Crystal and rotator phases of n -alkanes: A molecular dynamics study
Normal alkanes have a simple molecular structure, but display a surprising variety of ordered phases, including an orthorhombic crystal, followed on heating by two partially ordered rotator phases RI and RII. These phases are interesting both because of the weakly first-order transitions that separa...
Saved in:
Published in | The Journal of chemical physics Vol. 132; no. 4; pp. 044901 - 044901-10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
28.01.2010
|
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/1.3276458 |
Cover
Abstract | Normal alkanes have a simple molecular structure, but display a surprising variety of ordered phases, including an orthorhombic crystal, followed on heating by two partially ordered rotator phases RI and RII. These phases are interesting both because of the weakly first-order transitions that separate them, and because rotator phases are implicated in the nucleation of crystals in polyethylene. To understand this interesting and technologically important phenomenon, a clear picture of the rotator phase is essential. We conducted all-atom simulations of pure
C
23
and mixed
C
21
-
C
23
normal alkanes. Among potentials we tried, only Flexible Williams gave good agreement with the experimental sequence of phases and transition temperatures. Physical properties of the simulated phases, including lattice dimensions and transition entropy between orthorhombic and rotator RII phase are in good agreement with experiment. We define order parameters for investigating pretransitional fluctuations in RI and RII phases; we observed only very short-range correlations in these phases, but slower temperature scans may be necessary to properly investigate these weakly first-order transitions. |
---|---|
AbstractList | Normal alkanes have a simple molecular structure, but display a surprising variety of ordered phases, including an orthorhombic crystal, followed on heating by two partially ordered rotator phases RI and RII. These phases are interesting both because of the weakly first-order transitions that separate them, and because rotator phases are implicated in the nucleation of crystals in polyethylene. To understand this interesting and technologically important phenomenon, a clear picture of the rotator phase is essential. We conducted all-atom simulations of pure C(23) and mixed C(21)-C(23) normal alkanes. Among potentials we tried, only Flexible Williams gave good agreement with the experimental sequence of phases and transition temperatures. Physical properties of the simulated phases, including lattice dimensions and transition entropy between orthorhombic and rotator RII phase are in good agreement with experiment. We define order parameters for investigating pretransitional fluctuations in RI and RII phases; we observed only very short-range correlations in these phases, but slower temperature scans may be necessary to properly investigate these weakly first-order transitions.Normal alkanes have a simple molecular structure, but display a surprising variety of ordered phases, including an orthorhombic crystal, followed on heating by two partially ordered rotator phases RI and RII. These phases are interesting both because of the weakly first-order transitions that separate them, and because rotator phases are implicated in the nucleation of crystals in polyethylene. To understand this interesting and technologically important phenomenon, a clear picture of the rotator phase is essential. We conducted all-atom simulations of pure C(23) and mixed C(21)-C(23) normal alkanes. Among potentials we tried, only Flexible Williams gave good agreement with the experimental sequence of phases and transition temperatures. Physical properties of the simulated phases, including lattice dimensions and transition entropy between orthorhombic and rotator RII phase are in good agreement with experiment. We define order parameters for investigating pretransitional fluctuations in RI and RII phases; we observed only very short-range correlations in these phases, but slower temperature scans may be necessary to properly investigate these weakly first-order transitions. Normal alkanes have a simple molecular structure, but display a surprising variety of ordered phases, including an orthorhombic crystal, followed on heating by two partially ordered rotator phases RI and RII. These phases are interesting both because of the weakly first-order transitions that separate them, and because rotator phases are implicated in the nucleation of crystals in polyethylene. To understand this interesting and technologically important phenomenon, a clear picture of the rotator phase is essential. We conducted all-atom simulations of pure C(23) and mixed C(21)-C(23) normal alkanes. Among potentials we tried, only Flexible Williams gave good agreement with the experimental sequence of phases and transition temperatures. Physical properties of the simulated phases, including lattice dimensions and transition entropy between orthorhombic and rotator RII phase are in good agreement with experiment. We define order parameters for investigating pretransitional fluctuations in RI and RII phases; we observed only very short-range correlations in these phases, but slower temperature scans may be necessary to properly investigate these weakly first-order transitions. Normal alkanes have a simple molecular structure, but display a surprising variety of ordered phases, including an orthorhombic crystal, followed on heating by two partially ordered rotator phases RI and RII. These phases are interesting both because of the weakly first-order transitions that separate them, and because rotator phases are implicated in the nucleation of crystals in polyethylene. To understand this interesting and technologically important phenomenon, a clear picture of the rotator phase is essential. We conducted all-atom simulations of pure C 23 and mixed C 21 - C 23 normal alkanes. Among potentials we tried, only Flexible Williams gave good agreement with the experimental sequence of phases and transition temperatures. Physical properties of the simulated phases, including lattice dimensions and transition entropy between orthorhombic and rotator RII phase are in good agreement with experiment. We define order parameters for investigating pretransitional fluctuations in RI and RII phases; we observed only very short-range correlations in these phases, but slower temperature scans may be necessary to properly investigate these weakly first-order transitions. Normal alkanes have a simple molecular structure, but display a surprising variety of ordered phases, including an orthorhombic crystal, followed on heating by two partially ordered rotator phases RI and RII. These phases are interesting both because of the weakly first-order transitions that separate them, and because rotator phases are implicated in the nucleation of crystals in polyethylene. To understand this interesting and technologically important phenomenon, a clear picture of the rotator phase is essential. We conducted all-atom simulations of pure C23 and mixed C21–C23 normal alkanes. Among potentials we tried, only Flexible Williams gave good agreement with the experimental sequence of phases and transition temperatures. Physical properties of the simulated phases, including lattice dimensions and transition entropy between orthorhombic and rotator RII phase are in good agreement with experiment. We define order parameters for investigating pretransitional fluctuations in RI and RII phases; we observed only very short-range correlations in these phases, but slower temperature scans may be necessary to properly investigate these weakly first-order transitions. |
Author | Milner, Scott T. Wentzel, Nathaniel |
Author_xml | – sequence: 1 givenname: Nathaniel surname: Wentzel fullname: Wentzel, Nathaniel email: nwentzel@engr.psu.edu. organization: Department of Chemical Engineering, Pennsylvania State University, University Park,Pennsylvania 16802, USA – sequence: 2 givenname: Scott surname: Milner middlename: T. fullname: Milner, Scott T. organization: Department of Chemical Engineering, Pennsylvania State University, University Park,Pennsylvania 16802, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20113060$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLxDAUhYOMOA9d-AckO3FR5yZpk1ZwMYxPGHCj65BmUqymzZi0i_57I9PZiK4uXL57OOeeOZq0rjUInRO4JsDZklwzKnia5UdoRiAvEsELmKAZACVJwYFP0TyEDwAggqYnaEqBEAYcZuhu7YfQKYtVu8XedapzHu_eVTABuwq3OFH2U7Um3OAVbpw1urfK4-3QqqbWAYeu3w6n6LhSNpizcS7Q28P96_op2bw8Pq9Xm0SnkHYJhTIjXFOho5ESdHTAKNG0zMoibpjONeFCaRBMiZIURVplWhU8T2kmaFWwBbrc6-68--pN6GRTB22sjQZdH6RgLE9jMh7Ji5Hsy8Zs5c7XjfKDPASPwHIPaO9C8KaSuo7ha9d2XtVWEpA_r5VEjq-NF1e_Lg6if7G3ezYcVP-HxwJkLECOBbBvVEaKQQ |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1016_j_pss_2012_10_010 crossref_primary_10_1016_j_cis_2019_04_001 crossref_primary_10_1039_c1sm05326d crossref_primary_10_1063_1_3571457 crossref_primary_10_1002_marc_201100565 crossref_primary_10_1088_0256_307X_31_1_010501 crossref_primary_10_1021_acs_jpcb_3c02027 crossref_primary_10_1039_D2RA02183H crossref_primary_10_1016_j_cplett_2018_10_004 crossref_primary_10_1021_acs_jpcc_1c05176 crossref_primary_10_1021_acs_macromol_7b00421 crossref_primary_10_1021_acs_energyfuels_8b02500 crossref_primary_10_1039_D1CP02720D crossref_primary_10_3390_polym12102408 crossref_primary_10_1021_acs_jpcb_1c09471 crossref_primary_10_1016_j_colsurfa_2024_134466 crossref_primary_10_1016_j_culher_2023_05_023 crossref_primary_10_1021_ma501906n crossref_primary_10_1134_S0036024413110071 crossref_primary_10_1039_C4RA14116D crossref_primary_10_1016_j_jnoncrysol_2014_07_038 crossref_primary_10_1016_j_jcis_2016_08_009 crossref_primary_10_1016_j_cplett_2018_09_046 crossref_primary_10_1021_acs_chemmater_4c02576 crossref_primary_10_3390_e21090856 crossref_primary_10_1021_acs_cgd_1c00734 crossref_primary_10_1021_ma5025895 crossref_primary_10_1021_acs_macromol_7b01202 crossref_primary_10_1063_1_4719530 crossref_primary_10_1063_1_3589417 crossref_primary_10_1016_j_ijheatmasstransfer_2012_11_013 crossref_primary_10_1016_j_eurpolymj_2018_03_001 crossref_primary_10_1016_j_jct_2013_10_006 crossref_primary_10_1039_c2ra21480f crossref_primary_10_1016_j_physrep_2015_05_005 crossref_primary_10_1039_C8PY00355F crossref_primary_10_1021_acs_macromol_5b02030 crossref_primary_10_1063_1_3646213 crossref_primary_10_1021_acs_macromol_8b02710 crossref_primary_10_1021_jacs_7b06720 crossref_primary_10_1021_jacs_7b08627 crossref_primary_10_3390_cryst12070987 crossref_primary_10_1016_j_est_2022_105363 crossref_primary_10_1016_j_jssc_2013_09_018 crossref_primary_10_1016_j_tca_2021_179037 crossref_primary_10_1016_j_jcis_2023_01_126 crossref_primary_10_1021_acs_jpcb_0c07587 crossref_primary_10_1063_5_0067788 crossref_primary_10_1002_polb_24142 crossref_primary_10_1007_s12161_018_1217_y crossref_primary_10_1063_1_3599051 crossref_primary_10_1134_S0036024419120057 crossref_primary_10_1246_bcsj_20200384 crossref_primary_10_1063_1_4907262 crossref_primary_10_1103_PhysRevMaterials_8_075606 crossref_primary_10_1021_acs_macromol_7b00995 crossref_primary_10_1063_1_5110681 crossref_primary_10_1063_5_0031761 crossref_primary_10_1021_la1037266 crossref_primary_10_1039_C5CP04677G crossref_primary_10_1103_PhysRevE_102_063302 crossref_primary_10_3390_polym16162243 crossref_primary_10_1080_09500839_2011_643248 crossref_primary_10_1007_s11630_021_1506_4 crossref_primary_10_1039_D4CP01884B crossref_primary_10_1103_PhysRevE_93_062131 crossref_primary_10_1002_ente_202300544 crossref_primary_10_1016_j_foodres_2017_01_010 crossref_primary_10_1016_j_clay_2021_106364 crossref_primary_10_1103_PhysRevE_97_042501 crossref_primary_10_1021_acs_cgd_2c01350 crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_017 crossref_primary_10_1021_acs_macromol_8b00958 crossref_primary_10_1002_asia_201501442 crossref_primary_10_1021_acs_macromol_8b01248 crossref_primary_10_1021_jacs_6b12817 crossref_primary_10_1016_j_solener_2019_12_064 |
Cites_doi | 10.1021/la9702291 10.1063/1.1568934 10.1080/00268978900101561 10.1016/S0032-3861(01)00308-1 10.1016/j.polymer.2005.09.019 10.1063/1.464874 10.1002/jcc.540140909 10.1080/00268979400101361 10.1021/ja9621760 10.1080/00268970701779663 10.1063/1.1701684 10.1063/1.2148909 10.1021/ma000312m 10.1063/1.479409 10.1063/1.466633 10.1021/jp980939v 10.1063/1.467837 10.1063/1.1386912 10.1021/jp710678w 10.1063/1.3093065 10.1063/1.466929 10.1021/jp9801065 10.1021/ma0615147 10.1021/j100002a050 10.1021/ct700301q 10.1063/1.1792572 10.1021/jp055080d 10.1063/1.1430744 10.1063/1.1367285 10.1103/PhysRevLett.58.698 10.1021/jp055079e 10.1051/jcp/1997941482 |
ContentType | Journal Article |
Copyright | 2010 American Institute of Physics |
Copyright_xml | – notice: 2010 American Institute of Physics |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1063/1.3276458 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
EndPage | 044901-10 |
ExternalDocumentID | 20113060 10_1063_1_3276458 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NSF grantid: DMR-0907370 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS ADXHL BDMKI CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c404t-20b516c27c001b0c306321c2b5b90013c8c167ac073a7b1994f5ca96842572f93 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 16:05:38 EDT 2025 Mon Jul 21 05:39:21 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 Tue Jul 01 00:44:02 EDT 2025 Fri Jun 21 00:17:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-20b516c27c001b0c306321c2b5b90013c8c167ac073a7b1994f5ca96842572f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20113060 |
PQID | 733841136 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_733841136 pubmed_primary_20113060 crossref_citationtrail_10_1063_1_3276458 crossref_primary_10_1063_1_3276458 scitation_primary_10_1063_1_3276458Crystal_and_rotator |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-28 |
PublicationDateYYYYMMDD | 2010-01-28 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2010 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Waldman, M.; Hagler, A. 1993; 14 Sirota, E.; King, H.; Shao, H.; Singer, D. 1995; 99 Sirota, E.; Singer, D. 1994; 101 Ryckaert, J.; McDonald, I.; Klein, M. 1989; 67 Tobias, D.; Tu, K.; Klein, M. 1997; 94 Chang, J.; Sandler, S. 2004; 121 Waheed, N.; Lavine, M.; Rutledge, G. 2002; 116 Ryckaert, J.; Klein, M.; McDonald, I. 1994; 83 Bordat, P.; Brown, R. 2009; 130 Kraack, H.; Deutsch, M.; Sirota, E. 2000; 33 Marbeuf, A.; Brown, R. 2006; 124 Sun, H. 1998; 102 Sirota, E.; Singer, D.; King, H. 1994; 100 Kraack, H.; Sirota, E.; Deutsch, M. 2001; 42 Sirota, E. 2007; 40 Smith, G.; Yoon, D. 1994; 100 Das, C.; Frenkel, D. 2003; 118 Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. 2008; 4 Sirota, E. 1997; 13 Jorgensen, W.; Maxwell, D.; Tirado-Rives, J. 1996; 118 Polson, J.; Frenkel, D. 1999; 111 Williams, D. 1967; 47 Phillips, T.; Hanna, S. 2005; 46 Ryckaert, J.; Klein, M. 1987; 58 Chen, B.; Martin, M.; Siepmann, J. 1998; 102 Borodin, O.; Smith, G. 2006; 110 Ryckaert, J.; Klein, M.; McDonald, I. 1987; 58 Sirota, E.; King, H.; Singer, D.; Shao, H. 1993; 98 Mavrantza, I.; Prentzas, D.; Mavrantzas, V.; Galiotis, C. 2001; 115 Ismail, A.; Tsige, M.; Veld, P.; Grest, G. 2007; 105 Tsige, M.; Grest, G. 2008; 112 Milner, S.; Frischknecht, A. 2001; 114 (2023062523534228600_c5) 1995; 99 (2023062523534228600_c6) 1997; 13 (2023062523534228600_c27) 2003; 118 (2023062523534228600_c31) 1993; 14 (2023062523534228600_c30) 2004; 121 (2023062523534228600_c13) 1989; 67 (2023062523534228600_c19) 2001; 115 (2023062523534228600_c2) 1993; 98 (2023062523534228600_c11) 1987; 58 (2023062523534228600_c4) 1994; 101 (2023062523534228600_c7) 2007; 40 (2023062523534228600_c1) 1986 (2023062523534228600_c21) 2006; 110 (2023062523534228600_c26) 1999; 111 (2023062523534228600_c29) 1998; 102 (2023062523534228600_c34) 2002; 116 (2023062523534228600_c33) 2008; 4 (2023062523534228600_c28) 2009; 130 (2023062523534228600_c12) 1987; 58 (2023062523534228600_c17) 1998; 102 (2023062523534228600_c8) 2000; 33 (2023062523534228600_c3) 1994; 100 (2023062523534228600_c15) 1994; 100 (2023062523534228600_c16) 2005; 46 (2023062523534228600_c32) 1967; 47 (2023062523534228600_c10) 2001; 114 (2023062523534228600_c22) 2006; 110 (2023062523534228600_c24) 2008; 112 (2023062523534228600_c23) 2007; 105 (2023062523534228600_c9) 2001; 42 (2023062523534228600_c14) 1994; 83 (2023062523534228600_c18) 2006; 124 (2023062523534228600_c20) 1996; 118 (2023062523534228600_c25) 1997; 94 |
References_xml | – volume: 13 start-page: 3849 year: 1997 publication-title: Langmuir doi: 10.1021/la9702291 – volume: 118 start-page: 9433 year: 2003 publication-title: J. Chem. Phys. doi: 10.1063/1.1568934 – volume: 67 start-page: 957 year: 1989 publication-title: Mol. Phys. doi: 10.1080/00268978900101561 – volume: 42 start-page: 8225 year: 2001 publication-title: Polymer doi: 10.1016/S0032-3861(01)00308-1 – volume: 46 start-page: 11035 year: 2005 publication-title: Polymer doi: 10.1016/j.polymer.2005.09.019 – volume: 98 start-page: 5809 year: 1993 publication-title: J. Chem. Phys. doi: 10.1063/1.464874 – volume: 14 start-page: 1077 year: 1993 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540140909 – volume: 83 start-page: 439 year: 1994 publication-title: Mol. Phys. doi: 10.1080/00268979400101361 – volume: 118 start-page: 11225 year: 1996 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9621760 – volume: 105 start-page: 3155 year: 2007 publication-title: Mol. Phys. doi: 10.1080/00268970701779663 – volume: 47 start-page: 4680 year: 1967 publication-title: J. Chem. Phys. doi: 10.1063/1.1701684 – volume: 124 start-page: 054901 year: 2006 publication-title: J. Chem. Phys. doi: 10.1063/1.2148909 – volume: 33 start-page: 6174 year: 2000 publication-title: Macromolecules doi: 10.1021/ma000312m – volume: 94 start-page: 1482 year: 1997 publication-title: J. Chim. Phys. Phys.-Chim. Biol. – volume: 111 start-page: 1501 year: 1999 publication-title: J. Chem. Phys. doi: 10.1063/1.479409 – volume: 100 start-page: 1542 year: 1994 publication-title: J. Chem. Phys. doi: 10.1063/1.466633 – volume: 102 start-page: 7338 year: 1998 publication-title: J. Phys. Chem. B doi: 10.1021/jp980939v – volume: 101 start-page: 10873 year: 1994 publication-title: J. Chem. Phys. doi: 10.1063/1.467837 – volume: 58 start-page: 698 year: 1987 publication-title: J. Chem. Phys. – volume: 115 start-page: 3937 year: 2001 publication-title: J. Chem. Phys. doi: 10.1063/1.1386912 – volume: 112 start-page: 5029 year: 2008 publication-title: J. Phys. Chem. C doi: 10.1021/jp710678w – volume: 130 start-page: 124501 year: 2009 publication-title: J. Chem. Phys. doi: 10.1063/1.3093065 – volume: 100 start-page: 649 year: 1994 publication-title: J. Chem. Phys. doi: 10.1063/1.466929 – volume: 102 start-page: 2578 year: 1998 publication-title: J. Phys. Chem. B doi: 10.1021/jp9801065 – volume: 40 start-page: 1043 year: 2007 publication-title: Macromolecules doi: 10.1021/ma0615147 – volume: 99 start-page: 798 year: 1995 publication-title: J. Phys. Chem. doi: 10.1021/j100002a050 – volume: 4 start-page: 435 year: 2008 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 121 start-page: 7474 year: 2004 publication-title: J. Chem. Phys. doi: 10.1063/1.1792572 – volume: 110 start-page: 6293 year: 2006 publication-title: J. Phys. Chem. B doi: 10.1021/jp055080d – volume: 116 start-page: 2301 year: 2002 publication-title: J. Chem. Phys. doi: 10.1063/1.1430744 – volume: 114 start-page: 9733 year: 2001 publication-title: J. Chem. Phys. doi: 10.1063/1.1367285 – volume: 58 start-page: 698 year: 1987 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.698 – volume: 110 start-page: 6279 year: 2006 publication-title: J. Phys. Chem. B doi: 10.1021/jp055079e – volume: 100 start-page: 649 year: 1994 ident: 2023062523534228600_c15 publication-title: J. Chem. Phys. doi: 10.1063/1.466929 – volume: 40 start-page: 1043 year: 2007 ident: 2023062523534228600_c7 publication-title: Macromolecules doi: 10.1021/ma0615147 – volume: 58 start-page: 698 year: 1987 ident: 2023062523534228600_c12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.698 – volume: 13 start-page: 3849 year: 1997 ident: 2023062523534228600_c6 publication-title: Langmuir doi: 10.1021/la9702291 – volume: 101 start-page: 10873 year: 1994 ident: 2023062523534228600_c4 publication-title: J. Chem. Phys. doi: 10.1063/1.467837 – volume: 118 start-page: 11225 year: 1996 ident: 2023062523534228600_c20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9621760 – volume: 112 start-page: 5029 year: 2008 ident: 2023062523534228600_c24 publication-title: J. Phys. Chem. C doi: 10.1021/jp710678w – volume: 4 start-page: 435 year: 2008 ident: 2023062523534228600_c33 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 110 start-page: 6293 year: 2006 ident: 2023062523534228600_c22 publication-title: J. Phys. Chem. B doi: 10.1021/jp055080d – volume: 94 start-page: 1482 year: 1997 ident: 2023062523534228600_c25 publication-title: J. Chim. Phys. Phys.-Chim. Biol. doi: 10.1051/jcp/1997941482 – volume: 46 start-page: 11035 year: 2005 ident: 2023062523534228600_c16 publication-title: Polymer doi: 10.1016/j.polymer.2005.09.019 – volume: 118 start-page: 9433 year: 2003 ident: 2023062523534228600_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.1568934 – volume: 114 start-page: 9733 year: 2001 ident: 2023062523534228600_c10 publication-title: J. Chem. Phys. doi: 10.1063/1.1367285 – volume: 67 start-page: 957 year: 1989 ident: 2023062523534228600_c13 publication-title: Mol. Phys. doi: 10.1080/00268978900101561 – volume: 130 start-page: 124501 year: 2009 ident: 2023062523534228600_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.3093065 – volume: 58 start-page: 698 year: 1987 ident: 2023062523534228600_c11 publication-title: J. Chem. Phys. – volume: 42 start-page: 8225 year: 2001 ident: 2023062523534228600_c9 publication-title: Polymer doi: 10.1016/S0032-3861(01)00308-1 – volume: 33 start-page: 6174 year: 2000 ident: 2023062523534228600_c8 publication-title: Macromolecules doi: 10.1021/ma000312m – volume: 110 start-page: 6279 year: 2006 ident: 2023062523534228600_c21 publication-title: J. Phys. Chem. B doi: 10.1021/jp055079e – volume: 124 start-page: 054901 year: 2006 ident: 2023062523534228600_c18 publication-title: J. Chem. Phys. doi: 10.1063/1.2148909 – volume: 105 start-page: 3155 year: 2007 ident: 2023062523534228600_c23 publication-title: Mol. Phys. doi: 10.1080/00268970701779663 – volume: 14 start-page: 1077 year: 1993 ident: 2023062523534228600_c31 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540140909 – volume: 98 start-page: 5809 year: 1993 ident: 2023062523534228600_c2 publication-title: J. Chem. Phys. doi: 10.1063/1.464874 – volume: 83 start-page: 439 year: 1994 ident: 2023062523534228600_c14 publication-title: Mol. Phys. doi: 10.1080/00268979400101361 – volume: 115 start-page: 3937 year: 2001 ident: 2023062523534228600_c19 publication-title: J. Chem. Phys. doi: 10.1063/1.1386912 – volume: 116 start-page: 2301 year: 2002 ident: 2023062523534228600_c34 publication-title: J. Chem. Phys. doi: 10.1063/1.1430744 – volume: 102 start-page: 2578 year: 1998 ident: 2023062523534228600_c29 publication-title: J. Phys. Chem. B doi: 10.1021/jp9801065 – volume: 100 start-page: 1542 year: 1994 ident: 2023062523534228600_c3 publication-title: J. Chem. Phys. doi: 10.1063/1.466633 – volume: 111 start-page: 1501 year: 1999 ident: 2023062523534228600_c26 publication-title: J. Chem. Phys. doi: 10.1063/1.479409 – volume: 47 start-page: 4680 year: 1967 ident: 2023062523534228600_c32 publication-title: J. Chem. Phys. doi: 10.1063/1.1701684 – volume: 102 start-page: 7338 year: 1998 ident: 2023062523534228600_c17 publication-title: J. Phys. Chem. B doi: 10.1021/jp980939v – volume: 121 start-page: 7474 year: 2004 ident: 2023062523534228600_c30 publication-title: J. Chem. Phys. doi: 10.1063/1.1792572 – volume: 99 start-page: 798 year: 1995 ident: 2023062523534228600_c5 publication-title: J. Phys. Chem. doi: 10.1021/j100002a050 – volume-title: The Physical Chemistry of Lipids year: 1986 ident: 2023062523534228600_c1 |
SSID | ssj0001724 |
Score | 2.2885673 |
Snippet | Normal alkanes have a simple molecular structure, but display a surprising variety of ordered phases, including an orthorhombic crystal, followed on heating by... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 044901 |
Title | Crystal and rotator phases of n -alkanes: A molecular dynamics study |
URI | http://dx.doi.org/10.1063/1.3276458 https://www.ncbi.nlm.nih.gov/pubmed/20113060 https://www.proquest.com/docview/733841136 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20240930 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE9p4QDBgdFxkIYSQqpTEdpyGt6psmlBXkEhF36zYdbSN0pY2e2C_fsexnXRaEZeXKLKSODnfif35-FwQegOt8H6UBCnRecAYiwPJgMjlJO2FOUuIrJwxT0f8ZMw-TeJJUwSxii4pZVddbY0r-R9UoQ1wNVGy_4Bs_VBogHPAF46AMBz_CuPB6te6dMH-q0Vp1s-d5RnMS9Y_I8hn3_O5dXrrd374Qridqa1Cv97ILXvRKM0GRVU-m4C1f9T0-xvMVFd2e39U2d7PdeNeeD7zxbyqtA_Zpl2hck_zcdp2KAx7aZBwW8yzq7e0-fGzMVA21oFqNAwZS62p4tZADczI2Ay6lCSc2eTtN5Nhjz6L4_FwKLKjSfZ2-TMwdcLMfrormnIX7cCdnLTQTv_j6fBrPfsCIWM2qMK-qc8mxen7urebHOTWwuI-2gX6YT0hNshG9hA9cBDgvoX8Ebqj5_tod-CL8-2je18sIo_RwCkBBiXATgmwVQK8KHCtBB9wH9cqgL0K4EoFnqDx8VE2OAlcZYxAsZCV8BPIOOKKJAo-WIYK1n2URIrIWKaG1KueiniSKxi_80Sa9M9FrPK02nNNSJHSp6g1X8z1M4SnDG4nkc411awwGQo1S6kOwyKeJjyWbfTOy0p4oZjqJTNRuS9wKiLhxNpGr-tLlzZXyraLsBe4AJmZ7SkQwuJyLRJKe8yUGGqjAwtE_RTDUuEbwzbiNTK_78LJXYDchZP74Z97fY72mt_gBWqVq0v9EghnKV85HbsGiCl_5Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+and+rotator+phases+of+n-alkanes%3A+A+molecular+dynamics+study&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Wentzel%2C+Nathaniel&rft.au=Milner%2C+Scott+T&rft.date=2010-01-28&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=132&rft.issue=4&rft.spage=044901&rft_id=info:doi/10.1063%2F1.3276458&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |