Fusion Moves for Markov Random Field Optimization
The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combin...
        Saved in:
      
    
          | Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 32; no. 8; pp. 1392 - 1405 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Los Alamitos, CA
          IEEE
    
        01.08.2010
     IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0162-8828 1939-3539 1939-3539  | 
| DOI | 10.1109/TPAMI.2009.143 | 
Cover
| Abstract | The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combination process the fusion move. By employing recently developed graph-cut-based algorithms (so-called QPBO-graph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in practice often globally optimal. We demonstrate that fusion moves generalize many previous graph-cut approaches, which allows them to be used as building blocks within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion moves are used 1) for the parallelization of MRF optimization into several threads, 2) for fast MRF optimization by combining cheap-to-compute solutions, and 3) for the optimization of highly nonconvex continuous-labeled MRFs with 2D labels. Our final example is a nonvision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a standard inference method (loopy belief propagation). | 
    
|---|---|
| AbstractList | The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combination process the fusion move. By employing recently developed graph-cut-based algorithms (so-called QPBO-graph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in practice often globally optimal. We demonstrate that fusion moves generalize many previous graph-cut approaches, which allows them to be used as building blocks within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion moves are used 1) for the parallelization of MRF optimization into several threads, 2) for fast MRF optimization by combining cheap-to-compute solutions, and 3) for the optimization of highly nonconvex continuous-labeled MRFs with 2D labels. Our final example is a nonvision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a standard inference method (loopy belief propagation).The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combination process the fusion move. By employing recently developed graph-cut-based algorithms (so-called QPBO-graph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in practice often globally optimal. We demonstrate that fusion moves generalize many previous graph-cut approaches, which allows them to be used as building blocks within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion moves are used 1) for the parallelization of MRF optimization into several threads, 2) for fast MRF optimization by combining cheap-to-compute solutions, and 3) for the optimization of highly nonconvex continuous-labeled MRFs with 2D labels. Our final example is a nonvision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a standard inference method (loopy belief propagation). The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combination process the fusion move. By employing recently developed graph-cut-based algorithms (so-called QPBO-graph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in practice often globally optimal. We demonstrate that fusion moves generalize many previous graph-cut approaches, which allows them to be used as building blocks within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion moves are used 1) for the parallelization of MRF optimization into several threads, 2) for fast MRF optimization by combining cheap-to-compute solutions, and 3) for the optimization of highly nonconvex continuous-labeled MRFs with 2D labels. Our final example is a nonvision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a standard inference method (loopy belief propagation).  | 
    
| Author | Roth, Stefan Lempitsky, Victor Rother, Carsten Blake, Andrew  | 
    
| Author_xml | – sequence: 1 givenname: Victor surname: Lempitsky fullname: Lempitsky, Victor email: victlem@microsoft.com organization: Microsoft Res., Cambridge, UK – sequence: 2 givenname: Carsten surname: Rother fullname: Rother, Carsten email: carrot@microsoft.com organization: Microsoft Res., Cambridge, UK – sequence: 3 givenname: Stefan surname: Roth fullname: Roth, Stefan email: sroth@cs.tu-darmstadt.de organization: GRIS, Tech. Univ. Darmstadt, Darmstadt, Germany – sequence: 4 givenname: Andrew surname: Blake fullname: Blake, Andrew email: ablake@microsoft.com organization: Microsoft Res., Cambridge, UK  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23119190$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20558873$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqF0c9LHDEUB_BQLHW1vfZSKAOleJrte_kxMzmKdKvgohR7DplMArEzk20yI9i_vll3VRCKp1w-35fkfY_IwRhGS8hHhCUiyG8316friyUFkEvk7A1ZoGSyZILJA7IArGjZNLQ5JEcp3QIgF8DekUMKQjRNzRYEV3PyYSzW4c6mwoVYrHX8He6Kn3rswlCsvO274moz-cH_1VOm78lbp_tkP-zPY_Jr9f3m7Ly8vPpxcXZ6WRoOfCqrxnQGsXWW8tZY7rhwBsHk59VGixa7TrfSOeBUmgokWG6gAuxqymTHNTsmJ7u5mxj-zDZNavDJ2L7Xow1zUrVgFc9_469LxphoQMosv7yQt2GOY_6GQqA1pdBUW_V5r-Z2sJ3aRD_oeK8et5bB1z3QyejeRT0an54dQ5QoITu-cyaGlKJ1yvjpYYlT1L7Pd6ptieqhRLUtUeUSc2z5IvY4-b-BT7uAt9Y-YYFVxXnN_gFtFaOO | 
    
| CODEN | ITPIDJ | 
    
| CitedBy_id | crossref_primary_10_1155_2016_3846125 crossref_primary_10_1109_TMM_2016_2600441 crossref_primary_10_1117_1_JEI_26_4_043006 crossref_primary_10_1016_j_neuroimage_2017_09_005 crossref_primary_10_1109_TIM_2020_2995486 crossref_primary_10_1121_10_0017352 crossref_primary_10_1016_j_media_2012_07_001 crossref_primary_10_1088_1755_1315_69_1_012161 crossref_primary_10_1590_1678_4324_202210409 crossref_primary_10_1142_S0218126622502097 crossref_primary_10_1007_s11263_016_0944_z crossref_primary_10_1016_j_media_2012_12_001 crossref_primary_10_1049_iet_cvi_2016_0373 crossref_primary_10_1109_LGRS_2018_2790426 crossref_primary_10_1016_j_cviu_2015_02_008 crossref_primary_10_1007_s11263_013_0621_4 crossref_primary_10_1109_JSTSP_2011_2158063 crossref_primary_10_1016_j_dam_2012_06_009 crossref_primary_10_1155_2012_814356 crossref_primary_10_1002_mrm_26479 crossref_primary_10_1007_s11042_020_08633_y crossref_primary_10_1007_s11263_012_0571_2 crossref_primary_10_1109_TPAMI_2022_3172372 crossref_primary_10_1002_mrm_26598 crossref_primary_10_5802_acirm_54 crossref_primary_10_1186_1687_5281_2013_33 crossref_primary_10_1007_s11042_018_6236_6 crossref_primary_10_1016_j_ymeth_2016_12_006 crossref_primary_10_1007_s11263_018_01141_5 crossref_primary_10_1016_j_imavis_2013_06_009 crossref_primary_10_1007_s11263_015_0806_0 crossref_primary_10_1109_TCSVT_2016_2628782 crossref_primary_10_1371_journal_pone_0193267 crossref_primary_10_1109_TPAMI_2017_2766072 crossref_primary_10_1007_s11263_015_0809_x crossref_primary_10_1109_TIP_2017_2687101 crossref_primary_10_1137_120872048 crossref_primary_10_1016_j_cviu_2011_06_012 crossref_primary_10_1007_s13042_016_0498_y crossref_primary_10_1016_j_media_2016_03_009 crossref_primary_10_1109_TPAMI_2010_135 crossref_primary_10_1016_j_cviu_2018_04_005 crossref_primary_10_1016_j_neuroimage_2017_10_037 crossref_primary_10_1109_TCSVT_2015_2462011 crossref_primary_10_1016_j_media_2015_05_011 crossref_primary_10_1049_ipr2_12361 crossref_primary_10_1007_s10851_010_0241_3 crossref_primary_10_1007_s11760_018_1277_x crossref_primary_10_1016_j_media_2012_08_002 crossref_primary_10_1109_TPAMI_2014_2382109 crossref_primary_10_1002_nbm_4344 crossref_primary_10_1109_TIP_2017_2750406 crossref_primary_10_1109_ACCESS_2020_2985106 crossref_primary_10_3390_e25030535 crossref_primary_10_1007_s11263_013_0644_x crossref_primary_10_1016_j_cviu_2013_07_004 crossref_primary_10_1002_mrm_28878 crossref_primary_10_1016_j_cviu_2015_11_005 crossref_primary_10_1109_TRO_2017_2690977 crossref_primary_10_1007_s11263_012_0531_x crossref_primary_10_1016_j_image_2018_12_002  | 
    
| Cites_doi | 10.1111/j.2517-6161.1989.tb01764.x 10.1109/ICCV.2007.4408907 10.1145/1390156.1390217 10.1007/s11263-006-0016-x 10.1145/882262.882264 10.1109/TPAMI.2007.1031 10.1109/CVPR.2007.383191 10.1007/s11263-005-3960-y 10.1145/212332.212334 10.1109/TPAMI.2004.1262177 10.1016/0004-3702(81)90024-2 10.1016/j.imavis.2006.08.001 10.1109/CVPR.2005.130 10.1007/978-3-540-88693-8_22 10.1287/opre.13.3.388 10.1109/TPAMI.2003.1233908 10.5244/C.21.110 10.1109/TPAMI.2007.70844 10.1109/CVPR.1998.698673 10.1109/CVPR.2006.305 10.1007/978-3-540-88693-8_50 10.1109/TPAMI.2006.200 10.1109/CVPR.2007.383249 10.1109/ICCV.2007.4408903 10.1109/CVPR.2008.4587672 10.1016/0166-218X(85)90035-6 10.1109/CVPR.2008.4587751 10.1109/CVPR.2007.383095 10.1109/CVPR.2007.383203 10.1109/34.969114 10.1111/j.2517-6161.1986.tb01412.x 10.1016/S0166-218X(01)00341-9 10.1109/CVPR.2004.1315041  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010  | 
    
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010  | 
    
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3  | 
    
| DOI | 10.1109/TPAMI.2009.143 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database  | 
    
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | MEDLINE - Academic Technology Research Database Technology Research Database PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science Applied Sciences  | 
    
| EISSN | 1939-3539 | 
    
| EndPage | 1405 | 
    
| ExternalDocumentID | 2717155311 20558873 23119190 10_1109_TPAMI_2009_143 5166447  | 
    
| Genre | orig-research Journal Article  | 
    
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3  | 
    
| ID | FETCH-LOGICAL-c404t-68cdc11bfe24bce4f45fc10c9397ca5b1ddab9ff0429c6090e4c0601d7239d4a3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0162-8828 1939-3539  | 
    
| IngestDate | Thu Oct 02 07:15:53 EDT 2025 Sun Sep 28 01:12:43 EDT 2025 Mon Jun 30 02:16:42 EDT 2025 Mon Jul 21 06:03:01 EDT 2025 Mon Jul 21 09:12:10 EDT 2025 Wed Oct 01 06:39:35 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 Wed Aug 27 02:47:52 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | Markov process Cartography Computer vision Non convex programming combinatorial algorithms Probabilistic approach Stereo image processing Image processing motion Combinatorial problem Dynamic analysis Inference Layout problem Image restoration Optimization Markov random fields Credal approach Graph cut stereo Pattern analysis Artificial intelligence Optical flow Parallelization graph algorithms  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c404t-68cdc11bfe24bce4f45fc10c9397ca5b1ddab9ff0429c6090e4c0601d7239d4a3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 20558873 | 
    
| PQID | 1027220869 | 
    
| PQPubID | 85458 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_journals_1027220869 ieee_primary_5166447 proquest_miscellaneous_753648284 pubmed_primary_20558873 crossref_citationtrail_10_1109_TPAMI_2009_143 crossref_primary_10_1109_TPAMI_2009_143 proquest_miscellaneous_733358099 pascalfrancis_primary_23119190  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-08-01 | 
    
| PublicationDateYYYYMMDD | 2010-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2010 text: 2010-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Los Alamitos, CA | 
    
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence | 
    
| PublicationTitleAbbrev | TPAMI | 
    
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell | 
    
| PublicationYear | 2010 | 
    
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 Kolmogorov (ref20) ref31 ref30 ref33 Yedidia (ref6) 2003 ref10 ref32 ref2 ref1 ref16 ref19 ref18 Rasmussen (ref38) 2006 ref24 ref23 ref26 ref25 ref41 ref22 ref21 Schlesinger (ref8) 2006 ref28 Wolff (ref39) 2009 ref27 ref29 ref7 ref9 ref4 ref3 Boros (ref17) 2006 Lucas (ref34) ref5 Veksler (ref11) 1999 ref40  | 
    
| References_xml | – ident: ref3 doi: 10.1111/j.2517-6161.1989.tb01764.x – ident: ref15 doi: 10.1109/ICCV.2007.4408907 – ident: ref9 doi: 10.1145/1390156.1390217 – ident: ref31 doi: 10.1007/s11263-006-0016-x – ident: ref22 doi: 10.1145/882262.882264 – start-page: 239 volume-title: Exploring Artificial Intelligence in the New Millennium year: 2003 ident: ref6 article-title: Understanding Belief Propagation and its Generalizations – ident: ref14 doi: 10.1109/TPAMI.2007.1031 – volume-title: Proc. Conf. Uncertainty in Artificial Intelligence ident: ref20 article-title: On the Optimality of Tree-Reweighted Max-Product Message-Passing – ident: ref27 doi: 10.1109/CVPR.2007.383191 – ident: ref32 doi: 10.1007/s11263-005-3960-y – ident: ref40 doi: 10.1145/212332.212334 – ident: ref5 doi: 10.1109/TPAMI.2004.1262177 – ident: ref35 doi: 10.1016/0004-3702(81)90024-2 – volume-title: Technical Report TUD-FI06-01 year: 2006 ident: ref8 article-title: Transforming an Arbitrary Minsum Problem into a Binary One – ident: ref36 doi: 10.1016/j.imavis.2006.08.001 – year: 2009 ident: ref39 article-title: The Map-Labeling Bibliography – ident: ref23 doi: 10.1109/CVPR.2005.130 – ident: ref41 doi: 10.1007/978-3-540-88693-8_22 – ident: ref2 doi: 10.1287/opre.13.3.388 – ident: ref7 doi: 10.1109/TPAMI.2003.1233908 – ident: ref25 doi: 10.5244/C.21.110 – ident: ref1 doi: 10.1109/TPAMI.2007.70844 – volume-title: Technical Report RUTCOR RRR 10-2006 year: 2006 ident: ref17 article-title: Preprocessing of Unconstrained Quadratic Binary Optimization – ident: ref21 doi: 10.1109/CVPR.1998.698673 – ident: ref24 doi: 10.1109/CVPR.2006.305 – ident: ref33 doi: 10.1007/978-3-540-88693-8_50 – ident: ref29 doi: 10.1109/TPAMI.2006.200 – start-page: 674 volume-title: Proc. Int’l Joint Conf. Artificial Intelligence ident: ref34 article-title: An Iterative Image Registration Technique with an Application to Stereo Vision – ident: ref13 doi: 10.1109/CVPR.2007.383249 – ident: ref30 doi: 10.1109/ICCV.2007.4408903 – ident: ref19 doi: 10.1109/CVPR.2008.4587672 – ident: ref26 doi: 10.1016/0166-218X(85)90035-6 – ident: ref16 doi: 10.1109/CVPR.2008.4587751 – ident: ref12 doi: 10.1109/CVPR.2007.383095 – year: 2006 ident: ref38 article-title: minimize.m – ident: ref18 doi: 10.1109/CVPR.2007.383203 – year: 1999 ident: ref11 article-title: Efficient Graph-Based Energy Minimization Methods in Computer Vision – ident: ref10 doi: 10.1109/34.969114 – ident: ref37 doi: 10.1111/j.2517-6161.1986.tb01412.x – ident: ref4 doi: 10.1016/S0166-218X(01)00341-9 – ident: ref28 doi: 10.1109/CVPR.2004.1315041  | 
    
| SSID | ssj0014503 | 
    
| Score | 2.4201114 | 
    
| Snippet | The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we... | 
    
| SourceID | proquest pubmed pascalfrancis crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1392 | 
    
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Application software Applied sciences Artificial intelligence Belief propagation combinatorial algorithms Computer science; control theory; systems Computer vision Exact sciences and technology graph algorithms Graphs Image motion analysis Image restoration Inference algorithms Labeling Labels Magnetorheological fluids Marking Markov processes Markov random fields Mathematical models motion Optimization Pattern recognition. Digital image processing. Computational geometry stereo Stereo vision Studies Theoretical computing  | 
    
| Title | Fusion Moves for Markov Random Field Optimization | 
    
| URI | https://ieeexplore.ieee.org/document/5166447 https://www.ncbi.nlm.nih.gov/pubmed/20558873 https://www.proquest.com/docview/1027220869 https://www.proquest.com/docview/733358099 https://www.proquest.com/docview/753648284  | 
    
| Volume | 32 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGB0pZHoK18QOJCtk5iJ-tjhVgVpAWEWqm3yI_xBZpU7KYHfj1jxxsoaitukTySHXvG843nBfBGSawIB7u8Vg3mwmiXG-Q6nwd-EqYU6GOU7-f67EJ8upSXW_BuyoVBxBh8hrPwGX35rrdDeCo7kUVN6rvZhu1mXo-5WpPHQMjYBZkQDEk4mRGpQGPB1cn519Plx7E0JaGDUP6XS0nCVd3SRbG5SgiN1CvaHT-2tbgfd0b9s9iF5WblY9jJ99mwNjP765-ijv_7a0_hSQKi7HTknD3Ywm4fdjdNHliS-X14_FfFwgMoFkN4XmPL_gZXjAAvC8k-_Q37pjvXX7FFCIhjX-geukoJns_gYvHh_P1Znrou5FZwsc7ruXW2KIzHUhiLwgvpbcGtIuRitTSFc9oo74MmszVXHIUNRV1cU1bKCV09h52u7_AlMFUa7xtCJEgMoZ1QqJQsRYNzuicLjxnkm_1vbSpJHjpj_GijacJVG48utMpUZKNUGbyd6K_HYhz3Uh6EPZ6o0vZmcHzreKdxQrm0IsUzONycd5uEeUVTlE1Zku2nMmDTMIlh8K3oDvth1TZVFRzK6iESWdWCOFNk8GLkpD_TJ4Z8dfeyX8OjMWghxB0ews7654BHhIXW5jgKwW-YEwKZ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeKLQ8AqX4gMSFbPMYJ-tjhVhtoVsQ2kq9RbE9vkCTit30wK9nnHgDRRRxi-SR7Ngznm88L4DXSlLOONjGhSopRl3bWFNSx1PPT6gzJNdH-Z4V83P8cCEvtuDtmAtDRH3wGU38Z-_Lt63p_FPZkUwLVt_lHbgrEVEO2VqjzwBl3weZMQzLOBsSoURjmqij5efjxclQnJLxgS8AnEjJ4pXf0EZ9exUfHFmveH_c0NjiduTZa6DZLiw2ax8CT75OurWemB9_lHX83597CA8CFBXHA-88gi1q9mB30-ZBBKnfg53fahbuQzrr_AObWLTXtBIMeYVP92mvxZe6se2lmPmQOPGJb6LLkOL5GM5n75fv5nHouxAbTHAdF1NjTZpqRxlqQ-hQOpMmRjF2MbXUqbW1Vs55XWaKRCWExpd1sWWWK4t1_gS2m7ahZyBUpp0rGZMQs0RtUZFSMsOSpnxTpo4iiDf7X5lQlNz3xvhW9cZJoqr-6HyzTMVWSh7Bm5H-aijHcSvlvt_jkSpsbwSHN453HGecyytSSQQHm_OugjiveIqszDK2_lQEYhxmQfTelbqhtltVZZ57l7L6F4nMC2TOxAieDpz0a_rAkM__vuxXcG--XJxWpydnH1_A_SGEwUchHsD2-ntHLxkZrfVhLxA_AUQfBeY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+moves+for+Markov+random+field+optimization&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Lempitsky%2C+Victor&rft.au=Rother%2C+Carsten&rft.au=Roth%2C+Stefan&rft.au=Blake%2C+Andrew&rft.date=2010-08-01&rft.eissn=1939-3539&rft.volume=32&rft.issue=8&rft.spage=1392&rft_id=info:doi/10.1109%2FTPAMI.2009.143&rft_id=info%3Apmid%2F20558873&rft.externalDocID=20558873 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |