Estimating forest carbon fluxes using four different data-driven techniques based on long-term eddy covariance measurements: Model comparison and evaluation

With the recent availability of large amounts of data from the global flux towers across different terrestrial ecosystems based on the eddy covariance technique, the use of data-driven techniques has been viable. In this study, two advanced techniques, namely adaptive neuro-fuzzy inference system (A...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 627; pp. 78 - 94
Main Authors Dou, Xianming, Yang, Yongguo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.06.2018
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2018.01.202

Cover

Abstract With the recent availability of large amounts of data from the global flux towers across different terrestrial ecosystems based on the eddy covariance technique, the use of data-driven techniques has been viable. In this study, two advanced techniques, namely adaptive neuro-fuzzy inference system (ANFIS) and extreme learning machine (ELM), were developed and investigated for their viability in estimating daily carbon fluxes at the ecosystem level. All the data used in this study were based upon the long-term chronosequence observations derived from the flux towers in eight forest ecosystems. Both ANFIS and ELM methods were further compared with the most widely used artificial neural network (ANN) and support vector machine (SVM) methods. Moreover, we also focused on probing into the effects of internal parameters on their corresponding approaches. Our estimates showed that most variation in each carbon flux could be effectively explained by the developed models at almost all the sites. Moreover, the forecasting accuracy of each method was strongly dependent upon their respective internal algorithms. The best training function for ANN model can be acquired through the trial and error procedure. The SVM model with the radial basis kernel function performed considerably better than the SVM models with the polynomial and sigmoid kernel functions. The hybrid ELM models achieved similar predictive accuracy for the three fluxes and were consistently superior to the original ELM models with different transfer functions. In most instances, both the subtractive clustering and fuzzy c-means algorithms for the ANFIS models outperformed the most popular grid partitioning algorithm. It was demonstrated that the newly proposed ELM and ANFIS models were able to produce comparable estimates to the ANN and SVM models for forecasting terrestrial carbon fluxes. [Display omitted] •Four different data-driven approaches are proposed for estimating daily carbon fluxes.•Long-term flux tower measurements from eight forest sites in different climates are used.•The effects of internal parameters on their corresponding methods are assessed together.•All models with proper functions can precisely simulate and predict carbon fluxes.•New ELM and ANFIS methods are highly recommended for estimating carbon fluxes.
AbstractList With the recent availability of large amounts of data from the global flux towers across different terrestrial ecosystems based on the eddy covariance technique, the use of data-driven techniques has been viable. In this study, two advanced techniques, namely adaptive neuro-fuzzy inference system (ANFIS) and extreme learning machine (ELM), were developed and investigated for their viability in estimating daily carbon fluxes at the ecosystem level. All the data used in this study were based upon the long-term chronosequence observations derived from the flux towers in eight forest ecosystems. Both ANFIS and ELM methods were further compared with the most widely used artificial neural network (ANN) and support vector machine (SVM) methods. Moreover, we also focused on probing into the effects of internal parameters on their corresponding approaches. Our estimates showed that most variation in each carbon flux could be effectively explained by the developed models at almost all the sites. Moreover, the forecasting accuracy of each method was strongly dependent upon their respective internal algorithms. The best training function for ANN model can be acquired through the trial and error procedure. The SVM model with the radial basis kernel function performed considerably better than the SVM models with the polynomial and sigmoid kernel functions. The hybrid ELM models achieved similar predictive accuracy for the three fluxes and were consistently superior to the original ELM models with different transfer functions. In most instances, both the subtractive clustering and fuzzy c-means algorithms for the ANFIS models outperformed the most popular grid partitioning algorithm. It was demonstrated that the newly proposed ELM and ANFIS models were able to produce comparable estimates to the ANN and SVM models for forecasting terrestrial carbon fluxes.
With the recent availability of large amounts of data from the global flux towers across different terrestrial ecosystems based on the eddy covariance technique, the use of data-driven techniques has been viable. In this study, two advanced techniques, namely adaptive neuro-fuzzy inference system (ANFIS) and extreme learning machine (ELM), were developed and investigated for their viability in estimating daily carbon fluxes at the ecosystem level. All the data used in this study were based upon the long-term chronosequence observations derived from the flux towers in eight forest ecosystems. Both ANFIS and ELM methods were further compared with the most widely used artificial neural network (ANN) and support vector machine (SVM) methods. Moreover, we also focused on probing into the effects of internal parameters on their corresponding approaches. Our estimates showed that most variation in each carbon flux could be effectively explained by the developed models at almost all the sites. Moreover, the forecasting accuracy of each method was strongly dependent upon their respective internal algorithms. The best training function for ANN model can be acquired through the trial and error procedure. The SVM model with the radial basis kernel function performed considerably better than the SVM models with the polynomial and sigmoid kernel functions. The hybrid ELM models achieved similar predictive accuracy for the three fluxes and were consistently superior to the original ELM models with different transfer functions. In most instances, both the subtractive clustering and fuzzy c-means algorithms for the ANFIS models outperformed the most popular grid partitioning algorithm. It was demonstrated that the newly proposed ELM and ANFIS models were able to produce comparable estimates to the ANN and SVM models for forecasting terrestrial carbon fluxes.With the recent availability of large amounts of data from the global flux towers across different terrestrial ecosystems based on the eddy covariance technique, the use of data-driven techniques has been viable. In this study, two advanced techniques, namely adaptive neuro-fuzzy inference system (ANFIS) and extreme learning machine (ELM), were developed and investigated for their viability in estimating daily carbon fluxes at the ecosystem level. All the data used in this study were based upon the long-term chronosequence observations derived from the flux towers in eight forest ecosystems. Both ANFIS and ELM methods were further compared with the most widely used artificial neural network (ANN) and support vector machine (SVM) methods. Moreover, we also focused on probing into the effects of internal parameters on their corresponding approaches. Our estimates showed that most variation in each carbon flux could be effectively explained by the developed models at almost all the sites. Moreover, the forecasting accuracy of each method was strongly dependent upon their respective internal algorithms. The best training function for ANN model can be acquired through the trial and error procedure. The SVM model with the radial basis kernel function performed considerably better than the SVM models with the polynomial and sigmoid kernel functions. The hybrid ELM models achieved similar predictive accuracy for the three fluxes and were consistently superior to the original ELM models with different transfer functions. In most instances, both the subtractive clustering and fuzzy c-means algorithms for the ANFIS models outperformed the most popular grid partitioning algorithm. It was demonstrated that the newly proposed ELM and ANFIS models were able to produce comparable estimates to the ANN and SVM models for forecasting terrestrial carbon fluxes.
With the recent availability of large amounts of data from the global flux towers across different terrestrial ecosystems based on the eddy covariance technique, the use of data-driven techniques has been viable. In this study, two advanced techniques, namely adaptive neuro-fuzzy inference system (ANFIS) and extreme learning machine (ELM), were developed and investigated for their viability in estimating daily carbon fluxes at the ecosystem level. All the data used in this study were based upon the long-term chronosequence observations derived from the flux towers in eight forest ecosystems. Both ANFIS and ELM methods were further compared with the most widely used artificial neural network (ANN) and support vector machine (SVM) methods. Moreover, we also focused on probing into the effects of internal parameters on their corresponding approaches. Our estimates showed that most variation in each carbon flux could be effectively explained by the developed models at almost all the sites. Moreover, the forecasting accuracy of each method was strongly dependent upon their respective internal algorithms. The best training function for ANN model can be acquired through the trial and error procedure. The SVM model with the radial basis kernel function performed considerably better than the SVM models with the polynomial and sigmoid kernel functions. The hybrid ELM models achieved similar predictive accuracy for the three fluxes and were consistently superior to the original ELM models with different transfer functions. In most instances, both the subtractive clustering and fuzzy c-means algorithms for the ANFIS models outperformed the most popular grid partitioning algorithm. It was demonstrated that the newly proposed ELM and ANFIS models were able to produce comparable estimates to the ANN and SVM models for forecasting terrestrial carbon fluxes. [Display omitted] •Four different data-driven approaches are proposed for estimating daily carbon fluxes.•Long-term flux tower measurements from eight forest sites in different climates are used.•The effects of internal parameters on their corresponding methods are assessed together.•All models with proper functions can precisely simulate and predict carbon fluxes.•New ELM and ANFIS methods are highly recommended for estimating carbon fluxes.
Author Yang, Yongguo
Dou, Xianming
Author_xml – sequence: 1
  givenname: Xianming
  surname: Dou
  fullname: Dou, Xianming
– sequence: 2
  givenname: Yongguo
  orcidid: 0000-0002-9918-545X
  surname: Yang
  fullname: Yang, Yongguo
  email: yongguoyang@hotmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29426202$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vFSEUxYmpsa_Vr6As3cwTeMw_ExdNU6tJjZvuCQOXyssMPIGZ2O_ih_W-Tu3CTWVzF_d3DnDOGTkJMQAh7zjbcsabD_ttNr7EAmHZCsa7LeM4xQuy4V3bV5yJ5oRsGJNd1Td9e0rOct4zPG3HX5FT0UvRIL8hv69y8ZMuPtxRFxPkQo1OQwzUjfMvyHTO62pO1HrnIEEo1OqiK5v8AoEWMD-C_zkjO-gMlqJ2jOGuKpAmCtbeUxMXnbwOBugEOs8JJnTJH-m3aGHE9XTAfUahDpbCoscZXxTDa_LS6THDm8d5Tm4_X91efqluvl9_vby4qYxkslR8kK5umeRcg8Y0jJEOagd962rDrGlq0YEerJS1ADfUdbODnrVMcGN3fNidk_er7SHF4z-Kmnw2MI46QJyzEmLX1rzHC55HGeOs6ZBF9O0jOg8TWHVImHO6V3-zR6BdAZNizgncE8KZOras9uqpZXVsWTGuVuWnf5SIPSRWkvbjf-gvVj1gqIuHdOQA67E-gSnKRv-sxx_a5M1f
CitedBy_id crossref_primary_10_1038_s41598_024_64235_w
crossref_primary_10_3390_ijerph192013127
crossref_primary_10_1155_2018_1824317
crossref_primary_10_1016_j_scitotenv_2021_145130
crossref_primary_10_1080_10106049_2021_1983032
crossref_primary_10_1016_j_geoderma_2018_11_044
crossref_primary_10_5194_bg_17_4421_2020
crossref_primary_10_1016_j_rsma_2019_100707
crossref_primary_10_1016_j_agrformet_2022_109036
crossref_primary_10_1016_j_scitotenv_2024_171182
crossref_primary_10_3389_feart_2022_848924
crossref_primary_10_3390_land12091710
crossref_primary_10_1007_s11356_021_16501_x
crossref_primary_10_1016_j_agrformet_2023_109359
crossref_primary_10_1016_j_buildenv_2024_111878
crossref_primary_10_1016_j_ecolind_2021_107426
crossref_primary_10_1016_j_ecolind_2022_109845
crossref_primary_10_1016_j_jpba_2018_10_007
crossref_primary_10_3390_rs17010092
crossref_primary_10_3390_app12094770
crossref_primary_10_1016_j_rse_2019_111383
crossref_primary_10_1016_j_rse_2024_114072
crossref_primary_10_7717_peerj_8891
crossref_primary_10_1016_j_jenvman_2018_12_090
crossref_primary_10_1016_j_enconman_2021_114292
crossref_primary_10_3390_rs13122242
crossref_primary_10_3390_su12052099
crossref_primary_10_1016_j_apenergy_2020_114566
crossref_primary_10_1016_j_compag_2018_03_010
crossref_primary_10_1007_s00704_022_04265_4
crossref_primary_10_1007_s00704_022_04158_6
crossref_primary_10_3390_atmos15060727
crossref_primary_10_7717_peerj_16431
crossref_primary_10_1016_j_enbuild_2019_109377
crossref_primary_10_1029_2023JG007911
crossref_primary_10_3390_rs15030698
crossref_primary_10_1007_s00267_024_01965_7
crossref_primary_10_1016_j_plaphy_2023_107939
crossref_primary_10_3390_f13101721
crossref_primary_10_5194_bg_22_257_2025
crossref_primary_10_1007_s12665_018_7784_9
crossref_primary_10_1016_j_envres_2020_109262
crossref_primary_10_1061__ASCE_IR_1943_4774_0001471
Cites_doi 10.1111/gcb.12422
10.1016/j.jhydrol.2011.06.015
10.1016/j.envsoft.2010.02.003
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1109/TNN.2006.880583
10.1111/j.1469-8137.2007.01967.x
10.1016/j.agrformet.2012.11.002
10.1002/hyp.9669
10.1002/2015JG002997
10.1007/s11120-013-9925-z
10.1016/j.rser.2013.08.055
10.1111/gcb.12474
10.1016/S0168-1923(03)00023-6
10.1080/01431161.2017.1368098
10.1109/TSMC.1985.6313399
10.1177/0309133312444943
10.1007/s00477-015-1116-3
10.1016/j.energy.2016.02.021
10.1093/treephys/25.7.887
10.1080/02626667.2014.988155
10.1002/joc.3676
10.1029/2011JG001742
10.1007/s00704-015-1462-6
10.1016/j.scitotenv.2007.11.007
10.1016/j.agrformet.2010.08.003
10.1088/1748-9326/aa708b
10.1111/j.1600-0889.2007.00259.x
10.1007/s11269-015-1182-9
10.1890/12-0747.1
10.1007/s11063-012-9236-y
10.1002/2016GL068794
10.1111/j.1365-2486.2011.02562.x
10.1016/j.agrformet.2006.08.007
10.1016/j.neucom.2005.12.126
10.1016/j.neucom.2005.03.002
10.1016/j.agrformet.2010.04.008
10.1007/s11269-016-1480-x
10.5194/bg-10-8185-2013
10.1016/j.jhydrol.2016.02.012
10.1016/S0168-1923(96)02335-0
10.1007/s11269-012-0148-4
10.1016/j.ecolmodel.2005.03.014
10.1029/2007JD008965
10.1007/s10021-007-9018-y
10.1111/gcb.12916
10.1007/s13042-011-0019-y
10.1029/2012JG001960
10.1111/gcb.12766
10.1016/j.buildenv.2016.04.031
10.5194/bg-14-3445-2017
10.1109/21.256541
10.1111/gcb.13509
10.1016/j.jtherbio.2016.07.005
10.1016/j.enconman.2015.01.021
10.1016/j.ecolmodel.2012.07.017
10.1111/j.1365-2486.2006.01298.x
10.1016/S0168-1923(00)00235-5
10.1098/rspa.1998.0193
10.2166/nh.2013.112
10.1016/j.agrformet.2016.10.023
10.1016/j.applthermaleng.2015.10.140
10.1111/j.1365-2486.2006.01244.x
10.3390/f6061897
10.1016/j.jhydrol.2013.02.022
10.1016/j.compag.2015.08.020
10.1016/j.agrformet.2011.10.010
10.5194/acp-14-133-2014
10.1016/j.jhydrol.2010.12.030
10.1016/j.jhydrol.2016.09.035
10.1016/j.isprsjprs.2010.11.001
10.2166/nh.2011.020
10.1016/j.jhydrol.2013.11.021
10.5194/bg-5-969-2008
10.1016/S0168-1923(01)00244-1
10.1016/S0304-3800(02)00257-0
10.1016/j.foreco.2015.04.034
10.1016/j.ecolmodel.2009.11.007
10.1016/j.compgeo.2011.09.008
10.3390/f8120498
10.5194/gmd-6-2121-2013
10.1007/s00271-012-0332-6
10.1007/s11069-016-2540-5
10.1016/j.eswa.2006.07.007
10.1016/j.agrformet.2006.05.007
10.5194/gmd-6-45-2013
10.1029/2000GB001360
10.1007/s00521-013-1522-8
10.1016/j.jastp.2015.09.014
10.5194/bg-11-217-2014
10.1016/j.asoc.2015.02.011
10.1016/j.applthermaleng.2015.11.081
10.1016/j.agrformet.2007.08.011
10.1029/2001GL013607
10.5194/bg-12-1205-2015
10.1016/j.asoc.2014.02.002
10.1016/j.agrformet.2008.01.005
10.1046/j.1365-2486.1999.00281.x
10.1016/j.atmosenv.2014.11.006
10.3390/su10010203
10.1016/S1364-8152(98)00020-6
10.1016/j.cageo.2012.07.001
10.1002/hyp.7448
10.1061/(ASCE)IR.1943-4774.0000403
10.1007/s11269-011-9926-7
10.1046/j.1365-2486.2003.00609.x
10.1016/j.biombioe.2016.03.020
10.5194/bg-5-1625-2008
10.1016/j.neunet.2014.10.001
10.3808/jei.201300248
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2018.01.202
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 94
ExternalDocumentID 29426202
10_1016_j_scitotenv_2018_01_202
S0048969718302432
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c404t-1b4f570411aea201cc4fe5fe97f5c0dc6528eabd4452efb5563e907021cd31b3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Oct 02 09:33:51 EDT 2025
Mon Sep 29 06:43:59 EDT 2025
Thu Apr 03 07:01:47 EDT 2025
Wed Oct 01 05:16:27 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Fri Feb 23 02:46:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbon fluxes
Data-driven techniques
Forest ecosystems
Flux towers
Extreme learning machine
Adaptive neuro-fuzzy inference system
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-1b4f570411aea201cc4fe5fe97f5c0dc6528eabd4452efb5563e907021cd31b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9918-545X
PMID 29426202
PQID 2001068904
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2237519041
proquest_miscellaneous_2001068904
pubmed_primary_29426202
crossref_primary_10_1016_j_scitotenv_2018_01_202
crossref_citationtrail_10_1016_j_scitotenv_2018_01_202
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_01_202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-15
PublicationDateYYYYMMDD 2018-06-15
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Abrahart, Anctil, Coulibaly, Dawson, Mount, See, Shamseldin, Solomatine, Toth, Wilby (bb0005) 2012; 36
Griffis, Black, Morgenstern, Barr, Nesic, Drewitt, Gaumont-Guay, McCaughey (bb0140) 2003; 117
Sanikhani, Kisi, Nikpour, Dinpashoh (bb0415) 2012; 26
Ding, Xu, Nie (bb0100) 2014; 25
Schaefer, Schwalm, Williams, Arain, Barr, Chen, Davis, Dimitrov, Hilton, Hollinger (bb0420) 2012; 117
Bastianelli, Ali, Beguin, Bergeron, Grondin, Hély, Paré (bb0035) 2017; 14
Schwalm, Black, Morgenstern, Humphreys (bb0430) 2007; 13
Dengel, Zona, Sachs, Aurela, Jammet, Parmentier, Oechel, Vesala (bb0090) 2013; 10
Jović, Arsić, Vilimonović, Petković (bb0225) 2016; 62
Thum, Aalto, Laurila, Aurela, Lindroth, Vesala (bb0505) 2008; 5
Keenan, Davidson, Munger, Richardson (bb0245) 2013; 23
Jensen, Herbst, Friborg (bb0220) 2017; 233
Huang, Wang, Lan (bb0195) 2011; 2
Cobaner (bb0075) 2011; 398
Richardson, Anderson, Arain, Barr, Bohrer, Chen, Chen, Ciais, Davis, Desai (bb0410) 2012; 18
Stoy, Katul, Siqueira, Juang, Novick, McCarthy, Christopher Oishi, Uebelherr, Kim, Oren (bb0485) 2006; 12
Shenify, Danesh, Gocić, Taher, Abdul Wahab, Gani, Shamshirband, Petković (bb0455) 2016; 30
Stoy, Katul, Siqueira, Juang, McCarthy, Kim, Oishi, Oren (bb0480) 2005; 25
Sharafi, Ebtehaj, Bonakdari, Zaji (bb0450) 2016; 84
Zha, Barr, van der Kamp, Black, McCaughey, Flanagan (bb0550) 2010; 150
Post, Hendricks Franssen, Graf, Schmidt, Vereecken (bb0385) 2014; 12
Frank, Reichstein, Bahn, Frank, Mahecha, Smith, Thonicke, Velde, Vicca, Babst (bb0130) 2015; 21
Kisi, Nia, Gosheh, Tajabadi, Ahmadi (bb0260) 2012; 26
Maier, Jain, Dandy, Sudheer (bb0315) 2010; 25
Huang, Huang, Song, You (bb0200) 2015; 61
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bb0180) 1998; 454
Shiri, Shamshirband, Kisi, Karimi, Bateni, Nezhad, Hashemi (bb0475) 2016; 30
Raghavendra, Deka (bb0395) 2014; 19
Shiri, Marti, Nazemi, Sadraddini, Kisi, Landeras, Fard (bb0470) 2015; 46
Zounemat-Kermani, Kişi, Adamowski, Ramezani-Charmahineh (bb0555) 2016; 535
Kisi, Akbari, Sanatipour, Hashemi, Teimourzadeh, Shiri (bb0265) 2013; 22
Yadav, Chandel (bb0540) 2014; 33
Partal (bb0370) 2009; 23
Rannik, Kolari, Vesala, Hari (bb0400) 2006; 138
Cao, Lin, Huang (bb0055) 2012; 36
Kariminia, Motamedi, Shamshirband, Petković, Roy, Hashim (bb0230) 2016; 30
Napolitano, Serinaldi, See (bb0350) 2011; 406
Kurbatova, Li, Varlagin, Xiao, Vygodskaya (bb0285) 2008; 5
Barr, Morgenstern, Black, McCaughey, Nesic (bb0025) 2006; 140
Shiri, Dierickx, Pour-Ali Baba, Neamati, Ghorbani (bb0460) 2011; 42
Basser, Karami, Shamshirband, Akib, Amirmojahedi, Ahmad, Jahangirzadeh, Javidnia (bb0030) 2015; 30
Raos, Petković, Protić, Jovanović, Marković (bb0405) 2016; 104
Shamshirband, Tabatabaei, Aghbashlo, Yee, Petković (bb0445) 2016; 94
Huang, Chen, Wang (bb0190) 2007; 33
Wolf, Saliendra, Akshalov, Johnson, Laca (bb0530) 2008; 148
Dou, Chen, Black, Jassal, Che (bb0110) 2015; 6
Vahedi (bb0520) 2016; 88
Chang, Lin (bb0060) 2011; 2
Huang, Zhu, Siew (bb0185) 2006; 70
Dariane, Azimi (bb0080) 2016; 61
Cabalar, Cevik, Gokceoglu (bb0050) 2012; 40
Takagi, Sugeno (bb0495) 1985; SMC-15
Hosseini Nazhad, Lotfinejad, Danesh, ul Amin, Shamshirband (bb0175) 2017; 38
Mohammadi, Shamshirband, Petković, Yee, Mansor (bb0340) 2016; 96
Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, El-Shafie (bb0545) 2016; 542
Groenendijk, Dolman, Ammann, Arneth, Cescatti, Dragoni, Gash, Gianelle, Gioli, Kiely (bb0145) 2011; 116
Lohani, Goel, Bhatia (bb0300) 2014; 509
Kişi, Ali Baba, Shiri (bb0255) 2011; 138
Luo, Keenan, Smith (bb0305) 2015; 21
Shiri, Marti, Singh (bb0465) 2014; 28
Shamshirband, Mohammadi, Chen, Narayana Samy, Petković, Ma (bb0440) 2015; 134
Tabari, Martinez, Ezani, Talaee (bb0490) 2013; 31
Menzer, Meiring, Kyriakidis, McFadden (bb0325) 2015; 101
Kisi, Shiri (bb0250) 2014; 34
Papale, Valentini (bb0360) 2003; 9
Li, Huang, Saratchandran, Sundararajan (bb0290) 2005; 68
Huntzinger, Schwalm, Michalak, Schaefer, King, Wei, Jacobson, Liu, Cook, Post (bb0205) 2013; 6
Thurner, Beer, Carvalhais, Forkel, Santoro, Tum, Schmullius (bb0510) 2016; 43
Citakoglu (bb0065) 2015; 118
Gundale, From, Bach, Nordin (bb0155) 2014; 20
Petković, Gocić, Shamshirband (bb0380) 2016; 14
Kisi, Shiri, Tombul (bb0270) 2013; 51
Schneising, Reuter, Buchwitz, Heymann, Bovensmann, Burrows (bb0425) 2014; 14
Schwartz, Uriarte, DeFries, Gutierrez-Velez, Pinedo-Vasquez (bb0435) 2017; 12
Dou, Yang (bb0105) 2017; 8
Hilton, Davis, Keller (bb0165) 2014; 11
Mountrakis, Im, Ogole (bb0345) 2011; 66
Papale, Black, Carvalhais, Cescatti, Chen, Jung, Kiely, Lasslop, Mahecha, Margolis (bb0365) 2015; 120
Delpierre, Soudani, François, Le Maire, Bernhofer, Kutsch, Misson, Rambal, Vesala, Dufrêne (bb0085) 2012; 154-155
Talei, Chua, Quek, Jansson (bb0500) 2013; 488
Noormets, Chen, Crow (bb0355) 2007; 10
Hollinger, Goltz, Davidson, Lee, Tu, Valentine (bb0170) 1999; 5
Liang, Huang, Saratchandran, Sundararajan (bb0295) 2006; 17
Botta, Ramankutty, Foley (bb0045) 2002; 29
Kariminia, Motamedi, Shamshirband, Piri, Mohammadi, Hashim, Roy, Petković, Bonakdari (bb0235) 2016; 124
Aubinet, Chermanne, Vandenhaute, Longdoz, Yernaux, Laitat (bb0010) 2001; 108
Peichl, Arain, Brodeur (bb0375) 2010; 150
Wu, Guan, Hayek, Restrepo-Coupe, Wiedemann, Xu, Wehr, Christoffersen, Miao, Silva (bb0535) 2017; 23
Maier, Dandy (bb0310) 1998; 13
Moffat, Papale, Reichstein, Hollinger, Richardson, Barr, Beckstein, Braswell, Churkina, Desai (bb0330) 2007; 147
Mohammadi, Shamshirband, Tong, Alam, Petković (bb0335) 2015; 93
Falge, Baldocchi, Olson, Anthoni, Aubinet, Bernhofer, Burba, Ceulemans, Clement, Dolman (bb0125) 2001; 107
Kuppel, Chevallier, Peylin (bb0280) 2013; 6
Evrendilek (bb0120) 2013; 171-172
Gevrey, Dimopoulos, Lek (bb0135) 2003; 160
Wang, Brender, Ciais, Piao, Mahecha, Chevallier, Reichstein, Ottlé, Maignan, Arain (bb0525) 2012; 246
Barman, Jain, Liang (bb0020) 2014; 20
Grünwald, Bernhofer (bb0150) 2007; 59
Hyvönen, Ågren, Linder, Persson, Cotrufo, Ekblad, Freeman, Grelle, Janssens, Jarvis (bb0210) 2007; 173
Qin, Su, Zhang, Ouyang, Yu, Li (bb0390) 2010; 221
Baldocchi, Vogel, Hall (bb0015) 1997; 83
Melesse, Hanley (bb0320) 2005; 189
Hilker, Coops, Wulder, Black, Guy (bb0160) 2008; 404
Jang (bb0215) 1993; 23
Dou, Yang, Luo (bb0115) 2018; 10
Clarke, Gundersen, Jönsson-Belyazid, Kjønaas, Persson, Sigurdsson, Stupak, Vesterdal (bb0070) 2015; 351
Torrence, Compo (bb0515) 1998; 79
Desai (bb0095) 2014; 119
Kariminia, Shamshirband, Hashim, Saberi, Petković, Roy, Motamedi (bb0240) 2016; 101
Krishnan, Black, Barr, Grant, Gaumont-Guay, Nesic (bb0275) 2008; 113
Bonan, Levis, Kergoat, Oleson (bb0040) 2002; 16
Jensen (10.1016/j.scitotenv.2018.01.202_bb0220) 2017; 233
Barman (10.1016/j.scitotenv.2018.01.202_bb0020) 2014; 20
Chang (10.1016/j.scitotenv.2018.01.202_bb0060) 2011; 2
Falge (10.1016/j.scitotenv.2018.01.202_bb0125) 2001; 107
Schwartz (10.1016/j.scitotenv.2018.01.202_bb0435) 2017; 12
Li (10.1016/j.scitotenv.2018.01.202_bb0290) 2005; 68
Vahedi (10.1016/j.scitotenv.2018.01.202_bb0520) 2016; 88
Jang (10.1016/j.scitotenv.2018.01.202_bb0215) 1993; 23
Shamshirband (10.1016/j.scitotenv.2018.01.202_bb0445) 2016; 94
Petković (10.1016/j.scitotenv.2018.01.202_bb0380) 2016; 14
Thurner (10.1016/j.scitotenv.2018.01.202_bb0510) 2016; 43
Abrahart (10.1016/j.scitotenv.2018.01.202_bb0005) 2012; 36
Kisi (10.1016/j.scitotenv.2018.01.202_bb0260) 2012; 26
Delpierre (10.1016/j.scitotenv.2018.01.202_bb0085) 2012; 154-155
Papale (10.1016/j.scitotenv.2018.01.202_bb0365) 2015; 120
Ding (10.1016/j.scitotenv.2018.01.202_bb0100) 2014; 25
Stoy (10.1016/j.scitotenv.2018.01.202_bb0480) 2005; 25
Qin (10.1016/j.scitotenv.2018.01.202_bb0390) 2010; 221
Huang (10.1016/j.scitotenv.2018.01.202_bb0185) 2006; 70
Cabalar (10.1016/j.scitotenv.2018.01.202_bb0050) 2012; 40
Maier (10.1016/j.scitotenv.2018.01.202_bb0315) 2010; 25
Takagi (10.1016/j.scitotenv.2018.01.202_bb0495) 1985; SMC-15
Yadav (10.1016/j.scitotenv.2018.01.202_bb0540) 2014; 33
Shenify (10.1016/j.scitotenv.2018.01.202_bb0455) 2016; 30
Bonan (10.1016/j.scitotenv.2018.01.202_bb0040) 2002; 16
Rannik (10.1016/j.scitotenv.2018.01.202_bb0400) 2006; 138
Hollinger (10.1016/j.scitotenv.2018.01.202_bb0170) 1999; 5
Shiri (10.1016/j.scitotenv.2018.01.202_bb0460) 2011; 42
Cobaner (10.1016/j.scitotenv.2018.01.202_bb0075) 2011; 398
Kisi (10.1016/j.scitotenv.2018.01.202_bb0250) 2014; 34
Huang (10.1016/j.scitotenv.2018.01.202_bb0180) 1998; 454
Kariminia (10.1016/j.scitotenv.2018.01.202_bb0230) 2016; 30
Stoy (10.1016/j.scitotenv.2018.01.202_bb0485) 2006; 12
Schwalm (10.1016/j.scitotenv.2018.01.202_bb0430) 2007; 13
Yaseen (10.1016/j.scitotenv.2018.01.202_bb0545) 2016; 542
Dou (10.1016/j.scitotenv.2018.01.202_bb0110) 2015; 6
Sharafi (10.1016/j.scitotenv.2018.01.202_bb0450) 2016; 84
Peichl (10.1016/j.scitotenv.2018.01.202_bb0375) 2010; 150
Zounemat-Kermani (10.1016/j.scitotenv.2018.01.202_bb0555) 2016; 535
Kariminia (10.1016/j.scitotenv.2018.01.202_bb0235) 2016; 124
Menzer (10.1016/j.scitotenv.2018.01.202_bb0325) 2015; 101
Talei (10.1016/j.scitotenv.2018.01.202_bb0500) 2013; 488
Dou (10.1016/j.scitotenv.2018.01.202_bb0115) 2018; 10
Shiri (10.1016/j.scitotenv.2018.01.202_bb0475) 2016; 30
Krishnan (10.1016/j.scitotenv.2018.01.202_bb0275) 2008; 113
Schaefer (10.1016/j.scitotenv.2018.01.202_bb0420) 2012; 117
Napolitano (10.1016/j.scitotenv.2018.01.202_bb0350) 2011; 406
Griffis (10.1016/j.scitotenv.2018.01.202_bb0140) 2003; 117
Dou (10.1016/j.scitotenv.2018.01.202_bb0105) 2017; 8
Tabari (10.1016/j.scitotenv.2018.01.202_bb0490) 2013; 31
Hilker (10.1016/j.scitotenv.2018.01.202_bb0160) 2008; 404
Dengel (10.1016/j.scitotenv.2018.01.202_bb0090) 2013; 10
Hilton (10.1016/j.scitotenv.2018.01.202_bb0165) 2014; 11
Schneising (10.1016/j.scitotenv.2018.01.202_bb0425) 2014; 14
Raghavendra (10.1016/j.scitotenv.2018.01.202_bb0395) 2014; 19
Gundale (10.1016/j.scitotenv.2018.01.202_bb0155) 2014; 20
Thum (10.1016/j.scitotenv.2018.01.202_bb0505) 2008; 5
Baldocchi (10.1016/j.scitotenv.2018.01.202_bb0015) 1997; 83
Kurbatova (10.1016/j.scitotenv.2018.01.202_bb0285) 2008; 5
Aubinet (10.1016/j.scitotenv.2018.01.202_bb0010) 2001; 108
Cao (10.1016/j.scitotenv.2018.01.202_bb0055) 2012; 36
Dariane (10.1016/j.scitotenv.2018.01.202_bb0080) 2016; 61
Mohammadi (10.1016/j.scitotenv.2018.01.202_bb0340) 2016; 96
Lohani (10.1016/j.scitotenv.2018.01.202_bb0300) 2014; 509
Huang (10.1016/j.scitotenv.2018.01.202_bb0195) 2011; 2
Keenan (10.1016/j.scitotenv.2018.01.202_bb0245) 2013; 23
Moffat (10.1016/j.scitotenv.2018.01.202_bb0330) 2007; 147
Maier (10.1016/j.scitotenv.2018.01.202_bb0310) 1998; 13
Evrendilek (10.1016/j.scitotenv.2018.01.202_bb0120) 2013; 171-172
Kisi (10.1016/j.scitotenv.2018.01.202_bb0270) 2013; 51
Richardson (10.1016/j.scitotenv.2018.01.202_bb0410) 2012; 18
Clarke (10.1016/j.scitotenv.2018.01.202_bb0070) 2015; 351
Botta (10.1016/j.scitotenv.2018.01.202_bb0045) 2002; 29
Gevrey (10.1016/j.scitotenv.2018.01.202_bb0135) 2003; 160
Kisi (10.1016/j.scitotenv.2018.01.202_bb0265) 2013; 22
Huntzinger (10.1016/j.scitotenv.2018.01.202_bb0205) 2013; 6
Kişi (10.1016/j.scitotenv.2018.01.202_bb0255) 2011; 138
Melesse (10.1016/j.scitotenv.2018.01.202_bb0320) 2005; 189
Mountrakis (10.1016/j.scitotenv.2018.01.202_bb0345) 2011; 66
Sanikhani (10.1016/j.scitotenv.2018.01.202_bb0415) 2012; 26
Frank (10.1016/j.scitotenv.2018.01.202_bb0130) 2015; 21
Liang (10.1016/j.scitotenv.2018.01.202_bb0295) 2006; 17
Wolf (10.1016/j.scitotenv.2018.01.202_bb0530) 2008; 148
Huang (10.1016/j.scitotenv.2018.01.202_bb0200) 2015; 61
Hosseini Nazhad (10.1016/j.scitotenv.2018.01.202_bb0175) 2017; 38
Papale (10.1016/j.scitotenv.2018.01.202_bb0360) 2003; 9
Luo (10.1016/j.scitotenv.2018.01.202_bb0305) 2015; 21
Partal (10.1016/j.scitotenv.2018.01.202_bb0370) 2009; 23
Shiri (10.1016/j.scitotenv.2018.01.202_bb0470) 2015; 46
Torrence (10.1016/j.scitotenv.2018.01.202_bb0515) 1998; 79
Bastianelli (10.1016/j.scitotenv.2018.01.202_bb0035) 2017; 14
Jović (10.1016/j.scitotenv.2018.01.202_bb0225) 2016; 62
Zha (10.1016/j.scitotenv.2018.01.202_bb0550) 2010; 150
Grünwald (10.1016/j.scitotenv.2018.01.202_bb0150) 2007; 59
Mohammadi (10.1016/j.scitotenv.2018.01.202_bb0335) 2015; 93
Huang (10.1016/j.scitotenv.2018.01.202_bb0190) 2007; 33
Groenendijk (10.1016/j.scitotenv.2018.01.202_bb0145) 2011; 116
Hyvönen (10.1016/j.scitotenv.2018.01.202_bb0210) 2007; 173
Kariminia (10.1016/j.scitotenv.2018.01.202_bb0240) 2016; 101
Kuppel (10.1016/j.scitotenv.2018.01.202_bb0280) 2013; 6
Basser (10.1016/j.scitotenv.2018.01.202_bb0030) 2015; 30
Shiri (10.1016/j.scitotenv.2018.01.202_bb0465) 2014; 28
Citakoglu (10.1016/j.scitotenv.2018.01.202_bb0065) 2015; 118
Wu (10.1016/j.scitotenv.2018.01.202_bb0535) 2017; 23
Post (10.1016/j.scitotenv.2018.01.202_bb0385) 2014; 12
Raos (10.1016/j.scitotenv.2018.01.202_bb0405) 2016; 104
Noormets (10.1016/j.scitotenv.2018.01.202_bb0355) 2007; 10
Desai (10.1016/j.scitotenv.2018.01.202_bb0095) 2014; 119
Shamshirband (10.1016/j.scitotenv.2018.01.202_bb0440) 2015; 134
Wang (10.1016/j.scitotenv.2018.01.202_bb0525) 2012; 246
Barr (10.1016/j.scitotenv.2018.01.202_bb0025) 2006; 140
References_xml – volume: 6
  start-page: 2121
  year: 2013
  end-page: 2133
  ident: bb0205
  article-title: The north American carbon program multi-scale synthesis and terrestrial model Intercomparison project-part 1: overview and experimental design
  publication-title: Geosci. Model Dev.
– volume: 36
  start-page: 480
  year: 2012
  end-page: 513
  ident: bb0005
  article-title: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
  publication-title: Prog. Phys. Geogr.
– volume: 351
  start-page: 9
  year: 2015
  end-page: 19
  ident: bb0070
  article-title: Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems
  publication-title: For. Ecol. Manag.
– volume: 59
  start-page: 387
  year: 2007
  end-page: 396
  ident: bb0150
  article-title: A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt
  publication-title: Tellus Ser. B Chem. Phys. Meteorol.
– volume: 30
  start-page: 642
  year: 2015
  end-page: 649
  ident: bb0030
  article-title: Hybrid ANFIS–PSO approach for predicting optimum parameters of a protective spur dike
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 566
  year: 2012
  end-page: 584
  ident: bb0410
  article-title: Terrestrial biosphere models need better representation of vegetation phenology: results from the north American carbon program site synthesis
  publication-title: Glob. Chang. Biol.
– volume: 31
  start-page: 575
  year: 2013
  end-page: 588
  ident: bb0490
  article-title: Applicability of support vector machines and adaptive neurofuzzy inference system for modeling potato crop evapotranspiration
  publication-title: Irrig. Sci.
– volume: 14
  start-page: 3445
  year: 2017
  end-page: 3459
  ident: bb0035
  article-title: Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties
  publication-title: Biogeosciences
– volume: 30
  start-page: 1189
  year: 2016
  end-page: 1203
  ident: bb0230
  article-title: Adaptation of ANFIS model to assess thermal comfort of an urban square in moderate and dry climate
  publication-title: Stoch. Env. Res. Risk A.
– volume: 51
  start-page: 108
  year: 2013
  end-page: 117
  ident: bb0270
  article-title: Modeling rainfall-runoff process using soft computing techniques
  publication-title: Computer. Geosci. U. K.
– volume: 61
  start-page: 585
  year: 2016
  end-page: 600
  ident: bb0080
  article-title: Forecasting streamflow by combination of a genetic input selection algorithm and wavelet transforms using ANFIS models
  publication-title: Hydrol. Sci. J.
– volume: 66
  start-page: 247
  year: 2011
  end-page: 259
  ident: bb0345
  article-title: Support vector machines in remote sensing: a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 20
  start-page: 276
  year: 2014
  end-page: 286
  ident: bb0155
  article-title: Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle
  publication-title: Glob. Chang. Biol.
– volume: 118
  start-page: 28
  year: 2015
  end-page: 37
  ident: bb0065
  article-title: Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation
  publication-title: Comput. Electron. Agric.
– volume: 119
  start-page: 31
  year: 2014
  end-page: 47
  ident: bb0095
  article-title: Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis
  publication-title: Photosynth. Res.
– volume: 23
  start-page: 273
  year: 2013
  end-page: 286
  ident: bb0245
  article-title: Rate my data: quantifying the value of ecological data for the development of models of the terrestrial carbon cycle
  publication-title: Ecol. Appl.
– volume: 6
  start-page: 1897
  year: 2015
  end-page: 1921
  ident: bb0110
  article-title: Impact of nitrogen fertilization on forest carbon sequestration and water loss in a chronosequence of three Douglas-fir stands in the Pacific Northwest
  publication-title: Forests
– volume: 9
  start-page: 525
  year: 2003
  end-page: 535
  ident: bb0360
  article-title: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization
  publication-title: Glob. Chang. Biol.
– volume: 14
  start-page: 133
  year: 2014
  end-page: 141
  ident: bb0425
  article-title: Terrestrial carbon sink observed from space: variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability
  publication-title: Atmos. Chem. Phys.
– volume: 233
  start-page: 12
  year: 2017
  end-page: 31
  ident: bb0220
  article-title: Direct and indirect controls of the interannual variability in atmospheric CO
  publication-title: Agric. For. Meteorol.
– volume: 221
  start-page: 575
  year: 2010
  end-page: 581
  ident: bb0390
  article-title: Identification of important factors for water vapor flux and CO
  publication-title: Ecol. Model.
– volume: 8
  start-page: 498
  year: 2017
  ident: bb0105
  article-title: Modeling and predicting carbon and water fluxes using data-driven techniques in a forest ecosystem
  publication-title: Forests
– volume: 23
  start-page: 3545
  year: 2009
  end-page: 3555
  ident: bb0370
  article-title: Modelling evapotranspiration using discrete wavelet transform and neural networks
  publication-title: Hydrol. Process.
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: bb0295
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 68
  start-page: 306
  year: 2005
  end-page: 314
  ident: bb0290
  article-title: Fully complex extreme learning machine
  publication-title: Neurocomputing
– volume: 147
  start-page: 209
  year: 2007
  end-page: 232
  ident: bb0330
  article-title: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes
  publication-title: Agric. For. Meteorol.
– volume: 173
  start-page: 463
  year: 2007
  end-page: 480
  ident: bb0210
  article-title: The likely impact of elevated [CO
  publication-title: New Phytol.
– volume: 26
  start-page: 457
  year: 2012
  end-page: 474
  ident: bb0260
  article-title: Intermittent streamflow forecasting by using several data driven techniques
  publication-title: Water Resour. Manag.
– volume: 61
  start-page: 32
  year: 2015
  end-page: 48
  ident: bb0200
  article-title: Trends in extreme learning machines: a review
  publication-title: Neural Netw.
– volume: 13
  start-page: 370
  year: 2007
  end-page: 385
  ident: bb0430
  article-title: A method for deriving net primary productivity and component respiratory fluxes from tower-based eddy covariance data: a case study using a 17-year data record from a Douglas-fir chronosequence
  publication-title: Glob. Chang. Biol.
– volume: 124
  start-page: 991
  year: 2016
  end-page: 1004
  ident: bb0235
  article-title: Modelling thermal comfort of visitors at urban squares in hot and arid climate using NN-ARX soft computing method
  publication-title: Theor. Appl. Climatol.
– volume: 189
  start-page: 305
  year: 2005
  end-page: 314
  ident: bb0320
  article-title: Artificial neural network application for multi-ecosystem carbon flux simulation
  publication-title: Ecol. Model.
– volume: 40
  start-page: 14
  year: 2012
  end-page: 33
  ident: bb0050
  article-title: Some applications of adaptive neuro-fuzzy inference system (ANFIS) in geotechnical engineering
  publication-title: Comput. Geotech.
– volume: 5
  start-page: 1625
  year: 2008
  end-page: 1639
  ident: bb0505
  article-title: Assessing seasonality of biochemical CO
  publication-title: Biogeosciences
– volume: SMC-15
  start-page: 116
  year: 1985
  end-page: 132
  ident: bb0495
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 535
  start-page: 457
  year: 2016
  end-page: 472
  ident: bb0555
  article-title: Evaluation of data driven models for river suspended sediment concentration modeling
  publication-title: J. Hydrol.
– volume: 16
  start-page: 1021
  year: 2002
  ident: bb0040
  article-title: Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models
  publication-title: Glob. Biogeochem. Cycles
– volume: 36
  start-page: 285
  year: 2012
  end-page: 305
  ident: bb0055
  article-title: Self-adaptive evolutionary extreme learning machine
  publication-title: Neural. Process. Lett.
– volume: 79
  start-page: 61
  year: 1998
  end-page: 78
  ident: bb0515
  article-title: A practical guide to wavelet analysis
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 154-155
  start-page: 99
  year: 2012
  end-page: 112
  ident: bb0085
  article-title: Quantifying the influence of climate and biological drivers on the interannual variability of carbon exchanges in European forests through process-based modelling
  publication-title: Agric. For. Meteorol.
– volume: 113
  year: 2008
  ident: bb0275
  article-title: Factors controlling the interannual variability in the carbon balance of a southern boreal black spruce forest
  publication-title: J. Geophys. Res.
– volume: 150
  start-page: 1476
  year: 2010
  end-page: 1484
  ident: bb0550
  article-title: Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought
  publication-title: Agric. For. Meteorol.
– volume: 246
  start-page: 11
  year: 2012
  end-page: 25
  ident: bb0525
  article-title: State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales
  publication-title: Ecol. Model.
– volume: 160
  start-page: 249
  year: 2003
  end-page: 264
  ident: bb0135
  article-title: Review and comparison of methods to study the contribution of variables in artificial neural network models
  publication-title: Ecol. Model.
– volume: 11
  start-page: 217
  year: 2014
  end-page: 235
  ident: bb0165
  article-title: Evaluating terrestrial CO
  publication-title: Biogeosciences
– volume: 104
  start-page: 68
  year: 2016
  end-page: 75
  ident: bb0405
  article-title: Selection of the most influential flow and thermal parameters for predicting the efficiency of activated carbon filters using neuro-fuzzy technique
  publication-title: Build. Environ.
– volume: 101
  start-page: 568
  year: 2016
  end-page: 580
  ident: bb0240
  article-title: A simulation model for visitors' thermal comfort at urban public squares using non-probabilistic binary-linear classifier through soft-computing methodologies
  publication-title: Energy
– volume: 138
  start-page: 244
  year: 2006
  end-page: 257
  ident: bb0400
  article-title: Uncertainties in measurement and modelling of net ecosystem exchange of a forest
  publication-title: Agric. For. Meteorol.
– volume: 12
  start-page: 1205
  year: 2014
  end-page: 1221
  ident: bb0385
  article-title: Uncertainty analysis of eddy covariance CO
  publication-title: Biogeosciences
– volume: 117
  start-page: 53
  year: 2003
  end-page: 71
  ident: bb0140
  article-title: Ecophysiological controls on the carbon balances of three southern boreal forests
  publication-title: Agric. For. Meteorol.
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: bb0215
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 107
  start-page: 71
  year: 2001
  end-page: 77
  ident: bb0125
  article-title: Gap filling strategies for long term energy flux data sets
  publication-title: Agric. For. Meteorol.
– volume: 116
  year: 2011
  ident: bb0145
  article-title: Seasonal variation of photosynthetic model parameters and leaf area index from global Fluxnet eddy covariance data
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 94
  start-page: 727
  year: 2016
  end-page: 747
  ident: bb0445
  article-title: Support vector machine-based exergetic modelling of a DI diesel engine running on biodiesel–diesel blends containing expanded polystyrene
  publication-title: Appl. Therm. Eng.
– volume: 542
  start-page: 603
  year: 2016
  end-page: 614
  ident: bb0545
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: J. Hydrol.
– volume: 138
  start-page: 349
  year: 2011
  end-page: 362
  ident: bb0255
  article-title: Generalized neurofuzzy models for estimating daily pan evaporation values from weather data
  publication-title: J. Irrig. Drain. Eng.
– volume: 117
  year: 2012
  ident: bb0420
  article-title: A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis
  publication-title: J. Geophys. Res.-Biogeosci.
– volume: 88
  start-page: 66
  year: 2016
  end-page: 76
  ident: bb0520
  article-title: Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran
  publication-title: Biomass Bioenergy
– volume: 29
  start-page: 33
  year: 2002
  end-page: 1-33-4
  ident: bb0045
  article-title: Long-term variations of climate and carbon fluxes over the Amazon basin
  publication-title: Geophys. Res. Lett.
– volume: 150
  start-page: 1090
  year: 2010
  end-page: 1101
  ident: bb0375
  article-title: Age effects on carbon fluxes in temperate pine forests
  publication-title: Agric. For. Meteorol.
– volume: 22
  start-page: 92
  year: 2013
  end-page: 101
  ident: bb0265
  article-title: Modeling of dissolved oxygen in river water using artificial intelligence techniques
  publication-title: J. Environ. Inform.
– volume: 148
  start-page: 942
  year: 2008
  end-page: 952
  ident: bb0530
  article-title: Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system
  publication-title: Agric. For. Meteorol.
– volume: 38
  start-page: 6894
  year: 2017
  end-page: 6909
  ident: bb0175
  article-title: A comparison of the performance of some extreme learning machine empirical models for predicting daily horizontal diffuse solar radiation in a region of southern Iran
  publication-title: Int. J. Remote Sens.
– volume: 12
  year: 2017
  ident: bb0435
  article-title: Land-use dynamics influence estimates of carbon sequestration potential in tropical second-growth forest
  publication-title: Environ. Res. Lett.
– volume: 140
  start-page: 322
  year: 2006
  end-page: 337
  ident: bb0025
  article-title: Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO
  publication-title: Agric. For. Meteorol.
– volume: 34
  start-page: 179
  year: 2014
  end-page: 186
  ident: bb0250
  article-title: Prediction of long-term monthly air temperature using geographical inputs
  publication-title: Int. J. Climatol.
– volume: 43
  start-page: 4576
  year: 2016
  end-page: 4585
  ident: bb0510
  article-title: Large–scale variation in boreal and temperate forest carbon turnover rate related to climate
  publication-title: Geophys. Res. Lett.
– volume: 25
  start-page: 887
  year: 2005
  end-page: 902
  ident: bb0480
  article-title: Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis
  publication-title: Tree Physiol.
– volume: 25
  start-page: 549
  year: 2014
  end-page: 556
  ident: bb0100
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput. & Applic.
– volume: 26
  start-page: 4347
  year: 2012
  end-page: 4365
  ident: bb0415
  article-title: Estimation of daily pan evaporation using two different adaptive neuro-fuzzy computing techniques
  publication-title: Water Resour. Manag.
– volume: 134
  start-page: 109
  year: 2015
  end-page: 117
  ident: bb0440
  article-title: Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: a case study for Iran
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 404
  start-page: 411
  year: 2008
  end-page: 423
  ident: bb0160
  article-title: The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements
  publication-title: Sci. Total Environ.
– volume: 398
  start-page: 292
  year: 2011
  end-page: 302
  ident: bb0075
  article-title: Evapotranspiration estimation by two different neuro-fuzzy inference systems
  publication-title: J. Hydrol.
– volume: 10
  start-page: 203
  year: 2018
  ident: bb0115
  article-title: Estimating forest carbon fluxes using machine learning techniques based on eddy covariance measurements
  publication-title: Sustainability
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bb0185
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 12
  start-page: 2115
  year: 2006
  end-page: 2135
  ident: bb0485
  article-title: Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US
  publication-title: Glob. Chang. Biol.
– volume: 14
  start-page: 209
  year: 2016
  end-page: 218
  ident: bb0380
  article-title: Adaptive neuro-fuzzy computing technique for precipitation estimation
  publication-title: Series: Mechanical Engineering
– volume: 509
  start-page: 25
  year: 2014
  end-page: 41
  ident: bb0300
  article-title: Improving real time flood forecasting using fuzzy inference system
  publication-title: J. Hydrol.
– volume: 108
  start-page: 293
  year: 2001
  end-page: 315
  ident: bb0010
  article-title: Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes
  publication-title: Agric. For. Meteorol.
– volume: 96
  start-page: 311
  year: 2016
  end-page: 319
  ident: bb0340
  article-title: Using ANFIS for selection of more relevant parameters to predict dew point temperature
  publication-title: Appl. Therm. Eng.
– volume: 84
  start-page: 2145
  year: 2016
  end-page: 2162
  ident: bb0450
  article-title: Design of a support vector machine with different kernel functions to predict scour depth around bridge piers
  publication-title: Nat. Hazards
– volume: 406
  start-page: 199
  year: 2011
  end-page: 214
  ident: bb0350
  article-title: Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: an empirical examination
  publication-title: J. Hydrol.
– volume: 33
  start-page: 847
  year: 2007
  end-page: 856
  ident: bb0190
  article-title: Credit scoring with a data mining approach based on support vector machines
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 1240
  year: 2017
  end-page: 1257
  ident: bb0535
  article-title: Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales
  publication-title: Glob. Chang. Biol.
– volume: 30
  start-page: 641
  year: 2016
  end-page: 652
  ident: bb0455
  article-title: Precipitation estimation using support vector machine with discrete wavelet transform
  publication-title: Water Resour. Manag.
– volume: 42
  start-page: 491
  year: 2011
  ident: bb0460
  article-title: Estimating daily pan evaporation from climatic data of the state of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN)
  publication-title: Hydrol. Res.
– volume: 5
  start-page: 891
  year: 1999
  end-page: 902
  ident: bb0170
  article-title: Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest
  publication-title: Glob. Chang. Biol.
– volume: 21
  start-page: 2861
  year: 2015
  end-page: 2880
  ident: bb0130
  article-title: Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts
  publication-title: Glob. Chang. Biol.
– volume: 93
  start-page: 406
  year: 2015
  end-page: 413
  ident: bb0335
  article-title: Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year
  publication-title: Energy Convers. Manag.
– volume: 488
  start-page: 17
  year: 2013
  end-page: 32
  ident: bb0500
  article-title: Runoff forecasting using a Takagi–Sugeno neuro-fuzzy model with online learning
  publication-title: J. Hydrol.
– volume: 5
  start-page: 969
  year: 2008
  end-page: 980
  ident: bb0285
  article-title: Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia
  publication-title: Biogeosciences
– volume: 83
  start-page: 147
  year: 1997
  end-page: 170
  ident: bb0015
  article-title: Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest
  publication-title: Agric. For. Meteorol.
– volume: 25
  start-page: 891
  year: 2010
  end-page: 909
  ident: bb0315
  article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
  publication-title: Environ. Model. Softw.
– volume: 30
  start-page: 5217
  year: 2016
  end-page: 5229
  ident: bb0475
  article-title: Prediction of water-level in the Urmia Lake using the extreme learning machine approach
  publication-title: Water Resour. Manag.
– volume: 46
  start-page: 72
  year: 2015
  end-page: 88
  ident: bb0470
  article-title: Local vs. external training of neuro-fuzzy and neural networks models for estimating reference evapotranspiration assessed through k-fold testing
  publication-title: Hydrol. Res.
– volume: 2
  start-page: 27
  year: 2011
  ident: bb0060
  article-title: LIBSVM: A Library for Support Vector Machines
– volume: 101
  start-page: 312
  year: 2015
  end-page: 327
  ident: bb0325
  article-title: Annual sums of carbon dioxide exchange over a heterogeneous urban landscape through machine learning based gap-filling
  publication-title: Atmos. Environ.
– volume: 120
  start-page: 1941
  year: 2015
  end-page: 1957
  ident: bb0365
  article-title: Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 10
  start-page: 187
  year: 2007
  end-page: 203
  ident: bb0355
  article-title: Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA
  publication-title: Ecosystems
– volume: 6
  start-page: 45
  year: 2013
  end-page: 55
  ident: bb0280
  article-title: Quantifying the model structural error in carbon cycle data assimilation systems
  publication-title: Geosci. Model Dev.
– volume: 20
  start-page: 1394
  year: 2014
  end-page: 1411
  ident: bb0020
  article-title: Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis
  publication-title: Glob. Chang. Biol.
– volume: 33
  start-page: 772
  year: 2014
  end-page: 781
  ident: bb0540
  article-title: Solar radiation prediction using artificial neural network techniques: a review
  publication-title: Renew. Sust. Energ. Rev.
– volume: 10
  start-page: 8185
  year: 2013
  end-page: 8200
  ident: bb0090
  article-title: Testing the applicability of neural networks as a gap-filling method using CH
  publication-title: Biogeosciences
– volume: 21
  start-page: 1737
  year: 2015
  end-page: 1751
  ident: bb0305
  article-title: Predictability of the terrestrial carbon cycle
  publication-title: Glob. Chang. Biol.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bb0180
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
– volume: 62
  start-page: 106
  year: 2016
  end-page: 108
  ident: bb0225
  article-title: Thermal sensation prediction by soft computing methodology
  publication-title: J. Therm. Biol.
– volume: 2
  start-page: 107
  year: 2011
  end-page: 122
  ident: bb0195
  article-title: Extreme learning machines: a survey
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 13
  start-page: 193
  year: 1998
  end-page: 209
  ident: bb0310
  article-title: The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study
  publication-title: Environ. Model. Softw.
– volume: 28
  start-page: 1215
  year: 2014
  end-page: 1225
  ident: bb0465
  article-title: Evaluation of gene expression programming approaches for estimating daily evaporation through spatial and temporal data scanning
  publication-title: Hydrol. Process.
– volume: 19
  start-page: 372
  year: 2014
  end-page: 386
  ident: bb0395
  article-title: Support vector machine applications in the field of hydrology: a review
  publication-title: Appl. Soft Comput.
– volume: 171-172
  start-page: 1
  year: 2013
  end-page: 8
  ident: bb0120
  article-title: Quantifying biosphere–atmosphere exchange of CO
  publication-title: Agric. For. Meteorol.
– volume: 20
  start-page: 276
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0155
  article-title: Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12422
– volume: 406
  start-page: 199
  issue: 3–4
  year: 2011
  ident: 10.1016/j.scitotenv.2018.01.202_bb0350
  article-title: Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: an empirical examination
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.06.015
– volume: 14
  start-page: 209
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0380
  article-title: Adaptive neuro-fuzzy computing technique for precipitation estimation
– volume: 25
  start-page: 891
  year: 2010
  ident: 10.1016/j.scitotenv.2018.01.202_bb0315
  article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2010.02.003
– volume: 79
  start-page: 61
  year: 1998
  ident: 10.1016/j.scitotenv.2018.01.202_bb0515
  article-title: A practical guide to wavelet analysis
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– volume: 17
  start-page: 1411
  year: 2006
  ident: 10.1016/j.scitotenv.2018.01.202_bb0295
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880583
– volume: 173
  start-page: 463
  year: 2007
  ident: 10.1016/j.scitotenv.2018.01.202_bb0210
  article-title: The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.01967.x
– volume: 171-172
  start-page: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.202_bb0120
  article-title: Quantifying biosphere–atmosphere exchange of CO2 using eddy covariance, wavelet denoising, neural networks, and multiple regression models
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.11.002
– volume: 28
  start-page: 1215
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0465
  article-title: Evaluation of gene expression programming approaches for estimating daily evaporation through spatial and temporal data scanning
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9669
– volume: 120
  start-page: 1941
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0365
  article-title: Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1002/2015JG002997
– volume: 119
  start-page: 31
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0095
  article-title: Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-013-9925-z
– volume: 33
  start-page: 772
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0540
  article-title: Solar radiation prediction using artificial neural network techniques: a review
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2013.08.055
– volume: 20
  start-page: 1394
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0020
  article-title: Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12474
– volume: 117
  start-page: 53
  year: 2003
  ident: 10.1016/j.scitotenv.2018.01.202_bb0140
  article-title: Ecophysiological controls on the carbon balances of three southern boreal forests
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(03)00023-6
– volume: 38
  start-page: 6894
  year: 2017
  ident: 10.1016/j.scitotenv.2018.01.202_bb0175
  article-title: A comparison of the performance of some extreme learning machine empirical models for predicting daily horizontal diffuse solar radiation in a region of southern Iran
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1368098
– volume: SMC-15
  start-page: 116
  year: 1985
  ident: 10.1016/j.scitotenv.2018.01.202_bb0495
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1985.6313399
– volume: 36
  start-page: 480
  year: 2012
  ident: 10.1016/j.scitotenv.2018.01.202_bb0005
  article-title: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133312444943
– volume: 30
  start-page: 1189
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0230
  article-title: Adaptation of ANFIS model to assess thermal comfort of an urban square in moderate and dry climate
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-015-1116-3
– volume: 101
  start-page: 568
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0240
  article-title: A simulation model for visitors' thermal comfort at urban public squares using non-probabilistic binary-linear classifier through soft-computing methodologies
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.021
– volume: 25
  start-page: 887
  year: 2005
  ident: 10.1016/j.scitotenv.2018.01.202_bb0480
  article-title: Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/25.7.887
– volume: 61
  start-page: 585
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0080
  article-title: Forecasting streamflow by combination of a genetic input selection algorithm and wavelet transforms using ANFIS models
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2014.988155
– volume: 34
  start-page: 179
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0250
  article-title: Prediction of long-term monthly air temperature using geographical inputs
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3676
– volume: 2
  start-page: 27
  year: 2011
  ident: 10.1016/j.scitotenv.2018.01.202_bb0060
– volume: 116
  year: 2011
  ident: 10.1016/j.scitotenv.2018.01.202_bb0145
  article-title: Seasonal variation of photosynthetic model parameters and leaf area index from global Fluxnet eddy covariance data
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2011JG001742
– volume: 124
  start-page: 991
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0235
  article-title: Modelling thermal comfort of visitors at urban squares in hot and arid climate using NN-ARX soft computing method
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-015-1462-6
– volume: 404
  start-page: 411
  year: 2008
  ident: 10.1016/j.scitotenv.2018.01.202_bb0160
  article-title: The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.11.007
– volume: 150
  start-page: 1476
  year: 2010
  ident: 10.1016/j.scitotenv.2018.01.202_bb0550
  article-title: Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2010.08.003
– volume: 12
  year: 2017
  ident: 10.1016/j.scitotenv.2018.01.202_bb0435
  article-title: Land-use dynamics influence estimates of carbon sequestration potential in tropical second-growth forest
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa708b
– volume: 59
  start-page: 387
  year: 2007
  ident: 10.1016/j.scitotenv.2018.01.202_bb0150
  article-title: A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt
  publication-title: Tellus Ser. B Chem. Phys. Meteorol.
  doi: 10.1111/j.1600-0889.2007.00259.x
– volume: 30
  start-page: 641
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0455
  article-title: Precipitation estimation using support vector machine with discrete wavelet transform
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-1182-9
– volume: 23
  start-page: 273
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.202_bb0245
  article-title: Rate my data: quantifying the value of ecological data for the development of models of the terrestrial carbon cycle
  publication-title: Ecol. Appl.
  doi: 10.1890/12-0747.1
– volume: 36
  start-page: 285
  year: 2012
  ident: 10.1016/j.scitotenv.2018.01.202_bb0055
  article-title: Self-adaptive evolutionary extreme learning machine
  publication-title: Neural. Process. Lett.
  doi: 10.1007/s11063-012-9236-y
– volume: 43
  start-page: 4576
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0510
  article-title: Large–scale variation in boreal and temperate forest carbon turnover rate related to climate
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL068794
– volume: 18
  start-page: 566
  year: 2012
  ident: 10.1016/j.scitotenv.2018.01.202_bb0410
  article-title: Terrestrial biosphere models need better representation of vegetation phenology: results from the north American carbon program site synthesis
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02562.x
– volume: 140
  start-page: 322
  year: 2006
  ident: 10.1016/j.scitotenv.2018.01.202_bb0025
  article-title: Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.08.007
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.scitotenv.2018.01.202_bb0185
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 68
  start-page: 306
  year: 2005
  ident: 10.1016/j.scitotenv.2018.01.202_bb0290
  article-title: Fully complex extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.03.002
– volume: 150
  start-page: 1090
  year: 2010
  ident: 10.1016/j.scitotenv.2018.01.202_bb0375
  article-title: Age effects on carbon fluxes in temperate pine forests
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2010.04.008
– volume: 30
  start-page: 5217
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0475
  article-title: Prediction of water-level in the Urmia Lake using the extreme learning machine approach
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1480-x
– volume: 10
  start-page: 8185
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.202_bb0090
  article-title: Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-8185-2013
– volume: 535
  start-page: 457
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0555
  article-title: Evaluation of data driven models for river suspended sediment concentration modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.02.012
– volume: 83
  start-page: 147
  year: 1997
  ident: 10.1016/j.scitotenv.2018.01.202_bb0015
  article-title: Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(96)02335-0
– volume: 26
  start-page: 4347
  year: 2012
  ident: 10.1016/j.scitotenv.2018.01.202_bb0415
  article-title: Estimation of daily pan evaporation using two different adaptive neuro-fuzzy computing techniques
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-012-0148-4
– volume: 189
  start-page: 305
  year: 2005
  ident: 10.1016/j.scitotenv.2018.01.202_bb0320
  article-title: Artificial neural network application for multi-ecosystem carbon flux simulation
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2005.03.014
– volume: 113
  year: 2008
  ident: 10.1016/j.scitotenv.2018.01.202_bb0275
  article-title: Factors controlling the interannual variability in the carbon balance of a southern boreal black spruce forest
  publication-title: J. Geophys. Res.
  doi: 10.1029/2007JD008965
– volume: 10
  start-page: 187
  year: 2007
  ident: 10.1016/j.scitotenv.2018.01.202_bb0355
  article-title: Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA
  publication-title: Ecosystems
  doi: 10.1007/s10021-007-9018-y
– volume: 21
  start-page: 2861
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0130
  article-title: Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12916
– volume: 2
  start-page: 107
  year: 2011
  ident: 10.1016/j.scitotenv.2018.01.202_bb0195
  article-title: Extreme learning machines: a survey
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-011-0019-y
– volume: 117
  year: 2012
  ident: 10.1016/j.scitotenv.2018.01.202_bb0420
  article-title: A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis
  publication-title: J. Geophys. Res.-Biogeosci.
  doi: 10.1029/2012JG001960
– volume: 21
  start-page: 1737
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0305
  article-title: Predictability of the terrestrial carbon cycle
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12766
– volume: 104
  start-page: 68
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0405
  article-title: Selection of the most influential flow and thermal parameters for predicting the efficiency of activated carbon filters using neuro-fuzzy technique
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.04.031
– volume: 14
  start-page: 3445
  year: 2017
  ident: 10.1016/j.scitotenv.2018.01.202_bb0035
  article-title: Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties
  publication-title: Biogeosciences
  doi: 10.5194/bg-14-3445-2017
– volume: 23
  start-page: 665
  year: 1993
  ident: 10.1016/j.scitotenv.2018.01.202_bb0215
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.256541
– volume: 23
  start-page: 1240
  year: 2017
  ident: 10.1016/j.scitotenv.2018.01.202_bb0535
  article-title: Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13509
– volume: 62
  start-page: 106
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0225
  article-title: Thermal sensation prediction by soft computing methodology
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2016.07.005
– volume: 93
  start-page: 406
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0335
  article-title: Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.01.021
– volume: 246
  start-page: 11
  year: 2012
  ident: 10.1016/j.scitotenv.2018.01.202_bb0525
  article-title: State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2012.07.017
– volume: 13
  start-page: 370
  year: 2007
  ident: 10.1016/j.scitotenv.2018.01.202_bb0430
  article-title: A method for deriving net primary productivity and component respiratory fluxes from tower-based eddy covariance data: a case study using a 17-year data record from a Douglas-fir chronosequence
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2006.01298.x
– volume: 107
  start-page: 71
  year: 2001
  ident: 10.1016/j.scitotenv.2018.01.202_bb0125
  article-title: Gap filling strategies for long term energy flux data sets
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(00)00235-5
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.scitotenv.2018.01.202_bb0180
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 46
  start-page: 72
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0470
  article-title: Local vs. external training of neuro-fuzzy and neural networks models for estimating reference evapotranspiration assessed through k-fold testing
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2013.112
– volume: 233
  start-page: 12
  year: 2017
  ident: 10.1016/j.scitotenv.2018.01.202_bb0220
  article-title: Direct and indirect controls of the interannual variability in atmospheric CO2 exchange of three contrasting ecosystems in Denmark
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.10.023
– volume: 94
  start-page: 727
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0445
  article-title: Support vector machine-based exergetic modelling of a DI diesel engine running on biodiesel–diesel blends containing expanded polystyrene
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.10.140
– volume: 12
  start-page: 2115
  year: 2006
  ident: 10.1016/j.scitotenv.2018.01.202_bb0485
  article-title: Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2006.01244.x
– volume: 6
  start-page: 1897
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0110
  article-title: Impact of nitrogen fertilization on forest carbon sequestration and water loss in a chronosequence of three Douglas-fir stands in the Pacific Northwest
  publication-title: Forests
  doi: 10.3390/f6061897
– volume: 488
  start-page: 17
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.202_bb0500
  article-title: Runoff forecasting using a Takagi–Sugeno neuro-fuzzy model with online learning
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.02.022
– volume: 118
  start-page: 28
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0065
  article-title: Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.08.020
– volume: 154-155
  start-page: 99
  year: 2012
  ident: 10.1016/j.scitotenv.2018.01.202_bb0085
  article-title: Quantifying the influence of climate and biological drivers on the interannual variability of carbon exchanges in European forests through process-based modelling
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.10.010
– volume: 14
  start-page: 133
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0425
  article-title: Terrestrial carbon sink observed from space: variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-133-2014
– volume: 398
  start-page: 292
  year: 2011
  ident: 10.1016/j.scitotenv.2018.01.202_bb0075
  article-title: Evapotranspiration estimation by two different neuro-fuzzy inference systems
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.12.030
– volume: 542
  start-page: 603
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0545
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.09.035
– volume: 66
  start-page: 247
  year: 2011
  ident: 10.1016/j.scitotenv.2018.01.202_bb0345
  article-title: Support vector machines in remote sensing: a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume: 42
  start-page: 491
  year: 2011
  ident: 10.1016/j.scitotenv.2018.01.202_bb0460
  article-title: Estimating daily pan evaporation from climatic data of the state of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN)
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2011.020
– volume: 509
  start-page: 25
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0300
  article-title: Improving real time flood forecasting using fuzzy inference system
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.11.021
– volume: 5
  start-page: 969
  year: 2008
  ident: 10.1016/j.scitotenv.2018.01.202_bb0285
  article-title: Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia
  publication-title: Biogeosciences
  doi: 10.5194/bg-5-969-2008
– volume: 108
  start-page: 293
  year: 2001
  ident: 10.1016/j.scitotenv.2018.01.202_bb0010
  article-title: Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(01)00244-1
– volume: 160
  start-page: 249
  year: 2003
  ident: 10.1016/j.scitotenv.2018.01.202_bb0135
  article-title: Review and comparison of methods to study the contribution of variables in artificial neural network models
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(02)00257-0
– volume: 351
  start-page: 9
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0070
  article-title: Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2015.04.034
– volume: 221
  start-page: 575
  year: 2010
  ident: 10.1016/j.scitotenv.2018.01.202_bb0390
  article-title: Identification of important factors for water vapor flux and CO2 exchange in a cropland
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.11.007
– volume: 40
  start-page: 14
  year: 2012
  ident: 10.1016/j.scitotenv.2018.01.202_bb0050
  article-title: Some applications of adaptive neuro-fuzzy inference system (ANFIS) in geotechnical engineering
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2011.09.008
– volume: 8
  start-page: 498
  year: 2017
  ident: 10.1016/j.scitotenv.2018.01.202_bb0105
  article-title: Modeling and predicting carbon and water fluxes using data-driven techniques in a forest ecosystem
  publication-title: Forests
  doi: 10.3390/f8120498
– volume: 6
  start-page: 2121
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.202_bb0205
  article-title: The north American carbon program multi-scale synthesis and terrestrial model Intercomparison project-part 1: overview and experimental design
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-6-2121-2013
– volume: 31
  start-page: 575
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.202_bb0490
  article-title: Applicability of support vector machines and adaptive neurofuzzy inference system for modeling potato crop evapotranspiration
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-012-0332-6
– volume: 84
  start-page: 2145
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0450
  article-title: Design of a support vector machine with different kernel functions to predict scour depth around bridge piers
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2540-5
– volume: 33
  start-page: 847
  year: 2007
  ident: 10.1016/j.scitotenv.2018.01.202_bb0190
  article-title: Credit scoring with a data mining approach based on support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.07.007
– volume: 138
  start-page: 244
  year: 2006
  ident: 10.1016/j.scitotenv.2018.01.202_bb0400
  article-title: Uncertainties in measurement and modelling of net ecosystem exchange of a forest
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.05.007
– volume: 6
  start-page: 45
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.202_bb0280
  article-title: Quantifying the model structural error in carbon cycle data assimilation systems
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-6-45-2013
– volume: 16
  start-page: 1021
  year: 2002
  ident: 10.1016/j.scitotenv.2018.01.202_bb0040
  article-title: Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2000GB001360
– volume: 25
  start-page: 549
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0100
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-013-1522-8
– volume: 134
  start-page: 109
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0440
  article-title: Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: a case study for Iran
  publication-title: J. Atmos. Sol. Terr. Phys.
  doi: 10.1016/j.jastp.2015.09.014
– volume: 11
  start-page: 217
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0165
  article-title: Evaluating terrestrial CO2 flux diagnoses and uncertainties from a simple land surface model and its residuals
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-217-2014
– volume: 30
  start-page: 642
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0030
  article-title: Hybrid ANFIS–PSO approach for predicting optimum parameters of a protective spur dike
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.02.011
– volume: 96
  start-page: 311
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0340
  article-title: Using ANFIS for selection of more relevant parameters to predict dew point temperature
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.11.081
– volume: 147
  start-page: 209
  year: 2007
  ident: 10.1016/j.scitotenv.2018.01.202_bb0330
  article-title: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2007.08.011
– volume: 29
  start-page: 33
  year: 2002
  ident: 10.1016/j.scitotenv.2018.01.202_bb0045
  article-title: Long-term variations of climate and carbon fluxes over the Amazon basin
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2001GL013607
– volume: 12
  start-page: 1205
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0385
  article-title: Uncertainty analysis of eddy covariance CO2 flux measurements for different EC tower distances using an extended two-tower approach
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-1205-2015
– volume: 19
  start-page: 372
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.202_bb0395
  article-title: Support vector machine applications in the field of hydrology: a review
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.002
– volume: 148
  start-page: 942
  year: 2008
  ident: 10.1016/j.scitotenv.2018.01.202_bb0530
  article-title: Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.01.005
– volume: 5
  start-page: 891
  year: 1999
  ident: 10.1016/j.scitotenv.2018.01.202_bb0170
  article-title: Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest
  publication-title: Glob. Chang. Biol.
  doi: 10.1046/j.1365-2486.1999.00281.x
– volume: 101
  start-page: 312
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0325
  article-title: Annual sums of carbon dioxide exchange over a heterogeneous urban landscape through machine learning based gap-filling
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.11.006
– volume: 10
  start-page: 203
  year: 2018
  ident: 10.1016/j.scitotenv.2018.01.202_bb0115
  article-title: Estimating forest carbon fluxes using machine learning techniques based on eddy covariance measurements
  publication-title: Sustainability
  doi: 10.3390/su10010203
– volume: 13
  start-page: 193
  year: 1998
  ident: 10.1016/j.scitotenv.2018.01.202_bb0310
  article-title: The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study
  publication-title: Environ. Model. Softw.
  doi: 10.1016/S1364-8152(98)00020-6
– volume: 51
  start-page: 108
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.202_bb0270
  article-title: Modeling rainfall-runoff process using soft computing techniques
  publication-title: Computer. Geosci. U. K.
  doi: 10.1016/j.cageo.2012.07.001
– volume: 23
  start-page: 3545
  year: 2009
  ident: 10.1016/j.scitotenv.2018.01.202_bb0370
  article-title: Modelling evapotranspiration using discrete wavelet transform and neural networks
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7448
– volume: 138
  start-page: 349
  year: 2011
  ident: 10.1016/j.scitotenv.2018.01.202_bb0255
  article-title: Generalized neurofuzzy models for estimating daily pan evaporation values from weather data
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000403
– volume: 26
  start-page: 457
  year: 2012
  ident: 10.1016/j.scitotenv.2018.01.202_bb0260
  article-title: Intermittent streamflow forecasting by using several data driven techniques
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-011-9926-7
– volume: 9
  start-page: 525
  year: 2003
  ident: 10.1016/j.scitotenv.2018.01.202_bb0360
  article-title: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization
  publication-title: Glob. Chang. Biol.
  doi: 10.1046/j.1365-2486.2003.00609.x
– volume: 88
  start-page: 66
  year: 2016
  ident: 10.1016/j.scitotenv.2018.01.202_bb0520
  article-title: Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2016.03.020
– volume: 5
  start-page: 1625
  year: 2008
  ident: 10.1016/j.scitotenv.2018.01.202_bb0505
  article-title: Assessing seasonality of biochemical CO2 exchange model parameters from micrometeorological flux observations at boreal coniferous forest
  publication-title: Biogeosciences
  doi: 10.5194/bg-5-1625-2008
– volume: 61
  start-page: 32
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.202_bb0200
  article-title: Trends in extreme learning machines: a review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.10.001
– volume: 22
  start-page: 92
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.202_bb0265
  article-title: Modeling of dissolved oxygen in river water using artificial intelligence techniques
  publication-title: J. Environ. Inform.
  doi: 10.3808/jei.201300248
SSID ssj0000781
Score 2.4593987
Snippet With the recent availability of large amounts of data from the global flux towers across different terrestrial ecosystems based on the eddy covariance...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 78
SubjectTerms Adaptive neuro-fuzzy inference system
carbon
Carbon fluxes
chronosequences
Data-driven techniques
eddy covariance
Extreme learning machine
Flux towers
Forest ecosystems
forests
fuzzy logic
neural networks
support vector machines
viability
Title Estimating forest carbon fluxes using four different data-driven techniques based on long-term eddy covariance measurements: Model comparison and evaluation
URI https://dx.doi.org/10.1016/j.scitotenv.2018.01.202
https://www.ncbi.nlm.nih.gov/pubmed/29426202
https://www.proquest.com/docview/2001068904
https://www.proquest.com/docview/2237519041
Volume 627
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIKHN
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: ACRLP
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AKRWK
  dateStart: 19930115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhoVAoId02zfYRptCrG0sev3ILYcO2S3MoKc3NWA-HlK0d1t7QXPpL-mM749cSaJtDT8K2ZAlpZjQjzcwnxLtEYuFClJ6O0tgjCik8jUZ6KnAa8yRVpsVY-nQezb_gx8vwckucDrEw7FbZy_5OprfSun9z1M_m0c31Ncf4YpJSD5JTWGHAchgxZhSD9z83bh6czKa7ZSbGptr3fLzov01Fuukt-3glnL9T9ecrf9ih_qaBtjvR2Z7Y7VVIOOlG-VRsuXIiHnWgkncTsT_bxK5RtZ5564l40h3RQRd59Ez8mhF7s8JaXgGprtQlmHylqxKK5fqHq4F94vnTegUDjkoD7FLq2RULSRgTwNbAu6EFarusyiuP5T04a-_AVLdkjTNpwffNcWR9DAzCtgQzwiBCXlrY5B5_Li7OZhenc68Ha_AM-th4UmMRxj5KmbucZtMYJoLCpXERGt-aKFSJy7VFDJUrNOclc2SYk4phbCB1sC-2y6p0BwKcSchoi11IthxadIlvUhtHJvUTjYGWUxEN65OZPpE542kss8Fj7Vs2LmzGC5v5kko1Ff7Y8KbL5fFwk-OBALJ7ZJnRjvNw47cDyWTEtHwTk5euWteM_UmmeJL6-I86KohJvaYZnYoXHb2No1ZpCySgXv7P8F6Jx_zEfm8yfC22m9XavSENq9GHLQsdip2TD4v5OZeLz18XvwE5yixR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIgQSqmChsC2PQeJqGidO4vRWVVst0Pa0SL1Z8SNV0ZJUm2xFL_wSfiwzea0qAT1wihTbieV5eMaemY-xD0rIwsdScJNkKUcOKbiRVvAw8kbmKgtti7F0dp7Mv8rPF_HFFjsecmEorLLX_Z1Ob7V1_-agX82D66sryvGVKsM_CCphJSPUww9kHKbkgX38uYnzoGo23TUzSjZ2vxPkhR9uKjRObyjIS1EBz7A_YPnDFvU3E7Tdik6esp3ehoSjbprP2JYvJ-xhhyp5O2G7s03yGnbrpbeesCfdGR10qUfP2a8ZyjdZrOUloO2KvwSbr0xVQrFc__A1UFA8Na1XMACpNEAxpdytSEvCWAG2BtoOHeDYZVVeclL44J27BVvdoDtOvAXfN-eR9SEQCtsS7IiDCHnpYFN8_AVbnMwWx3PeozVwKwPZcGFkEaeBFCL3Oa6mtcQFhc_SIraBs0kcKp8bJ5FIvjBUmMyjZ442hnWRMNEu2y6r0r9i4K1Cry31MTpz0kmvApu5NLFZoIyMjJiyZKCPtn0lcwLUWOohZO2bHgmribA6EPgMpywYB153xTzuH3I4MIC-w5cat5z7B78fWEaj1NJVTF76al0T-Cf64ioL5D_6hFGK9jWu6JS97PhtnHWYtUgC4d7_TO8dezRfnJ3q00_nX_bZY2qhIDgRv2bbzWrt36C51Zi3rTj9BoCDLEM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+forest+carbon+fluxes+using+four+different+data-driven+techniques+based+on+long-term+eddy+covariance+measurements%3A+Model+comparison+and+evaluation&rft.jtitle=The+Science+of+the+total+environment&rft.au=Dou%2C+Xianming&rft.au=Yang%2C+Yongguo&rft.date=2018-06-15&rft.eissn=1879-1026&rft.volume=627&rft.spage=78&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.01.202&rft_id=info%3Apmid%2F29426202&rft.externalDocID=29426202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon