PNL: a software to build polygenic risk scores using a super learner approach based on PairNet, a Convolutional Neural Network

Summary Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 41; no. 2
Main Authors Chen, Ting-Huei, Lee, Chia-Jung, Chen, Syue-Pu, Wu, Shang-Jung, Fann, Cathy S J
Format Journal Article
LanguageEnglish
Published England Oxford University Press 04.02.2025
Subjects
Online AccessGet full text
ISSN1367-4811
1367-4803
1367-4811
DOI10.1093/bioinformatics/btaf071

Cover

Abstract Summary Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only Taiwan biobank (TWB) data achieved Area Under the Curves (AUCs) that matched or improved the best results using other methods individually. Incorporating the UK Biobank data (UKBB) data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting. Availability and implementation The python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227.
AbstractList Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only Taiwan biobank (TWB) data achieved Area Under the Curves (AUCs) that matched or improved the best results using other methods individually. Incorporating the UK Biobank data (UKBB) data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting.SUMMARYPolygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only Taiwan biobank (TWB) data achieved Area Under the Curves (AUCs) that matched or improved the best results using other methods individually. Incorporating the UK Biobank data (UKBB) data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting.The python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227.AVAILABILITY AND IMPLEMENTATIONThe python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227.
Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only Taiwan biobank (TWB) data achieved Area Under the Curves (AUCs) that matched or improved the best results using other methods individually. Incorporating the UK Biobank data (UKBB) data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting. The python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227.
Summary Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for many diseases in the general population. As a result, numerous novel PRS modeling techniques have been developed to improve predictive performance, but determining the most effective method for a specific application remains uncertain until tested. Hence, we introduce a novel, versatile tool for building an optimized PRS model by integrating candidate models from multiple existing PRS building methods that use target population data and/or incorporating information from other populations through a trans-ethnic approach. Our tool, PNL is based on PairNet algorithm, a Convolutional Neural Network with low computation complexity through simple paring operation. In the case studies for asthma, type 2 diabetes, and vertigo, the optimal PRS model generated with PNL using only Taiwan biobank (TWB) data achieved Area Under the Curves (AUCs) that matched or improved the best results using other methods individually. Incorporating the UK Biobank data (UKBB) data further improved performance of PNL for asthma and type 2 diabetes. For vertigo, unlike the other diseases, individual method analysis showed that UKBB data alone generally produced lower AUCs compared to TWB data alone. As a result, incorporating UKBB data did not improve AUC with PNL, suggesting that increasing the number of candidate models does not necessarily result in higher AUC values, alleviating concerns about overfitting. Availability and implementation The python code for PairNet algorithm incorporated in PNL is freely available on: https://github.com/FannLab/pairnet. An archived, citable version is stored on: https://doi.org/10.5281/zenodo.14838227.
Author Fann, Cathy S J
Chen, Ting-Huei
Wu, Shang-Jung
Chen, Syue-Pu
Lee, Chia-Jung
Author_xml – sequence: 1
  givenname: Ting-Huei
  orcidid: 0000-0002-7731-2374
  surname: Chen
  fullname: Chen, Ting-Huei
  email: ting-huei.chen@mat.ulaval.ca
– sequence: 2
  givenname: Chia-Jung
  orcidid: 0000-0002-8394-7683
  surname: Lee
  fullname: Lee, Chia-Jung
– sequence: 3
  givenname: Syue-Pu
  surname: Chen
  fullname: Chen, Syue-Pu
  email: ting-huei.chen@mat.ulaval.ca
– sequence: 4
  givenname: Shang-Jung
  surname: Wu
  fullname: Wu, Shang-Jung
– sequence: 5
  givenname: Cathy S J
  surname: Fann
  fullname: Fann, Cathy S J
  email: csjfann@ibms.sinica.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39951285$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URB_wFyovWRBqjzP2DBuEovKQotBF99Ydz53U1LEHPxplw29nQkLV7ro6lvyde-xzz8mJDx4JueTsI2etuOpssH4IcQPZmnTVZRiY4q_IGRdSzeYN5ydPzqfkPKVfjLGa1fINORVtW_Oqqc_In5vV8hMFmsKQtxCR5kC7Yl1Px-B2a_TW0GjTPU0mREy0JOvXe76MGKlDiH5SGMcYwNzRDhL2NHh6AzauMH-Y0EXwD8GVbIMHR1dY4j_J2xDv35LXA7iE7456QW6_Xt8uvs-WP7_9WHxZzsyczfNMMuxFq4RomrkSqq4GVoEcsAeBFTeV7FphJDadwRqw49gMihvRtcCY6KW4IOowtvgRdltwTo_RbiDuNGd6X6h-Xqg-Fjo5Px-cY-k22Bv0eXr-ozuA1c9vvL3T6_CgOW9Uy9U--_1xQgy_C6asNzYZdA48hpK04FIqxaZ9TOjl07DHlP_rmgB5AEwMKUUcXv4NfjCGMr7U8xd_3sY8
Cites_doi 10.1038/s41588-022-01054-7
10.2202/1544-6115.1309
10.1038/s42003-022-04168-0
10.1086/519795
10.1016/j.tig.2021.06.004
10.1038/s41467-019-09718-5
10.1016/j.ajhg.2015.09.001
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press. 2025
The Author(s) 2025. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press. 2025
– notice: The Author(s) 2025. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btaf071
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID 10.1093/bioinformatics/btaf071
PMC11879176
39951285
10_1093_bioinformatics_btaf071
Genre Journal Article
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: 112-2314-B-001-010
– fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: ;
– fundername: ;
  grantid: 112-2314-B-001-010; 111-2314-B-001-008
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c404t-60ed3973388473752f02a6feda3e21c26b93c6e8bce5aeb1e8f71c3b9a003d63
IEDL.DBID UNPAY
ISSN 1367-4811
1367-4803
IngestDate Sun Oct 26 03:05:08 EDT 2025
Thu Aug 21 18:27:18 EDT 2025
Fri Jul 11 10:35:00 EDT 2025
Sat May 10 01:40:55 EDT 2025
Wed Oct 01 06:44:21 EDT 2025
Mon Jun 30 08:34:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-60ed3973388473752f02a6feda3e21c26b93c6e8bce5aeb1e8f71c3b9a003d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8394-7683
0000-0002-7731-2374
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btaf071
PMID 39951285
PQID 3166770512
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btaf071
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11879176
proquest_miscellaneous_3166770512
pubmed_primary_39951285
crossref_primary_10_1093_bioinformatics_btaf071
oup_primary_10_1093_bioinformatics_btaf071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Feb-04
PublicationDateYYYYMMDD 2025-02-04
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Van der Laan (2025030423070794200_btaf071-B7) 2007; 6
Jhang (2025030423070794200_btaf071-B2)
Lee (2025030423070794200_btaf071-B3) 2022; 5
Ge (2025030423070794200_btaf071-B1) 2019; 10
Ma (2025030423070794200_btaf071-B4) 2021; 37
Purcell (2025030423070794200_btaf071-B5) 2007; 81
Ruan (2025030423070794200_btaf071-B6) 2022; 54
Vilhjálmsson (2025030423070794200_btaf071-B8) 2015; 97
References_xml – volume: 54
  start-page: 573
  year: 2022
  ident: 2025030423070794200_btaf071-B6
  article-title: Improving polygenic prediction in ancestrally diverse populations
  publication-title: Nat Genet
  doi: 10.1038/s41588-022-01054-7
– volume: 6
  start-page: Article25
  year: 2007
  ident: 2025030423070794200_btaf071-B7
  article-title: Super learner
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1309
– volume: 5
  start-page: 1175
  year: 2022
  ident: 2025030423070794200_btaf071-B3
  article-title: Phenome-wide analysis of Taiwan biobank reveals novel glycemia-related loci and genetic risks for diabetes
  publication-title: Commun Biol
  doi: 10.1038/s42003-022-04168-0
– volume: 81
  start-page: 559
  year: 2007
  ident: 2025030423070794200_btaf071-B5
  article-title: Plink: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am J Hum Genet
  doi: 10.1086/519795
– volume: 37
  start-page: 995
  year: 2021
  ident: 2025030423070794200_btaf071-B4
  article-title: Genetic prediction of complex traits with polygenic scores: a statistical review
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2021.06.004
– volume: 10
  start-page: 1776
  year: 2019
  ident: 2025030423070794200_btaf071-B1
  article-title: Polygenic prediction via Bayesian regression and continuous shrinkage priors
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09718-5
– start-page: 994
  ident: 2025030423070794200_btaf071-B2
– volume: 97
  start-page: 576
  year: 2015
  ident: 2025030423070794200_btaf071-B8
  article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2015.09.001
SSID ssj0005056
Score 2.4741974
Snippet Summary Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains...
Polygenic risk scores (PRSs) hold promise for early disease diagnosis and personalized treatment, but their overall discriminative power remains limited for...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Applications Note
Asthma - genetics
Convolutional Neural Networks
Diabetes Mellitus, Type 2 - genetics
Genetic Predisposition to Disease
Genetic Risk Score
Humans
Multifactorial Inheritance
Neural Networks, Computer
Software
Title PNL: a software to build polygenic risk scores using a super learner approach based on PairNet, a Convolutional Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/39951285
https://www.proquest.com/docview/3166770512
https://pubmed.ncbi.nlm.nih.gov/PMC11879176
https://doi.org/10.1093/bioinformatics/btaf071
UnpaywallVersion publishedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NnSZ4GTBghMFkpD0hsiax4yS8TRPThKDrQyeVp8h27K2iSqo22VQe-Nt3zke1gJDKSxwpTuSP833k7n4HcBIioRiWBK6iGg0UHlPkg1y5jBk_Q_0-McLmO38f8ctr9nUaTltD0ebC9Pz3CR3KWdEiiFrU4qEshfFsyvguD1H3HsDu9Wh89qNJropcFtelkNt73-9Sgv_5oZ406mW4PVI0_46XfFLlC7G-F_P5I2F08Qyuumk0MSg_T6tSnqpffyA8bj_P57Df6qXkrCGkF7Cj8wPYaypVrl_C7_Ho22ciyAq59r1YalIWRNqK2mRRzNdIhDNFbJQ6WVlYzBWx4fQ3tn-10EtSl6bAtgMwJ1Z2ZqTIyVjMliNdfsKu50V-154DHIgFDambOkr9FUwuvkzOL922dIOrmMdKl3s6Q00H7V-UfjQKA-MFghudCaoDXwVcJlRxHUulQ4HiQscm8hWViUAuk3H6GgZ5kes3QKzrF62AWGVSMM9ksUYmpZGEfIPKmGAODLsdTBcNQEfaONZp2l_UtF1UBz7iRm_d-UNHDykePOtNEbkuqlVKfc6jCHla4MBhQx-bb9p8YRT8oQNxj3I2HSyod_9JPrutwb3r8u9-xB3wNkS25Vjf_v8rR_A0sAWNbRg6eweDclnp96hllfK4_juB18nV9Lg9Zg9dLjDS
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEC5kFtGL70d80YInMTtJutNJvC2LyyI6zmEX1lPo7nSvg0MyzCQu48HfblUew0YRxlMCqTT9qK4HVfUVwJsYGcWJLPINt-igyJSjHJTGF8KFBdr3mVNU7_x5Jk_PxceL-KJ3FKkWZhS_z_hUL6oeQZRQi6e6Vi6gkvEDGaPtPYGD89n86GtXXJX4Im1bIffvYTiUBP9zoJE2GlW4XTM0_86XvNWUK7W9UsvlNWV0che-DMvoclC-Hza1PjQ__0B43H-d9-BOb5eyo46R7sMNWz6Am12nyu1D-DWffXrPFNug1L5Sa8vqimnqqM1W1XKLTLgwjLLU2YZgMTeM0ukvib5Z2TVrW1PgcwAwZ6Q7C1aVbK4W65mt3yHpcVX-6O8BToRAQ9pHm6X-CM5OPpwdn_p96wbfiEDUvgxsgZYO-r-o_XgSRy6IlHS2UNxGoYmkzriRNtXGxgrVhU1dEhquM4VSppD8MUzKqrRPgVHoF72A1BRaicAVqUUhZZGFQofGmBIeTIcTzFcdQEfeBdZ5Pt7UvN9UD97iQe9N_HrghxwvHkVTVGmrZpPzUMokQZkWefCk44_dmFQvjIo_9iAdcc6OgEC9x1_KxbcW3Ltt_x4m0oNgx2R7zvXZ___yHG5H1NCY0tDFC5jU68a-RCur1q_6q_UbJOEuwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PNL%3A+a+software+to+build+polygenic+risk+scores+using+a+super+learner+approach+based+on+PairNet%2C+a+Convolutional+Neural+Network&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Chen%2C+Ting-Huei&rft.au=Lee%2C+Chia-Jung&rft.au=Chen%2C+Syue-Pu&rft.au=Wu%2C+Shang-Jung&rft.date=2025-02-04&rft.pub=Oxford+University+Press&rft.eissn=1367-4811&rft.volume=41&rft.issue=2&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf071&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtaf071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon