A generic algorithm of sustainability (GAS) function for industrial complex steam turbine and utility system optimisation

The GAS-function methodology is introduced in this paper in order to identify the sustainability objective function for optimisation of multiple interconnected complex steam turbines and utility network (ICSTUN) systems. Also, the complex steam turbine was modelled based on induction machine operati...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 164; pp. 881 - 897
Main Authors Douglas, Tamunosaki, Big-Alabo, Akuro
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2018.09.016

Cover

Abstract The GAS-function methodology is introduced in this paper in order to identify the sustainability objective function for optimisation of multiple interconnected complex steam turbines and utility network (ICSTUN) systems. Also, the complex steam turbine was modelled based on induction machine operation which enhances its performance. The boiler models were identified as the sustainability objective function which was further investigated under given operating constraints for optimisation of the ICSTUN system. The validated results show that relative error between field operation and simulation data were less than 1% on average, which is acceptable for engineering applications. The optimisation results indicate that contrary to previous authors' results and by comparing with actual field operational data information, coal flow rates for total site utility system of this investigated ICSTUN can be significantly reduced. It was therefore concluded that a significant reduction in the coal flow rate amounts is practicable in order to significantly reduce operating costs as well as the environmental and social issues associated with utilising fossil-fuels, while still satisfying the demand-side management objectives for the plant. •The GAS-function methodology is introduced for analysis of ICSTUN systems.•This model combines basic equations with matrix steam tables for analysis of the system.•The model is practical with the actual energy system based on data acquisition methods.•The results show that induction machine operation enhances the turbine performance.•The results also indicate that fossil-fuel consumption rates can be significantly sustained.
AbstractList The GAS-function methodology is introduced in this paper in order to identify the sustainability objective function for optimisation of multiple interconnected complex steam turbines and utility network (ICSTUN) systems. Also, the complex steam turbine was modelled based on induction machine operation which enhances its performance. The boiler models were identified as the sustainability objective function which was further investigated under given operating constraints for optimisation of the ICSTUN system. The validated results show that relative error between field operation and simulation data were less than 1% on average, which is acceptable for engineering applications. The optimisation results indicate that contrary to previous authors' results and by comparing with actual field operational data information, coal flow rates for total site utility system of this investigated ICSTUN can be significantly reduced. It was therefore concluded that a significant reduction in the coal flow rate amounts is practicable in order to significantly reduce operating costs as well as the environmental and social issues associated with utilising fossil-fuels, while still satisfying the demand-side management objectives for the plant. •The GAS-function methodology is introduced for analysis of ICSTUN systems.•This model combines basic equations with matrix steam tables for analysis of the system.•The model is practical with the actual energy system based on data acquisition methods.•The results show that induction machine operation enhances the turbine performance.•The results also indicate that fossil-fuel consumption rates can be significantly sustained.
The GAS-function methodology is introduced in this paper in order to identify the sustainability objective function for optimisation of multiple interconnected complex steam turbines and utility network (ICSTUN) systems. Also, the complex steam turbine was modelled based on induction machine operation which enhances its performance. The boiler models were identified as the sustainability objective function which was further investigated under given operating constraints for optimisation of the ICSTUN system. The validated results show that relative error between field operation and simulation data were less than 1% on average, which is acceptable for engineering applications. The optimisation results indicate that contrary to previous authors' results and by comparing with actual field operational data information, coal flow rates for total site utility system of this investigated ICSTUN can be significantly reduced. It was therefore concluded that a significant reduction in the coal flow rate amounts is practicable in order to significantly reduce operating costs as well as the environmental and social issues associated with utilising fossil-fuels, while still satisfying the demand-side management objectives for the plant.
Author Douglas, Tamunosaki
Big-Alabo, Akuro
Author_xml – sequence: 1
  givenname: Tamunosaki
  surname: Douglas
  fullname: Douglas, Tamunosaki
  email: tamunosakidouglas@gmail.com
  organization: Sokoto Energy Research Centre, Department of Pure and Industrial Chemistry, Faculty of Science, University of Port Harcourt, P.M.B. 5323, East-West Road Choba, Port Harcourt, Rivers State, Nigeria
– sequence: 2
  givenname: Akuro
  surname: Big-Alabo
  fullname: Big-Alabo, Akuro
  organization: Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, P.M.B. 5323, East-West Road Choba, Port Harcourt, Rivers State, Nigeria
BookMark eNqFkT2P1DAQhi10SOwd_AMKSzRHkWA73nxQIK1OcCCdRAHUlj8my6wSe7EdRP49XkJ1BVS2xs_zasZzTa588EDIS85qznj75lSDh3hca8F4X7OhLsUnZMf7rqnart9fkR1rWlbtpRTPyHVKJ8bYvh-GHVkP9HiR0VI9HUPE_H2mYaRpSVmj1wYnzCu9vT98eU3HxduMwdMxRIreFSainqgN83mCXzRl0DPNSzTogWrv6JI3P63lrQSfM86Y9CXkOXk66inBi7_nDfn24f3Xu4_Vw-f7T3eHh8pKJnMlpHX9IJp25ELrzvSu1Xvd2M51xoneGhCaGeBjO2hwjTDlZgQfrXDSGd41N-R2yz3H8GOBlFXpwMI0aQ9hSUrwrpWM80YW9NUj9BSW6Et3hWq44Jz1rFBvN8rGkFKEUVnMf0bKUeOkOFOXraiT2raiLltRbFClWGT5SD5HnHVc_6e92zQoP_UTIapkEbwFhxFsVi7gvwN-A_lJri8
CitedBy_id crossref_primary_10_1016_j_apenergy_2019_114199
crossref_primary_10_3390_en16176107
crossref_primary_10_1021_acs_iecr_8b05247
crossref_primary_10_1007_s11081_023_09848_2
crossref_primary_10_1016_j_energy_2019_06_086
crossref_primary_10_1016_j_ymssp_2024_112166
crossref_primary_10_3390_en13081886
Cites_doi 10.1080/13873950802384001
10.1016/S1359-4311(03)00213-8
10.1016/S0098-1354(97)00270-6
10.1016/j.energy.2015.12.112
10.1016/j.apenergy.2012.12.039
10.1016/S0009-2509(97)00431-4
10.1016/j.simpat.2008.05.017
10.1016/S0098-1354(96)00317-1
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Dec 1, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 1, 2018
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2018.09.016
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 897
ExternalDocumentID 10_1016_j_energy_2018_09_016
S0360544218317766
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c404t-24cd89236f12aa7b8d6a5a3c7d7bd28cbe2a0be1f69aed32b1f6b21fc2d4db173
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Sat Sep 27 21:46:27 EDT 2025
Wed Aug 13 11:24:27 EDT 2025
Thu Apr 24 22:54:05 EDT 2025
Thu Oct 09 00:33:12 EDT 2025
Fri Feb 23 02:46:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy systems
GAS-Function methodology
Applied thermodynamics
Process system engineering
Mathematical programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-24cd89236f12aa7b8d6a5a3c7d7bd28cbe2a0be1f69aed32b1f6b21fc2d4db173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2131211080
PQPubID 2045484
PageCount 17
ParticipantIDs proquest_miscellaneous_2176401134
proquest_journals_2131211080
crossref_citationtrail_10_1016_j_energy_2018_09_016
crossref_primary_10_1016_j_energy_2018_09_016
elsevier_sciencedirect_doi_10_1016_j_energy_2018_09_016
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Simulink Math Works. 3 Apple Hill drive, Natick, MA 01760-2098, USA; 2005
[Accessed 24 November 2017].
Mircea, Dorin (bib7) 2014; vol. 12
Qin, Chen, Sun, Wu (bib5) 2003; 23
Zimmer (bib2) 2008; 14
Iyer, Grossmann (bib3) 1997; 21
Qiannan, Xianglong, Bingjian, Ying, Songping (bib1) 2016; 97
Peterson, Mann (bib13) 1985; 92
(bib12) 2018
Iyer, Grossmann (bib4) 1998; 22
[Accessed 24 April 2015].
Robin (bib10) 2005
Luo, Zhang, Chen, Mo (bib8) 2013; 112
Chaibakhsh, Ghaffari (bib11) 2008; 16
Mavromatis, Kokossis (bib6) 1998; 53
(bib14) 2017
National Instruments; 2017.
Qin (10.1016/j.energy.2018.09.016_bib5) 2003; 23
Iyer (10.1016/j.energy.2018.09.016_bib3) 1997; 21
Peterson (10.1016/j.energy.2018.09.016_bib13) 1985; 92
(10.1016/j.energy.2018.09.016_bib14) 2017
Robin (10.1016/j.energy.2018.09.016_bib10) 2005
Chaibakhsh (10.1016/j.energy.2018.09.016_bib11) 2008; 16
Mircea (10.1016/j.energy.2018.09.016_bib7) 2014; vol. 12
(10.1016/j.energy.2018.09.016_bib12) 2018
Iyer (10.1016/j.energy.2018.09.016_bib4) 1998; 22
10.1016/j.energy.2018.09.016_bib9
Zimmer (10.1016/j.energy.2018.09.016_bib2) 2008; 14
Qiannan (10.1016/j.energy.2018.09.016_bib1) 2016; 97
Luo (10.1016/j.energy.2018.09.016_bib8) 2013; 112
10.1016/j.energy.2018.09.016_bib15
Mavromatis (10.1016/j.energy.2018.09.016_bib6) 1998; 53
References_xml – reference: Simulink Math Works. 3 Apple Hill drive, Natick, MA 01760-2098, USA; 2005,
– volume: 16
  start-page: 1145
  year: 2008
  end-page: 1162
  ident: bib11
  article-title: Steam turbine model
  publication-title: Simulat Model Pract Theor
– reference: National Instruments; 2017.
– volume: 22
  start-page: 979
  year: 1998
  end-page: 993
  ident: bib4
  article-title: Synthesis and operational planning of utility systems for multiperiod operation
  publication-title: Comput Chem Eng
– volume: 23
  start-page: 2307
  year: 2003
  end-page: 2316
  ident: bib5
  article-title: Optimization for a steam turbine stage efficiency using a genetic algorithm
  publication-title: Appl Therm Eng
– volume: 14
  start-page: 469
  year: 2008
  end-page: 493
  ident: bib2
  article-title: Modelling and simulation of steam turbine processes: individual models for individual tasks
  publication-title: Math Comput Model Dyn Syst
– volume: 21
  start-page: 787
  year: 1997
  end-page: 800
  ident: bib3
  article-title: Optimal multiperiod operational planning for utility systems
  publication-title: Comput Chem Eng
– year: 2017
  ident: bib14
  publication-title: Steam tables–Thermodynamics
– year: 2018
  ident: bib12
  publication-title: Thermodynamic tables of water and steam
– reference: [Accessed 24 November 2017].
– volume: 53
  start-page: 1585
  year: 1998
  end-page: 1608
  ident: bib6
  article-title: Conceptual optimisation of utility networks for operational variations-I.Targets and level optimisation
  publication-title: Chem Eng Sci
– volume: 112
  start-page: 1247
  year: 2013
  end-page: 1264
  ident: bib8
  article-title: Operational planning optimization of steam power plants considering equipment failure in petrochemical complex
  publication-title: Appl Energy
– volume: 97
  start-page: 191
  year: 2016
  end-page: 213
  ident: bib1
  article-title: Mathematical modelling, validation and operation optimization of an industrial complex steam turbine network-methodology and application
  publication-title: Energy
– volume: vol. 12
  start-page: 723
  year: 2014
  end-page: 729
  ident: bib7
  article-title: Mathematical modelling and simulation of the behaviour of the steam turbine
  publication-title: The 7th International Conference Interdisciplinarity in Engineering (INTER-ENG 2013)
– reference: [Accessed 24 April 2015].
– year: 2005
  ident: bib10
  article-title: Chemical process design and integration
– volume: 92
  start-page: 62
  year: 1985
  end-page: 74
  ident: bib13
  article-title: Steam system design: how it evolves
  publication-title: Chem Eng (NY)
– volume: 14
  start-page: 469
  issue: 6
  year: 2008
  ident: 10.1016/j.energy.2018.09.016_bib2
  article-title: Modelling and simulation of steam turbine processes: individual models for individual tasks
  publication-title: Math Comput Model Dyn Syst
  doi: 10.1080/13873950802384001
– volume: 23
  start-page: 2307
  issue: 18
  year: 2003
  ident: 10.1016/j.energy.2018.09.016_bib5
  article-title: Optimization for a steam turbine stage efficiency using a genetic algorithm
  publication-title: Appl Therm Eng
  doi: 10.1016/S1359-4311(03)00213-8
– volume: 22
  start-page: 979
  issue: 7–8
  year: 1998
  ident: 10.1016/j.energy.2018.09.016_bib4
  article-title: Synthesis and operational planning of utility systems for multiperiod operation
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(97)00270-6
– year: 2005
  ident: 10.1016/j.energy.2018.09.016_bib10
– volume: 97
  start-page: 191
  year: 2016
  ident: 10.1016/j.energy.2018.09.016_bib1
  article-title: Mathematical modelling, validation and operation optimization of an industrial complex steam turbine network-methodology and application
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.112
– volume: vol. 12
  start-page: 723
  year: 2014
  ident: 10.1016/j.energy.2018.09.016_bib7
  article-title: Mathematical modelling and simulation of the behaviour of the steam turbine
– ident: 10.1016/j.energy.2018.09.016_bib15
– volume: 112
  start-page: 1247
  year: 2013
  ident: 10.1016/j.energy.2018.09.016_bib8
  article-title: Operational planning optimization of steam power plants considering equipment failure in petrochemical complex
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.039
– year: 2017
  ident: 10.1016/j.energy.2018.09.016_bib14
– volume: 53
  start-page: 1585
  issue: 8
  year: 1998
  ident: 10.1016/j.energy.2018.09.016_bib6
  article-title: Conceptual optimisation of utility networks for operational variations-I.Targets and level optimisation
  publication-title: Chem Eng Sci
  doi: 10.1016/S0009-2509(97)00431-4
– ident: 10.1016/j.energy.2018.09.016_bib9
– volume: 16
  start-page: 1145
  issue: 9
  year: 2008
  ident: 10.1016/j.energy.2018.09.016_bib11
  article-title: Steam turbine model
  publication-title: Simulat Model Pract Theor
  doi: 10.1016/j.simpat.2008.05.017
– year: 2018
  ident: 10.1016/j.energy.2018.09.016_bib12
– volume: 92
  start-page: 62
  year: 1985
  ident: 10.1016/j.energy.2018.09.016_bib13
  article-title: Steam system design: how it evolves
  publication-title: Chem Eng (NY)
– volume: 21
  start-page: 787
  issue: 8
  year: 1997
  ident: 10.1016/j.energy.2018.09.016_bib3
  article-title: Optimal multiperiod operational planning for utility systems
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(96)00317-1
SSID ssj0005899
Score 2.3092623
Snippet The GAS-function methodology is introduced in this paper in order to identify the sustainability objective function for optimisation of multiple interconnected...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 881
SubjectTerms algorithms
Applied thermodynamics
Boilers
coal
Computer simulation
Energy systems
Flow rates
Flow velocity
Fossil fuels
Gas turbines
GAS-Function methodology
Genetic algorithms
Induction motors
Mathematical programming
Objective function
Operating costs
Optimization
Process system engineering
Steam power
Steam turbines
Sustainability
system optimization
Thermodynamics
Turbines
utilities
Title A generic algorithm of sustainability (GAS) function for industrial complex steam turbine and utility system optimisation
URI https://dx.doi.org/10.1016/j.energy.2018.09.016
https://www.proquest.com/docview/2131211080
https://www.proquest.com/docview/2176401134
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALgkLFQqmMxAEOYeNH4uxxVbUsIHoplXqz_CxB3aTqbqX20t_OjOMsDyFV4pY4Y8XyjOeRfDNDyNuyDNZWtSgq5S0GKK5oKq4KU_kYKzHzzuD3jq_H9eJUfj6rzrbIwZgLg7DKrPsHnZ60dR6Z5t2cXrbt9AR0L_gbEm08U6rGsttSKuxi8OHuN5hHk3pIInGB1GP6XMJ4hZRfhwCvJlU7xa7n_zZPfynqZH2OnpDH2W2k82FlT8lW6HbIwzGreLVDdg9_ZawBYT6yq2fkdk7PcQGto-bivL9q19-XtI90NWZOITj2lr77OD95T9HKIacouLK03XT1oAl4Hm4oisSSgpWCeDpQ03kKcpvmDxWhaQ8aaJkRQs_J6dHht4NFkfstFE6Wcl1w6XwDDl8dGTdG2cbXpjLCKa-s542zgZvSBhbrmQlecAtXlrPouJfeMiV2yXbXd-EFoa6sY2zKxoCJlMFEY6MVTJroQlVaFiZEjNusXS5Gjj0xLvSIOvuhB-ZoZI4uZxoGJ6TYzLocinHcQ69GDuo_hEqDvbhn5t7IcJ0P9UpzJrAgHvjYE_Jm8xg2Ff-xmC7010ijaghZmZAv__vlr8gjvBtAM3tke311HV6D67O2-0m298mD-acvi-Of890Ibw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFG8QD3gxihJXUWriQQ_jTj-mnT1uCLAqcAESbk0_cQw7Q9glkYt_u32dzoqGhMTbpPOaNn2v72Pm995D6ENZemMqwYpKOgMBii3qispCVy6Eik2c1fC94-hYzM741_PqfA3tDrkwAKvMur_X6Ulb55FxPs3xVdOMT6Lujf4GBxtPpBTiEXrM4zIQgX3-dQfnUacmkkBdAPmQP5dAXj4l2AHCq07lTqHt-f326R9NnczP_jP0NPuNeNpv7Tla8-0m2hjSihebaGvvT8paJMx3dvEC3U7xBWygsVhfXnTXzfL7HHcBL4bUKUDH3uKPB9OTTxjMHLAKR18WN6u2Hjghz_1PDDIxx9FMxYDaY906HAU3ze9LQuMuqqB5hgi9RGf7e6e7syI3XCgsL_myoNy6Onp8IhCqtTS1E7rSzEonjaO1NZ7q0ngSxER7x6iJT4aSYKnjzhDJttB627X-FcK2FCHUZa2jjeReB22CYYTrYH1VGuJHiA3HrGyuRg5NMS7VADv7oXrmKGCOKicqDo5QsZp11VfjeIBeDhxUf0mVigbjgZnbA8NVvtULRQmDinjRyR6h96vX8VDhJ4tufXcDNFLEmJUw_vq_F99BG7PTo0N1-OX42xv0BN70CJpttL68vvFvox-0NO-SnP8G9nQKBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generic+algorithm+of+sustainability+%28GAS%29+function+for+industrial+complex+steam+turbine+and+utility+system+optimisation&rft.jtitle=Energy+%28Oxford%29&rft.au=Douglas%2C+Tamunosaki&rft.au=Big-Alabo%2C+Akuro&rft.date=2018-12-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=164&rft.spage=881&rft.epage=897&rft_id=info:doi/10.1016%2Fj.energy.2018.09.016&rft.externalDocID=S0360544218317766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon