NaNbO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 128
  start-page: 42
  year: 1997
  end-page: 61
  ident: bib7
  article-title: Two-dimensional multiple-quantum MAS NMR of quadrupolar nuclei: a comparison of methods
  publication-title: J. Magn. Reson.
– volume: 54
  start-page: 81
  year: 2005
  end-page: 153
  ident: bib8
  article-title: Multiple-quantum magic-angle spinning: high-resolution solid-state NMR of half-integer spin quadrupolar nuclei
  publication-title: Ann. Rep. NMR Spectrosc.
– volume: 6
  start-page: 73
  year: 1996
  end-page: 83
  ident: bib39
  article-title: Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 124
  start-page: 279
  year: 1997
  end-page: 285
  ident: bib42
  article-title: Two-dimensional multiple-quantum MAS NMR of quadrupolar nuclei. acquisition of the whole echo
  publication-title: J. Magn. Reson.
– volume: 95
  start-page: 1601
  year: 2001
  end-page: 1607
  ident: bib67
  article-title: Characterization of cation environments in polycrystalline forsterite by
  publication-title: Am. Mineral.
– volume: 7
  start-page: 327
  year: 1997
  end-page: 331
  ident: bib35
  article-title: Multiple-quantum magic-angle spinning NMR with cross-polarization: spectral editing of high-resolution spectra of quadrupolar nuclei
  publication-title: Solid State Nucl. Magn. Reson
– volume: 147
  start-page: 238
  year: 2000
  end-page: 249
  ident: bib36
  article-title: Multiple-quantum cross-polarization and two-dimensional MQMAS NMR of quadrupolar nuclei
  publication-title: J. Magn. Reson.
– volume: 162
  start-page: 402
  year: 2003
  end-page: 416
  ident: bib61
  article-title: SCAM-STMAS: satellite-transition MAS NMR of quadrupolar nuclei with self-compensation for magic-angle misset
  publication-title: J. Magn. Reson.
– volume: 152
  start-page: 248
  year: 1988
  end-page: 253
  ident: bib4
  article-title: Towards high-resolution NMR of more nuclei in solids – sample spinning with time-dependent spinner axis angle
  publication-title: J. Chem. Phys. Lett.
– volume: 118
  start-page: 6018
  year: 2014
  end-page: 6025
  ident: bib37
  article-title: Efficient amplitude-modulated pulses for triple-to single-quantum coherence conversion in MQMAS NMR
  publication-title: J. Phys. Chem. A
– volume: 87
  start-page: 2453
  year: 1991
  end-page: 2455
  ident: bib63
  article-title: Powder determination of
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 112
  start-page: 2377
  year: 2000
  end-page: 2391
  ident: bib23
  article-title: Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic resonance: theory and experiments
  publication-title: J. Chem. Phys.
– reference: MATLAB Release 2011b, The MathWorks, Inc., Natick, Massachusetts, United States.
– volume: 367
  start-page: 163
  year: 2003
  end-page: 169
  ident: bib60
  article-title: Third-order effect in solid-state NMR of quadrupolar nuclei
  publication-title: Chem. Phys. Lett.
– volume: 108
  start-page: 13292
  year: 2004
  end-page: 13299
  ident: bib62
  article-title: Satellite-transition MAS NMR of low-γ nuclei at natural abundance: sensitivity, practical implementation, and application to
  publication-title: J. Phys. Chem. B
– year: 2002
  ident: bib1
  article-title: Multinuclear Solid-State NMR of Inorganic Materials
– volume: 29
  start-page: 688
  year: 1958
  end-page: 691
  ident: bib33
  article-title: Modified spin-echo method for measuring nuclear relaxation times
  publication-title: Rev. Sci. Instrum.
– volume: 15
  start-page: 159
  year: 1999
  end-page: 169
  ident: bib58
  article-title: Ga NMR of reference Ga
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 147
  start-page: 296
  year: 2000
  end-page: 330
  ident: bib40
  article-title: SIMPSON: a general simulation program for solid-state NMR spectroscopy
  publication-title: J. Magn. Reson.
– volume: 124
  start-page: 11602
  year: 2002
  end-page: 11603
  ident: bib52
  article-title: High-resolution NMR spectroscopy of quadrupolar nuclei in solids: satellite-transition MAS with self-compensation for magic-angle misset
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1
  year: 1999
  end-page: 18
  ident: bib59
  article-title: Very fast MAS and MQMAS NMR studies of the spectroscopically challenging minerals kyanite and andalusite on 400, 500, and 800 MHz spectrometers
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 102
  start-page: 9750
  year: 1998
  end-page: 9760
  ident: bib45
  article-title: Distorted powder lineshapes in
  publication-title: J. Phys. Chem. A
– volume: 300
  start-page: 435
  year: 1999
  end-page: 443
  ident: bib21
  article-title: Advantages of double frequency sweeps in static, MAS and MQMAS NMR of Spin I=3/2 nuclei
  publication-title: Chem. Phys. Lett.
– volume: 147
  start-page: 286
  year: 2000
  end-page: 295
  ident: bib26
  article-title: On the conversion of triple- to single-quantum coherences in MQMAS NMR
  publication-title: J. Magn. Reson.
– volume: 13
  start-page: 293
  year: 1984
  end-page: 296
  ident: bib43
  article-title: Na chemical shifts of some inorganic and organic compounds in the solid state as determined by the magic angle spinning and high power NMR methods
  publication-title: Chem. Lett.
– volume: 117
  start-page: 5367
  year: 1995
  end-page: 5368
  ident: bib6
  article-title: Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle-spinning NMR
  publication-title: J. Am. Chem. Soc.
– volume: 320
  start-page: 448
  year: 2000
  end-page: 456
  ident: bib24
  article-title: Enhanced conversion of triple to single-quantum coherence in the triple-quantum MAS NMR spectrosocopy of Spin-5/2 nuclei
  publication-title: Chem. Phys. Lett.
– volume: 117
  start-page: 2252
  year: 2013
  end-page: 2265
  ident: bib46
  article-title: Structural study of La
  publication-title: J. Phys. Chem. C
– volume: 75
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib30
  article-title: A novel pulse scheme for multiple quantum excitation, SFAM to enhance the sensitivity of MQMAS experiments
  publication-title: Solid State Nucl. Magn. Reson. 74
– volume: 15
  start-page: 171
  year: 1999
  end-page: 180
  ident: bib50
  article-title: Strategies for extracting NMR parameters from
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 307
  start-page: 41
  year: 1999
  end-page: 47
  ident: bib22
  article-title: Sensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses
  publication-title: Chem. Phys. Lett.
– volume: 108
  start-page: 9764
  year: 2004
  end-page: 9771
  ident: bib53
  article-title: Site populations and short range order in aluminosilicates investigated by
  publication-title: J. Phys. Chem. B
– start-page: 1483
  year: 1988
  end-page: 1485
  ident: bib44
  article-title: Solid-state magnesium-25 NMR spectroscopy
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 16
  start-page: 203
  year: 2000
  end-page: 215
  ident: bib48
  article-title: Multiple-quantum MAS NMR of quadrupolar nuclei. Do five-, seven- and nine-quantum experiments yield higher resolution than the three-quantum experiment?
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 118
  start-page: 9326
  year: 1996
  end-page: 9332
  ident: bib28
  article-title: Quantitative multiple-quantum magic-angle-spinning NMR spectroscopy of quadrupolar nuclei in solids
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 194509
  year: 2009
  ident: bib49
  article-title: Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: second-order quadrupolar and resonance offset effects
  publication-title: J. Chem. Phys.
– year: 2014
  ident: bib2
  article-title: Solid-state NMR spectroscopy
  publication-title: Local Structural Characterisation
– year: 2012
  ident: bib3
  publication-title: NMR of Quadrupolar Nuclei in Solid Materials
– volume: 403
  start-page: 353
  year: 2005
  end-page: 358
  ident: bib25
  article-title: Sensitivity enhancement of MQMAS NMR spectra of Spin 3/2 nuclei using hyperbolic secant pulses
  publication-title: Chem. Phys. Lett.
– volume: 128
  start-page: 8054
  year: 2006
  end-page: 8062
  ident: bib17
  article-title: Dynamics on the microsecond timescale in microporous aluminophosphate AlPO-14 as evidenced by
  publication-title: J. Am. Chem. Soc.
– volume: 246
  start-page: 141
  year: 2005
  end-page: 194
  ident: bib9
  article-title: Progress in multiple-quantum magic-angle spinning NMR spectroscopy
  publication-title: Top. Curr. Chem.
– volume: 259
  start-page: 347
  year: 1996
  end-page: 355
  ident: bib11
  article-title: Optimized multiple-quantum magic-angle spinning NMR experiments on half-integer quadrupoles
  publication-title: Chem. Phys. Lett.
– volume: 187
  start-page: 343
  year: 2007
  end-page: 351
  ident: bib27
  article-title: Use of SPAM and FAM pulses in high-resolution MAS NMR spectroscopy of quadrupolar nuclei
  publication-title: J. Magn. Reson.
– volume: 116
  start-page: 15048
  year: 2012
  end-page: 15057
  ident: bib57
  article-title: A multinuclear solid-state NMR study of templated and calcined chabazite-type GaPO-34
  publication-title: J. Phys. Chem. C
– year: 1962
  ident: bib68
  article-title: The Mathematical Theory of Optimal Processes
– volume: 131
  start-page: 170
  year: 1998
  end-page: 175
  ident: bib13
  article-title: The effect of RF power and spinning speed on MQMAS NMR
  publication-title: J. Magn. Reson.
– volume: 125
  start-page: 11824
  year: 2003
  end-page: 11825
  ident: bib16
  article-title: High-resolution
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 204
  year: 2005
  end-page: 224
  ident: bib47
  article-title: Nb NMR chemical shift scale for Niobia systems
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 122
  start-page: 3242
  year: 2000
  end-page: 3243
  ident: bib14
  article-title: Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 99
  year: 2007
  end-page: 108
  ident: bib10
  article-title: Practical comparison of MQMAS techniques
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 127
  start-page: 13768
  year: 2005
  end-page: 13769
  ident: bib31
  article-title: Improved excitation schemes for multiple-quantum magic-angle spinning for quadrupolar nuclei designed using optimal control theory
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 13292
  year: 2004
  ident: 10.1016/j.ssnmr.2017.01.001_bib62
  article-title: Satellite-transition MAS NMR of low-γ nuclei at natural abundance: sensitivity, practical implementation, and application to 39K (I=3/2) and 25Mg (I=5/2)
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047868m
– volume: 31
  start-page: 1
  year: 2007
  ident: 10.1016/j.ssnmr.2017.01.001_bib18
  article-title: Comparison of high-resolution solid-state NMR MQMAS and STMAS methods for half-integer quadrupolar nuclei
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2006.09.002
– start-page: 1483
  year: 1988
  ident: 10.1016/j.ssnmr.2017.01.001_bib44
  article-title: Solid-state magnesium-25 NMR spectroscopy
  publication-title: J. Chem. Soc. Chem. Commun.
  doi: 10.1039/c39880001483
– year: 2002
  ident: 10.1016/j.ssnmr.2017.01.001_bib1
– volume: 118
  start-page: 9326
  year: 1996
  ident: 10.1016/j.ssnmr.2017.01.001_bib28
  article-title: Quantitative multiple-quantum magic-angle-spinning NMR spectroscopy of quadrupolar nuclei in solids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9614676
– volume: 168
  start-page: 346
  year: 2004
  ident: 10.1016/j.ssnmr.2017.01.001_bib19
  article-title: Enhancing MQMAS sensitivity using signals from multiple coherence transfer pathways
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2004.03.021
– volume: 108
  start-page: 9764
  year: 2004
  ident: 10.1016/j.ssnmr.2017.01.001_bib53
  article-title: Site populations and short range order in aluminosilicates investigated by 27Al solid-state NMR
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp049603d
– volume: 259
  start-page: 347
  year: 1996
  ident: 10.1016/j.ssnmr.2017.01.001_bib11
  article-title: Optimized multiple-quantum magic-angle spinning NMR experiments on half-integer quadrupoles
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00809-3
– volume: 147
  start-page: 238
  year: 2000
  ident: 10.1016/j.ssnmr.2017.01.001_bib36
  article-title: Multiple-quantum cross-polarization and two-dimensional MQMAS NMR of quadrupolar nuclei
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.2000.2174
– volume: 15
  start-page: 159
  year: 1999
  ident: 10.1016/j.ssnmr.2017.01.001_bib58
  article-title: 71Ga NMR of reference GaIV, GaV, and GaVI compounds by MAS and QPASS, extension of gallium/aluminum NMR parameter correlation
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/S0926-2040(99)00053-3
– volume: 15
  start-page: 8727
  year: 2013
  ident: 10.1016/j.ssnmr.2017.01.001_bib51
  article-title: NMR crystallography of sodium diphosphates: combining dipolar, shielding, quadrupolar, diffraction, and computational information
  publication-title: CrystEngComm
  doi: 10.1039/c3ce40875b
– volume: 13
  start-page: 7565
  year: 2011
  ident: 10.1016/j.ssnmr.2017.01.001_bib55
  article-title: 93Nb NMR and DFT investigation of the polymorphs of NaNbO3
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20258h
– volume: 300
  start-page: 435
  year: 1999
  ident: 10.1016/j.ssnmr.2017.01.001_bib21
  article-title: Advantages of double frequency sweeps in static, MAS and MQMAS NMR of Spin I=3/2 nuclei
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)01402-X
– volume: 65
  start-page: 1013
  year: 1988
  ident: 10.1016/j.ssnmr.2017.01.001_bib5
  article-title: High resolution solid-state NMR
  publication-title: Mol. Phys.
  doi: 10.1080/00268978800101571
– volume: 122
  start-page: 3242
  year: 2000
  ident: 10.1016/j.ssnmr.2017.01.001_bib14
  article-title: Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9939791
– year: 2014
  ident: 10.1016/j.ssnmr.2017.01.001_bib2
  article-title: Solid-state NMR spectroscopy
– volume: 187
  start-page: 343
  year: 2007
  ident: 10.1016/j.ssnmr.2017.01.001_bib27
  article-title: Use of SPAM and FAM pulses in high-resolution MAS NMR spectroscopy of quadrupolar nuclei
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2007.05.020
– volume: 54
  start-page: 81
  year: 2005
  ident: 10.1016/j.ssnmr.2017.01.001_bib8
  article-title: Multiple-quantum magic-angle spinning: high-resolution solid-state NMR of half-integer spin quadrupolar nuclei
  publication-title: Ann. Rep. NMR Spectrosc.
  doi: 10.1016/S0066-4103(04)54003-6
– volume: 125
  start-page: 11824
  year: 2003
  ident: 10.1016/j.ssnmr.2017.01.001_bib16
  article-title: High-resolution 17O NMR spectroscopy of Wadsleyite (β-Mg2SiO4)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja036777k
– volume: 66
  start-page: 150
  year: 1978
  ident: 10.1016/j.ssnmr.2017.01.001_bib65
  article-title: NMR of 29Si and 25Mg in Mg2SiO4 with dynamic polarization technique
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(78)90023-3
– volume: 246
  start-page: 141
  year: 2005
  ident: 10.1016/j.ssnmr.2017.01.001_bib9
  article-title: Progress in multiple-quantum magic-angle spinning NMR spectroscopy
  publication-title: Top. Curr. Chem.
  doi: 10.1007/b98650
– volume: 128
  start-page: 8054
  year: 2006
  ident: 10.1016/j.ssnmr.2017.01.001_bib17
  article-title: Dynamics on the microsecond timescale in microporous aluminophosphate AlPO-14 as evidenced by 27Al MQMAS and STMAS NMR spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057682g
– volume: 32
  start-page: 99
  year: 2007
  ident: 10.1016/j.ssnmr.2017.01.001_bib10
  article-title: Practical comparison of MQMAS techniques
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2007.09.003
– volume: 131
  start-page: 170
  year: 1998
  ident: 10.1016/j.ssnmr.2017.01.001_bib13
  article-title: The effect of RF power and spinning speed on MQMAS NMR
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1997.1275
– volume: 94
  start-page: 630
  year: 1954
  ident: 10.1016/j.ssnmr.2017.01.001_bib32
  article-title: Effects of diffusion on free precession in nuclear magnetic resonance experiments
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.94.630
– volume: 147
  start-page: 286
  year: 2000
  ident: 10.1016/j.ssnmr.2017.01.001_bib26
  article-title: On the conversion of triple- to single-quantum coherences in MQMAS NMR
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.2000.2190
– volume: 87
  start-page: 2453
  year: 1991
  ident: 10.1016/j.ssnmr.2017.01.001_bib63
  article-title: Powder determination of 39K nuclear quadrupole coupling
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/ft9918702453
– volume: 117
  start-page: 5367
  year: 1995
  ident: 10.1016/j.ssnmr.2017.01.001_bib6
  article-title: Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle-spinning NMR
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00124a023
– volume: 152
  start-page: 248
  year: 1988
  ident: 10.1016/j.ssnmr.2017.01.001_bib4
  article-title: Towards high-resolution NMR of more nuclei in solids – sample spinning with time-dependent spinner axis angle
  publication-title: J. Chem. Phys. Lett.
  doi: 10.1016/0009-2614(88)87362-7
– volume: 29
  start-page: 688
  year: 1958
  ident: 10.1016/j.ssnmr.2017.01.001_bib33
  article-title: Modified spin-echo method for measuring nuclear relaxation times
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1716296
– volume: 103
  start-page: 10825
  year: 1999
  ident: 10.1016/j.ssnmr.2017.01.001_bib34
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp992798i
– volume: 115
  start-page: 747
  year: 2011
  ident: 10.1016/j.ssnmr.2017.01.001_bib69
  article-title: Crystal structure based design of signal enhancement schemes for solid-state NMR of insensitive half-integer quadrupolar nuclei
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp111531e
– year: 2012
  ident: 10.1016/j.ssnmr.2017.01.001_bib3
– volume: 118
  start-page: 6018
  year: 2014
  ident: 10.1016/j.ssnmr.2017.01.001_bib37
  article-title: Efficient amplitude-modulated pulses for triple-to single-quantum coherence conversion in MQMAS NMR
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp505752c
– volume: 112
  start-page: 2377
  year: 2000
  ident: 10.1016/j.ssnmr.2017.01.001_bib23
  article-title: Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic resonance: theory and experiments
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480804
– volume: 95
  start-page: 1601
  year: 2001
  ident: 10.1016/j.ssnmr.2017.01.001_bib67
  article-title: Characterization of cation environments in polycrystalline forsterite by 25Mg MAS, MQMAS, and QCPMG NMR
  publication-title: Am. Mineral.
  doi: 10.2138/am.2010.3403
– volume: 10
  start-page: 211
  year: 1998
  ident: 10.1016/j.ssnmr.2017.01.001_bib12
  article-title: Triple, quintuple and higher order multiple quantum MAS NMR of quadrupolar nuclei
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/S0926-2040(97)00027-1
– volume: 124
  start-page: 279
  year: 1997
  ident: 10.1016/j.ssnmr.2017.01.001_bib42
  article-title: Two-dimensional multiple-quantum MAS NMR of quadrupolar nuclei. acquisition of the whole echo
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1996.1059
– volume: 28
  start-page: 204
  year: 2005
  ident: 10.1016/j.ssnmr.2017.01.001_bib47
  article-title: 93Nb NMR chemical shift scale for Niobia systems
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2005.09.003
– volume: 124
  start-page: 11602
  year: 2002
  ident: 10.1016/j.ssnmr.2017.01.001_bib52
  article-title: High-resolution NMR spectroscopy of quadrupolar nuclei in solids: satellite-transition MAS with self-compensation for magic-angle misset
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0203869
– volume: 131
  start-page: 194509
  year: 2009
  ident: 10.1016/j.ssnmr.2017.01.001_bib49
  article-title: Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: second-order quadrupolar and resonance offset effects
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3263904
– year: 1962
  ident: 10.1016/j.ssnmr.2017.01.001_bib68
– volume: 16
  start-page: 203
  year: 2000
  ident: 10.1016/j.ssnmr.2017.01.001_bib48
  article-title: Multiple-quantum MAS NMR of quadrupolar nuclei. Do five-, seven- and nine-quantum experiments yield higher resolution than the three-quantum experiment?
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/S0926-2040(00)00081-3
– volume: 403
  start-page: 353
  year: 2005
  ident: 10.1016/j.ssnmr.2017.01.001_bib25
  article-title: Sensitivity enhancement of MQMAS NMR spectra of Spin 3/2 nuclei using hyperbolic secant pulses
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.01.023
– volume: 147
  start-page: 296
  year: 2000
  ident: 10.1016/j.ssnmr.2017.01.001_bib40
  article-title: SIMPSON: a general simulation program for solid-state NMR spectroscopy
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.2000.2179
– volume: 18
  start-page: 3855
  year: 2006
  ident: 10.1016/j.ssnmr.2017.01.001_bib54
  article-title: Scandium coordination in solid oxides and stabilized zirconia: 45Sc NMR
  publication-title: Chem. Mater.
  doi: 10.1021/cm060590l
– volume: 81
  start-page: 545
  year: 1996
  ident: 10.1016/j.ssnmr.2017.01.001_bib66
  article-title: Ab Initio calculation of electric-field-gradient tensors of forsterite
  publication-title: Am. Mineral.
  doi: 10.2138/am-1996-5-602
– volume: 128
  start-page: 42
  year: 1997
  ident: 10.1016/j.ssnmr.2017.01.001_bib7
  article-title: Two-dimensional multiple-quantum MAS NMR of quadrupolar nuclei: a comparison of methods
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1997.1217
– volume: 41
  start-page: 679
  year: 2003
  ident: 10.1016/j.ssnmr.2017.01.001_bib38
  article-title: Assessing the potential of fast amplitude modulation pulses for improving triple-quantum magic angle spinning NMR spectra of half-integer quadrupolar nuclei
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.1238
– volume: 6
  start-page: 73
  year: 1996
  ident: 10.1016/j.ssnmr.2017.01.001_bib39
  article-title: Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/0926-2040(95)01210-9
– volume: 367
  start-page: 163
  year: 2003
  ident: 10.1016/j.ssnmr.2017.01.001_bib60
  article-title: Third-order effect in solid-state NMR of quadrupolar nuclei
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01681-0
– volume: 127
  start-page: 13768
  year: 2005
  ident: 10.1016/j.ssnmr.2017.01.001_bib31
  article-title: Improved excitation schemes for multiple-quantum magic-angle spinning for quadrupolar nuclei designed using optimal control theory
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054035g
– volume: 172
  start-page: 268
  year: 2005
  ident: 10.1016/j.ssnmr.2017.01.001_bib20
  article-title: Increasing the sensitivity of 2D high-resolution NMR methods applied to quadrupolar nuclei
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2004.11.001
– volume: 15
  start-page: 171
  year: 1999
  ident: 10.1016/j.ssnmr.2017.01.001_bib50
  article-title: Strategies for extracting NMR parameters from 23Na MAS, DOR and MQMAS spectra. A case study for Na4P2O7
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/S0926-2040(99)00054-5
– volume: 79
  start-page: 242
  year: 2013
  ident: 10.1016/j.ssnmr.2017.01.001_bib64
  article-title: Solid-state NMR of high-pressure silicates in the Earth's mantle
  publication-title: Ann. Rep. NMR Spectrosc.
– volume: 162
  start-page: 402
  year: 2003
  ident: 10.1016/j.ssnmr.2017.01.001_bib61
  article-title: SCAM-STMAS: satellite-transition MAS NMR of quadrupolar nuclei with self-compensation for magic-angle misset
  publication-title: J. Magn. Reson.
  doi: 10.1016/S1090-7807(03)00016-8
– volume: 13
  start-page: 293
  year: 1984
  ident: 10.1016/j.ssnmr.2017.01.001_bib43
  article-title: 23Na chemical shifts of some inorganic and organic compounds in the solid state as determined by the magic angle spinning and high power NMR methods
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1984.293
– volume: 307
  start-page: 41
  year: 1999
  ident: 10.1016/j.ssnmr.2017.01.001_bib22
  article-title: Sensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)00446-7
– volume: 45
  start-page: 53
  year: 2004
  ident: 10.1016/j.ssnmr.2017.01.001_bib15
  article-title: High-resolution NMR of quadrupolar nuclei in solids: the satellite-transition magic angle spinning (STMAS) experiment
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2004.04.002
– ident: 10.1016/j.ssnmr.2017.01.001_bib41
– volume: 114
  start-page: 4618
  year: 2001
  ident: 10.1016/j.ssnmr.2017.01.001_bib29
  article-title: Multiple quantum magic-angle spinning using rotary resonance excitation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1333407
– volume: 116
  start-page: 15048
  year: 2012
  ident: 10.1016/j.ssnmr.2017.01.001_bib57
  article-title: A multinuclear solid-state NMR study of templated and calcined chabazite-type GaPO-34
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp304868w
– volume: 102
  start-page: 9750
  year: 1998
  ident: 10.1016/j.ssnmr.2017.01.001_bib45
  article-title: Distorted powder lineshapes in 27Al CP MAS NMR spectroscopy of solids
  publication-title: J. Phys. Chem. A
– volume: 132
  start-page: 8732
  year: 2010
  ident: 10.1016/j.ssnmr.2017.01.001_bib56
  article-title: The polar phase of NaNbO3: a combined study by powder diffraction, solid-state NMR, and first-principles calculation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101860r
– volume: 75
  start-page: 1
  year: 2016
  ident: 10.1016/j.ssnmr.2017.01.001_bib30
  article-title: A novel pulse scheme for multiple quantum excitation, SFAM to enhance the sensitivity of MQMAS experiments
  publication-title: Solid State Nucl. Magn. Reson. 74
– volume: 117
  start-page: 2252
  year: 2013
  ident: 10.1016/j.ssnmr.2017.01.001_bib46
  article-title: Structural study of La1–xYxScO3, combining neutron diffraction, solid-state NMR, and first-principles DFT calculations
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp310878b
– volume: 320
  start-page: 448
  year: 2000
  ident: 10.1016/j.ssnmr.2017.01.001_bib24
  article-title: Enhanced conversion of triple to single-quantum coherence in the triple-quantum MAS NMR spectrosocopy of Spin-5/2 nuclei
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00298-0
– volume: 7
  start-page: 327
  year: 1997
  ident: 10.1016/j.ssnmr.2017.01.001_bib35
  article-title: Multiple-quantum magic-angle spinning NMR with cross-polarization: spectral editing of high-resolution spectra of quadrupolar nuclei
  publication-title: Solid State Nucl. Magn. Reson
  doi: 10.1016/S0926-2040(96)01284-2
– volume: 14
  start-page: 1
  year: 1999
  ident: 10.1016/j.ssnmr.2017.01.001_bib59
  article-title: Very fast MAS and MQMAS NMR studies of the spectroscopically challenging minerals kyanite and andalusite on 400, 500, and 800 MHz spectrometers
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/S0926-2040(99)00011-9
SSID ssj0007136
Score 2.1893144
Snippet Although a popular choice for obtaining high-resolution solid-state NMR spectra of quadrupolar nuclei, the inherently low sensitivity of the multiple-quantum...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 89
SubjectTerms Challenging systems
FAM-N pulses
Fast-amplitude modulation
MQMAS
Quadrupolar nuclei
Solid-state MAS NMR spectroscopy
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rixMxEB-0hx5-8FFfFZUIfjR7-8hmux_LYTmELepdoX4K2WxSe9dL13YXH3-9k32UQ-VQ8HsSMsxM5pdk5jcAr1lcSOYYLhM_TyjeNxiVOjXUIHouHMUUl65QOJvxkzl7t4gXXf6Tq4XB25yHQYGqwrYVDY6jyVZHq0t0r6OA7kLPp6d-2vCoI1yJHKfagppvgVhvl955ubwJBzxGXD6Ag_ns_eRTQ7YXcurGN-SpIXoVgpaegqhJ9kJ_u3TsoEHSkHh2LWL-EKZ-h6F34LC2pfz-Va7XV0LT9B5c9EK1GSkXXl3lnvrxC9_j_5H6PtztECyZtCb3AG5oO4TD475x3BBuZ91__RBuNQmmavcQzq4QetglmU4yOiNljRLvCOJm4vJIcFVtPzszdE-WZGVJ9iGbnJJZ9pFsDPlSy2Jbl-4uTqyjYV49gvn07dnxCe06OlDFfFbRBPEDU3kURtI3BYYJg2gtGo9zRB0ql8ZXnPsyLZgKdZTEruw15TIvZODnccpY9BgGdmP1UyA6DseBct-gWjFd4FnpnrOMYSaIcjy3RhD2ChSqozt3XTfWos9rOxeN1oXTuvADl903gjf7SWXL9nH9cN5bhugASwtEBMaj6ye-6u1IoHLcH420elPvRIA-kkYpYogRPGkNbL8TFDgKeMpHQPcW9zfbfPaP45_DoNrW-gWirSp_2bnRT50hJEM
  priority: 102
  providerName: Unpaywall
Title Investigating FAM-N pulses for signal enhancement in MQMAS NMR of quadrupolar nuclei
URI https://dx.doi.org/10.1016/j.ssnmr.2017.01.001
https://www.ncbi.nlm.nih.gov/pubmed/28131696
https://www.proquest.com/docview/1862939067
https://ars.els-cdn.com/content/image/1-s2.0-S092620401630087X-fx1_lrg.jpg
UnpaywallVersion publishedVersion
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1527-3326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007136
  issn: 0926-2040
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1527-3326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007136
  issn: 0926-2040
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1527-3326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007136
  issn: 0926-2040
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1527-3326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007136
  issn: 0926-2040
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1527-3326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007136
  issn: 0926-2040
  databaseCode: AKRWK
  dateStart: 19930301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj9MwDLdOh-COBwQDjvFxChKPlLVL2q6P1cQ0QK2Au0njKUrTBIZGVm6rEC_87dj9GIdAJ8RT1Sqp3Ni1ndj-GeCZCEslCOEy9ovYw_2G8JRJrGfRey4JYipSVCic5dF8IV4vw-UBTPtaGEqr7HR_q9Mbbd09GXWrOapWq9GZnzRg6uizcAJWW1IFu4ipi8GLH7_SPHAT1sQrcbBHo3vkoSbHC3-zLwQKGsQNdmfXGeYv1ulP7_MmHNWuUt-_qfX6kkWa3YZbnSvJ0pbaO3Bg3ACOpn0HtwHcyLrA-QCuN5meensXzi8ha7iPbJZmXs6qGmnYMnRgGSV04FuN-0TyQGeHbOVY9i5Lz1ievWcby77WqryoK9oUM0d4yKt7sJi9PJ_Ova61gqeFL3ZejIZc6IKPufJtifraotvEJ5MCzb8ulPV1FPkqKYUeGx6HVH-aRKooVeAXYSIEvw-HbuPMA2AmHE8CTfFIo4UpUWnRuZK1wga8QAUyhHG_pFJ3uOPU_mIt-wSzz7LhgyQ-SD-gNLshPN9PqlrYjauHRz2v5G_SI9EwXD3xac9ZicyhYIlyZlNvZYDCmvAEjfkQTlqW7ynBD-ZBlERD8PYy8C9kPvxfMh_BMd21acKP4XB3UZsn6AztitNG2k_hWvrqzTzH6yJ_m374CdLgB0w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4ti6BwQFBYKE8jccTbJHaS5lhVVAU2lWC7Um-W4zhQ1HXDthHiwm9nJo-yCLRCXBMnmngmM2PP528AXskw15IYLmMvizmuNyTXNil4gdlzThRTkaaDwuk8mp3Jd8tweQCT7iwMwSpb39_49Npbt1eG7WwOy9VqeOolNZk65iyCiNWW1-C6DIOYVmDHP37hPHAVVhcscTSn4R31UA3ywv_snFhB_bgm72xbw_wlPP2Zft6GXuVK_f2bXq8vhaTpXbjT5pJs3Ih7Dw6s60Nv0rVw68PNtK2c9-FGDfU02_uwuESt4T6x6Tjlc1ZWKMOWYQbLCNGBb7XuMxkEbR6ylWPph3R8yubpR7Yp2NdK5xdVSati5ogQefUAzqZvFpMZb3srcCM9ueMxRnJpMhEI7RU5OuwC8yYxGmUY_02mC89EkaeTXJrAijikA6hJpLNc-14WJlKKIzh0G2cfAbNhMPINFSStkTZHr0UbS0UhC19k6EEGEHRTqkxLPE79L9aqQ5h9UbUeFOlBeT7h7Abwev9Q2fBuXD086nSlfjMfhZHh6gdfdppVqByqlmhnN9VW-WitiUgwmg_gYaPyvST4wcKPkmgAfG8D_yLm4_8V8wX0Zov0RJ28nb9_ArfoToMZfgqHu4vKPsPMaJc9ry3_J5r6BzE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rixMxEB-0hx5-8FFfFZUIfjR7-8hmux_LYTmELepdoX4K2WxSe9dL13YXH3-9k32UQ-VQ8HsSMsxM5pdk5jcAr1lcSOYYLhM_TyjeNxiVOjXUIHouHMUUl65QOJvxkzl7t4gXXf6Tq4XB25yHQYGqwrYVDY6jyVZHq0t0r6OA7kLPp6d-2vCoI1yJHKfagppvgVhvl955ubwJBzxGXD6Ag_ns_eRTQ7YXcurGN-SpIXoVgpaegqhJ9kJ_u3TsoEHSkHh2LWL-EKZ-h6F34LC2pfz-Va7XV0LT9B5c9EK1GSkXXl3lnvrxC9_j_5H6PtztECyZtCb3AG5oO4TD475x3BBuZ91__RBuNQmmavcQzq4QetglmU4yOiNljRLvCOJm4vJIcFVtPzszdE-WZGVJ9iGbnJJZ9pFsDPlSy2Jbl-4uTqyjYV49gvn07dnxCe06OlDFfFbRBPEDU3kURtI3BYYJg2gtGo9zRB0ql8ZXnPsyLZgKdZTEruw15TIvZODnccpY9BgGdmP1UyA6DseBct-gWjFd4FnpnrOMYSaIcjy3RhD2ChSqozt3XTfWos9rOxeN1oXTuvADl903gjf7SWXL9nH9cN5bhugASwtEBMaj6ye-6u1IoHLcH420elPvRIA-kkYpYogRPGkNbL8TFDgKeMpHQPcW9zfbfPaP45_DoNrW-gWirSp_2bnRT50hJEM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+FAM-N+pulses+for+signal+enhancement+in+MQMAS+NMR+of+quadrupolar+nuclei&rft.jtitle=Solid+state+nuclear+magnetic+resonance&rft.au=Colaux%2C+Henri&rft.au=Dawson%2C+Daniel+M&rft.au=Ashbrook%2C+Sharon+E&rft.date=2017-07-01&rft.issn=1527-3326&rft.eissn=1527-3326&rft.volume=84&rft.spage=89&rft_id=info:doi/10.1016%2Fj.ssnmr.2017.01.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-2040&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-2040&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-2040&client=summon