Robust Localization System Using Vector Combination in Wireless Sensor Networks
This paper proposes a vector-based localization system that uses both distance and angle information. In wireless sensor networks, the positions of nodes are commonly determined by a range-based localization system using distance information. If both distance and angle information are available, it...
Saved in:
| Published in | IEEE access Vol. 10; pp. 73437 - 73445 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2022.3190409 |
Cover
| Summary: | This paper proposes a vector-based localization system that uses both distance and angle information. In wireless sensor networks, the positions of nodes are commonly determined by a range-based localization system using distance information. If both distance and angle information are available, it is possible to improve the accuracy of estimating the positions of nodes compared to a positioning system with only distance information. Existing studies using distance and angle information assume that all the nodes are directly connected to one another and do not consider a method for measuring angle information between the nodes that are not directly connected. However, this assumption may not be valid for real-world wireless sensor networks especially with a large number of nodes having a limited communication range. The proposed localization algorithm solves this problem by a vector combination that transforms the vectors on the local coordinate system to the network-wide global coordinate system. The proposed algorithm is shown to be robust especially even in a network with 1-edge connectivity. Simulation results show that the proposed algorithm has up to 70% higher positioning accuracy compared to the existing iterative range-based algorithm such as MDS-MAP(C,R). |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2022.3190409 |