A generic algorithm of sustainability (GAS) function for industrial complex steam turbine and utility system optimisation
The GAS-function methodology is introduced in this paper in order to identify the sustainability objective function for optimisation of multiple interconnected complex steam turbines and utility network (ICSTUN) systems. Also, the complex steam turbine was modelled based on induction machine operati...
        Saved in:
      
    
          | Published in | Energy (Oxford) Vol. 164; pp. 881 - 897 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Elsevier Ltd
    
        01.12.2018
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0360-5442 1873-6785  | 
| DOI | 10.1016/j.energy.2018.09.016 | 
Cover
| Abstract | The GAS-function methodology is introduced in this paper in order to identify the sustainability objective function for optimisation of multiple interconnected complex steam turbines and utility network (ICSTUN) systems. Also, the complex steam turbine was modelled based on induction machine operation which enhances its performance. The boiler models were identified as the sustainability objective function which was further investigated under given operating constraints for optimisation of the ICSTUN system. The validated results show that relative error between field operation and simulation data were less than 1% on average, which is acceptable for engineering applications. The optimisation results indicate that contrary to previous authors' results and by comparing with actual field operational data information, coal flow rates for total site utility system of this investigated ICSTUN can be significantly reduced. It was therefore concluded that a significant reduction in the coal flow rate amounts is practicable in order to significantly reduce operating costs as well as the environmental and social issues associated with utilising fossil-fuels, while still satisfying the demand-side management objectives for the plant.
•The GAS-function methodology is introduced for analysis of ICSTUN systems.•This model combines basic equations with matrix steam tables for analysis of the system.•The model is practical with the actual energy system based on data acquisition methods.•The results show that induction machine operation enhances the turbine performance.•The results also indicate that fossil-fuel consumption rates can be significantly sustained. | 
    
|---|---|
| AbstractList | The GAS-function methodology is introduced in this paper in order to identify the sustainability objective function for optimisation of multiple interconnected complex steam turbines and utility network (ICSTUN) systems. Also, the complex steam turbine was modelled based on induction machine operation which enhances its performance. The boiler models were identified as the sustainability objective function which was further investigated under given operating constraints for optimisation of the ICSTUN system. The validated results show that relative error between field operation and simulation data were less than 1% on average, which is acceptable for engineering applications. The optimisation results indicate that contrary to previous authors' results and by comparing with actual field operational data information, coal flow rates for total site utility system of this investigated ICSTUN can be significantly reduced. It was therefore concluded that a significant reduction in the coal flow rate amounts is practicable in order to significantly reduce operating costs as well as the environmental and social issues associated with utilising fossil-fuels, while still satisfying the demand-side management objectives for the plant.
•The GAS-function methodology is introduced for analysis of ICSTUN systems.•This model combines basic equations with matrix steam tables for analysis of the system.•The model is practical with the actual energy system based on data acquisition methods.•The results show that induction machine operation enhances the turbine performance.•The results also indicate that fossil-fuel consumption rates can be significantly sustained. The GAS-function methodology is introduced in this paper in order to identify the sustainability objective function for optimisation of multiple interconnected complex steam turbines and utility network (ICSTUN) systems. Also, the complex steam turbine was modelled based on induction machine operation which enhances its performance. The boiler models were identified as the sustainability objective function which was further investigated under given operating constraints for optimisation of the ICSTUN system. The validated results show that relative error between field operation and simulation data were less than 1% on average, which is acceptable for engineering applications. The optimisation results indicate that contrary to previous authors' results and by comparing with actual field operational data information, coal flow rates for total site utility system of this investigated ICSTUN can be significantly reduced. It was therefore concluded that a significant reduction in the coal flow rate amounts is practicable in order to significantly reduce operating costs as well as the environmental and social issues associated with utilising fossil-fuels, while still satisfying the demand-side management objectives for the plant.  | 
    
| Author | Douglas, Tamunosaki Big-Alabo, Akuro  | 
    
| Author_xml | – sequence: 1 givenname: Tamunosaki surname: Douglas fullname: Douglas, Tamunosaki email: tamunosakidouglas@gmail.com organization: Sokoto Energy Research Centre, Department of Pure and Industrial Chemistry, Faculty of Science, University of Port Harcourt, P.M.B. 5323, East-West Road Choba, Port Harcourt, Rivers State, Nigeria – sequence: 2 givenname: Akuro surname: Big-Alabo fullname: Big-Alabo, Akuro organization: Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, P.M.B. 5323, East-West Road Choba, Port Harcourt, Rivers State, Nigeria  | 
    
| BookMark | eNqFkT2P1DAQhi10SOwd_AMKSzRHkWA73nxQIK1OcCCdRAHUlj8my6wSe7EdRP49XkJ1BVS2xs_zasZzTa588EDIS85qznj75lSDh3hca8F4X7OhLsUnZMf7rqnart9fkR1rWlbtpRTPyHVKJ8bYvh-GHVkP9HiR0VI9HUPE_H2mYaRpSVmj1wYnzCu9vT98eU3HxduMwdMxRIreFSainqgN83mCXzRl0DPNSzTogWrv6JI3P63lrQSfM86Y9CXkOXk66inBi7_nDfn24f3Xu4_Vw-f7T3eHh8pKJnMlpHX9IJp25ELrzvSu1Xvd2M51xoneGhCaGeBjO2hwjTDlZgQfrXDSGd41N-R2yz3H8GOBlFXpwMI0aQ9hSUrwrpWM80YW9NUj9BSW6Et3hWq44Jz1rFBvN8rGkFKEUVnMf0bKUeOkOFOXraiT2raiLltRbFClWGT5SD5HnHVc_6e92zQoP_UTIapkEbwFhxFsVi7gvwN-A_lJri8 | 
    
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2019_114199 crossref_primary_10_3390_en16176107 crossref_primary_10_1021_acs_iecr_8b05247 crossref_primary_10_1007_s11081_023_09848_2 crossref_primary_10_1016_j_energy_2019_06_086 crossref_primary_10_1016_j_ymssp_2024_112166 crossref_primary_10_3390_en13081886  | 
    
| Cites_doi | 10.1080/13873950802384001 10.1016/S1359-4311(03)00213-8 10.1016/S0098-1354(97)00270-6 10.1016/j.energy.2015.12.112 10.1016/j.apenergy.2012.12.039 10.1016/S0009-2509(97)00431-4 10.1016/j.simpat.2008.05.017 10.1016/S0098-1354(96)00317-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Dec 1, 2018  | 
    
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Dec 1, 2018  | 
    
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6  | 
    
| DOI | 10.1016/j.energy.2018.09.016 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Environmental Sciences  | 
    
| EISSN | 1873-6785 | 
    
| EndPage | 897 | 
    
| ExternalDocumentID | 10_1016_j_energy_2018_09_016 S0360544218317766  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c404t-24cd89236f12aa7b8d6a5a3c7d7bd28cbe2a0be1f69aed32b1f6b21fc2d4db173 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0360-5442 | 
    
| IngestDate | Sat Sep 27 21:46:27 EDT 2025 Wed Aug 13 11:24:27 EDT 2025 Thu Apr 24 22:54:05 EDT 2025 Thu Oct 09 00:33:12 EDT 2025 Fri Feb 23 02:46:24 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Energy systems GAS-Function methodology Applied thermodynamics Process system engineering Mathematical programming  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c404t-24cd89236f12aa7b8d6a5a3c7d7bd28cbe2a0be1f69aed32b1f6b21fc2d4db173 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 2131211080 | 
    
| PQPubID | 2045484 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | proquest_miscellaneous_2176401134 proquest_journals_2131211080 crossref_citationtrail_10_1016_j_energy_2018_09_016 crossref_primary_10_1016_j_energy_2018_09_016 elsevier_sciencedirect_doi_10_1016_j_energy_2018_09_016  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-12-01 | 
    
| PublicationDateYYYYMMDD | 2018-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Energy (Oxford) | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Simulink Math Works. 3 Apple Hill drive, Natick, MA 01760-2098, USA; 2005 [Accessed 24 November 2017]. Mircea, Dorin (bib7) 2014; vol. 12 Qin, Chen, Sun, Wu (bib5) 2003; 23 Zimmer (bib2) 2008; 14 Iyer, Grossmann (bib3) 1997; 21 Qiannan, Xianglong, Bingjian, Ying, Songping (bib1) 2016; 97 Peterson, Mann (bib13) 1985; 92 (bib12) 2018 Iyer, Grossmann (bib4) 1998; 22 [Accessed 24 April 2015]. Robin (bib10) 2005 Luo, Zhang, Chen, Mo (bib8) 2013; 112 Chaibakhsh, Ghaffari (bib11) 2008; 16 Mavromatis, Kokossis (bib6) 1998; 53 (bib14) 2017 National Instruments; 2017. Qin (10.1016/j.energy.2018.09.016_bib5) 2003; 23 Iyer (10.1016/j.energy.2018.09.016_bib3) 1997; 21 Peterson (10.1016/j.energy.2018.09.016_bib13) 1985; 92 (10.1016/j.energy.2018.09.016_bib14) 2017 Robin (10.1016/j.energy.2018.09.016_bib10) 2005 Chaibakhsh (10.1016/j.energy.2018.09.016_bib11) 2008; 16 Mircea (10.1016/j.energy.2018.09.016_bib7) 2014; vol. 12 (10.1016/j.energy.2018.09.016_bib12) 2018 Iyer (10.1016/j.energy.2018.09.016_bib4) 1998; 22 10.1016/j.energy.2018.09.016_bib9 Zimmer (10.1016/j.energy.2018.09.016_bib2) 2008; 14 Qiannan (10.1016/j.energy.2018.09.016_bib1) 2016; 97 Luo (10.1016/j.energy.2018.09.016_bib8) 2013; 112 10.1016/j.energy.2018.09.016_bib15 Mavromatis (10.1016/j.energy.2018.09.016_bib6) 1998; 53  | 
    
| References_xml | – reference: Simulink Math Works. 3 Apple Hill drive, Natick, MA 01760-2098, USA; 2005, – volume: 16 start-page: 1145 year: 2008 end-page: 1162 ident: bib11 article-title: Steam turbine model publication-title: Simulat Model Pract Theor – reference: National Instruments; 2017. – volume: 22 start-page: 979 year: 1998 end-page: 993 ident: bib4 article-title: Synthesis and operational planning of utility systems for multiperiod operation publication-title: Comput Chem Eng – volume: 23 start-page: 2307 year: 2003 end-page: 2316 ident: bib5 article-title: Optimization for a steam turbine stage efficiency using a genetic algorithm publication-title: Appl Therm Eng – volume: 14 start-page: 469 year: 2008 end-page: 493 ident: bib2 article-title: Modelling and simulation of steam turbine processes: individual models for individual tasks publication-title: Math Comput Model Dyn Syst – volume: 21 start-page: 787 year: 1997 end-page: 800 ident: bib3 article-title: Optimal multiperiod operational planning for utility systems publication-title: Comput Chem Eng – year: 2017 ident: bib14 publication-title: Steam tables–Thermodynamics – year: 2018 ident: bib12 publication-title: Thermodynamic tables of water and steam – reference: [Accessed 24 November 2017]. – volume: 53 start-page: 1585 year: 1998 end-page: 1608 ident: bib6 article-title: Conceptual optimisation of utility networks for operational variations-I.Targets and level optimisation publication-title: Chem Eng Sci – volume: 112 start-page: 1247 year: 2013 end-page: 1264 ident: bib8 article-title: Operational planning optimization of steam power plants considering equipment failure in petrochemical complex publication-title: Appl Energy – volume: 97 start-page: 191 year: 2016 end-page: 213 ident: bib1 article-title: Mathematical modelling, validation and operation optimization of an industrial complex steam turbine network-methodology and application publication-title: Energy – volume: vol. 12 start-page: 723 year: 2014 end-page: 729 ident: bib7 article-title: Mathematical modelling and simulation of the behaviour of the steam turbine publication-title: The 7th International Conference Interdisciplinarity in Engineering (INTER-ENG 2013) – reference: [Accessed 24 April 2015]. – year: 2005 ident: bib10 article-title: Chemical process design and integration – volume: 92 start-page: 62 year: 1985 end-page: 74 ident: bib13 article-title: Steam system design: how it evolves publication-title: Chem Eng (NY) – volume: 14 start-page: 469 issue: 6 year: 2008 ident: 10.1016/j.energy.2018.09.016_bib2 article-title: Modelling and simulation of steam turbine processes: individual models for individual tasks publication-title: Math Comput Model Dyn Syst doi: 10.1080/13873950802384001 – volume: 23 start-page: 2307 issue: 18 year: 2003 ident: 10.1016/j.energy.2018.09.016_bib5 article-title: Optimization for a steam turbine stage efficiency using a genetic algorithm publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(03)00213-8 – volume: 22 start-page: 979 issue: 7–8 year: 1998 ident: 10.1016/j.energy.2018.09.016_bib4 article-title: Synthesis and operational planning of utility systems for multiperiod operation publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(97)00270-6 – year: 2005 ident: 10.1016/j.energy.2018.09.016_bib10 – volume: 97 start-page: 191 year: 2016 ident: 10.1016/j.energy.2018.09.016_bib1 article-title: Mathematical modelling, validation and operation optimization of an industrial complex steam turbine network-methodology and application publication-title: Energy doi: 10.1016/j.energy.2015.12.112 – volume: vol. 12 start-page: 723 year: 2014 ident: 10.1016/j.energy.2018.09.016_bib7 article-title: Mathematical modelling and simulation of the behaviour of the steam turbine – ident: 10.1016/j.energy.2018.09.016_bib15 – volume: 112 start-page: 1247 year: 2013 ident: 10.1016/j.energy.2018.09.016_bib8 article-title: Operational planning optimization of steam power plants considering equipment failure in petrochemical complex publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.039 – year: 2017 ident: 10.1016/j.energy.2018.09.016_bib14 – volume: 53 start-page: 1585 issue: 8 year: 1998 ident: 10.1016/j.energy.2018.09.016_bib6 article-title: Conceptual optimisation of utility networks for operational variations-I.Targets and level optimisation publication-title: Chem Eng Sci doi: 10.1016/S0009-2509(97)00431-4 – ident: 10.1016/j.energy.2018.09.016_bib9 – volume: 16 start-page: 1145 issue: 9 year: 2008 ident: 10.1016/j.energy.2018.09.016_bib11 article-title: Steam turbine model publication-title: Simulat Model Pract Theor doi: 10.1016/j.simpat.2008.05.017 – year: 2018 ident: 10.1016/j.energy.2018.09.016_bib12 – volume: 92 start-page: 62 year: 1985 ident: 10.1016/j.energy.2018.09.016_bib13 article-title: Steam system design: how it evolves publication-title: Chem Eng (NY) – volume: 21 start-page: 787 issue: 8 year: 1997 ident: 10.1016/j.energy.2018.09.016_bib3 article-title: Optimal multiperiod operational planning for utility systems publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(96)00317-1  | 
    
| SSID | ssj0005899 | 
    
| Score | 2.3092623 | 
    
| Snippet | The GAS-function methodology is introduced in this paper in order to identify the sustainability objective function for optimisation of multiple interconnected... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 881 | 
    
| SubjectTerms | algorithms Applied thermodynamics Boilers coal Computer simulation Energy systems Flow rates Flow velocity Fossil fuels Gas turbines GAS-Function methodology Genetic algorithms Induction motors Mathematical programming Objective function Operating costs Optimization Process system engineering Steam power Steam turbines Sustainability system optimization Thermodynamics Turbines utilities  | 
    
| Title | A generic algorithm of sustainability (GAS) function for industrial complex steam turbine and utility system optimisation | 
    
| URI | https://dx.doi.org/10.1016/j.energy.2018.09.016 https://www.proquest.com/docview/2131211080 https://www.proquest.com/docview/2176401134  | 
    
| Volume | 164 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALgkLFQqmMxAEOYeNH4uxxVbUsIHoplXqz_CxB3aTqbqX20t_OjOMsDyFV4pY4Y8XyjOeRfDNDyNuyDNZWtSgq5S0GKK5oKq4KU_kYKzHzzuD3jq_H9eJUfj6rzrbIwZgLg7DKrPsHnZ60dR6Z5t2cXrbt9AR0L_gbEm08U6rGsttSKuxi8OHuN5hHk3pIInGB1GP6XMJ4hZRfhwCvJlU7xa7n_zZPfynqZH2OnpDH2W2k82FlT8lW6HbIwzGreLVDdg9_ZawBYT6yq2fkdk7PcQGto-bivL9q19-XtI90NWZOITj2lr77OD95T9HKIacouLK03XT1oAl4Hm4oisSSgpWCeDpQ03kKcpvmDxWhaQ8aaJkRQs_J6dHht4NFkfstFE6Wcl1w6XwDDl8dGTdG2cbXpjLCKa-s542zgZvSBhbrmQlecAtXlrPouJfeMiV2yXbXd-EFoa6sY2zKxoCJlMFEY6MVTJroQlVaFiZEjNusXS5Gjj0xLvSIOvuhB-ZoZI4uZxoGJ6TYzLocinHcQ69GDuo_hEqDvbhn5t7IcJ0P9UpzJrAgHvjYE_Jm8xg2Ff-xmC7010ijaghZmZAv__vlr8gjvBtAM3tke311HV6D67O2-0m298mD-acvi-Of890Ibw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFG8QD3gxihJXUWriQQ_jTj-mnT1uCLAqcAESbk0_cQw7Q9glkYt_u32dzoqGhMTbpPOaNn2v72Pm995D6ENZemMqwYpKOgMBii3qispCVy6Eik2c1fC94-hYzM741_PqfA3tDrkwAKvMur_X6Ulb55FxPs3xVdOMT6Lujf4GBxtPpBTiEXrM4zIQgX3-dQfnUacmkkBdAPmQP5dAXj4l2AHCq07lTqHt-f326R9NnczP_jP0NPuNeNpv7Tla8-0m2hjSihebaGvvT8paJMx3dvEC3U7xBWygsVhfXnTXzfL7HHcBL4bUKUDH3uKPB9OTTxjMHLAKR18WN6u2Hjghz_1PDDIxx9FMxYDaY906HAU3ze9LQuMuqqB5hgi9RGf7e6e7syI3XCgsL_myoNy6Onp8IhCqtTS1E7rSzEonjaO1NZ7q0ngSxER7x6iJT4aSYKnjzhDJttB627X-FcK2FCHUZa2jjeReB22CYYTrYH1VGuJHiA3HrGyuRg5NMS7VADv7oXrmKGCOKicqDo5QsZp11VfjeIBeDhxUf0mVigbjgZnbA8NVvtULRQmDinjRyR6h96vX8VDhJ4tufXcDNFLEmJUw_vq_F99BG7PTo0N1-OX42xv0BN70CJpttL68vvFvox-0NO-SnP8G9nQKBA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generic+algorithm+of+sustainability+%28GAS%29+function+for+industrial+complex+steam+turbine+and+utility+system+optimisation&rft.jtitle=Energy+%28Oxford%29&rft.au=Douglas%2C+Tamunosaki&rft.au=Big-Alabo%2C+Akuro&rft.date=2018-12-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=164&rft.spage=881&rft.epage=897&rft_id=info:doi/10.1016%2Fj.energy.2018.09.016&rft.externalDocID=S0360544218317766 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |