PNL: a software to build polygenic risk scores using a super learner approach based on PairNet, a Convolutional Neural Network
Summary Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive...
Saved in:
| Published in | Bioinformatics (Oxford, England) Vol. 41; no. 2 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford University Press
04.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-4811 1367-4803 1367-4811 |
| DOI | 10.1093/bioinformatics/btaf071 |
Cover
| Abstract | Summary
Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only Taiwan biobank (TWB) data achieved Area Under the Curves (AUCs) that matched or improved the best results using other methods individually. Incorporating the UK Biobank data (UKBB) data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting.
Availability and implementation
The python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227. |
|---|---|
| AbstractList | Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only Taiwan biobank (TWB) data achieved Area Under the Curves (AUCs) that matched or improved the best results using other methods individually. Incorporating the UK Biobank data (UKBB) data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting.SUMMARYPolygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only Taiwan biobank (TWB) data achieved Area Under the Curves (AUCs) that matched or improved the best results using other methods individually. Incorporating the UK Biobank data (UKBB) data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting.The python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227.AVAILABILITY AND IMPLEMENTATIONThe python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227. Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only Taiwan biobank (TWB) data achieved Area Under the Curves (AUCs) that matched or improved the best results using other methods individually. Incorporating the UK Biobank data (UKBB) data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting. The python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227. Summary Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only Taiwan biobank (TWB) data achieved Area Under the Curves (AUCs) that matched or improved the best results using other methods individually. Incorporating the UK Biobank data (UKBB) data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting. Availability and implementation The python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227. |
| Author | Fann, Cathy S J Chen, Ting-Huei Wu, Shang-Jung Chen, Syue-Pu Lee, Chia-Jung |
| Author_xml | – sequence: 1 givenname: Ting-Huei orcidid: 0000-0002-7731-2374 surname: Chen fullname: Chen, Ting-Huei email: ting-huei.chen@mat.ulaval.ca – sequence: 2 givenname: Chia-Jung orcidid: 0000-0002-8394-7683 surname: Lee fullname: Lee, Chia-Jung – sequence: 3 givenname: Syue-Pu surname: Chen fullname: Chen, Syue-Pu email: ting-huei.chen@mat.ulaval.ca – sequence: 4 givenname: Shang-Jung surname: Wu fullname: Wu, Shang-Jung – sequence: 5 givenname: Cathy S J surname: Fann fullname: Fann, Cathy S J email: csjfann@ibms.sinica.edu.tw |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39951285$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtvEzEUhS1URB_wFyovWRBqjzP2DBuEovKQotBF99Ydz53U1LEHPxplw29nQkLV7ro6lvyde-xzz8mJDx4JueTsI2etuOpssH4IcQPZmnTVZRiY4q_IGRdSzeYN5ydPzqfkPKVfjLGa1fINORVtW_Oqqc_In5vV8hMFmsKQtxCR5kC7Yl1Px-B2a_TW0GjTPU0mREy0JOvXe76MGKlDiH5SGMcYwNzRDhL2NHh6AzauMH-Y0EXwD8GVbIMHR1dY4j_J2xDv35LXA7iE7456QW6_Xt8uvs-WP7_9WHxZzsyczfNMMuxFq4RomrkSqq4GVoEcsAeBFTeV7FphJDadwRqw49gMihvRtcCY6KW4IOowtvgRdltwTo_RbiDuNGd6X6h-Xqg-Fjo5Px-cY-k22Bv0eXr-ozuA1c9vvL3T6_CgOW9Uy9U--_1xQgy_C6asNzYZdA48hpK04FIqxaZ9TOjl07DHlP_rmgB5AEwMKUUcXv4NfjCGMr7U8xd_3sY8 |
| Cites_doi | 10.1038/s41588-022-01054-7 10.2202/1544-6115.1309 10.1038/s42003-022-04168-0 10.1086/519795 10.1016/j.tig.2021.06.004 10.1038/s41467-019-09718-5 10.1016/j.ajhg.2015.09.001 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. Published by Oxford University Press. 2025 The Author(s) 2025. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. 2025 – notice: The Author(s) 2025. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1093/bioinformatics/btaf071 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| ExternalDocumentID | 10.1093/bioinformatics/btaf071 PMC11879176 39951285 10_1093_bioinformatics_btaf071 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Science and Technology Council grantid: 112-2314-B-001-010 – fundername: Natural Sciences and Engineering Research Council of Canada – fundername: ; – fundername: ; grantid: 112-2314-B-001-010; 111-2314-B-001-008 |
| GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c404t-60ed3973388473752f02a6feda3e21c26b93c6e8bce5aeb1e8f71c3b9a003d63 |
| IEDL.DBID | UNPAY |
| ISSN | 1367-4811 1367-4803 |
| IngestDate | Sun Oct 26 03:05:08 EDT 2025 Thu Aug 21 18:27:18 EDT 2025 Fri Jul 11 10:35:00 EDT 2025 Sat May 10 01:40:55 EDT 2025 Wed Oct 01 06:44:21 EDT 2025 Mon Jun 30 08:34:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c404t-60ed3973388473752f02a6feda3e21c26b93c6e8bce5aeb1e8f71c3b9a003d63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8394-7683 0000-0002-7731-2374 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btaf071 |
| PMID | 39951285 |
| PQID | 3166770512 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btaf071 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11879176 proquest_miscellaneous_3166770512 pubmed_primary_39951285 crossref_primary_10_1093_bioinformatics_btaf071 oup_primary_10_1093_bioinformatics_btaf071 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Feb-04 |
| PublicationDateYYYYMMDD | 2025-02-04 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-Feb-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2025 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Van der Laan (2025030423070794200_btaf071-B7) 2007; 6 Jhang (2025030423070794200_btaf071-B2) Lee (2025030423070794200_btaf071-B3) 2022; 5 Ge (2025030423070794200_btaf071-B1) 2019; 10 Ma (2025030423070794200_btaf071-B4) 2021; 37 Purcell (2025030423070794200_btaf071-B5) 2007; 81 Ruan (2025030423070794200_btaf071-B6) 2022; 54 Vilhjálmsson (2025030423070794200_btaf071-B8) 2015; 97 |
| References_xml | – volume: 54 start-page: 573 year: 2022 ident: 2025030423070794200_btaf071-B6 article-title: Improving polygenic prediction in ancestrally diverse populations publication-title: Nat Genet doi: 10.1038/s41588-022-01054-7 – volume: 6 start-page: Article25 year: 2007 ident: 2025030423070794200_btaf071-B7 article-title: Super learner publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1309 – volume: 5 start-page: 1175 year: 2022 ident: 2025030423070794200_btaf071-B3 article-title: Phenome-wide analysis of Taiwan biobank reveals novel glycemia-related loci and genetic risks for diabetes publication-title: Commun Biol doi: 10.1038/s42003-022-04168-0 – volume: 81 start-page: 559 year: 2007 ident: 2025030423070794200_btaf071-B5 article-title: Plink: a tool set for whole-genome association and population-based linkage analyses publication-title: Am J Hum Genet doi: 10.1086/519795 – volume: 37 start-page: 995 year: 2021 ident: 2025030423070794200_btaf071-B4 article-title: Genetic prediction of complex traits with polygenic scores: a statistical review publication-title: Trends Genet doi: 10.1016/j.tig.2021.06.004 – volume: 10 start-page: 1776 year: 2019 ident: 2025030423070794200_btaf071-B1 article-title: Polygenic prediction via Bayesian regression and continuous shrinkage priors publication-title: Nat Commun doi: 10.1038/s41467-019-09718-5 – start-page: 994 ident: 2025030423070794200_btaf071-B2 – volume: 97 start-page: 576 year: 2015 ident: 2025030423070794200_btaf071-B8 article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2015.09.001 |
| SSID | ssj0005056 |
| Score | 2.4741974 |
| Snippet | Summary
Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains... Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Applications Note Asthma - genetics Convolutional Neural Networks Diabetes Mellitus, Type 2 - genetics Genetic Predisposition to Disease Genetic Risk Score Humans Multifactorial Inheritance Neural Networks, Computer Software |
| Title | PNL: a software to build polygenic risk scores using a super learner approach based on PairNet, a Convolutional Neural Network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39951285 https://www.proquest.com/docview/3166770512 https://pubmed.ncbi.nlm.nih.gov/PMC11879176 https://doi.org/10.1093/bioinformatics/btaf071 |
| UnpaywallVersion | publishedVersion |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NnSZ4GTBghMFkpD0hsiax4yS8TRPThKDrQyeVp8h27K2iSqo22VQe-Nt3zke1gJDKSxwpTuSP833k7n4HcBIioRiWBK6iGg0UHlPkg1y5jBk_Q_0-McLmO38f8ctr9nUaTltD0ebC9Pz3CR3KWdEiiFrU4qEshfFsyvguD1H3HsDu9Wh89qNJropcFtelkNt73-9Sgv_5oZ406mW4PVI0_46XfFLlC7G-F_P5I2F08Qyuumk0MSg_T6tSnqpffyA8bj_P57Df6qXkrCGkF7Cj8wPYaypVrl_C7_Ho22ciyAq59r1YalIWRNqK2mRRzNdIhDNFbJQ6WVlYzBWx4fQ3tn-10EtSl6bAtgMwJ1Z2ZqTIyVjMliNdfsKu50V-154DHIgFDambOkr9FUwuvkzOL922dIOrmMdKl3s6Q00H7V-UfjQKA-MFghudCaoDXwVcJlRxHUulQ4HiQscm8hWViUAuk3H6GgZ5kes3QKzrF62AWGVSMM9ksUYmpZGEfIPKmGAODLsdTBcNQEfaONZp2l_UtF1UBz7iRm_d-UNHDykePOtNEbkuqlVKfc6jCHla4MBhQx-bb9p8YRT8oQNxj3I2HSyod_9JPrutwb3r8u9-xB3wNkS25Vjf_v8rR_A0sAWNbRg6eweDclnp96hllfK4_juB18nV9Lg9Zg9dLjDS |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEC5kFtGL70d80YInMTtJutNJvC2LyyI6zmEX1lPo7nSvg0MyzCQu48HfblUew0YRxlMCqTT9qK4HVfUVwJsYGcWJLPINt-igyJSjHJTGF8KFBdr3mVNU7_x5Jk_PxceL-KJ3FKkWZhS_z_hUL6oeQZRQi6e6Vi6gkvEDGaPtPYGD89n86GtXXJX4Im1bIffvYTiUBP9zoJE2GlW4XTM0_86XvNWUK7W9UsvlNWV0che-DMvoclC-Hza1PjQ__0B43H-d9-BOb5eyo46R7sMNWz6Am12nyu1D-DWffXrPFNug1L5Sa8vqimnqqM1W1XKLTLgwjLLU2YZgMTeM0ukvib5Z2TVrW1PgcwAwZ6Q7C1aVbK4W65mt3yHpcVX-6O8BToRAQ9pHm6X-CM5OPpwdn_p96wbfiEDUvgxsgZYO-r-o_XgSRy6IlHS2UNxGoYmkzriRNtXGxgrVhU1dEhquM4VSppD8MUzKqrRPgVHoF72A1BRaicAVqUUhZZGFQofGmBIeTIcTzFcdQEfeBdZ5Pt7UvN9UD97iQe9N_HrghxwvHkVTVGmrZpPzUMokQZkWefCk44_dmFQvjIo_9iAdcc6OgEC9x1_KxbcW3Ltt_x4m0oNgx2R7zvXZ___yHG5H1NCY0tDFC5jU68a-RCur1q_6q_UbJOEuwQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PNL%3A+a+software+to+build+polygenic+risk+scores+using+a+super+learner+approach+based+on+PairNet%2C+a+Convolutional+Neural+Network&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Chen%2C+Ting-Huei&rft.au=Lee%2C+Chia-Jung&rft.au=Chen%2C+Syue-Pu&rft.au=Wu%2C+Shang-Jung&rft.date=2025-02-04&rft.pub=Oxford+University+Press&rft.eissn=1367-4811&rft.volume=41&rft.issue=2&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf071&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtaf071 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |