Substrate stiffness modulates the viscoelastic properties of MCF-7 cells

Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cel...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanical behavior of biomedical materials Vol. 125; p. 104979
Main Authors Gil-Redondo, Juan Carlos, Weber, Andreas, Zbiral, Barbara, Vivanco, Maria dM, Toca-Herrera, José L.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.01.2022
Subjects
Online AccessGet full text
ISSN1751-6161
1878-0180
1878-0180
DOI10.1016/j.jmbbm.2021.104979

Cover

Abstract Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties.
AbstractList Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties.Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties.
Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties.
ArticleNumber 104979
Author Vivanco, Maria dM
Gil-Redondo, Juan Carlos
Zbiral, Barbara
Weber, Andreas
Toca-Herrera, José L.
Author_xml – sequence: 1
  givenname: Juan Carlos
  orcidid: 0000-0002-4797-7033
  surname: Gil-Redondo
  fullname: Gil-Redondo, Juan Carlos
  email: juan.gil-redondo@boku.ac.at
  organization: Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
– sequence: 2
  givenname: Andreas
  surname: Weber
  fullname: Weber, Andreas
  email: andreas.weber@boku.ac.at
  organization: Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
– sequence: 3
  givenname: Barbara
  orcidid: 0000-0003-3277-082X
  surname: Zbiral
  fullname: Zbiral, Barbara
  email: barbara.zbiral@boku.ac.at
  organization: Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
– sequence: 4
  givenname: Maria dM
  orcidid: 0000-0002-9540-247X
  surname: Vivanco
  fullname: Vivanco, Maria dM
  email: mdmvivanco@cicbiogune.es
  organization: Cancer Heterogeneity Lab, CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160, Derio, Spain
– sequence: 5
  givenname: José L.
  orcidid: 0000-0001-8951-2616
  surname: Toca-Herrera
  fullname: Toca-Herrera, José L.
  email: jose.toca-herrera@boku.ac.at
  organization: Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34826769$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOxCAUhonReH8CE9Olm45AKaULF2biLdG4UNeEwiEyacsI1MS38Vl8MtFRFy50BTnn_8jPt4PWRz8CQgcEzwgm_HgxWwxdN8wopiRPWNu0a2ibiEaUmAi8nu9NTUpOONlCOzEuMOYYC7GJtiomKG94u42u7qYupqASFDE5a0eIsRi8mfo8ikV6hOLZRe2hV3mvi2XwSwjJ5Z23xc38vGzeXjX0fdxDG1b1Efa_zl30cH52P78sr28vruan16VmmKWS8krxxnJgRHcdM5TUuq4qUbeGMUp4ZTmvMaVcCaM4N8CYAdsJo5ua2o5Uu-ho9W6u8jRBTHLIBXMDNYKfoqQcs8wz2uTo4Vd06gYwchncoMKL_P5-DlSrgA4-xgD2J0Kw_JAsF_JTsvyQLFeSM9X-orRLKjk_ZpGu_4c9WbGQFT07CDJqB6MG4wLoJI13f_Lv0XqYrg
CitedBy_id crossref_primary_10_1098_rspa_2024_0046
crossref_primary_10_3390_cells11132010
crossref_primary_10_3762_bjnano_13_47
crossref_primary_10_1091_mbc_E23_04_0139
crossref_primary_10_52601_bpr_2023_230033
crossref_primary_10_1016_j_bios_2024_116410
crossref_primary_10_3390_ijms231911927
crossref_primary_10_1002_jemt_24471
crossref_primary_10_1016_j_pbiomolbio_2023_09_003
crossref_primary_10_1088_1478_3975_ac9bc1
crossref_primary_10_3390_ijms252413479
crossref_primary_10_1088_1758_5090_ad5705
crossref_primary_10_1039_D4LC00251B
crossref_primary_10_1088_2632_959X_acf1b8
crossref_primary_10_1098_rsif_2023_0317
crossref_primary_10_20517_evcna_2024_47
crossref_primary_10_3390_ma16031165
crossref_primary_10_3390_ijms24109062
crossref_primary_10_3390_cells12192362
crossref_primary_10_1039_D4NA00003J
Cites_doi 10.1016/j.bpj.2018.01.005
10.1529/biophysj.105.073114
10.1074/jbc.M109.087171
10.1038/s41598-017-14932-6
10.1016/S0301-5629(03)00978-5
10.1101/cshperspect.a018267
10.1016/S0006-3495(02)75620-8
10.1103/PhysRevE.99.012412
10.1016/S0006-3495(03)74753-5
10.1016/S0006-3495(00)76279-5
10.1039/c5ib00040h
10.1016/j.bpj.2015.07.048
10.1038/nnano.2007.388
10.1021/acsami.5b09344
10.1002/jemt.20716
10.1016/j.cell.2017.04.001
10.1021/acs.jpclett.0c02065
10.1038/ncb2370
10.1158/0008-5472.CAN-18-2738
10.3322/caac.21660
10.1152/ajpcell.2000.279.5.C1345
10.1080/19336918.2016.1173800
10.1371/journal.pone.0204765
10.1038/nrm2593
10.1016/j.ceb.2018.08.004
10.1016/S0008-6363(00)00233-9
10.1016/j.bbamcr.2006.07.001
10.1016/j.pbiomolbio.2018.08.010
10.1016/j.addr.2015.12.017
10.3233/THC-2007-15404
10.1021/acsami.6b07698
10.1016/j.bone.2011.02.023
10.1007/s00249-016-1168-4
10.1038/bjc.1987.13
10.1016/j.cell.2009.10.027
10.1088/0957-4484/21/44/445101
10.1177/016173469802000403
10.1002/cm.20041
10.1016/j.bpj.2010.04.057
10.1038/nature08908
10.3390/ma14112897
10.3390/ma13204495
10.1038/s41563-020-0684-x
10.1016/j.jmbbm.2015.04.030
10.1002/jbm.a.36533
10.1039/C9SM01020C
10.1007/s10237-016-0787-0
10.3389/fphar.2021.662232
10.2214/ajr.178.6.1781411
10.1016/j.semcancer.2019.08.012
10.1016/j.bpj.2020.06.026
10.1038/nprot.2017.009
10.1016/j.xpro.2021.100296
10.1002/jemt.23643
10.1002/jemt.22776
10.1016/j.jbiomech.2017.06.043
10.1007/s12013-012-9356-z
10.3762/bjnano.5.52
10.1038/srep14700
10.1016/j.bbagen.2019.03.010
10.1038/ncomms8525
10.1146/annurev.cellbio.19.111301.153011
10.1002/jbm.a.34104
10.1016/j.abb.2011.12.013
10.1016/S0021-9258(19)43537-0
10.1152/physrev.00013.2019
10.1529/biophysj.104.058180
10.32614/RJ-2017-045
10.1016/j.semcdb.2017.06.029
10.1111/his.12300
10.1038/s41592-018-0015-1
10.1016/j.cellsig.2021.110046
10.1073/pnas.94.25.13661
10.1152/ajpheart.00515.2010
10.1002/jemt.22241
10.1016/j.bpj.2012.07.054
10.1016/j.coche.2016.01.011
10.1088/1367-2630/aa7658
10.1016/j.matbio.2015.10.001
10.1126/science.1116995
10.1016/j.bpj.2014.06.033
10.1038/s41598-019-51024-z
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jmbbm.2021.104979
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0180
ExternalDocumentID 34826769
10_1016_j_jmbbm_2021_104979
S175161612100607X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c404t-263a67f6e41cbb4d215c533859d442163f6650226a8da66de44defb8dc752fb13
IEDL.DBID AIKHN
ISSN 1751-6161
1878-0180
IngestDate Mon Sep 08 06:26:16 EDT 2025
Wed Feb 19 02:27:35 EST 2025
Tue Jul 01 02:19:15 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Fri Feb 23 02:38:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Atomic force microscopy
Rheology
MCF-7
Substrate stiffness
Breast cancer
Zener and power law models
Stress-relaxation
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-263a67f6e41cbb4d215c533859d442163f6650226a8da66de44defb8dc752fb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4797-7033
0000-0003-3277-082X
0000-0001-8951-2616
0000-0002-9540-247X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S175161612100607X
PMID 34826769
PQID 2604022427
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2604022427
pubmed_primary_34826769
crossref_primary_10_1016_j_jmbbm_2021_104979
crossref_citationtrail_10_1016_j_jmbbm_2021_104979
elsevier_sciencedirect_doi_10_1016_j_jmbbm_2021_104979
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of the mechanical behavior of biomedical materials
PublicationTitleAlternate J Mech Behav Biomed Mater
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yeh, Ling, Chen, Lin, Tang (bib82) 2017; 7
Chen, Irianto, Inamdar, Pravincumar, Lee, Bader, Knight (bib12) 2012; 103
Dimitriadis, Horkay, Maresca, Kachar, Chadwick (bib23) 2002; 82
McKnight, Kugel, Rossman, Manduca, Hartmann, Ehman (bib55) 2002; 178
Comsa, Cimpean, Raica (bib19) 2015; 35
Benítez, Bolós, Toca-Herrera (bib5) 2017; 9
Discher, Janmey, Wang (bib24) 2005; 310
Yamaguchi, Condeelis (bib81) 2007; 1773
Liang, Zhang, Song, Yang (bib49) 2020; 60
Smolyakov, Thiebot, Campillo, Labdi, Severac, Pelta, Dague (bib71) 2016; 8
Janmey, Fletcher, Reinhart-King (bib41) 2020; 100
Melzak, Moreno-Flores, Vivanco, Toca-Herrera (bib56) 2013
Wu, Aroush, Asnacios, Chen, Dokukin, Doss, Durand-Smet, Ekpenyong, Guck, Guz, Janmey, Lee, Moore, Ott, Poh, Ros, Sander, Sokolov, Staunton, Wang, Whyte, Wirtz (bib80) 2018; 15
Gang, Qi, Jing, Wang (bib29) 2009; 72
Mierke, Kollmannsberger, Zitterbart, Diez, Koch, Marg, Ziegler, Goldmann, Fabry (bib57) 2010; 285
Manda, Xie, Wallace, Levrero-Florencio, Pankaj (bib52) 2016; 15
Zebaze, Jones, Pandy, Knackstedt, Seeman (bib86) 2011; 48
Bruckner, Noding, Skamrahl, Janshoff (bib11) 2019; 144
Zemla, Danilkiewicz, Orzechowska, Pabijan, Seweryn, Lekka (bib87) 2018; 73
Acerbi, Cassereau, Dean, Shi, Au, Park, Chen, Liphardt, Hwang, Weaver (bib2) 2015; 7
Abidine, Constantinescu, Laurent, Sundar Rajan, Michel, Laplaud, Duperray, Verdier (bib1) 2018; 114
Ramos, Pabijan, Garcia, Lekka (bib66) 2014; 5
Moreno-Flores, Benitez, Vivanco, Toca-Herrera (bib59) 2010; 21
Prein, Warmbold, Farkas, Schieker, Aszodi, Clausen-Schaumann (bib64) 2016; 50
Krouskop, Wheeler, Kallel, Garra, Hall (bib44) 1998; 20
Bershadsky, Balaban, Geiger (bib8) 2003; 19
Humphries, Chastney, Askari, Humphries (bib39) 2019; 56
Brooks, Locke, Soule (bib10) 1973; 248
Efremov, Okajima, Raman (bib25) 2020; 16
Sun, Graham, Hegedus, Marga, Zhang, Forgacs, Grandbois (bib73) 2005; 89
Georges, Miller, Meaney, Sawyer, Janmey (bib33) 2006; 90
Lekka, Gil, Pogoda, Dulinska-Litewka, Jach, Gostek, Klymenko, Prauzner-Bechcicki, Stachura, Wiltowska-Zuber, Okon, Laidler (bib46) 2012; 518
Gupta, Sarangi, Deschamps, Nematbakhsh, Callan-Jones, Margadant, Mege, Lim, Voituriez, Ladoux (bib36) 2015; 6
Blakney, Swartzlander, Bryant (bib9) 2012; 100
Sariisik, Popov, Muller, Docheva, Clausen-Schaumann, Benoit (bib70) 2015; 109
Cross, Jin, Rao, Gimzewski (bib20) 2007; 2
Martorana, Motta, Pavone, Motta, Stella, Vitale, Manzella, Vigneri (bib54) 2021; 12
Raczkowska, Orzechowska, Patryas, Awsiuk, Kubiak, Kinoshita, Okamoto, Bobrowska, Stachura, Soja, Sladek, Lekka (bib65) 2020; 13
Tian, Lin, Wang, Chen, Chen, Yiu, Tsui, Chu, Kiang, Park (bib76) 2020; 11
Gal, Weihs (bib28) 2012; 63
Gupta, Doss, Kocgozlu, Pan, Mege, Callan-Jones, Voituriez, Ladoux (bib35) 2019; 99
Rouven Bruckner, Pietuch, Nehls, Rother, Janshoff (bib69) 2015; 5
Bercoff, Chaffai, Tanter, Sandrin, Catheline, Fink, Gennisson, Meunier (bib7) 2003; 29
Polio, Kundu, Dougan, Birch, Aurian-Blajeni, Schiffman, Crosby, Peyton (bib62) 2018; 13
Chen, Hughes, Mullin, Hawkins, Holen, Brown, Hobbs (bib13) 2020; 119
Chin, Xia, Discher, Janmey (bib14) 2016; 11
Benitez, Moreno-Flores, Bolos, Toca-Herrera (bib6) 2013; 76
Denisin, Pruitt (bib21) 2016; 8
Zbiral, Weber, Iturri, Vivanco, Toca-Herrera (bib85) 2021; 14
Poh, Chowdhury, Tanaka, Wang (bib61) 2010; 99
Hayashi, Iwata (bib38) 2015; 49
Guz, Dokukin, Kalaparthi, Sokolov (bib37) 2014; 107
Chopra, Tabdanov, Patel, Janmey, Kresh (bib15) 2011; 300
Fernandez-Garcia, Eiro, Marin, Gonzalez-Reyes, Gonzalez, Lamelas, Vizoso (bib26) 2014; 64
Geiger, Spatz, Bershadsky (bib32) 2009; 10
Kubitschke, Schnauss, Nnetu, Warmt, Stange, Kaes (bib45) 2017; 19
Fletcher, Mullins (bib27) 2010; 463
Gupta, Doss, Lim, Voituriez, Ladoux (bib34) 2016; 10
Jannatbabaei, Tafazzoli-Shadpour, Seyedjafari, Fatouraee (bib42) 2019; 107
Karcher, Lammerding, Huang, Lee, Kamm, Kaazempur-Mofrad (bib43) 2003; 85
Rianna, Radmacher (bib68) 2017; 46
Svitkina (bib75) 2018; 10
Weber, Iturri, Benitez, Zemljic-Jokhadar, Toca-Herrera (bib78) 2019; 9
Ansardamavandi, Tafazzoli-Shadpour, Shokrgozar (bib3) 2018; 12
Insua-Rodriguez, Oskarsson (bib40) 2016; 97
Chu, Celik, Rico, Moy (bib16) 2013; 8
Prager-Khoutorsky, Lichtenstein, Krishnan, Rajendran, Mayo, Kam, Geiger, Bershadsky (bib63) 2011; 13
Deroanne, Lapiere, Nusgens (bib22) 2001; 49
Levental, Yu, Kass, Lakins, Egeblad, Erler, Fong, Csiszar, Giaccia, Weninger, Yamauchi, Gasser, Weaver (bib48) 2009; 139
Yousafzai, Coceano, Bonin, Niemela, Scoles, Cojoc (bib84) 2017; 60
Lekka, Pabijan, Orzechowska (bib47) 2019; 1863
Rheinlaender, Dimitracopoulos, Wallmeyer, Kronenberg, Chalut, Gather, Betz, Charras, Franze (bib67) 2020; 19
Song, Bode, Dong, Lee (bib72) 2019; 79
Barai, Das, Sen (bib4) 2021; 2
Manning, Toker (bib53) 2017; 169
Wang, Dembo, Wang (bib77) 2000; 279
Mishra, Manavathi (bib58) 2021; 85
Yeung, Georges, Flanagan, Marg, Ortiz, Funaki, Zahir, Ming, Weaver, Janmey (bib83) 2005; 60
Lo, Wang, Dembo, Wang (bib51) 2000; 79
Coleman, Rubens (bib17) 1987; 55
Colin-York, Eggeling, Fritzsche (bib18) 2017; 12
Gavara (bib30) 2017; 80
Gefen, Dilmoney (bib31) 2007; 15
Pelham, Wang (bib60) 1997; 94
Weber, Zbiral, Iturri, Benitez, Toca-Herrera (bib79) 2021; 84
Lippman, Bolan, Huff (bib50) 1976; 36
Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (bib74) 2021; 71
Insua-Rodriguez (10.1016/j.jmbbm.2021.104979_bib40) 2016; 97
Raczkowska (10.1016/j.jmbbm.2021.104979_bib65) 2020; 13
Chu (10.1016/j.jmbbm.2021.104979_bib16) 2013; 8
Svitkina (10.1016/j.jmbbm.2021.104979_bib75) 2018; 10
Geiger (10.1016/j.jmbbm.2021.104979_bib32) 2009; 10
Georges (10.1016/j.jmbbm.2021.104979_bib33) 2006; 90
Mishra (10.1016/j.jmbbm.2021.104979_bib58) 2021; 85
Prager-Khoutorsky (10.1016/j.jmbbm.2021.104979_bib63) 2011; 13
Rianna (10.1016/j.jmbbm.2021.104979_bib68) 2017; 46
Gefen (10.1016/j.jmbbm.2021.104979_bib31) 2007; 15
Benitez (10.1016/j.jmbbm.2021.104979_bib6) 2013; 76
Manda (10.1016/j.jmbbm.2021.104979_bib52) 2016; 15
Fletcher (10.1016/j.jmbbm.2021.104979_bib27) 2010; 463
Bershadsky (10.1016/j.jmbbm.2021.104979_bib8) 2003; 19
Chin (10.1016/j.jmbbm.2021.104979_bib14) 2016; 11
Ramos (10.1016/j.jmbbm.2021.104979_bib66) 2014; 5
Efremov (10.1016/j.jmbbm.2021.104979_bib25) 2020; 16
Barai (10.1016/j.jmbbm.2021.104979_bib4) 2021; 2
Lekka (10.1016/j.jmbbm.2021.104979_bib47) 2019; 1863
Blakney (10.1016/j.jmbbm.2021.104979_bib9) 2012; 100
Bercoff (10.1016/j.jmbbm.2021.104979_bib7) 2003; 29
Jannatbabaei (10.1016/j.jmbbm.2021.104979_bib42) 2019; 107
Lekka (10.1016/j.jmbbm.2021.104979_bib46) 2012; 518
Bruckner (10.1016/j.jmbbm.2021.104979_bib11) 2019; 144
Zebaze (10.1016/j.jmbbm.2021.104979_bib86) 2011; 48
Tian (10.1016/j.jmbbm.2021.104979_bib76) 2020; 11
Ansardamavandi (10.1016/j.jmbbm.2021.104979_bib3) 2018; 12
Acerbi (10.1016/j.jmbbm.2021.104979_bib2) 2015; 7
Levental (10.1016/j.jmbbm.2021.104979_bib48) 2009; 139
Smolyakov (10.1016/j.jmbbm.2021.104979_bib71) 2016; 8
Moreno-Flores (10.1016/j.jmbbm.2021.104979_bib59) 2010; 21
Gavara (10.1016/j.jmbbm.2021.104979_bib30) 2017; 80
McKnight (10.1016/j.jmbbm.2021.104979_bib55) 2002; 178
Melzak (10.1016/j.jmbbm.2021.104979_bib56) 2013
Yousafzai (10.1016/j.jmbbm.2021.104979_bib84) 2017; 60
Gupta (10.1016/j.jmbbm.2021.104979_bib34) 2016; 10
Lo (10.1016/j.jmbbm.2021.104979_bib51) 2000; 79
Sariisik (10.1016/j.jmbbm.2021.104979_bib70) 2015; 109
Abidine (10.1016/j.jmbbm.2021.104979_bib1) 2018; 114
Liang (10.1016/j.jmbbm.2021.104979_bib49) 2020; 60
Martorana (10.1016/j.jmbbm.2021.104979_bib54) 2021; 12
Chen (10.1016/j.jmbbm.2021.104979_bib13) 2020; 119
Weber (10.1016/j.jmbbm.2021.104979_bib78) 2019; 9
Yeh (10.1016/j.jmbbm.2021.104979_bib82) 2017; 7
Zemla (10.1016/j.jmbbm.2021.104979_bib87) 2018; 73
Denisin (10.1016/j.jmbbm.2021.104979_bib21) 2016; 8
Weber (10.1016/j.jmbbm.2021.104979_bib79) 2021; 84
Rouven Bruckner (10.1016/j.jmbbm.2021.104979_bib69) 2015; 5
Poh (10.1016/j.jmbbm.2021.104979_bib61) 2010; 99
Coleman (10.1016/j.jmbbm.2021.104979_bib17) 1987; 55
Benítez (10.1016/j.jmbbm.2021.104979_bib5) 2017; 9
Mierke (10.1016/j.jmbbm.2021.104979_bib57) 2010; 285
Zbiral (10.1016/j.jmbbm.2021.104979_bib85) 2021; 14
Lippman (10.1016/j.jmbbm.2021.104979_bib50) 1976; 36
Brooks (10.1016/j.jmbbm.2021.104979_bib10) 1973; 248
Chopra (10.1016/j.jmbbm.2021.104979_bib15) 2011; 300
Cross (10.1016/j.jmbbm.2021.104979_bib20) 2007; 2
Hayashi (10.1016/j.jmbbm.2021.104979_bib38) 2015; 49
Dimitriadis (10.1016/j.jmbbm.2021.104979_bib23) 2002; 82
Karcher (10.1016/j.jmbbm.2021.104979_bib43) 2003; 85
Humphries (10.1016/j.jmbbm.2021.104979_bib39) 2019; 56
Sung (10.1016/j.jmbbm.2021.104979_bib74) 2021; 71
Polio (10.1016/j.jmbbm.2021.104979_bib62) 2018; 13
Manning (10.1016/j.jmbbm.2021.104979_bib53) 2017; 169
Prein (10.1016/j.jmbbm.2021.104979_bib64) 2016; 50
Krouskop (10.1016/j.jmbbm.2021.104979_bib44) 1998; 20
Colin-York (10.1016/j.jmbbm.2021.104979_bib18) 2017; 12
Janmey (10.1016/j.jmbbm.2021.104979_bib41) 2020; 100
Yamaguchi (10.1016/j.jmbbm.2021.104979_bib81) 2007; 1773
Gang (10.1016/j.jmbbm.2021.104979_bib29) 2009; 72
Kubitschke (10.1016/j.jmbbm.2021.104979_bib45) 2017; 19
Pelham (10.1016/j.jmbbm.2021.104979_bib60) 1997; 94
Guz (10.1016/j.jmbbm.2021.104979_bib37) 2014; 107
Song (10.1016/j.jmbbm.2021.104979_bib72) 2019; 79
Wu (10.1016/j.jmbbm.2021.104979_bib80) 2018; 15
Gal (10.1016/j.jmbbm.2021.104979_bib28) 2012; 63
Gupta (10.1016/j.jmbbm.2021.104979_bib36) 2015; 6
Gupta (10.1016/j.jmbbm.2021.104979_bib35) 2019; 99
Comsa (10.1016/j.jmbbm.2021.104979_bib19) 2015; 35
Fernandez-Garcia (10.1016/j.jmbbm.2021.104979_bib26) 2014; 64
Rheinlaender (10.1016/j.jmbbm.2021.104979_bib67) 2020; 19
Chen (10.1016/j.jmbbm.2021.104979_bib12) 2012; 103
Yeung (10.1016/j.jmbbm.2021.104979_bib83) 2005; 60
Wang (10.1016/j.jmbbm.2021.104979_bib77) 2000; 279
Discher (10.1016/j.jmbbm.2021.104979_bib24) 2005; 310
Deroanne (10.1016/j.jmbbm.2021.104979_bib22) 2001; 49
Sun (10.1016/j.jmbbm.2021.104979_bib73) 2005; 89
References_xml – volume: 94
  start-page: 13661
  year: 1997
  end-page: 13665
  ident: bib60
  article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 463
  start-page: 485
  year: 2010
  end-page: 492
  ident: bib27
  article-title: Cell mechanics and the cytoskeleton
  publication-title: Nature
– volume: 60
  start-page: 24
  year: 2005
  end-page: 34
  ident: bib83
  article-title: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion
  publication-title: Cell Motil Cytoskeleton
– volume: 19
  year: 2017
  ident: bib45
  article-title: Actin and microtubule networks contribute differently to cell response for small and large strains
  publication-title: New J. Phys.
– volume: 63
  start-page: 199
  year: 2012
  end-page: 209
  ident: bib28
  article-title: Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential
  publication-title: Cell Biochem. Biophys.
– volume: 73
  start-page: 115
  year: 2018
  end-page: 124
  ident: bib87
  article-title: Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues
  publication-title: Semin. Cell Dev. Biol.
– volume: 107
  start-page: 564
  year: 2014
  end-page: 575
  ident: bib37
  article-title: If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments
  publication-title: Biophys. J.
– volume: 10
  start-page: 21
  year: 2009
  end-page: 33
  ident: bib32
  article-title: Environmental sensing through focal adhesions
  publication-title: Nat. Rev. Mol. Cell Biol.
– start-page: 865
  year: 2013
  end-page: 897
  ident: bib56
  article-title: Mechanical cues for cell culture
  publication-title: Handbook of Biofunctional Surfaces
– volume: 35
  start-page: 3147
  year: 2015
  end-page: 3154
  ident: bib19
  article-title: The story of MCF-7 breast cancer cell line: 40 years of experience in research
  publication-title: Anticancer Res.
– volume: 99
  year: 2019
  ident: bib35
  article-title: Cell shape and substrate stiffness drive actin-based cell polarity
  publication-title: Phys. Rev. E
– volume: 99
  start-page: L19
  year: 2010
  end-page: L21
  ident: bib61
  article-title: Embryonic stem cells do not stiffen on rigid substrates
  publication-title: Biophys. J.
– volume: 8
  start-page: 21893
  year: 2016
  end-page: 21902
  ident: bib21
  article-title: Tuning the range of polyacrylamide gel stiffness for mechanobiology applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 447
  year: 2014
  end-page: 457
  ident: bib66
  article-title: The softening of human bladder cancer cells happens at an early stage of the malignancy process
  publication-title: Beilstein J. Nanotechnol.
– volume: 5
  start-page: 14700
  year: 2015
  ident: bib69
  article-title: Ezrin is a major regulator of membrane tension in epithelial cells
  publication-title: Sci. Rep.
– volume: 9
  start-page: 291
  year: 2017
  ident: bib5
  article-title: afmToolkit: an R Package for automated AFM force-distance curves analysis
  publication-title: R Journal
– volume: 85
  start-page: 3336
  year: 2003
  end-page: 3349
  ident: bib43
  article-title: A three-dimensional viscoelastic model for cell deformation with experimental verification
  publication-title: Biophys. J.
– volume: 29
  start-page: 1387
  year: 2003
  end-page: 1396
  ident: bib7
  article-title: In vivo breast tumor detection using transient elastography
  publication-title: Ultrasound Med. Biol.
– volume: 48
  start-page: 1246
  year: 2011
  end-page: 1251
  ident: bib86
  article-title: Differences in the degree of bone tissue mineralization account for little of the differences in tissue elastic properties
  publication-title: Bone
– volume: 16
  start-page: 64
  year: 2020
  end-page: 81
  ident: bib25
  article-title: Measuring viscoelasticity of soft biological samples using atomic force microscopy
  publication-title: Soft Matter
– volume: 109
  start-page: 1330
  year: 2015
  end-page: 1333
  ident: bib70
  article-title: Decoding cytoskeleton-anchored and non-anchored receptors from single-cell adhesion force data
  publication-title: Biophys. J.
– volume: 178
  start-page: 1411
  year: 2002
  end-page: 1417
  ident: bib55
  article-title: MR elastography of breast cancer: preliminary results
  publication-title: AJR Am. J. Roentgenol.
– volume: 1773
  start-page: 642
  year: 2007
  end-page: 652
  ident: bib81
  article-title: Regulation of the actin cytoskeleton in cancer cell migration and invasion
  publication-title: Biochim. Biophys. Acta
– volume: 10
  year: 2018
  ident: bib75
  article-title: The actin cytoskeleton and actin-based motility
  publication-title: Cold Spring Harb Perspect Biol
– volume: 76
  start-page: 870
  year: 2013
  end-page: 876
  ident: bib6
  article-title: A new automatic contact point detection algorithm for AFM force curves
  publication-title: Microsc. Res. Tech.
– volume: 15
  start-page: 1631
  year: 2016
  end-page: 1640
  ident: bib52
  article-title: Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone
  publication-title: Biomech. Model. Mechanobiol.
– volume: 119
  start-page: 502
  year: 2020
  end-page: 513
  ident: bib13
  article-title: Mechanical heterogeneity in the bone microenvironment as characterized by atomic force microscopy
  publication-title: Biophys. J.
– volume: 55
  start-page: 61
  year: 1987
  end-page: 66
  ident: bib17
  article-title: The clinical course of bone metastases from breast cancer
  publication-title: Br. J. Cancer
– volume: 15
  start-page: 491
  year: 2018
  end-page: 498
  ident: bib80
  article-title: A comparison of methods to assess cell mechanical properties
  publication-title: Nat. Methods
– volume: 85
  year: 2021
  ident: bib58
  article-title: Focal adhesion dynamics in cellular function and disease
  publication-title: Cell. Signal.
– volume: 64
  start-page: 512
  year: 2014
  end-page: 522
  ident: bib26
  article-title: Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis
  publication-title: Histopathology
– volume: 13
  start-page: 1457
  year: 2011
  end-page: 1465
  ident: bib63
  article-title: Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing
  publication-title: Nat. Cell Biol.
– volume: 19
  start-page: 1019
  year: 2020
  end-page: 1025
  ident: bib67
  article-title: Cortical cell stiffness is independent of substrate mechanics
  publication-title: Nat. Mater.
– volume: 248
  start-page: 6251
  year: 1973
  end-page: 6253
  ident: bib10
  article-title: Estrogen receptor in a human cell line (MCF-7) from breast carcinoma
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 100296
  year: 2021
  ident: bib4
  article-title: Measuring microenvironment-tuned nuclear stiffness of cancer cells with atomic force microscopy
  publication-title: STAR Protoc
– volume: 11
  start-page: 77
  year: 2016
  end-page: 84
  ident: bib14
  article-title: Mechanotransduction in cancer
  publication-title: Curr Opin Chem Eng
– volume: 84
  start-page: 1078
  year: 2021
  end-page: 1088
  ident: bib79
  article-title: Measuring (biological) materials mechanics with atomic force microscopy. 2. Influence of the loading rate and applied force (colloidal particles)
  publication-title: Microsc. Res. Tech.
– volume: 12
  start-page: 783
  year: 2017
  end-page: 796
  ident: bib18
  article-title: Dissection of mechanical force in living cells by super-resolved traction force microscopy
  publication-title: Nat. Protoc.
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  ident: bib74
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
– volume: 100
  start-page: 695
  year: 2020
  end-page: 724
  ident: bib41
  article-title: Stiffness sensing by cells
  publication-title: Physiol. Rev.
– volume: 107
  start-page: 71
  year: 2019
  end-page: 80
  ident: bib42
  article-title: Cytoskeletal remodeling induced by substrate rigidity regulates rheological behaviors in endothelial cells
  publication-title: J. Biomed. Mater. Res.
– volume: 60
  start-page: 266
  year: 2017
  end-page: 269
  ident: bib84
  article-title: Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers
  publication-title: J. Biomech.
– volume: 2
  start-page: 780
  year: 2007
  end-page: 783
  ident: bib20
  article-title: Nanomechanical analysis of cells from cancer patients
  publication-title: Nat. Nanotechnol.
– volume: 12
  year: 2021
  ident: bib54
  article-title: AKT inhibitors: new weapons in the fight against breast cancer?
  publication-title: Front. Pharmacol.
– volume: 1863
  start-page: 1006
  year: 2019
  end-page: 1014
  ident: bib47
  article-title: Morphological and mechanical stability of bladder cancer cells in response to substrate rigidity
  publication-title: Biochim. Biophys. Acta Gen. Subj.
– volume: 46
  start-page: 309
  year: 2017
  end-page: 324
  ident: bib68
  article-title: Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates
  publication-title: Eur. Biophys. J.
– volume: 310
  start-page: 1139
  year: 2005
  end-page: 1143
  ident: bib24
  article-title: Tissue cells feel and respond to the stiffness of their substrate
  publication-title: Science
– volume: 90
  start-page: 3012
  year: 2006
  end-page: 3018
  ident: bib33
  article-title: Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures
  publication-title: Biophys. J.
– volume: 19
  start-page: 677
  year: 2003
  end-page: 695
  ident: bib8
  article-title: Adhesion-dependent cell mechanosensitivity
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 49
  start-page: 647
  year: 2001
  end-page: 658
  ident: bib22
  article-title: In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton
  publication-title: Cardiovasc. Res.
– volume: 8
  start-page: 27426
  year: 2016
  end-page: 27431
  ident: bib71
  article-title: Elasticity, adhesion, and tether extrusion on breast cancer cells provide a signature of their invasive potential
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 14903
  year: 2019
  ident: bib78
  article-title: Microtubule disruption changes endothelial cell mechanics and adhesion
  publication-title: Sci. Rep.
– volume: 103
  start-page: 1188
  year: 2012
  end-page: 1197
  ident: bib12
  article-title: Cell mechanics, structure, and function are regulated by the stiffness of the three-dimensional microenvironment
  publication-title: Biophys. J.
– volume: 97
  start-page: 41
  year: 2016
  end-page: 55
  ident: bib40
  article-title: The extracellular matrix in breast cancer
  publication-title: Adv. Drug Deliv. Rev.
– volume: 20
  start-page: 260
  year: 1998
  end-page: 274
  ident: bib44
  article-title: Elastic moduli of breast and prostate tissues under compression
  publication-title: Ultrasonics
– volume: 13
  year: 2020
  ident: bib65
  article-title: Effect of substrate stiffness on physicochemical properties of normal and fibrotic lung fibroblasts
  publication-title: Materials
– volume: 100
  start-page: 1375
  year: 2012
  end-page: 1386
  ident: bib9
  article-title: The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels
  publication-title: J. Biomed. Mater. Res.
– volume: 518
  start-page: 151
  year: 2012
  end-page: 156
  ident: bib46
  article-title: Cancer cell detection in tissue sections using AFM
  publication-title: Arch. Biochem. Biophys.
– volume: 36
  start-page: 4595
  year: 1976
  end-page: 4601
  ident: bib50
  article-title: The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture
  publication-title: Cancer Res.
– volume: 79
  start-page: 144
  year: 2000
  end-page: 152
  ident: bib51
  article-title: Cell movement is guided by the rigidity of the substrate
  publication-title: Biophys. J.
– volume: 89
  start-page: 4320
  year: 2005
  end-page: 4329
  ident: bib73
  article-title: Multiple membrane tethers probed by atomic force microscopy
  publication-title: Biophys. J.
– volume: 82
  start-page: 2798
  year: 2002
  end-page: 2810
  ident: bib23
  article-title: Determination of elastic moduli of thin layers of soft material using the atomic force microscope
  publication-title: Biophys. J.
– volume: 139
  start-page: 891
  year: 2009
  end-page: 906
  ident: bib48
  article-title: Matrix crosslinking forces tumor progression by enhancing integrin signaling
  publication-title: Cell
– volume: 80
  start-page: 75
  year: 2017
  end-page: 84
  ident: bib30
  article-title: A beginner's guide to atomic force microscopy probing for cell mechanics
  publication-title: Microsc. Res. Tech.
– volume: 7
  start-page: 1120
  year: 2015
  end-page: 1134
  ident: bib2
  article-title: Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration
  publication-title: Integr Biol (Camb)
– volume: 285
  start-page: 13121
  year: 2010
  end-page: 13130
  ident: bib57
  article-title: Vinculin facilitates cell invasion into three-dimensional collagen matrices
  publication-title: J. Biol. Chem.
– volume: 8
  year: 2013
  ident: bib16
  article-title: Elongated membrane tethers, individually anchored by high affinity alpha4beta1/VCAM-1 complexes, are the quantal units of monocyte arrests
  publication-title: PLoS One
– volume: 72
  start-page: 672
  year: 2009
  end-page: 678
  ident: bib29
  article-title: Measuring microenvironment mechanical stress of rat liver during diethylnitrosamine induced hepatocarcinogenesis by atomic force microscope
  publication-title: Microsc. Res. Tech.
– volume: 6
  start-page: 7525
  year: 2015
  ident: bib36
  article-title: Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing
  publication-title: Nat. Commun.
– volume: 14
  year: 2021
  ident: bib85
  article-title: Estrogen modulates epithelial breast cancer cell mechanics and cell-to-cell contacts
  publication-title: Materials
– volume: 10
  start-page: 554
  year: 2016
  end-page: 567
  ident: bib34
  article-title: Single cell rigidity sensing: a complex relationship between focal adhesion dynamics and large-scale actin cytoskeleton remodeling
  publication-title: Cell Adhes. Migrat.
– volume: 60
  start-page: 14
  year: 2020
  end-page: 27
  ident: bib49
  article-title: Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets
  publication-title: Semin. Cancer Biol.
– volume: 15
  start-page: 259
  year: 2007
  end-page: 271
  ident: bib31
  article-title: Mechanics of the normal woman's breast
  publication-title: Technol. Health Care
– volume: 7
  start-page: 15008
  year: 2017
  ident: bib82
  article-title: Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and beta1 integrin
  publication-title: Sci. Rep.
– volume: 300
  start-page: H1252
  year: 2011
  end-page: H1266
  ident: bib15
  article-title: Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 21
  year: 2010
  ident: bib59
  article-title: Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components
  publication-title: Nanotechnology
– volume: 13
  year: 2018
  ident: bib62
  article-title: Cross-platform mechanical characterization of lung tissue
  publication-title: PLoS One
– volume: 49
  start-page: 105
  year: 2015
  end-page: 111
  ident: bib38
  article-title: Stiffness of cancer cells measured with an AFM indentation method
  publication-title: J Mech Behav Biomed Mater
– volume: 50
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib64
  article-title: Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy
  publication-title: Matrix Biol.
– volume: 11
  start-page: 7643
  year: 2020
  end-page: 7649
  ident: bib76
  article-title: Mechanical responses of breast cancer cells to substrates of varying stiffness revealed by single-cell measurements
  publication-title: J. Phys. Chem. Lett.
– volume: 114
  start-page: 1165
  year: 2018
  end-page: 1175
  ident: bib1
  article-title: Mechanosensitivity of cancer cells in contact with soft substrates using AFM
  publication-title: Biophys. J.
– volume: 144
  start-page: 77
  year: 2019
  end-page: 90
  ident: bib11
  article-title: Mechanical and morphological response of confluent epithelial cell layers to reinforcement and dissolution of the F-actin cytoskeleton
  publication-title: Prog. Biophys. Mol. Biol.
– volume: 279
  start-page: C1345
  year: 2000
  end-page: C1350
  ident: bib77
  article-title: Substrate flexibility regulates growth and apoptosis of normal but not transformed cells
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 12
  start-page: 472
  year: 2018
  end-page: 488
  ident: bib3
  article-title: Behavioral remodeling of normal and cancerous epithelial cell lines with differing invasion potential induced by substrate elastic modulus
  publication-title: Cell Adhes. Migrat.
– volume: 56
  start-page: 14
  year: 2019
  end-page: 21
  ident: bib39
  article-title: Signal transduction via integrin adhesion complexes
  publication-title: Curr. Opin. Cell Biol.
– volume: 169
  start-page: 381
  year: 2017
  end-page: 405
  ident: bib53
  article-title: AKT/PKB signaling: navigating the network
  publication-title: Cell
– volume: 79
  start-page: 1019
  year: 2019
  end-page: 1031
  ident: bib72
  article-title: AKT as a therapeutic target for cancer
  publication-title: Cancer Res.
– volume: 114
  start-page: 1165
  year: 2018
  ident: 10.1016/j.jmbbm.2021.104979_bib1
  article-title: Mechanosensitivity of cancer cells in contact with soft substrates using AFM
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2018.01.005
– volume: 90
  start-page: 3012
  year: 2006
  ident: 10.1016/j.jmbbm.2021.104979_bib33
  article-title: Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.073114
– volume: 285
  start-page: 13121
  year: 2010
  ident: 10.1016/j.jmbbm.2021.104979_bib57
  article-title: Vinculin facilitates cell invasion into three-dimensional collagen matrices
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.087171
– volume: 7
  start-page: 15008
  year: 2017
  ident: 10.1016/j.jmbbm.2021.104979_bib82
  article-title: Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and beta1 integrin
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14932-6
– volume: 29
  start-page: 1387
  year: 2003
  ident: 10.1016/j.jmbbm.2021.104979_bib7
  article-title: In vivo breast tumor detection using transient elastography
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(03)00978-5
– volume: 10
  year: 2018
  ident: 10.1016/j.jmbbm.2021.104979_bib75
  article-title: The actin cytoskeleton and actin-based motility
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a018267
– volume: 82
  start-page: 2798
  year: 2002
  ident: 10.1016/j.jmbbm.2021.104979_bib23
  article-title: Determination of elastic moduli of thin layers of soft material using the atomic force microscope
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)75620-8
– volume: 99
  year: 2019
  ident: 10.1016/j.jmbbm.2021.104979_bib35
  article-title: Cell shape and substrate stiffness drive actin-based cell polarity
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.012412
– volume: 85
  start-page: 3336
  year: 2003
  ident: 10.1016/j.jmbbm.2021.104979_bib43
  article-title: A three-dimensional viscoelastic model for cell deformation with experimental verification
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)74753-5
– volume: 79
  start-page: 144
  year: 2000
  ident: 10.1016/j.jmbbm.2021.104979_bib51
  article-title: Cell movement is guided by the rigidity of the substrate
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76279-5
– volume: 7
  start-page: 1120
  year: 2015
  ident: 10.1016/j.jmbbm.2021.104979_bib2
  article-title: Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration
  publication-title: Integr Biol (Camb)
  doi: 10.1039/c5ib00040h
– volume: 109
  start-page: 1330
  year: 2015
  ident: 10.1016/j.jmbbm.2021.104979_bib70
  article-title: Decoding cytoskeleton-anchored and non-anchored receptors from single-cell adhesion force data
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.07.048
– volume: 2
  start-page: 780
  year: 2007
  ident: 10.1016/j.jmbbm.2021.104979_bib20
  article-title: Nanomechanical analysis of cells from cancer patients
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.388
– volume: 8
  start-page: 21893
  year: 2016
  ident: 10.1016/j.jmbbm.2021.104979_bib21
  article-title: Tuning the range of polyacrylamide gel stiffness for mechanobiology applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09344
– volume: 72
  start-page: 672
  year: 2009
  ident: 10.1016/j.jmbbm.2021.104979_bib29
  article-title: Measuring microenvironment mechanical stress of rat liver during diethylnitrosamine induced hepatocarcinogenesis by atomic force microscope
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.20716
– volume: 169
  start-page: 381
  year: 2017
  ident: 10.1016/j.jmbbm.2021.104979_bib53
  article-title: AKT/PKB signaling: navigating the network
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.001
– volume: 35
  start-page: 3147
  year: 2015
  ident: 10.1016/j.jmbbm.2021.104979_bib19
  article-title: The story of MCF-7 breast cancer cell line: 40 years of experience in research
  publication-title: Anticancer Res.
– volume: 11
  start-page: 7643
  year: 2020
  ident: 10.1016/j.jmbbm.2021.104979_bib76
  article-title: Mechanical responses of breast cancer cells to substrates of varying stiffness revealed by single-cell measurements
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02065
– volume: 13
  start-page: 1457
  year: 2011
  ident: 10.1016/j.jmbbm.2021.104979_bib63
  article-title: Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2370
– volume: 79
  start-page: 1019
  year: 2019
  ident: 10.1016/j.jmbbm.2021.104979_bib72
  article-title: AKT as a therapeutic target for cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-2738
– volume: 71
  start-page: 209
  year: 2021
  ident: 10.1016/j.jmbbm.2021.104979_bib74
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 279
  start-page: C1345
  year: 2000
  ident: 10.1016/j.jmbbm.2021.104979_bib77
  article-title: Substrate flexibility regulates growth and apoptosis of normal but not transformed cells
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.2000.279.5.C1345
– volume: 10
  start-page: 554
  year: 2016
  ident: 10.1016/j.jmbbm.2021.104979_bib34
  article-title: Single cell rigidity sensing: a complex relationship between focal adhesion dynamics and large-scale actin cytoskeleton remodeling
  publication-title: Cell Adhes. Migrat.
  doi: 10.1080/19336918.2016.1173800
– volume: 13
  year: 2018
  ident: 10.1016/j.jmbbm.2021.104979_bib62
  article-title: Cross-platform mechanical characterization of lung tissue
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204765
– volume: 10
  start-page: 21
  year: 2009
  ident: 10.1016/j.jmbbm.2021.104979_bib32
  article-title: Environmental sensing through focal adhesions
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2593
– volume: 56
  start-page: 14
  year: 2019
  ident: 10.1016/j.jmbbm.2021.104979_bib39
  article-title: Signal transduction via integrin adhesion complexes
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2018.08.004
– volume: 49
  start-page: 647
  year: 2001
  ident: 10.1016/j.jmbbm.2021.104979_bib22
  article-title: In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton
  publication-title: Cardiovasc. Res.
  doi: 10.1016/S0008-6363(00)00233-9
– volume: 1773
  start-page: 642
  year: 2007
  ident: 10.1016/j.jmbbm.2021.104979_bib81
  article-title: Regulation of the actin cytoskeleton in cancer cell migration and invasion
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2006.07.001
– volume: 144
  start-page: 77
  year: 2019
  ident: 10.1016/j.jmbbm.2021.104979_bib11
  article-title: Mechanical and morphological response of confluent epithelial cell layers to reinforcement and dissolution of the F-actin cytoskeleton
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2018.08.010
– volume: 97
  start-page: 41
  year: 2016
  ident: 10.1016/j.jmbbm.2021.104979_bib40
  article-title: The extracellular matrix in breast cancer
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.12.017
– volume: 15
  start-page: 259
  year: 2007
  ident: 10.1016/j.jmbbm.2021.104979_bib31
  article-title: Mechanics of the normal woman's breast
  publication-title: Technol. Health Care
  doi: 10.3233/THC-2007-15404
– volume: 8
  start-page: 27426
  year: 2016
  ident: 10.1016/j.jmbbm.2021.104979_bib71
  article-title: Elasticity, adhesion, and tether extrusion on breast cancer cells provide a signature of their invasive potential
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07698
– volume: 48
  start-page: 1246
  year: 2011
  ident: 10.1016/j.jmbbm.2021.104979_bib86
  article-title: Differences in the degree of bone tissue mineralization account for little of the differences in tissue elastic properties
  publication-title: Bone
  doi: 10.1016/j.bone.2011.02.023
– volume: 46
  start-page: 309
  year: 2017
  ident: 10.1016/j.jmbbm.2021.104979_bib68
  article-title: Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-016-1168-4
– volume: 55
  start-page: 61
  year: 1987
  ident: 10.1016/j.jmbbm.2021.104979_bib17
  article-title: The clinical course of bone metastases from breast cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1987.13
– volume: 139
  start-page: 891
  year: 2009
  ident: 10.1016/j.jmbbm.2021.104979_bib48
  article-title: Matrix crosslinking forces tumor progression by enhancing integrin signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2009.10.027
– volume: 21
  year: 2010
  ident: 10.1016/j.jmbbm.2021.104979_bib59
  article-title: Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/44/445101
– volume: 20
  start-page: 260
  year: 1998
  ident: 10.1016/j.jmbbm.2021.104979_bib44
  article-title: Elastic moduli of breast and prostate tissues under compression
  publication-title: Ultrasonics
  doi: 10.1177/016173469802000403
– volume: 60
  start-page: 24
  year: 2005
  ident: 10.1016/j.jmbbm.2021.104979_bib83
  article-title: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion
  publication-title: Cell Motil Cytoskeleton
  doi: 10.1002/cm.20041
– volume: 12
  start-page: 472
  year: 2018
  ident: 10.1016/j.jmbbm.2021.104979_bib3
  article-title: Behavioral remodeling of normal and cancerous epithelial cell lines with differing invasion potential induced by substrate elastic modulus
  publication-title: Cell Adhes. Migrat.
– volume: 99
  start-page: L19
  year: 2010
  ident: 10.1016/j.jmbbm.2021.104979_bib61
  article-title: Embryonic stem cells do not stiffen on rigid substrates
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.04.057
– start-page: 865
  year: 2013
  ident: 10.1016/j.jmbbm.2021.104979_bib56
  article-title: Mechanical cues for cell culture
– volume: 463
  start-page: 485
  year: 2010
  ident: 10.1016/j.jmbbm.2021.104979_bib27
  article-title: Cell mechanics and the cytoskeleton
  publication-title: Nature
  doi: 10.1038/nature08908
– volume: 14
  year: 2021
  ident: 10.1016/j.jmbbm.2021.104979_bib85
  article-title: Estrogen modulates epithelial breast cancer cell mechanics and cell-to-cell contacts
  publication-title: Materials
  doi: 10.3390/ma14112897
– volume: 13
  year: 2020
  ident: 10.1016/j.jmbbm.2021.104979_bib65
  article-title: Effect of substrate stiffness on physicochemical properties of normal and fibrotic lung fibroblasts
  publication-title: Materials
  doi: 10.3390/ma13204495
– volume: 19
  start-page: 1019
  year: 2020
  ident: 10.1016/j.jmbbm.2021.104979_bib67
  article-title: Cortical cell stiffness is independent of substrate mechanics
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0684-x
– volume: 8
  year: 2013
  ident: 10.1016/j.jmbbm.2021.104979_bib16
  article-title: Elongated membrane tethers, individually anchored by high affinity alpha4beta1/VCAM-1 complexes, are the quantal units of monocyte arrests
  publication-title: PLoS One
– volume: 49
  start-page: 105
  year: 2015
  ident: 10.1016/j.jmbbm.2021.104979_bib38
  article-title: Stiffness of cancer cells measured with an AFM indentation method
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2015.04.030
– volume: 107
  start-page: 71
  year: 2019
  ident: 10.1016/j.jmbbm.2021.104979_bib42
  article-title: Cytoskeletal remodeling induced by substrate rigidity regulates rheological behaviors in endothelial cells
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.36533
– volume: 36
  start-page: 4595
  year: 1976
  ident: 10.1016/j.jmbbm.2021.104979_bib50
  article-title: The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture
  publication-title: Cancer Res.
– volume: 16
  start-page: 64
  year: 2020
  ident: 10.1016/j.jmbbm.2021.104979_bib25
  article-title: Measuring viscoelasticity of soft biological samples using atomic force microscopy
  publication-title: Soft Matter
  doi: 10.1039/C9SM01020C
– volume: 15
  start-page: 1631
  year: 2016
  ident: 10.1016/j.jmbbm.2021.104979_bib52
  article-title: Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-016-0787-0
– volume: 12
  year: 2021
  ident: 10.1016/j.jmbbm.2021.104979_bib54
  article-title: AKT inhibitors: new weapons in the fight against breast cancer?
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.662232
– volume: 178
  start-page: 1411
  year: 2002
  ident: 10.1016/j.jmbbm.2021.104979_bib55
  article-title: MR elastography of breast cancer: preliminary results
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/ajr.178.6.1781411
– volume: 60
  start-page: 14
  year: 2020
  ident: 10.1016/j.jmbbm.2021.104979_bib49
  article-title: Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2019.08.012
– volume: 119
  start-page: 502
  year: 2020
  ident: 10.1016/j.jmbbm.2021.104979_bib13
  article-title: Mechanical heterogeneity in the bone microenvironment as characterized by atomic force microscopy
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2020.06.026
– volume: 12
  start-page: 783
  year: 2017
  ident: 10.1016/j.jmbbm.2021.104979_bib18
  article-title: Dissection of mechanical force in living cells by super-resolved traction force microscopy
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2017.009
– volume: 2
  start-page: 100296
  year: 2021
  ident: 10.1016/j.jmbbm.2021.104979_bib4
  article-title: Measuring microenvironment-tuned nuclear stiffness of cancer cells with atomic force microscopy
  publication-title: STAR Protoc
  doi: 10.1016/j.xpro.2021.100296
– volume: 84
  start-page: 1078
  year: 2021
  ident: 10.1016/j.jmbbm.2021.104979_bib79
  article-title: Measuring (biological) materials mechanics with atomic force microscopy. 2. Influence of the loading rate and applied force (colloidal particles)
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23643
– volume: 80
  start-page: 75
  year: 2017
  ident: 10.1016/j.jmbbm.2021.104979_bib30
  article-title: A beginner's guide to atomic force microscopy probing for cell mechanics
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.22776
– volume: 60
  start-page: 266
  year: 2017
  ident: 10.1016/j.jmbbm.2021.104979_bib84
  article-title: Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.06.043
– volume: 63
  start-page: 199
  year: 2012
  ident: 10.1016/j.jmbbm.2021.104979_bib28
  article-title: Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-012-9356-z
– volume: 5
  start-page: 447
  year: 2014
  ident: 10.1016/j.jmbbm.2021.104979_bib66
  article-title: The softening of human bladder cancer cells happens at an early stage of the malignancy process
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.5.52
– volume: 5
  start-page: 14700
  year: 2015
  ident: 10.1016/j.jmbbm.2021.104979_bib69
  article-title: Ezrin is a major regulator of membrane tension in epithelial cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep14700
– volume: 1863
  start-page: 1006
  year: 2019
  ident: 10.1016/j.jmbbm.2021.104979_bib47
  article-title: Morphological and mechanical stability of bladder cancer cells in response to substrate rigidity
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2019.03.010
– volume: 6
  start-page: 7525
  year: 2015
  ident: 10.1016/j.jmbbm.2021.104979_bib36
  article-title: Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8525
– volume: 19
  start-page: 677
  year: 2003
  ident: 10.1016/j.jmbbm.2021.104979_bib8
  article-title: Adhesion-dependent cell mechanosensitivity
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.19.111301.153011
– volume: 100
  start-page: 1375
  year: 2012
  ident: 10.1016/j.jmbbm.2021.104979_bib9
  article-title: The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.34104
– volume: 518
  start-page: 151
  year: 2012
  ident: 10.1016/j.jmbbm.2021.104979_bib46
  article-title: Cancer cell detection in tissue sections using AFM
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2011.12.013
– volume: 248
  start-page: 6251
  year: 1973
  ident: 10.1016/j.jmbbm.2021.104979_bib10
  article-title: Estrogen receptor in a human cell line (MCF-7) from breast carcinoma
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)43537-0
– volume: 100
  start-page: 695
  year: 2020
  ident: 10.1016/j.jmbbm.2021.104979_bib41
  article-title: Stiffness sensing by cells
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00013.2019
– volume: 89
  start-page: 4320
  year: 2005
  ident: 10.1016/j.jmbbm.2021.104979_bib73
  article-title: Multiple membrane tethers probed by atomic force microscopy
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.058180
– volume: 9
  start-page: 291
  year: 2017
  ident: 10.1016/j.jmbbm.2021.104979_bib5
  article-title: afmToolkit: an R Package for automated AFM force-distance curves analysis
  publication-title: R Journal
  doi: 10.32614/RJ-2017-045
– volume: 73
  start-page: 115
  year: 2018
  ident: 10.1016/j.jmbbm.2021.104979_bib87
  article-title: Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.06.029
– volume: 64
  start-page: 512
  year: 2014
  ident: 10.1016/j.jmbbm.2021.104979_bib26
  article-title: Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis
  publication-title: Histopathology
  doi: 10.1111/his.12300
– volume: 15
  start-page: 491
  year: 2018
  ident: 10.1016/j.jmbbm.2021.104979_bib80
  article-title: A comparison of methods to assess cell mechanical properties
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0015-1
– volume: 85
  year: 2021
  ident: 10.1016/j.jmbbm.2021.104979_bib58
  article-title: Focal adhesion dynamics in cellular function and disease
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2021.110046
– volume: 94
  start-page: 13661
  year: 1997
  ident: 10.1016/j.jmbbm.2021.104979_bib60
  article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.94.25.13661
– volume: 300
  start-page: H1252
  year: 2011
  ident: 10.1016/j.jmbbm.2021.104979_bib15
  article-title: Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00515.2010
– volume: 76
  start-page: 870
  year: 2013
  ident: 10.1016/j.jmbbm.2021.104979_bib6
  article-title: A new automatic contact point detection algorithm for AFM force curves
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.22241
– volume: 103
  start-page: 1188
  year: 2012
  ident: 10.1016/j.jmbbm.2021.104979_bib12
  article-title: Cell mechanics, structure, and function are regulated by the stiffness of the three-dimensional microenvironment
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2012.07.054
– volume: 11
  start-page: 77
  year: 2016
  ident: 10.1016/j.jmbbm.2021.104979_bib14
  article-title: Mechanotransduction in cancer
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2016.01.011
– volume: 19
  year: 2017
  ident: 10.1016/j.jmbbm.2021.104979_bib45
  article-title: Actin and microtubule networks contribute differently to cell response for small and large strains
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa7658
– volume: 50
  start-page: 1
  year: 2016
  ident: 10.1016/j.jmbbm.2021.104979_bib64
  article-title: Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2015.10.001
– volume: 310
  start-page: 1139
  year: 2005
  ident: 10.1016/j.jmbbm.2021.104979_bib24
  article-title: Tissue cells feel and respond to the stiffness of their substrate
  publication-title: Science
  doi: 10.1126/science.1116995
– volume: 107
  start-page: 564
  year: 2014
  ident: 10.1016/j.jmbbm.2021.104979_bib37
  article-title: If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.06.033
– volume: 9
  start-page: 14903
  year: 2019
  ident: 10.1016/j.jmbbm.2021.104979_bib78
  article-title: Microtubule disruption changes endothelial cell mechanics and adhesion
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51024-z
SSID ssj0060088
Score 2.4264286
Snippet Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104979
SubjectTerms Atomic force microscopy
Breast cancer
Humans
MCF-7
MCF-7 Cells
Rheology
Stress-relaxation
Substrate stiffness
Zener and power law models
Title Substrate stiffness modulates the viscoelastic properties of MCF-7 cells
URI https://dx.doi.org/10.1016/j.jmbbm.2021.104979
https://www.ncbi.nlm.nih.gov/pubmed/34826769
https://www.proquest.com/docview/2604022427
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB1BuNBDBZSW8BG5Uo9dkvV6vc4RRUShCC4tUm7W-ksKKtmIhB75LfwWfhkz3t2olYBDryt71xrbb954x28AvnnPXc5zkxQ2C4nIjEpMbgoMVTLppbBliDWWrq7l5Eb8mObTDRi1d2EorbLB_hrTI1o3T_qNNfuL2az_Ex0f0pWogDWQg2K6CVscvb3qwNbZxeXkugVkdOmx_CS1T6hDKz4U07xu74yhG-k8pd-dQ0rpet1BvUVAoyMa78DHhkGys3qQu7Dh53vw4S9dwU9wQXAQZWcZ7uAQCM7YXeWoVJdfMuR87M9saSuP1BnfwhZ0In9P0qqsCuxqNE6K5yc60l_uw834_NdokjQ1ExIrBmKVcJmVsgjSi9QaIxx6dIuMTuVDJwRH8hUkcjLkXKVypZTOC-F8MMrZIufBpNln6MyruT8AlrpcFEOLMZQRGDSaUknlfOZzYxR3qeoCbw2lbSMoTnUtfus2c-xWR-tqsq6urduF7-tOi1pP4_3msp0B_c-y0Ij473f82s6Xxg1DJivnvnpYagzgBBEXXnThSz2R65GQ0g_l_B7-72ePYJvT_Yh4RnMMndX9gz9B1rIyPdg8fUx7zdp8Ad-H6t0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB1Bcig9VFBaCAW6lXqslXi9XjvHKCJKgORSkHJbeb-kIIgjEvp7-C38MmbWNqIS5dCrtWuvZnffvFnPvgH46Ry3KU91lJnERyLReaRTnWGokkgnhSl8qLE0ncnxtTifp_MtGDZ3YSitssb-CtMDWtdPurU1u6vFovsbHR_SlaCA1ZO9bL4NbUFFrVvQHkwuxrMGkNGlh_KT1D6iDo34UEjzurnTmm6k85h-d_YppettB_UvAhoc0WgXPtUMkg2qQe7Bllt-ho-vdAX3YUJwEGRnGe5g7wnO2F1pqVSXWzPkfOzPYm1Kh9QZ38JWdCJ_T9KqrPRsOhxF2dMjHemvv8D16OxqOI7qmgmRET2xibhMCpl56URstBYWPbpBRpenfSsER_LlJXIy5FxFbgsprRPCOq9za7KUex0nX6G1LJfuEFhsU5H1DcZQWmDQqItc5tYlLtU65zbOO8AbQylTC4pTXYtb1WSO3ahgXUXWVZV1O_DrpdOq0tN4v7lsZkD9tSwUIv77HX8086Vww5DJiqUrH9YKAzhBxIVnHTioJvJlJKT0Qzm_R__72e_wYXw1vVSXk9nFN9jhdFcinNccQ2tz_-BOkMFs9Gm9Qp8BakPsww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Substrate+stiffness+modulates+the+viscoelastic+properties+of+MCF-7%C2%A0cells&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Gil-Redondo%2C+Juan+Carlos&rft.au=Weber%2C+Andreas&rft.au=Zbiral%2C+Barbara&rft.au=Vivanco%2C+Maria+dM&rft.date=2022-01-01&rft.issn=1751-6161&rft.volume=125&rft.spage=104979&rft_id=info:doi/10.1016%2Fj.jmbbm.2021.104979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmbbm_2021_104979
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon