Fusion Moves for Markov Random Field Optimization

The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 32; no. 8; pp. 1392 - 1405
Main Authors Lempitsky, Victor, Rother, Carsten, Roth, Stefan, Blake, Andrew
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.08.2010
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
1939-3539
DOI10.1109/TPAMI.2009.143

Cover

Abstract The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combination process the fusion move. By employing recently developed graph-cut-based algorithms (so-called QPBO-graph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in practice often globally optimal. We demonstrate that fusion moves generalize many previous graph-cut approaches, which allows them to be used as building blocks within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion moves are used 1) for the parallelization of MRF optimization into several threads, 2) for fast MRF optimization by combining cheap-to-compute solutions, and 3) for the optimization of highly nonconvex continuous-labeled MRFs with 2D labels. Our final example is a nonvision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a standard inference method (loopy belief propagation).
AbstractList The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combination process the fusion move. By employing recently developed graph-cut-based algorithms (so-called QPBO-graph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in practice often globally optimal. We demonstrate that fusion moves generalize many previous graph-cut approaches, which allows them to be used as building blocks within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion moves are used 1) for the parallelization of MRF optimization into several threads, 2) for fast MRF optimization by combining cheap-to-compute solutions, and 3) for the optimization of highly nonconvex continuous-labeled MRFs with 2D labels. Our final example is a nonvision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a standard inference method (loopy belief propagation).The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combination process the fusion move. By employing recently developed graph-cut-based algorithms (so-called QPBO-graph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in practice often globally optimal. We demonstrate that fusion moves generalize many previous graph-cut approaches, which allows them to be used as building blocks within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion moves are used 1) for the parallelization of MRF optimization into several threads, 2) for fast MRF optimization by combining cheap-to-compute solutions, and 3) for the optimization of highly nonconvex continuous-labeled MRFs with 2D labels. Our final example is a nonvision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a standard inference method (loopy belief propagation).
The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combination process the fusion move. By employing recently developed graph-cut-based algorithms (so-called QPBO-graph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in practice often globally optimal. We demonstrate that fusion moves generalize many previous graph-cut approaches, which allows them to be used as building blocks within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion moves are used 1) for the parallelization of MRF optimization into several threads, 2) for fast MRF optimization by combining cheap-to-compute solutions, and 3) for the optimization of highly nonconvex continuous-labeled MRFs with 2D labels. Our final example is a nonvision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a standard inference method (loopy belief propagation).
Author Roth, Stefan
Lempitsky, Victor
Rother, Carsten
Blake, Andrew
Author_xml – sequence: 1
  givenname: Victor
  surname: Lempitsky
  fullname: Lempitsky, Victor
  email: victlem@microsoft.com
  organization: Microsoft Res., Cambridge, UK
– sequence: 2
  givenname: Carsten
  surname: Rother
  fullname: Rother, Carsten
  email: carrot@microsoft.com
  organization: Microsoft Res., Cambridge, UK
– sequence: 3
  givenname: Stefan
  surname: Roth
  fullname: Roth, Stefan
  email: sroth@cs.tu-darmstadt.de
  organization: GRIS, Tech. Univ. Darmstadt, Darmstadt, Germany
– sequence: 4
  givenname: Andrew
  surname: Blake
  fullname: Blake, Andrew
  email: ablake@microsoft.com
  organization: Microsoft Res., Cambridge, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23119190$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20558873$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9LHDEUB_BQLHW1vfZSKAOleJrte_kxMzmKdKvgohR7DplMArEzk20yI9i_vll3VRCKp1w-35fkfY_IwRhGS8hHhCUiyG8316friyUFkEvk7A1ZoGSyZILJA7IArGjZNLQ5JEcp3QIgF8DekUMKQjRNzRYEV3PyYSzW4c6mwoVYrHX8He6Kn3rswlCsvO274moz-cH_1VOm78lbp_tkP-zPY_Jr9f3m7Ly8vPpxcXZ6WRoOfCqrxnQGsXWW8tZY7rhwBsHk59VGixa7TrfSOeBUmgokWG6gAuxqymTHNTsmJ7u5mxj-zDZNavDJ2L7Xow1zUrVgFc9_469LxphoQMosv7yQt2GOY_6GQqA1pdBUW_V5r-Z2sJ3aRD_oeK8et5bB1z3QyejeRT0an54dQ5QoITu-cyaGlKJ1yvjpYYlT1L7Pd6ptieqhRLUtUeUSc2z5IvY4-b-BT7uAt9Y-YYFVxXnN_gFtFaOO
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1155_2016_3846125
crossref_primary_10_1109_TMM_2016_2600441
crossref_primary_10_1117_1_JEI_26_4_043006
crossref_primary_10_1016_j_neuroimage_2017_09_005
crossref_primary_10_1109_TIM_2020_2995486
crossref_primary_10_1121_10_0017352
crossref_primary_10_1016_j_media_2012_07_001
crossref_primary_10_1088_1755_1315_69_1_012161
crossref_primary_10_1590_1678_4324_202210409
crossref_primary_10_1142_S0218126622502097
crossref_primary_10_1007_s11263_016_0944_z
crossref_primary_10_1016_j_media_2012_12_001
crossref_primary_10_1049_iet_cvi_2016_0373
crossref_primary_10_1109_LGRS_2018_2790426
crossref_primary_10_1016_j_cviu_2015_02_008
crossref_primary_10_1007_s11263_013_0621_4
crossref_primary_10_1109_JSTSP_2011_2158063
crossref_primary_10_1016_j_dam_2012_06_009
crossref_primary_10_1155_2012_814356
crossref_primary_10_1002_mrm_26479
crossref_primary_10_1007_s11042_020_08633_y
crossref_primary_10_1007_s11263_012_0571_2
crossref_primary_10_1109_TPAMI_2022_3172372
crossref_primary_10_1002_mrm_26598
crossref_primary_10_5802_acirm_54
crossref_primary_10_1186_1687_5281_2013_33
crossref_primary_10_1007_s11042_018_6236_6
crossref_primary_10_1016_j_ymeth_2016_12_006
crossref_primary_10_1007_s11263_018_01141_5
crossref_primary_10_1016_j_imavis_2013_06_009
crossref_primary_10_1007_s11263_015_0806_0
crossref_primary_10_1109_TCSVT_2016_2628782
crossref_primary_10_1371_journal_pone_0193267
crossref_primary_10_1109_TPAMI_2017_2766072
crossref_primary_10_1007_s11263_015_0809_x
crossref_primary_10_1109_TIP_2017_2687101
crossref_primary_10_1137_120872048
crossref_primary_10_1016_j_cviu_2011_06_012
crossref_primary_10_1007_s13042_016_0498_y
crossref_primary_10_1016_j_media_2016_03_009
crossref_primary_10_1109_TPAMI_2010_135
crossref_primary_10_1016_j_cviu_2018_04_005
crossref_primary_10_1016_j_neuroimage_2017_10_037
crossref_primary_10_1109_TCSVT_2015_2462011
crossref_primary_10_1016_j_media_2015_05_011
crossref_primary_10_1049_ipr2_12361
crossref_primary_10_1007_s10851_010_0241_3
crossref_primary_10_1007_s11760_018_1277_x
crossref_primary_10_1016_j_media_2012_08_002
crossref_primary_10_1109_TPAMI_2014_2382109
crossref_primary_10_1002_nbm_4344
crossref_primary_10_1109_TIP_2017_2750406
crossref_primary_10_1109_ACCESS_2020_2985106
crossref_primary_10_3390_e25030535
crossref_primary_10_1007_s11263_013_0644_x
crossref_primary_10_1016_j_cviu_2013_07_004
crossref_primary_10_1002_mrm_28878
crossref_primary_10_1016_j_cviu_2015_11_005
crossref_primary_10_1109_TRO_2017_2690977
crossref_primary_10_1007_s11263_012_0531_x
crossref_primary_10_1016_j_image_2018_12_002
Cites_doi 10.1111/j.2517-6161.1989.tb01764.x
10.1109/ICCV.2007.4408907
10.1145/1390156.1390217
10.1007/s11263-006-0016-x
10.1145/882262.882264
10.1109/TPAMI.2007.1031
10.1109/CVPR.2007.383191
10.1007/s11263-005-3960-y
10.1145/212332.212334
10.1109/TPAMI.2004.1262177
10.1016/0004-3702(81)90024-2
10.1016/j.imavis.2006.08.001
10.1109/CVPR.2005.130
10.1007/978-3-540-88693-8_22
10.1287/opre.13.3.388
10.1109/TPAMI.2003.1233908
10.5244/C.21.110
10.1109/TPAMI.2007.70844
10.1109/CVPR.1998.698673
10.1109/CVPR.2006.305
10.1007/978-3-540-88693-8_50
10.1109/TPAMI.2006.200
10.1109/CVPR.2007.383249
10.1109/ICCV.2007.4408903
10.1109/CVPR.2008.4587672
10.1016/0166-218X(85)90035-6
10.1109/CVPR.2008.4587751
10.1109/CVPR.2007.383095
10.1109/CVPR.2007.383203
10.1109/34.969114
10.1111/j.2517-6161.1986.tb01412.x
10.1016/S0166-218X(01)00341-9
10.1109/CVPR.2004.1315041
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2009.143
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic
Technology Research Database

Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 1405
ExternalDocumentID 2717155311
20558873
23119190
10_1109_TPAMI_2009_143
5166447
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c404t-68cdc11bfe24bce4f45fc10c9397ca5b1ddab9ff0429c6090e4c0601d7239d4a3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 07:15:53 EDT 2025
Sun Sep 28 01:12:43 EDT 2025
Mon Jun 30 02:16:42 EDT 2025
Mon Jul 21 06:03:01 EDT 2025
Mon Jul 21 09:12:10 EDT 2025
Wed Oct 01 06:39:35 EDT 2025
Thu Apr 24 22:51:59 EDT 2025
Wed Aug 27 02:47:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Markov process
Cartography
Computer vision
Non convex programming
combinatorial algorithms
Probabilistic approach
Stereo image processing
Image processing
motion
Combinatorial problem
Dynamic analysis
Inference
Layout problem
Image restoration
Optimization
Markov random fields
Credal approach
Graph cut
stereo
Pattern analysis
Artificial intelligence
Optical flow
Parallelization
graph algorithms
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-68cdc11bfe24bce4f45fc10c9397ca5b1ddab9ff0429c6090e4c0601d7239d4a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 20558873
PQID 1027220869
PQPubID 85458
PageCount 14
ParticipantIDs proquest_journals_1027220869
ieee_primary_5166447
proquest_miscellaneous_753648284
pubmed_primary_20558873
crossref_citationtrail_10_1109_TPAMI_2009_143
crossref_primary_10_1109_TPAMI_2009_143
proquest_miscellaneous_733358099
pascalfrancis_primary_23119190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-01
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2010
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
Kolmogorov (ref20)
ref31
ref30
ref33
Yedidia (ref6) 2003
ref10
ref32
ref2
ref1
ref16
ref19
ref18
Rasmussen (ref38) 2006
ref24
ref23
ref26
ref25
ref41
ref22
ref21
Schlesinger (ref8) 2006
ref28
Wolff (ref39) 2009
ref27
ref29
ref7
ref9
ref4
ref3
Boros (ref17) 2006
Lucas (ref34)
ref5
Veksler (ref11) 1999
ref40
References_xml – ident: ref3
  doi: 10.1111/j.2517-6161.1989.tb01764.x
– ident: ref15
  doi: 10.1109/ICCV.2007.4408907
– ident: ref9
  doi: 10.1145/1390156.1390217
– ident: ref31
  doi: 10.1007/s11263-006-0016-x
– ident: ref22
  doi: 10.1145/882262.882264
– start-page: 239
  volume-title: Exploring Artificial Intelligence in the New Millennium
  year: 2003
  ident: ref6
  article-title: Understanding Belief Propagation and its Generalizations
– ident: ref14
  doi: 10.1109/TPAMI.2007.1031
– volume-title: Proc. Conf. Uncertainty in Artificial Intelligence
  ident: ref20
  article-title: On the Optimality of Tree-Reweighted Max-Product Message-Passing
– ident: ref27
  doi: 10.1109/CVPR.2007.383191
– ident: ref32
  doi: 10.1007/s11263-005-3960-y
– ident: ref40
  doi: 10.1145/212332.212334
– ident: ref5
  doi: 10.1109/TPAMI.2004.1262177
– ident: ref35
  doi: 10.1016/0004-3702(81)90024-2
– volume-title: Technical Report TUD-FI06-01
  year: 2006
  ident: ref8
  article-title: Transforming an Arbitrary Minsum Problem into a Binary One
– ident: ref36
  doi: 10.1016/j.imavis.2006.08.001
– year: 2009
  ident: ref39
  article-title: The Map-Labeling Bibliography
– ident: ref23
  doi: 10.1109/CVPR.2005.130
– ident: ref41
  doi: 10.1007/978-3-540-88693-8_22
– ident: ref2
  doi: 10.1287/opre.13.3.388
– ident: ref7
  doi: 10.1109/TPAMI.2003.1233908
– ident: ref25
  doi: 10.5244/C.21.110
– ident: ref1
  doi: 10.1109/TPAMI.2007.70844
– volume-title: Technical Report RUTCOR RRR 10-2006
  year: 2006
  ident: ref17
  article-title: Preprocessing of Unconstrained Quadratic Binary Optimization
– ident: ref21
  doi: 10.1109/CVPR.1998.698673
– ident: ref24
  doi: 10.1109/CVPR.2006.305
– ident: ref33
  doi: 10.1007/978-3-540-88693-8_50
– ident: ref29
  doi: 10.1109/TPAMI.2006.200
– start-page: 674
  volume-title: Proc. Int’l Joint Conf. Artificial Intelligence
  ident: ref34
  article-title: An Iterative Image Registration Technique with an Application to Stereo Vision
– ident: ref13
  doi: 10.1109/CVPR.2007.383249
– ident: ref30
  doi: 10.1109/ICCV.2007.4408903
– ident: ref19
  doi: 10.1109/CVPR.2008.4587672
– ident: ref26
  doi: 10.1016/0166-218X(85)90035-6
– ident: ref16
  doi: 10.1109/CVPR.2008.4587751
– ident: ref12
  doi: 10.1109/CVPR.2007.383095
– year: 2006
  ident: ref38
  article-title: minimize.m
– ident: ref18
  doi: 10.1109/CVPR.2007.383203
– year: 1999
  ident: ref11
  article-title: Efficient Graph-Based Energy Minimization Methods in Computer Vision
– ident: ref10
  doi: 10.1109/34.969114
– ident: ref37
  doi: 10.1111/j.2517-6161.1986.tb01412.x
– ident: ref4
  doi: 10.1016/S0166-218X(01)00341-9
– ident: ref28
  doi: 10.1109/CVPR.2004.1315041
SSID ssj0014503
Score 2.4201114
Snippet The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1392
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Application software
Applied sciences
Artificial intelligence
Belief propagation
combinatorial algorithms
Computer science; control theory; systems
Computer vision
Exact sciences and technology
graph algorithms
Graphs
Image motion analysis
Image restoration
Inference algorithms
Labeling
Labels
Magnetorheological fluids
Marking
Markov processes
Markov random fields
Mathematical models
motion
Optimization
Pattern recognition. Digital image processing. Computational geometry
stereo
Stereo vision
Studies
Theoretical computing
Title Fusion Moves for Markov Random Field Optimization
URI https://ieeexplore.ieee.org/document/5166447
https://www.ncbi.nlm.nih.gov/pubmed/20558873
https://www.proquest.com/docview/1027220869
https://www.proquest.com/docview/733358099
https://www.proquest.com/docview/753648284
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGB0pZHoK18QOJCtk5iJ-tjhVgVpAWEWqm3yI_xBZpU7KYHfj1jxxsoaitukTySHXvG843nBfBGSawIB7u8Vg3mwmiXG-Q6nwd-EqYU6GOU7-f67EJ8upSXW_BuyoVBxBh8hrPwGX35rrdDeCo7kUVN6rvZhu1mXo-5WpPHQMjYBZkQDEk4mRGpQGPB1cn519Plx7E0JaGDUP6XS0nCVd3SRbG5SgiN1CvaHT-2tbgfd0b9s9iF5WblY9jJ99mwNjP765-ijv_7a0_hSQKi7HTknD3Ywm4fdjdNHliS-X14_FfFwgMoFkN4XmPL_gZXjAAvC8k-_Q37pjvXX7FFCIhjX-geukoJns_gYvHh_P1Znrou5FZwsc7ruXW2KIzHUhiLwgvpbcGtIuRitTSFc9oo74MmszVXHIUNRV1cU1bKCV09h52u7_AlMFUa7xtCJEgMoZ1QqJQsRYNzuicLjxnkm_1vbSpJHjpj_GijacJVG48utMpUZKNUGbyd6K_HYhz3Uh6EPZ6o0vZmcHzreKdxQrm0IsUzONycd5uEeUVTlE1Zku2nMmDTMIlh8K3oDvth1TZVFRzK6iESWdWCOFNk8GLkpD_TJ4Z8dfeyX8OjMWghxB0ews7654BHhIXW5jgKwW-YEwKZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeKLQ8AqX4gMSFbPMYJ-tjhVhtoVsQ2kq9RbE9vkCTit30wK9nnHgDRRRxi-SR7Ngznm88L4DXSlLOONjGhSopRl3bWFNSx1PPT6gzJNdH-Z4V83P8cCEvtuDtmAtDRH3wGU38Z-_Lt63p_FPZkUwLVt_lHbgrEVEO2VqjzwBl3weZMQzLOBsSoURjmqij5efjxclQnJLxgS8AnEjJ4pXf0EZ9exUfHFmveH_c0NjiduTZa6DZLiw2ax8CT75OurWemB9_lHX83597CA8CFBXHA-88gi1q9mB30-ZBBKnfg53fahbuQzrr_AObWLTXtBIMeYVP92mvxZe6se2lmPmQOPGJb6LLkOL5GM5n75fv5nHouxAbTHAdF1NjTZpqRxlqQ-hQOpMmRjF2MbXUqbW1Vs55XWaKRCWExpd1sWWWK4t1_gS2m7ahZyBUpp0rGZMQs0RtUZFSMsOSpnxTpo4iiDf7X5lQlNz3xvhW9cZJoqr-6HyzTMVWSh7Bm5H-aijHcSvlvt_jkSpsbwSHN453HGecyytSSQQHm_OugjiveIqszDK2_lQEYhxmQfTelbqhtltVZZ57l7L6F4nMC2TOxAieDpz0a_rAkM__vuxXcG--XJxWpydnH1_A_SGEwUchHsD2-ntHLxkZrfVhLxA_AUQfBeY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+moves+for+Markov+random+field+optimization&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Lempitsky%2C+Victor&rft.au=Rother%2C+Carsten&rft.au=Roth%2C+Stefan&rft.au=Blake%2C+Andrew&rft.date=2010-08-01&rft.eissn=1939-3539&rft.volume=32&rft.issue=8&rft.spage=1392&rft_id=info:doi/10.1109%2FTPAMI.2009.143&rft_id=info%3Apmid%2F20558873&rft.externalDocID=20558873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon