Substrate stiffness modulates the viscoelastic properties of MCF-7 cells
Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cel...
Saved in:
Published in | Journal of the mechanical behavior of biomedical materials Vol. 125; p. 104979 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-6161 1878-0180 1878-0180 |
DOI | 10.1016/j.jmbbm.2021.104979 |
Cover
Abstract | Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties. |
---|---|
AbstractList | Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties.Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties. Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties. |
ArticleNumber | 104979 |
Author | Vivanco, Maria dM Gil-Redondo, Juan Carlos Zbiral, Barbara Weber, Andreas Toca-Herrera, José L. |
Author_xml | – sequence: 1 givenname: Juan Carlos orcidid: 0000-0002-4797-7033 surname: Gil-Redondo fullname: Gil-Redondo, Juan Carlos email: juan.gil-redondo@boku.ac.at organization: Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria – sequence: 2 givenname: Andreas surname: Weber fullname: Weber, Andreas email: andreas.weber@boku.ac.at organization: Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria – sequence: 3 givenname: Barbara orcidid: 0000-0003-3277-082X surname: Zbiral fullname: Zbiral, Barbara email: barbara.zbiral@boku.ac.at organization: Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria – sequence: 4 givenname: Maria dM orcidid: 0000-0002-9540-247X surname: Vivanco fullname: Vivanco, Maria dM email: mdmvivanco@cicbiogune.es organization: Cancer Heterogeneity Lab, CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160, Derio, Spain – sequence: 5 givenname: José L. orcidid: 0000-0001-8951-2616 surname: Toca-Herrera fullname: Toca-Herrera, José L. email: jose.toca-herrera@boku.ac.at organization: Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34826769$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtOxCAUhonReH8CE9Olm45AKaULF2biLdG4UNeEwiEyacsI1MS38Vl8MtFRFy50BTnn_8jPt4PWRz8CQgcEzwgm_HgxWwxdN8wopiRPWNu0a2ibiEaUmAi8nu9NTUpOONlCOzEuMOYYC7GJtiomKG94u42u7qYupqASFDE5a0eIsRi8mfo8ikV6hOLZRe2hV3mvi2XwSwjJ5Z23xc38vGzeXjX0fdxDG1b1Efa_zl30cH52P78sr28vruan16VmmKWS8krxxnJgRHcdM5TUuq4qUbeGMUp4ZTmvMaVcCaM4N8CYAdsJo5ua2o5Uu-ho9W6u8jRBTHLIBXMDNYKfoqQcs8wz2uTo4Vd06gYwchncoMKL_P5-DlSrgA4-xgD2J0Kw_JAsF_JTsvyQLFeSM9X-orRLKjk_ZpGu_4c9WbGQFT07CDJqB6MG4wLoJI13f_Lv0XqYrg |
CitedBy_id | crossref_primary_10_1098_rspa_2024_0046 crossref_primary_10_3390_cells11132010 crossref_primary_10_3762_bjnano_13_47 crossref_primary_10_1091_mbc_E23_04_0139 crossref_primary_10_52601_bpr_2023_230033 crossref_primary_10_1016_j_bios_2024_116410 crossref_primary_10_3390_ijms231911927 crossref_primary_10_1002_jemt_24471 crossref_primary_10_1016_j_pbiomolbio_2023_09_003 crossref_primary_10_1088_1478_3975_ac9bc1 crossref_primary_10_3390_ijms252413479 crossref_primary_10_1088_1758_5090_ad5705 crossref_primary_10_1039_D4LC00251B crossref_primary_10_1088_2632_959X_acf1b8 crossref_primary_10_1098_rsif_2023_0317 crossref_primary_10_20517_evcna_2024_47 crossref_primary_10_3390_ma16031165 crossref_primary_10_3390_ijms24109062 crossref_primary_10_3390_cells12192362 crossref_primary_10_1039_D4NA00003J |
Cites_doi | 10.1016/j.bpj.2018.01.005 10.1529/biophysj.105.073114 10.1074/jbc.M109.087171 10.1038/s41598-017-14932-6 10.1016/S0301-5629(03)00978-5 10.1101/cshperspect.a018267 10.1016/S0006-3495(02)75620-8 10.1103/PhysRevE.99.012412 10.1016/S0006-3495(03)74753-5 10.1016/S0006-3495(00)76279-5 10.1039/c5ib00040h 10.1016/j.bpj.2015.07.048 10.1038/nnano.2007.388 10.1021/acsami.5b09344 10.1002/jemt.20716 10.1016/j.cell.2017.04.001 10.1021/acs.jpclett.0c02065 10.1038/ncb2370 10.1158/0008-5472.CAN-18-2738 10.3322/caac.21660 10.1152/ajpcell.2000.279.5.C1345 10.1080/19336918.2016.1173800 10.1371/journal.pone.0204765 10.1038/nrm2593 10.1016/j.ceb.2018.08.004 10.1016/S0008-6363(00)00233-9 10.1016/j.bbamcr.2006.07.001 10.1016/j.pbiomolbio.2018.08.010 10.1016/j.addr.2015.12.017 10.3233/THC-2007-15404 10.1021/acsami.6b07698 10.1016/j.bone.2011.02.023 10.1007/s00249-016-1168-4 10.1038/bjc.1987.13 10.1016/j.cell.2009.10.027 10.1088/0957-4484/21/44/445101 10.1177/016173469802000403 10.1002/cm.20041 10.1016/j.bpj.2010.04.057 10.1038/nature08908 10.3390/ma14112897 10.3390/ma13204495 10.1038/s41563-020-0684-x 10.1016/j.jmbbm.2015.04.030 10.1002/jbm.a.36533 10.1039/C9SM01020C 10.1007/s10237-016-0787-0 10.3389/fphar.2021.662232 10.2214/ajr.178.6.1781411 10.1016/j.semcancer.2019.08.012 10.1016/j.bpj.2020.06.026 10.1038/nprot.2017.009 10.1016/j.xpro.2021.100296 10.1002/jemt.23643 10.1002/jemt.22776 10.1016/j.jbiomech.2017.06.043 10.1007/s12013-012-9356-z 10.3762/bjnano.5.52 10.1038/srep14700 10.1016/j.bbagen.2019.03.010 10.1038/ncomms8525 10.1146/annurev.cellbio.19.111301.153011 10.1002/jbm.a.34104 10.1016/j.abb.2011.12.013 10.1016/S0021-9258(19)43537-0 10.1152/physrev.00013.2019 10.1529/biophysj.104.058180 10.32614/RJ-2017-045 10.1016/j.semcdb.2017.06.029 10.1111/his.12300 10.1038/s41592-018-0015-1 10.1016/j.cellsig.2021.110046 10.1073/pnas.94.25.13661 10.1152/ajpheart.00515.2010 10.1002/jemt.22241 10.1016/j.bpj.2012.07.054 10.1016/j.coche.2016.01.011 10.1088/1367-2630/aa7658 10.1016/j.matbio.2015.10.001 10.1126/science.1116995 10.1016/j.bpj.2014.06.033 10.1038/s41598-019-51024-z |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jmbbm.2021.104979 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-0180 |
ExternalDocumentID | 34826769 10_1016_j_jmbbm_2021_104979 S175161612100607X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c404t-263a67f6e41cbb4d215c533859d442163f6650226a8da66de44defb8dc752fb13 |
IEDL.DBID | AIKHN |
ISSN | 1751-6161 1878-0180 |
IngestDate | Mon Sep 08 06:26:16 EDT 2025 Wed Feb 19 02:27:35 EST 2025 Tue Jul 01 02:19:15 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 Fri Feb 23 02:38:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Atomic force microscopy Rheology MCF-7 Substrate stiffness Breast cancer Zener and power law models Stress-relaxation |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-263a67f6e41cbb4d215c533859d442163f6650226a8da66de44defb8dc752fb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4797-7033 0000-0003-3277-082X 0000-0001-8951-2616 0000-0002-9540-247X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S175161612100607X |
PMID | 34826769 |
PQID | 2604022427 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2604022427 pubmed_primary_34826769 crossref_primary_10_1016_j_jmbbm_2021_104979 crossref_citationtrail_10_1016_j_jmbbm_2021_104979 elsevier_sciencedirect_doi_10_1016_j_jmbbm_2021_104979 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of the mechanical behavior of biomedical materials |
PublicationTitleAlternate | J Mech Behav Biomed Mater |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yeh, Ling, Chen, Lin, Tang (bib82) 2017; 7 Chen, Irianto, Inamdar, Pravincumar, Lee, Bader, Knight (bib12) 2012; 103 Dimitriadis, Horkay, Maresca, Kachar, Chadwick (bib23) 2002; 82 McKnight, Kugel, Rossman, Manduca, Hartmann, Ehman (bib55) 2002; 178 Comsa, Cimpean, Raica (bib19) 2015; 35 Benítez, Bolós, Toca-Herrera (bib5) 2017; 9 Discher, Janmey, Wang (bib24) 2005; 310 Yamaguchi, Condeelis (bib81) 2007; 1773 Liang, Zhang, Song, Yang (bib49) 2020; 60 Smolyakov, Thiebot, Campillo, Labdi, Severac, Pelta, Dague (bib71) 2016; 8 Janmey, Fletcher, Reinhart-King (bib41) 2020; 100 Melzak, Moreno-Flores, Vivanco, Toca-Herrera (bib56) 2013 Wu, Aroush, Asnacios, Chen, Dokukin, Doss, Durand-Smet, Ekpenyong, Guck, Guz, Janmey, Lee, Moore, Ott, Poh, Ros, Sander, Sokolov, Staunton, Wang, Whyte, Wirtz (bib80) 2018; 15 Gang, Qi, Jing, Wang (bib29) 2009; 72 Mierke, Kollmannsberger, Zitterbart, Diez, Koch, Marg, Ziegler, Goldmann, Fabry (bib57) 2010; 285 Manda, Xie, Wallace, Levrero-Florencio, Pankaj (bib52) 2016; 15 Zebaze, Jones, Pandy, Knackstedt, Seeman (bib86) 2011; 48 Bruckner, Noding, Skamrahl, Janshoff (bib11) 2019; 144 Zemla, Danilkiewicz, Orzechowska, Pabijan, Seweryn, Lekka (bib87) 2018; 73 Acerbi, Cassereau, Dean, Shi, Au, Park, Chen, Liphardt, Hwang, Weaver (bib2) 2015; 7 Abidine, Constantinescu, Laurent, Sundar Rajan, Michel, Laplaud, Duperray, Verdier (bib1) 2018; 114 Ramos, Pabijan, Garcia, Lekka (bib66) 2014; 5 Moreno-Flores, Benitez, Vivanco, Toca-Herrera (bib59) 2010; 21 Prein, Warmbold, Farkas, Schieker, Aszodi, Clausen-Schaumann (bib64) 2016; 50 Krouskop, Wheeler, Kallel, Garra, Hall (bib44) 1998; 20 Bershadsky, Balaban, Geiger (bib8) 2003; 19 Humphries, Chastney, Askari, Humphries (bib39) 2019; 56 Brooks, Locke, Soule (bib10) 1973; 248 Efremov, Okajima, Raman (bib25) 2020; 16 Sun, Graham, Hegedus, Marga, Zhang, Forgacs, Grandbois (bib73) 2005; 89 Georges, Miller, Meaney, Sawyer, Janmey (bib33) 2006; 90 Lekka, Gil, Pogoda, Dulinska-Litewka, Jach, Gostek, Klymenko, Prauzner-Bechcicki, Stachura, Wiltowska-Zuber, Okon, Laidler (bib46) 2012; 518 Gupta, Sarangi, Deschamps, Nematbakhsh, Callan-Jones, Margadant, Mege, Lim, Voituriez, Ladoux (bib36) 2015; 6 Blakney, Swartzlander, Bryant (bib9) 2012; 100 Sariisik, Popov, Muller, Docheva, Clausen-Schaumann, Benoit (bib70) 2015; 109 Cross, Jin, Rao, Gimzewski (bib20) 2007; 2 Martorana, Motta, Pavone, Motta, Stella, Vitale, Manzella, Vigneri (bib54) 2021; 12 Raczkowska, Orzechowska, Patryas, Awsiuk, Kubiak, Kinoshita, Okamoto, Bobrowska, Stachura, Soja, Sladek, Lekka (bib65) 2020; 13 Tian, Lin, Wang, Chen, Chen, Yiu, Tsui, Chu, Kiang, Park (bib76) 2020; 11 Gal, Weihs (bib28) 2012; 63 Gupta, Doss, Kocgozlu, Pan, Mege, Callan-Jones, Voituriez, Ladoux (bib35) 2019; 99 Rouven Bruckner, Pietuch, Nehls, Rother, Janshoff (bib69) 2015; 5 Bercoff, Chaffai, Tanter, Sandrin, Catheline, Fink, Gennisson, Meunier (bib7) 2003; 29 Polio, Kundu, Dougan, Birch, Aurian-Blajeni, Schiffman, Crosby, Peyton (bib62) 2018; 13 Chen, Hughes, Mullin, Hawkins, Holen, Brown, Hobbs (bib13) 2020; 119 Chin, Xia, Discher, Janmey (bib14) 2016; 11 Benitez, Moreno-Flores, Bolos, Toca-Herrera (bib6) 2013; 76 Denisin, Pruitt (bib21) 2016; 8 Zbiral, Weber, Iturri, Vivanco, Toca-Herrera (bib85) 2021; 14 Poh, Chowdhury, Tanaka, Wang (bib61) 2010; 99 Hayashi, Iwata (bib38) 2015; 49 Guz, Dokukin, Kalaparthi, Sokolov (bib37) 2014; 107 Chopra, Tabdanov, Patel, Janmey, Kresh (bib15) 2011; 300 Fernandez-Garcia, Eiro, Marin, Gonzalez-Reyes, Gonzalez, Lamelas, Vizoso (bib26) 2014; 64 Geiger, Spatz, Bershadsky (bib32) 2009; 10 Kubitschke, Schnauss, Nnetu, Warmt, Stange, Kaes (bib45) 2017; 19 Fletcher, Mullins (bib27) 2010; 463 Gupta, Doss, Lim, Voituriez, Ladoux (bib34) 2016; 10 Jannatbabaei, Tafazzoli-Shadpour, Seyedjafari, Fatouraee (bib42) 2019; 107 Karcher, Lammerding, Huang, Lee, Kamm, Kaazempur-Mofrad (bib43) 2003; 85 Rianna, Radmacher (bib68) 2017; 46 Svitkina (bib75) 2018; 10 Weber, Iturri, Benitez, Zemljic-Jokhadar, Toca-Herrera (bib78) 2019; 9 Ansardamavandi, Tafazzoli-Shadpour, Shokrgozar (bib3) 2018; 12 Insua-Rodriguez, Oskarsson (bib40) 2016; 97 Chu, Celik, Rico, Moy (bib16) 2013; 8 Prager-Khoutorsky, Lichtenstein, Krishnan, Rajendran, Mayo, Kam, Geiger, Bershadsky (bib63) 2011; 13 Deroanne, Lapiere, Nusgens (bib22) 2001; 49 Levental, Yu, Kass, Lakins, Egeblad, Erler, Fong, Csiszar, Giaccia, Weninger, Yamauchi, Gasser, Weaver (bib48) 2009; 139 Yousafzai, Coceano, Bonin, Niemela, Scoles, Cojoc (bib84) 2017; 60 Lekka, Pabijan, Orzechowska (bib47) 2019; 1863 Rheinlaender, Dimitracopoulos, Wallmeyer, Kronenberg, Chalut, Gather, Betz, Charras, Franze (bib67) 2020; 19 Song, Bode, Dong, Lee (bib72) 2019; 79 Barai, Das, Sen (bib4) 2021; 2 Manning, Toker (bib53) 2017; 169 Wang, Dembo, Wang (bib77) 2000; 279 Mishra, Manavathi (bib58) 2021; 85 Yeung, Georges, Flanagan, Marg, Ortiz, Funaki, Zahir, Ming, Weaver, Janmey (bib83) 2005; 60 Lo, Wang, Dembo, Wang (bib51) 2000; 79 Coleman, Rubens (bib17) 1987; 55 Colin-York, Eggeling, Fritzsche (bib18) 2017; 12 Gavara (bib30) 2017; 80 Gefen, Dilmoney (bib31) 2007; 15 Pelham, Wang (bib60) 1997; 94 Weber, Zbiral, Iturri, Benitez, Toca-Herrera (bib79) 2021; 84 Lippman, Bolan, Huff (bib50) 1976; 36 Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (bib74) 2021; 71 Insua-Rodriguez (10.1016/j.jmbbm.2021.104979_bib40) 2016; 97 Raczkowska (10.1016/j.jmbbm.2021.104979_bib65) 2020; 13 Chu (10.1016/j.jmbbm.2021.104979_bib16) 2013; 8 Svitkina (10.1016/j.jmbbm.2021.104979_bib75) 2018; 10 Geiger (10.1016/j.jmbbm.2021.104979_bib32) 2009; 10 Georges (10.1016/j.jmbbm.2021.104979_bib33) 2006; 90 Mishra (10.1016/j.jmbbm.2021.104979_bib58) 2021; 85 Prager-Khoutorsky (10.1016/j.jmbbm.2021.104979_bib63) 2011; 13 Rianna (10.1016/j.jmbbm.2021.104979_bib68) 2017; 46 Gefen (10.1016/j.jmbbm.2021.104979_bib31) 2007; 15 Benitez (10.1016/j.jmbbm.2021.104979_bib6) 2013; 76 Manda (10.1016/j.jmbbm.2021.104979_bib52) 2016; 15 Fletcher (10.1016/j.jmbbm.2021.104979_bib27) 2010; 463 Bershadsky (10.1016/j.jmbbm.2021.104979_bib8) 2003; 19 Chin (10.1016/j.jmbbm.2021.104979_bib14) 2016; 11 Ramos (10.1016/j.jmbbm.2021.104979_bib66) 2014; 5 Efremov (10.1016/j.jmbbm.2021.104979_bib25) 2020; 16 Barai (10.1016/j.jmbbm.2021.104979_bib4) 2021; 2 Lekka (10.1016/j.jmbbm.2021.104979_bib47) 2019; 1863 Blakney (10.1016/j.jmbbm.2021.104979_bib9) 2012; 100 Bercoff (10.1016/j.jmbbm.2021.104979_bib7) 2003; 29 Jannatbabaei (10.1016/j.jmbbm.2021.104979_bib42) 2019; 107 Lekka (10.1016/j.jmbbm.2021.104979_bib46) 2012; 518 Bruckner (10.1016/j.jmbbm.2021.104979_bib11) 2019; 144 Zebaze (10.1016/j.jmbbm.2021.104979_bib86) 2011; 48 Tian (10.1016/j.jmbbm.2021.104979_bib76) 2020; 11 Ansardamavandi (10.1016/j.jmbbm.2021.104979_bib3) 2018; 12 Acerbi (10.1016/j.jmbbm.2021.104979_bib2) 2015; 7 Levental (10.1016/j.jmbbm.2021.104979_bib48) 2009; 139 Smolyakov (10.1016/j.jmbbm.2021.104979_bib71) 2016; 8 Moreno-Flores (10.1016/j.jmbbm.2021.104979_bib59) 2010; 21 Gavara (10.1016/j.jmbbm.2021.104979_bib30) 2017; 80 McKnight (10.1016/j.jmbbm.2021.104979_bib55) 2002; 178 Melzak (10.1016/j.jmbbm.2021.104979_bib56) 2013 Yousafzai (10.1016/j.jmbbm.2021.104979_bib84) 2017; 60 Gupta (10.1016/j.jmbbm.2021.104979_bib34) 2016; 10 Lo (10.1016/j.jmbbm.2021.104979_bib51) 2000; 79 Sariisik (10.1016/j.jmbbm.2021.104979_bib70) 2015; 109 Abidine (10.1016/j.jmbbm.2021.104979_bib1) 2018; 114 Liang (10.1016/j.jmbbm.2021.104979_bib49) 2020; 60 Martorana (10.1016/j.jmbbm.2021.104979_bib54) 2021; 12 Chen (10.1016/j.jmbbm.2021.104979_bib13) 2020; 119 Weber (10.1016/j.jmbbm.2021.104979_bib78) 2019; 9 Yeh (10.1016/j.jmbbm.2021.104979_bib82) 2017; 7 Zemla (10.1016/j.jmbbm.2021.104979_bib87) 2018; 73 Denisin (10.1016/j.jmbbm.2021.104979_bib21) 2016; 8 Weber (10.1016/j.jmbbm.2021.104979_bib79) 2021; 84 Rouven Bruckner (10.1016/j.jmbbm.2021.104979_bib69) 2015; 5 Poh (10.1016/j.jmbbm.2021.104979_bib61) 2010; 99 Coleman (10.1016/j.jmbbm.2021.104979_bib17) 1987; 55 Benítez (10.1016/j.jmbbm.2021.104979_bib5) 2017; 9 Mierke (10.1016/j.jmbbm.2021.104979_bib57) 2010; 285 Zbiral (10.1016/j.jmbbm.2021.104979_bib85) 2021; 14 Lippman (10.1016/j.jmbbm.2021.104979_bib50) 1976; 36 Brooks (10.1016/j.jmbbm.2021.104979_bib10) 1973; 248 Chopra (10.1016/j.jmbbm.2021.104979_bib15) 2011; 300 Cross (10.1016/j.jmbbm.2021.104979_bib20) 2007; 2 Hayashi (10.1016/j.jmbbm.2021.104979_bib38) 2015; 49 Dimitriadis (10.1016/j.jmbbm.2021.104979_bib23) 2002; 82 Karcher (10.1016/j.jmbbm.2021.104979_bib43) 2003; 85 Humphries (10.1016/j.jmbbm.2021.104979_bib39) 2019; 56 Sung (10.1016/j.jmbbm.2021.104979_bib74) 2021; 71 Polio (10.1016/j.jmbbm.2021.104979_bib62) 2018; 13 Manning (10.1016/j.jmbbm.2021.104979_bib53) 2017; 169 Prein (10.1016/j.jmbbm.2021.104979_bib64) 2016; 50 Krouskop (10.1016/j.jmbbm.2021.104979_bib44) 1998; 20 Colin-York (10.1016/j.jmbbm.2021.104979_bib18) 2017; 12 Janmey (10.1016/j.jmbbm.2021.104979_bib41) 2020; 100 Yamaguchi (10.1016/j.jmbbm.2021.104979_bib81) 2007; 1773 Gang (10.1016/j.jmbbm.2021.104979_bib29) 2009; 72 Kubitschke (10.1016/j.jmbbm.2021.104979_bib45) 2017; 19 Pelham (10.1016/j.jmbbm.2021.104979_bib60) 1997; 94 Guz (10.1016/j.jmbbm.2021.104979_bib37) 2014; 107 Song (10.1016/j.jmbbm.2021.104979_bib72) 2019; 79 Wu (10.1016/j.jmbbm.2021.104979_bib80) 2018; 15 Gal (10.1016/j.jmbbm.2021.104979_bib28) 2012; 63 Gupta (10.1016/j.jmbbm.2021.104979_bib36) 2015; 6 Gupta (10.1016/j.jmbbm.2021.104979_bib35) 2019; 99 Comsa (10.1016/j.jmbbm.2021.104979_bib19) 2015; 35 Fernandez-Garcia (10.1016/j.jmbbm.2021.104979_bib26) 2014; 64 Rheinlaender (10.1016/j.jmbbm.2021.104979_bib67) 2020; 19 Chen (10.1016/j.jmbbm.2021.104979_bib12) 2012; 103 Yeung (10.1016/j.jmbbm.2021.104979_bib83) 2005; 60 Wang (10.1016/j.jmbbm.2021.104979_bib77) 2000; 279 Discher (10.1016/j.jmbbm.2021.104979_bib24) 2005; 310 Deroanne (10.1016/j.jmbbm.2021.104979_bib22) 2001; 49 Sun (10.1016/j.jmbbm.2021.104979_bib73) 2005; 89 |
References_xml | – volume: 94 start-page: 13661 year: 1997 end-page: 13665 ident: bib60 article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 463 start-page: 485 year: 2010 end-page: 492 ident: bib27 article-title: Cell mechanics and the cytoskeleton publication-title: Nature – volume: 60 start-page: 24 year: 2005 end-page: 34 ident: bib83 article-title: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion publication-title: Cell Motil Cytoskeleton – volume: 19 year: 2017 ident: bib45 article-title: Actin and microtubule networks contribute differently to cell response for small and large strains publication-title: New J. Phys. – volume: 63 start-page: 199 year: 2012 end-page: 209 ident: bib28 article-title: Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential publication-title: Cell Biochem. Biophys. – volume: 73 start-page: 115 year: 2018 end-page: 124 ident: bib87 article-title: Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues publication-title: Semin. Cell Dev. Biol. – volume: 107 start-page: 564 year: 2014 end-page: 575 ident: bib37 article-title: If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments publication-title: Biophys. J. – volume: 10 start-page: 21 year: 2009 end-page: 33 ident: bib32 article-title: Environmental sensing through focal adhesions publication-title: Nat. Rev. Mol. Cell Biol. – start-page: 865 year: 2013 end-page: 897 ident: bib56 article-title: Mechanical cues for cell culture publication-title: Handbook of Biofunctional Surfaces – volume: 35 start-page: 3147 year: 2015 end-page: 3154 ident: bib19 article-title: The story of MCF-7 breast cancer cell line: 40 years of experience in research publication-title: Anticancer Res. – volume: 99 year: 2019 ident: bib35 article-title: Cell shape and substrate stiffness drive actin-based cell polarity publication-title: Phys. Rev. E – volume: 99 start-page: L19 year: 2010 end-page: L21 ident: bib61 article-title: Embryonic stem cells do not stiffen on rigid substrates publication-title: Biophys. J. – volume: 8 start-page: 21893 year: 2016 end-page: 21902 ident: bib21 article-title: Tuning the range of polyacrylamide gel stiffness for mechanobiology applications publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 447 year: 2014 end-page: 457 ident: bib66 article-title: The softening of human bladder cancer cells happens at an early stage of the malignancy process publication-title: Beilstein J. Nanotechnol. – volume: 5 start-page: 14700 year: 2015 ident: bib69 article-title: Ezrin is a major regulator of membrane tension in epithelial cells publication-title: Sci. Rep. – volume: 9 start-page: 291 year: 2017 ident: bib5 article-title: afmToolkit: an R Package for automated AFM force-distance curves analysis publication-title: R Journal – volume: 85 start-page: 3336 year: 2003 end-page: 3349 ident: bib43 article-title: A three-dimensional viscoelastic model for cell deformation with experimental verification publication-title: Biophys. J. – volume: 29 start-page: 1387 year: 2003 end-page: 1396 ident: bib7 article-title: In vivo breast tumor detection using transient elastography publication-title: Ultrasound Med. Biol. – volume: 48 start-page: 1246 year: 2011 end-page: 1251 ident: bib86 article-title: Differences in the degree of bone tissue mineralization account for little of the differences in tissue elastic properties publication-title: Bone – volume: 16 start-page: 64 year: 2020 end-page: 81 ident: bib25 article-title: Measuring viscoelasticity of soft biological samples using atomic force microscopy publication-title: Soft Matter – volume: 109 start-page: 1330 year: 2015 end-page: 1333 ident: bib70 article-title: Decoding cytoskeleton-anchored and non-anchored receptors from single-cell adhesion force data publication-title: Biophys. J. – volume: 178 start-page: 1411 year: 2002 end-page: 1417 ident: bib55 article-title: MR elastography of breast cancer: preliminary results publication-title: AJR Am. J. Roentgenol. – volume: 1773 start-page: 642 year: 2007 end-page: 652 ident: bib81 article-title: Regulation of the actin cytoskeleton in cancer cell migration and invasion publication-title: Biochim. Biophys. Acta – volume: 10 year: 2018 ident: bib75 article-title: The actin cytoskeleton and actin-based motility publication-title: Cold Spring Harb Perspect Biol – volume: 76 start-page: 870 year: 2013 end-page: 876 ident: bib6 article-title: A new automatic contact point detection algorithm for AFM force curves publication-title: Microsc. Res. Tech. – volume: 15 start-page: 1631 year: 2016 end-page: 1640 ident: bib52 article-title: Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone publication-title: Biomech. Model. Mechanobiol. – volume: 119 start-page: 502 year: 2020 end-page: 513 ident: bib13 article-title: Mechanical heterogeneity in the bone microenvironment as characterized by atomic force microscopy publication-title: Biophys. J. – volume: 55 start-page: 61 year: 1987 end-page: 66 ident: bib17 article-title: The clinical course of bone metastases from breast cancer publication-title: Br. J. Cancer – volume: 15 start-page: 491 year: 2018 end-page: 498 ident: bib80 article-title: A comparison of methods to assess cell mechanical properties publication-title: Nat. Methods – volume: 85 year: 2021 ident: bib58 article-title: Focal adhesion dynamics in cellular function and disease publication-title: Cell. Signal. – volume: 64 start-page: 512 year: 2014 end-page: 522 ident: bib26 article-title: Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis publication-title: Histopathology – volume: 13 start-page: 1457 year: 2011 end-page: 1465 ident: bib63 article-title: Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing publication-title: Nat. Cell Biol. – volume: 19 start-page: 1019 year: 2020 end-page: 1025 ident: bib67 article-title: Cortical cell stiffness is independent of substrate mechanics publication-title: Nat. Mater. – volume: 248 start-page: 6251 year: 1973 end-page: 6253 ident: bib10 article-title: Estrogen receptor in a human cell line (MCF-7) from breast carcinoma publication-title: J. Biol. Chem. – volume: 2 start-page: 100296 year: 2021 ident: bib4 article-title: Measuring microenvironment-tuned nuclear stiffness of cancer cells with atomic force microscopy publication-title: STAR Protoc – volume: 11 start-page: 77 year: 2016 end-page: 84 ident: bib14 article-title: Mechanotransduction in cancer publication-title: Curr Opin Chem Eng – volume: 84 start-page: 1078 year: 2021 end-page: 1088 ident: bib79 article-title: Measuring (biological) materials mechanics with atomic force microscopy. 2. Influence of the loading rate and applied force (colloidal particles) publication-title: Microsc. Res. Tech. – volume: 12 start-page: 783 year: 2017 end-page: 796 ident: bib18 article-title: Dissection of mechanical force in living cells by super-resolved traction force microscopy publication-title: Nat. Protoc. – volume: 71 start-page: 209 year: 2021 end-page: 249 ident: bib74 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin – volume: 100 start-page: 695 year: 2020 end-page: 724 ident: bib41 article-title: Stiffness sensing by cells publication-title: Physiol. Rev. – volume: 107 start-page: 71 year: 2019 end-page: 80 ident: bib42 article-title: Cytoskeletal remodeling induced by substrate rigidity regulates rheological behaviors in endothelial cells publication-title: J. Biomed. Mater. Res. – volume: 60 start-page: 266 year: 2017 end-page: 269 ident: bib84 article-title: Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers publication-title: J. Biomech. – volume: 2 start-page: 780 year: 2007 end-page: 783 ident: bib20 article-title: Nanomechanical analysis of cells from cancer patients publication-title: Nat. Nanotechnol. – volume: 12 year: 2021 ident: bib54 article-title: AKT inhibitors: new weapons in the fight against breast cancer? publication-title: Front. Pharmacol. – volume: 1863 start-page: 1006 year: 2019 end-page: 1014 ident: bib47 article-title: Morphological and mechanical stability of bladder cancer cells in response to substrate rigidity publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 46 start-page: 309 year: 2017 end-page: 324 ident: bib68 article-title: Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates publication-title: Eur. Biophys. J. – volume: 310 start-page: 1139 year: 2005 end-page: 1143 ident: bib24 article-title: Tissue cells feel and respond to the stiffness of their substrate publication-title: Science – volume: 90 start-page: 3012 year: 2006 end-page: 3018 ident: bib33 article-title: Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures publication-title: Biophys. J. – volume: 19 start-page: 677 year: 2003 end-page: 695 ident: bib8 article-title: Adhesion-dependent cell mechanosensitivity publication-title: Annu. Rev. Cell Dev. Biol. – volume: 49 start-page: 647 year: 2001 end-page: 658 ident: bib22 article-title: In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton publication-title: Cardiovasc. Res. – volume: 8 start-page: 27426 year: 2016 end-page: 27431 ident: bib71 article-title: Elasticity, adhesion, and tether extrusion on breast cancer cells provide a signature of their invasive potential publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 14903 year: 2019 ident: bib78 article-title: Microtubule disruption changes endothelial cell mechanics and adhesion publication-title: Sci. Rep. – volume: 103 start-page: 1188 year: 2012 end-page: 1197 ident: bib12 article-title: Cell mechanics, structure, and function are regulated by the stiffness of the three-dimensional microenvironment publication-title: Biophys. J. – volume: 97 start-page: 41 year: 2016 end-page: 55 ident: bib40 article-title: The extracellular matrix in breast cancer publication-title: Adv. Drug Deliv. Rev. – volume: 20 start-page: 260 year: 1998 end-page: 274 ident: bib44 article-title: Elastic moduli of breast and prostate tissues under compression publication-title: Ultrasonics – volume: 13 year: 2020 ident: bib65 article-title: Effect of substrate stiffness on physicochemical properties of normal and fibrotic lung fibroblasts publication-title: Materials – volume: 100 start-page: 1375 year: 2012 end-page: 1386 ident: bib9 article-title: The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels publication-title: J. Biomed. Mater. Res. – volume: 518 start-page: 151 year: 2012 end-page: 156 ident: bib46 article-title: Cancer cell detection in tissue sections using AFM publication-title: Arch. Biochem. Biophys. – volume: 36 start-page: 4595 year: 1976 end-page: 4601 ident: bib50 article-title: The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture publication-title: Cancer Res. – volume: 79 start-page: 144 year: 2000 end-page: 152 ident: bib51 article-title: Cell movement is guided by the rigidity of the substrate publication-title: Biophys. J. – volume: 89 start-page: 4320 year: 2005 end-page: 4329 ident: bib73 article-title: Multiple membrane tethers probed by atomic force microscopy publication-title: Biophys. J. – volume: 82 start-page: 2798 year: 2002 end-page: 2810 ident: bib23 article-title: Determination of elastic moduli of thin layers of soft material using the atomic force microscope publication-title: Biophys. J. – volume: 139 start-page: 891 year: 2009 end-page: 906 ident: bib48 article-title: Matrix crosslinking forces tumor progression by enhancing integrin signaling publication-title: Cell – volume: 80 start-page: 75 year: 2017 end-page: 84 ident: bib30 article-title: A beginner's guide to atomic force microscopy probing for cell mechanics publication-title: Microsc. Res. Tech. – volume: 7 start-page: 1120 year: 2015 end-page: 1134 ident: bib2 article-title: Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration publication-title: Integr Biol (Camb) – volume: 285 start-page: 13121 year: 2010 end-page: 13130 ident: bib57 article-title: Vinculin facilitates cell invasion into three-dimensional collagen matrices publication-title: J. Biol. Chem. – volume: 8 year: 2013 ident: bib16 article-title: Elongated membrane tethers, individually anchored by high affinity alpha4beta1/VCAM-1 complexes, are the quantal units of monocyte arrests publication-title: PLoS One – volume: 72 start-page: 672 year: 2009 end-page: 678 ident: bib29 article-title: Measuring microenvironment mechanical stress of rat liver during diethylnitrosamine induced hepatocarcinogenesis by atomic force microscope publication-title: Microsc. Res. Tech. – volume: 6 start-page: 7525 year: 2015 ident: bib36 article-title: Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing publication-title: Nat. Commun. – volume: 14 year: 2021 ident: bib85 article-title: Estrogen modulates epithelial breast cancer cell mechanics and cell-to-cell contacts publication-title: Materials – volume: 10 start-page: 554 year: 2016 end-page: 567 ident: bib34 article-title: Single cell rigidity sensing: a complex relationship between focal adhesion dynamics and large-scale actin cytoskeleton remodeling publication-title: Cell Adhes. Migrat. – volume: 60 start-page: 14 year: 2020 end-page: 27 ident: bib49 article-title: Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets publication-title: Semin. Cancer Biol. – volume: 15 start-page: 259 year: 2007 end-page: 271 ident: bib31 article-title: Mechanics of the normal woman's breast publication-title: Technol. Health Care – volume: 7 start-page: 15008 year: 2017 ident: bib82 article-title: Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and beta1 integrin publication-title: Sci. Rep. – volume: 300 start-page: H1252 year: 2011 end-page: H1266 ident: bib15 article-title: Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 21 year: 2010 ident: bib59 article-title: Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components publication-title: Nanotechnology – volume: 13 year: 2018 ident: bib62 article-title: Cross-platform mechanical characterization of lung tissue publication-title: PLoS One – volume: 49 start-page: 105 year: 2015 end-page: 111 ident: bib38 article-title: Stiffness of cancer cells measured with an AFM indentation method publication-title: J Mech Behav Biomed Mater – volume: 50 start-page: 1 year: 2016 end-page: 15 ident: bib64 article-title: Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy publication-title: Matrix Biol. – volume: 11 start-page: 7643 year: 2020 end-page: 7649 ident: bib76 article-title: Mechanical responses of breast cancer cells to substrates of varying stiffness revealed by single-cell measurements publication-title: J. Phys. Chem. Lett. – volume: 114 start-page: 1165 year: 2018 end-page: 1175 ident: bib1 article-title: Mechanosensitivity of cancer cells in contact with soft substrates using AFM publication-title: Biophys. J. – volume: 144 start-page: 77 year: 2019 end-page: 90 ident: bib11 article-title: Mechanical and morphological response of confluent epithelial cell layers to reinforcement and dissolution of the F-actin cytoskeleton publication-title: Prog. Biophys. Mol. Biol. – volume: 279 start-page: C1345 year: 2000 end-page: C1350 ident: bib77 article-title: Substrate flexibility regulates growth and apoptosis of normal but not transformed cells publication-title: Am. J. Physiol. Cell Physiol. – volume: 12 start-page: 472 year: 2018 end-page: 488 ident: bib3 article-title: Behavioral remodeling of normal and cancerous epithelial cell lines with differing invasion potential induced by substrate elastic modulus publication-title: Cell Adhes. Migrat. – volume: 56 start-page: 14 year: 2019 end-page: 21 ident: bib39 article-title: Signal transduction via integrin adhesion complexes publication-title: Curr. Opin. Cell Biol. – volume: 169 start-page: 381 year: 2017 end-page: 405 ident: bib53 article-title: AKT/PKB signaling: navigating the network publication-title: Cell – volume: 79 start-page: 1019 year: 2019 end-page: 1031 ident: bib72 article-title: AKT as a therapeutic target for cancer publication-title: Cancer Res. – volume: 114 start-page: 1165 year: 2018 ident: 10.1016/j.jmbbm.2021.104979_bib1 article-title: Mechanosensitivity of cancer cells in contact with soft substrates using AFM publication-title: Biophys. J. doi: 10.1016/j.bpj.2018.01.005 – volume: 90 start-page: 3012 year: 2006 ident: 10.1016/j.jmbbm.2021.104979_bib33 article-title: Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures publication-title: Biophys. J. doi: 10.1529/biophysj.105.073114 – volume: 285 start-page: 13121 year: 2010 ident: 10.1016/j.jmbbm.2021.104979_bib57 article-title: Vinculin facilitates cell invasion into three-dimensional collagen matrices publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.087171 – volume: 7 start-page: 15008 year: 2017 ident: 10.1016/j.jmbbm.2021.104979_bib82 article-title: Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and beta1 integrin publication-title: Sci. Rep. doi: 10.1038/s41598-017-14932-6 – volume: 29 start-page: 1387 year: 2003 ident: 10.1016/j.jmbbm.2021.104979_bib7 article-title: In vivo breast tumor detection using transient elastography publication-title: Ultrasound Med. Biol. doi: 10.1016/S0301-5629(03)00978-5 – volume: 10 year: 2018 ident: 10.1016/j.jmbbm.2021.104979_bib75 article-title: The actin cytoskeleton and actin-based motility publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a018267 – volume: 82 start-page: 2798 year: 2002 ident: 10.1016/j.jmbbm.2021.104979_bib23 article-title: Determination of elastic moduli of thin layers of soft material using the atomic force microscope publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)75620-8 – volume: 99 year: 2019 ident: 10.1016/j.jmbbm.2021.104979_bib35 article-title: Cell shape and substrate stiffness drive actin-based cell polarity publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.99.012412 – volume: 85 start-page: 3336 year: 2003 ident: 10.1016/j.jmbbm.2021.104979_bib43 article-title: A three-dimensional viscoelastic model for cell deformation with experimental verification publication-title: Biophys. J. doi: 10.1016/S0006-3495(03)74753-5 – volume: 79 start-page: 144 year: 2000 ident: 10.1016/j.jmbbm.2021.104979_bib51 article-title: Cell movement is guided by the rigidity of the substrate publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76279-5 – volume: 7 start-page: 1120 year: 2015 ident: 10.1016/j.jmbbm.2021.104979_bib2 article-title: Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration publication-title: Integr Biol (Camb) doi: 10.1039/c5ib00040h – volume: 109 start-page: 1330 year: 2015 ident: 10.1016/j.jmbbm.2021.104979_bib70 article-title: Decoding cytoskeleton-anchored and non-anchored receptors from single-cell adhesion force data publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.07.048 – volume: 2 start-page: 780 year: 2007 ident: 10.1016/j.jmbbm.2021.104979_bib20 article-title: Nanomechanical analysis of cells from cancer patients publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.388 – volume: 8 start-page: 21893 year: 2016 ident: 10.1016/j.jmbbm.2021.104979_bib21 article-title: Tuning the range of polyacrylamide gel stiffness for mechanobiology applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09344 – volume: 72 start-page: 672 year: 2009 ident: 10.1016/j.jmbbm.2021.104979_bib29 article-title: Measuring microenvironment mechanical stress of rat liver during diethylnitrosamine induced hepatocarcinogenesis by atomic force microscope publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.20716 – volume: 169 start-page: 381 year: 2017 ident: 10.1016/j.jmbbm.2021.104979_bib53 article-title: AKT/PKB signaling: navigating the network publication-title: Cell doi: 10.1016/j.cell.2017.04.001 – volume: 35 start-page: 3147 year: 2015 ident: 10.1016/j.jmbbm.2021.104979_bib19 article-title: The story of MCF-7 breast cancer cell line: 40 years of experience in research publication-title: Anticancer Res. – volume: 11 start-page: 7643 year: 2020 ident: 10.1016/j.jmbbm.2021.104979_bib76 article-title: Mechanical responses of breast cancer cells to substrates of varying stiffness revealed by single-cell measurements publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02065 – volume: 13 start-page: 1457 year: 2011 ident: 10.1016/j.jmbbm.2021.104979_bib63 article-title: Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing publication-title: Nat. Cell Biol. doi: 10.1038/ncb2370 – volume: 79 start-page: 1019 year: 2019 ident: 10.1016/j.jmbbm.2021.104979_bib72 article-title: AKT as a therapeutic target for cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-2738 – volume: 71 start-page: 209 year: 2021 ident: 10.1016/j.jmbbm.2021.104979_bib74 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin doi: 10.3322/caac.21660 – volume: 279 start-page: C1345 year: 2000 ident: 10.1016/j.jmbbm.2021.104979_bib77 article-title: Substrate flexibility regulates growth and apoptosis of normal but not transformed cells publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.2000.279.5.C1345 – volume: 10 start-page: 554 year: 2016 ident: 10.1016/j.jmbbm.2021.104979_bib34 article-title: Single cell rigidity sensing: a complex relationship between focal adhesion dynamics and large-scale actin cytoskeleton remodeling publication-title: Cell Adhes. Migrat. doi: 10.1080/19336918.2016.1173800 – volume: 13 year: 2018 ident: 10.1016/j.jmbbm.2021.104979_bib62 article-title: Cross-platform mechanical characterization of lung tissue publication-title: PLoS One doi: 10.1371/journal.pone.0204765 – volume: 10 start-page: 21 year: 2009 ident: 10.1016/j.jmbbm.2021.104979_bib32 article-title: Environmental sensing through focal adhesions publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2593 – volume: 56 start-page: 14 year: 2019 ident: 10.1016/j.jmbbm.2021.104979_bib39 article-title: Signal transduction via integrin adhesion complexes publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2018.08.004 – volume: 49 start-page: 647 year: 2001 ident: 10.1016/j.jmbbm.2021.104979_bib22 article-title: In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton publication-title: Cardiovasc. Res. doi: 10.1016/S0008-6363(00)00233-9 – volume: 1773 start-page: 642 year: 2007 ident: 10.1016/j.jmbbm.2021.104979_bib81 article-title: Regulation of the actin cytoskeleton in cancer cell migration and invasion publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2006.07.001 – volume: 144 start-page: 77 year: 2019 ident: 10.1016/j.jmbbm.2021.104979_bib11 article-title: Mechanical and morphological response of confluent epithelial cell layers to reinforcement and dissolution of the F-actin cytoskeleton publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2018.08.010 – volume: 97 start-page: 41 year: 2016 ident: 10.1016/j.jmbbm.2021.104979_bib40 article-title: The extracellular matrix in breast cancer publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.12.017 – volume: 15 start-page: 259 year: 2007 ident: 10.1016/j.jmbbm.2021.104979_bib31 article-title: Mechanics of the normal woman's breast publication-title: Technol. Health Care doi: 10.3233/THC-2007-15404 – volume: 8 start-page: 27426 year: 2016 ident: 10.1016/j.jmbbm.2021.104979_bib71 article-title: Elasticity, adhesion, and tether extrusion on breast cancer cells provide a signature of their invasive potential publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07698 – volume: 48 start-page: 1246 year: 2011 ident: 10.1016/j.jmbbm.2021.104979_bib86 article-title: Differences in the degree of bone tissue mineralization account for little of the differences in tissue elastic properties publication-title: Bone doi: 10.1016/j.bone.2011.02.023 – volume: 46 start-page: 309 year: 2017 ident: 10.1016/j.jmbbm.2021.104979_bib68 article-title: Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates publication-title: Eur. Biophys. J. doi: 10.1007/s00249-016-1168-4 – volume: 55 start-page: 61 year: 1987 ident: 10.1016/j.jmbbm.2021.104979_bib17 article-title: The clinical course of bone metastases from breast cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.1987.13 – volume: 139 start-page: 891 year: 2009 ident: 10.1016/j.jmbbm.2021.104979_bib48 article-title: Matrix crosslinking forces tumor progression by enhancing integrin signaling publication-title: Cell doi: 10.1016/j.cell.2009.10.027 – volume: 21 year: 2010 ident: 10.1016/j.jmbbm.2021.104979_bib59 article-title: Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components publication-title: Nanotechnology doi: 10.1088/0957-4484/21/44/445101 – volume: 20 start-page: 260 year: 1998 ident: 10.1016/j.jmbbm.2021.104979_bib44 article-title: Elastic moduli of breast and prostate tissues under compression publication-title: Ultrasonics doi: 10.1177/016173469802000403 – volume: 60 start-page: 24 year: 2005 ident: 10.1016/j.jmbbm.2021.104979_bib83 article-title: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion publication-title: Cell Motil Cytoskeleton doi: 10.1002/cm.20041 – volume: 12 start-page: 472 year: 2018 ident: 10.1016/j.jmbbm.2021.104979_bib3 article-title: Behavioral remodeling of normal and cancerous epithelial cell lines with differing invasion potential induced by substrate elastic modulus publication-title: Cell Adhes. Migrat. – volume: 99 start-page: L19 year: 2010 ident: 10.1016/j.jmbbm.2021.104979_bib61 article-title: Embryonic stem cells do not stiffen on rigid substrates publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.04.057 – start-page: 865 year: 2013 ident: 10.1016/j.jmbbm.2021.104979_bib56 article-title: Mechanical cues for cell culture – volume: 463 start-page: 485 year: 2010 ident: 10.1016/j.jmbbm.2021.104979_bib27 article-title: Cell mechanics and the cytoskeleton publication-title: Nature doi: 10.1038/nature08908 – volume: 14 year: 2021 ident: 10.1016/j.jmbbm.2021.104979_bib85 article-title: Estrogen modulates epithelial breast cancer cell mechanics and cell-to-cell contacts publication-title: Materials doi: 10.3390/ma14112897 – volume: 13 year: 2020 ident: 10.1016/j.jmbbm.2021.104979_bib65 article-title: Effect of substrate stiffness on physicochemical properties of normal and fibrotic lung fibroblasts publication-title: Materials doi: 10.3390/ma13204495 – volume: 19 start-page: 1019 year: 2020 ident: 10.1016/j.jmbbm.2021.104979_bib67 article-title: Cortical cell stiffness is independent of substrate mechanics publication-title: Nat. Mater. doi: 10.1038/s41563-020-0684-x – volume: 8 year: 2013 ident: 10.1016/j.jmbbm.2021.104979_bib16 article-title: Elongated membrane tethers, individually anchored by high affinity alpha4beta1/VCAM-1 complexes, are the quantal units of monocyte arrests publication-title: PLoS One – volume: 49 start-page: 105 year: 2015 ident: 10.1016/j.jmbbm.2021.104979_bib38 article-title: Stiffness of cancer cells measured with an AFM indentation method publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2015.04.030 – volume: 107 start-page: 71 year: 2019 ident: 10.1016/j.jmbbm.2021.104979_bib42 article-title: Cytoskeletal remodeling induced by substrate rigidity regulates rheological behaviors in endothelial cells publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.36533 – volume: 36 start-page: 4595 year: 1976 ident: 10.1016/j.jmbbm.2021.104979_bib50 article-title: The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture publication-title: Cancer Res. – volume: 16 start-page: 64 year: 2020 ident: 10.1016/j.jmbbm.2021.104979_bib25 article-title: Measuring viscoelasticity of soft biological samples using atomic force microscopy publication-title: Soft Matter doi: 10.1039/C9SM01020C – volume: 15 start-page: 1631 year: 2016 ident: 10.1016/j.jmbbm.2021.104979_bib52 article-title: Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-016-0787-0 – volume: 12 year: 2021 ident: 10.1016/j.jmbbm.2021.104979_bib54 article-title: AKT inhibitors: new weapons in the fight against breast cancer? publication-title: Front. Pharmacol. doi: 10.3389/fphar.2021.662232 – volume: 178 start-page: 1411 year: 2002 ident: 10.1016/j.jmbbm.2021.104979_bib55 article-title: MR elastography of breast cancer: preliminary results publication-title: AJR Am. J. Roentgenol. doi: 10.2214/ajr.178.6.1781411 – volume: 60 start-page: 14 year: 2020 ident: 10.1016/j.jmbbm.2021.104979_bib49 article-title: Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.08.012 – volume: 119 start-page: 502 year: 2020 ident: 10.1016/j.jmbbm.2021.104979_bib13 article-title: Mechanical heterogeneity in the bone microenvironment as characterized by atomic force microscopy publication-title: Biophys. J. doi: 10.1016/j.bpj.2020.06.026 – volume: 12 start-page: 783 year: 2017 ident: 10.1016/j.jmbbm.2021.104979_bib18 article-title: Dissection of mechanical force in living cells by super-resolved traction force microscopy publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.009 – volume: 2 start-page: 100296 year: 2021 ident: 10.1016/j.jmbbm.2021.104979_bib4 article-title: Measuring microenvironment-tuned nuclear stiffness of cancer cells with atomic force microscopy publication-title: STAR Protoc doi: 10.1016/j.xpro.2021.100296 – volume: 84 start-page: 1078 year: 2021 ident: 10.1016/j.jmbbm.2021.104979_bib79 article-title: Measuring (biological) materials mechanics with atomic force microscopy. 2. Influence of the loading rate and applied force (colloidal particles) publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.23643 – volume: 80 start-page: 75 year: 2017 ident: 10.1016/j.jmbbm.2021.104979_bib30 article-title: A beginner's guide to atomic force microscopy probing for cell mechanics publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.22776 – volume: 60 start-page: 266 year: 2017 ident: 10.1016/j.jmbbm.2021.104979_bib84 article-title: Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.06.043 – volume: 63 start-page: 199 year: 2012 ident: 10.1016/j.jmbbm.2021.104979_bib28 article-title: Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-012-9356-z – volume: 5 start-page: 447 year: 2014 ident: 10.1016/j.jmbbm.2021.104979_bib66 article-title: The softening of human bladder cancer cells happens at an early stage of the malignancy process publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.5.52 – volume: 5 start-page: 14700 year: 2015 ident: 10.1016/j.jmbbm.2021.104979_bib69 article-title: Ezrin is a major regulator of membrane tension in epithelial cells publication-title: Sci. Rep. doi: 10.1038/srep14700 – volume: 1863 start-page: 1006 year: 2019 ident: 10.1016/j.jmbbm.2021.104979_bib47 article-title: Morphological and mechanical stability of bladder cancer cells in response to substrate rigidity publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2019.03.010 – volume: 6 start-page: 7525 year: 2015 ident: 10.1016/j.jmbbm.2021.104979_bib36 article-title: Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing publication-title: Nat. Commun. doi: 10.1038/ncomms8525 – volume: 19 start-page: 677 year: 2003 ident: 10.1016/j.jmbbm.2021.104979_bib8 article-title: Adhesion-dependent cell mechanosensitivity publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.19.111301.153011 – volume: 100 start-page: 1375 year: 2012 ident: 10.1016/j.jmbbm.2021.104979_bib9 article-title: The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.34104 – volume: 518 start-page: 151 year: 2012 ident: 10.1016/j.jmbbm.2021.104979_bib46 article-title: Cancer cell detection in tissue sections using AFM publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2011.12.013 – volume: 248 start-page: 6251 year: 1973 ident: 10.1016/j.jmbbm.2021.104979_bib10 article-title: Estrogen receptor in a human cell line (MCF-7) from breast carcinoma publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)43537-0 – volume: 100 start-page: 695 year: 2020 ident: 10.1016/j.jmbbm.2021.104979_bib41 article-title: Stiffness sensing by cells publication-title: Physiol. Rev. doi: 10.1152/physrev.00013.2019 – volume: 89 start-page: 4320 year: 2005 ident: 10.1016/j.jmbbm.2021.104979_bib73 article-title: Multiple membrane tethers probed by atomic force microscopy publication-title: Biophys. J. doi: 10.1529/biophysj.104.058180 – volume: 9 start-page: 291 year: 2017 ident: 10.1016/j.jmbbm.2021.104979_bib5 article-title: afmToolkit: an R Package for automated AFM force-distance curves analysis publication-title: R Journal doi: 10.32614/RJ-2017-045 – volume: 73 start-page: 115 year: 2018 ident: 10.1016/j.jmbbm.2021.104979_bib87 article-title: Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.06.029 – volume: 64 start-page: 512 year: 2014 ident: 10.1016/j.jmbbm.2021.104979_bib26 article-title: Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis publication-title: Histopathology doi: 10.1111/his.12300 – volume: 15 start-page: 491 year: 2018 ident: 10.1016/j.jmbbm.2021.104979_bib80 article-title: A comparison of methods to assess cell mechanical properties publication-title: Nat. Methods doi: 10.1038/s41592-018-0015-1 – volume: 85 year: 2021 ident: 10.1016/j.jmbbm.2021.104979_bib58 article-title: Focal adhesion dynamics in cellular function and disease publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2021.110046 – volume: 94 start-page: 13661 year: 1997 ident: 10.1016/j.jmbbm.2021.104979_bib60 article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.25.13661 – volume: 300 start-page: H1252 year: 2011 ident: 10.1016/j.jmbbm.2021.104979_bib15 article-title: Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00515.2010 – volume: 76 start-page: 870 year: 2013 ident: 10.1016/j.jmbbm.2021.104979_bib6 article-title: A new automatic contact point detection algorithm for AFM force curves publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.22241 – volume: 103 start-page: 1188 year: 2012 ident: 10.1016/j.jmbbm.2021.104979_bib12 article-title: Cell mechanics, structure, and function are regulated by the stiffness of the three-dimensional microenvironment publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.07.054 – volume: 11 start-page: 77 year: 2016 ident: 10.1016/j.jmbbm.2021.104979_bib14 article-title: Mechanotransduction in cancer publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2016.01.011 – volume: 19 year: 2017 ident: 10.1016/j.jmbbm.2021.104979_bib45 article-title: Actin and microtubule networks contribute differently to cell response for small and large strains publication-title: New J. Phys. doi: 10.1088/1367-2630/aa7658 – volume: 50 start-page: 1 year: 2016 ident: 10.1016/j.jmbbm.2021.104979_bib64 article-title: Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy publication-title: Matrix Biol. doi: 10.1016/j.matbio.2015.10.001 – volume: 310 start-page: 1139 year: 2005 ident: 10.1016/j.jmbbm.2021.104979_bib24 article-title: Tissue cells feel and respond to the stiffness of their substrate publication-title: Science doi: 10.1126/science.1116995 – volume: 107 start-page: 564 year: 2014 ident: 10.1016/j.jmbbm.2021.104979_bib37 article-title: If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.06.033 – volume: 9 start-page: 14903 year: 2019 ident: 10.1016/j.jmbbm.2021.104979_bib78 article-title: Microtubule disruption changes endothelial cell mechanics and adhesion publication-title: Sci. Rep. doi: 10.1038/s41598-019-51024-z |
SSID | ssj0060088 |
Score | 2.4264286 |
Snippet | Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104979 |
SubjectTerms | Atomic force microscopy Breast cancer Humans MCF-7 MCF-7 Cells Rheology Stress-relaxation Substrate stiffness Zener and power law models |
Title | Substrate stiffness modulates the viscoelastic properties of MCF-7 cells |
URI | https://dx.doi.org/10.1016/j.jmbbm.2021.104979 https://www.ncbi.nlm.nih.gov/pubmed/34826769 https://www.proquest.com/docview/2604022427 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB1BuNBDBZSW8BG5Uo9dkvV6vc4RRUShCC4tUm7W-ksKKtmIhB75LfwWfhkz3t2olYBDryt71xrbb954x28AvnnPXc5zkxQ2C4nIjEpMbgoMVTLppbBliDWWrq7l5Eb8mObTDRi1d2EorbLB_hrTI1o3T_qNNfuL2az_Ex0f0pWogDWQg2K6CVscvb3qwNbZxeXkugVkdOmx_CS1T6hDKz4U07xu74yhG-k8pd-dQ0rpet1BvUVAoyMa78DHhkGys3qQu7Dh53vw4S9dwU9wQXAQZWcZ7uAQCM7YXeWoVJdfMuR87M9saSuP1BnfwhZ0In9P0qqsCuxqNE6K5yc60l_uw834_NdokjQ1ExIrBmKVcJmVsgjSi9QaIxx6dIuMTuVDJwRH8hUkcjLkXKVypZTOC-F8MMrZIufBpNln6MyruT8AlrpcFEOLMZQRGDSaUknlfOZzYxR3qeoCbw2lbSMoTnUtfus2c-xWR-tqsq6urduF7-tOi1pP4_3msp0B_c-y0Ij473f82s6Xxg1DJivnvnpYagzgBBEXXnThSz2R65GQ0g_l_B7-72ePYJvT_Yh4RnMMndX9gz9B1rIyPdg8fUx7zdp8Ad-H6t0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB1Bcig9VFBaCAW6lXqslXi9XjvHKCJKgORSkHJbeb-kIIgjEvp7-C38MmbWNqIS5dCrtWuvZnffvFnPvgH46Ry3KU91lJnERyLReaRTnWGokkgnhSl8qLE0ncnxtTifp_MtGDZ3YSitssb-CtMDWtdPurU1u6vFovsbHR_SlaCA1ZO9bL4NbUFFrVvQHkwuxrMGkNGlh_KT1D6iDo34UEjzurnTmm6k85h-d_YppettB_UvAhoc0WgXPtUMkg2qQe7Bllt-ho-vdAX3YUJwEGRnGe5g7wnO2F1pqVSXWzPkfOzPYm1Kh9QZ38JWdCJ_T9KqrPRsOhxF2dMjHemvv8D16OxqOI7qmgmRET2xibhMCpl56URstBYWPbpBRpenfSsER_LlJXIy5FxFbgsprRPCOq9za7KUex0nX6G1LJfuEFhsU5H1DcZQWmDQqItc5tYlLtU65zbOO8AbQylTC4pTXYtb1WSO3ahgXUXWVZV1O_DrpdOq0tN4v7lsZkD9tSwUIv77HX8086Vww5DJiqUrH9YKAzhBxIVnHTioJvJlJKT0Qzm_R__72e_wYXw1vVSXk9nFN9jhdFcinNccQ2tz_-BOkMFs9Gm9Qp8BakPsww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Substrate+stiffness+modulates+the+viscoelastic+properties+of+MCF-7%C2%A0cells&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Gil-Redondo%2C+Juan+Carlos&rft.au=Weber%2C+Andreas&rft.au=Zbiral%2C+Barbara&rft.au=Vivanco%2C+Maria+dM&rft.date=2022-01-01&rft.issn=1751-6161&rft.volume=125&rft.spage=104979&rft_id=info:doi/10.1016%2Fj.jmbbm.2021.104979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmbbm_2021_104979 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon |