Ultrasound‐Based Local Lung Motion Assessment Using Synthetic Lateral Phase

ABSTRACT Background Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler‐based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent. Methods We developed a synthetic lateral...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical ultrasound Vol. 53; no. 4; pp. 639 - 646
Main Authors Fung, Christopher M., Rubin, Jonathan M., Gao, Jing, Hamilton, James D.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0091-2751
1097-0096
1097-0096
DOI10.1002/jcu.23908

Cover

Abstract ABSTRACT Background Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler‐based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent. Methods We developed a synthetic lateral phase‐based algorithm for tracking lung motion to overcome these limitations. To validate the technique, we generated simulated lung motion images. We also obtained lung ultrasound cines from a healthy volunteer and a mechanically ventilated COVID‐19 patient. In the healthy volunteer, the respiratory pattern varied between breath‐hold, regular, and rapid shallow breathing. Results The measured displacement was within 3% of the ground truth for simulated cines. In both the healthy volunteer and COVID‐19 patients, measured displacement was greatest in the lower and lateral zones of the lung when the ipsilateral side was compared. In the healthy volunteer, when the respiratory pattern was varied, measured displacement was greater in regular breathing compared to rapid shallow breathing and compared to breath‐hold patterns in both the upper and lower lung zones. Conclusion Estimation of lung surface displacement using a synthetic lateral phase‐based approach is feasible. Future human studies should validate this approach against a direct measurement of lung surface movement. Representative workflow images from lung motion tracking software. (A) Screen capture of user marking lung surface. (B) Screen capture of displacement heatmap and selection of region of interest for motion tracking. (C) Video of motion tracking. (D) Screen capture of breath marking.
AbstractList Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler-based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent. We developed a synthetic lateral phase-based algorithm for tracking lung motion to overcome these limitations. To validate the technique, we generated simulated lung motion images. We also obtained lung ultrasound cines from a healthy volunteer and a mechanically ventilated COVID-19 patient. In the healthy volunteer, the respiratory pattern varied between breath-hold, regular, and rapid shallow breathing. The measured displacement was within 3% of the ground truth for simulated cines. In both the healthy volunteer and COVID-19 patients, measured displacement was greatest in the lower and lateral zones of the lung when the ipsilateral side was compared. In the healthy volunteer, when the respiratory pattern was varied, measured displacement was greater in regular breathing compared to rapid shallow breathing and compared to breath-hold patterns in both the upper and lower lung zones. Estimation of lung surface displacement using a synthetic lateral phase-based approach is feasible. Future human studies should validate this approach against a direct measurement of lung surface movement.
Representative workflow images from lung motion tracking software. (A) Screen capture of user marking lung surface. (B) Screen capture of displacement heatmap and selection of region of interest for motion tracking. (C) Video of motion tracking. (D) Screen capture of breath marking.
ABSTRACT Background Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler‐based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent. Methods We developed a synthetic lateral phase‐based algorithm for tracking lung motion to overcome these limitations. To validate the technique, we generated simulated lung motion images. We also obtained lung ultrasound cines from a healthy volunteer and a mechanically ventilated COVID‐19 patient. In the healthy volunteer, the respiratory pattern varied between breath‐hold, regular, and rapid shallow breathing. Results The measured displacement was within 3% of the ground truth for simulated cines. In both the healthy volunteer and COVID‐19 patients, measured displacement was greatest in the lower and lateral zones of the lung when the ipsilateral side was compared. In the healthy volunteer, when the respiratory pattern was varied, measured displacement was greater in regular breathing compared to rapid shallow breathing and compared to breath‐hold patterns in both the upper and lower lung zones. Conclusion Estimation of lung surface displacement using a synthetic lateral phase‐based approach is feasible. Future human studies should validate this approach against a direct measurement of lung surface movement. Representative workflow images from lung motion tracking software. (A) Screen capture of user marking lung surface. (B) Screen capture of displacement heatmap and selection of region of interest for motion tracking. (C) Video of motion tracking. (D) Screen capture of breath marking.
Background Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler‐based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent. Methods We developed a synthetic lateral phase‐based algorithm for tracking lung motion to overcome these limitations. To validate the technique, we generated simulated lung motion images. We also obtained lung ultrasound cines from a healthy volunteer and a mechanically ventilated COVID‐19 patient. In the healthy volunteer, the respiratory pattern varied between breath‐hold, regular, and rapid shallow breathing. Results The measured displacement was within 3% of the ground truth for simulated cines. In both the healthy volunteer and COVID‐19 patients, measured displacement was greatest in the lower and lateral zones of the lung when the ipsilateral side was compared. In the healthy volunteer, when the respiratory pattern was varied, measured displacement was greater in regular breathing compared to rapid shallow breathing and compared to breath‐hold patterns in both the upper and lower lung zones. Conclusion Estimation of lung surface displacement using a synthetic lateral phase‐based approach is feasible. Future human studies should validate this approach against a direct measurement of lung surface movement.
Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler-based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent.BACKGROUNDUltrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler-based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent.We developed a synthetic lateral phase-based algorithm for tracking lung motion to overcome these limitations. To validate the technique, we generated simulated lung motion images. We also obtained lung ultrasound cines from a healthy volunteer and a mechanically ventilated COVID-19 patient. In the healthy volunteer, the respiratory pattern varied between breath-hold, regular, and rapid shallow breathing.METHODSWe developed a synthetic lateral phase-based algorithm for tracking lung motion to overcome these limitations. To validate the technique, we generated simulated lung motion images. We also obtained lung ultrasound cines from a healthy volunteer and a mechanically ventilated COVID-19 patient. In the healthy volunteer, the respiratory pattern varied between breath-hold, regular, and rapid shallow breathing.The measured displacement was within 3% of the ground truth for simulated cines. In both the healthy volunteer and COVID-19 patients, measured displacement was greatest in the lower and lateral zones of the lung when the ipsilateral side was compared. In the healthy volunteer, when the respiratory pattern was varied, measured displacement was greater in regular breathing compared to rapid shallow breathing and compared to breath-hold patterns in both the upper and lower lung zones.RESULTSThe measured displacement was within 3% of the ground truth for simulated cines. In both the healthy volunteer and COVID-19 patients, measured displacement was greatest in the lower and lateral zones of the lung when the ipsilateral side was compared. In the healthy volunteer, when the respiratory pattern was varied, measured displacement was greater in regular breathing compared to rapid shallow breathing and compared to breath-hold patterns in both the upper and lower lung zones.Estimation of lung surface displacement using a synthetic lateral phase-based approach is feasible. Future human studies should validate this approach against a direct measurement of lung surface movement.CONCLUSIONEstimation of lung surface displacement using a synthetic lateral phase-based approach is feasible. Future human studies should validate this approach against a direct measurement of lung surface movement.
Author Hamilton, James D.
Rubin, Jonathan M.
Gao, Jing
Fung, Christopher M.
AuthorAffiliation 4 JD Hamilton Consulting Brighton Michigan USA
1 Department of Emergency Medicine University of Michigan Ann Arbor Michigan USA
3 Department of Clinical Sciences Rocky Vista University Billings Montana USA
2 Department of Radiology University of Michigan Ann Arbor Michigan USA
AuthorAffiliation_xml – name: 3 Department of Clinical Sciences Rocky Vista University Billings Montana USA
– name: 2 Department of Radiology University of Michigan Ann Arbor Michigan USA
– name: 1 Department of Emergency Medicine University of Michigan Ann Arbor Michigan USA
– name: 4 JD Hamilton Consulting Brighton Michigan USA
Author_xml – sequence: 1
  givenname: Christopher M.
  orcidid: 0000-0003-3585-1385
  surname: Fung
  fullname: Fung, Christopher M.
  email: chfung@med.umich.edu
  organization: University of Michigan
– sequence: 2
  givenname: Jonathan M.
  surname: Rubin
  fullname: Rubin, Jonathan M.
  organization: University of Michigan
– sequence: 3
  givenname: Jing
  orcidid: 0000-0001-5993-042X
  surname: Gao
  fullname: Gao, Jing
  organization: Rocky Vista University
– sequence: 4
  givenname: James D.
  surname: Hamilton
  fullname: Hamilton, James D.
  organization: JD Hamilton Consulting
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39865298$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9O2zAUxi0EoqXjghdAkbgZk0KP7Tixr6au2h9Q0CaNXluO49BUqV3iZKh3PMKecU8ybyloII2rI9m_79N3vnOE9q2zBqETDBcYgExXur8gVADfQ2MMIosBRLqPxmHgmGQMj9CR9ysASBljh2hEBU8ZEXyMrhdN1yrvelv-evj5QXlTRrnTqony3t5G166rnY1m3hvv18Z20cLX4f371nZL09U6ylVn2oB_WwbtG3RQqcab492coMWnjzfzL3H-9fPlfJbHOoGEx5lmCpcpLpXWVaI1LxQWUBFKOINSAHAjBFOkwkVZMJZyWhIaphaJSLWq6AS9G3x7u1Hbe9U0ctPWa9VuJQb5pxMZOpF_Ownw-wHe9MXalDpsEQI_CZyq5fMfWy_lrfshMQGeZZgFh7c7h9bd9cZ3cl17bZpGWeN6LylOATIAhgN69gJdub61oQxJCeGCYEJpoE7_jfSU5fEuATgfAN0671tTvbrfdGDv68Zs_w_Kq_liUPwGvo2s1g
Cites_doi 10.4187/respcare.05900
10.1148/ryct.2021200564
10.1109/TBME.2018.2872907
10.3389/fmed.2023.1160292
10.1016/j.addr.2015.03.010
10.7863/jum.2012.31.3.469
10.1109/TUFFC.2004.1320827
10.1109/TBME.2021.3072891
10.4187/respcare.01640
10.1016/j.ultrasmedbio.2016.05.020
10.1016/j.rmed.2016.08.028
10.2214/AJR.11.7067
10.1002/jum.14243
10.1148/radiol.2019181729
10.1016/j.amjms.2022.11.002
10.1016/j.ultras.2016.06.012
10.1007/s11517-020-02142-8
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC.
2025 The Author(s). Journal of Clinical Ultrasound published by Wiley Periodicals LLC.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC.
– notice: 2025 The Author(s). Journal of Clinical Ultrasound published by Wiley Periodicals LLC.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/jcu.23908
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


Biochemistry Abstracts 1
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0096
EndPage 646
ExternalDocumentID 10.1002/jcu.23908
PMC12087715
39865298
10_1002_jcu_23908
JCU23908
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Mindray North America
– fundername: National Heart, Lung, and Blood Institute
  funderid: 1K12HL133304
– fundername: NHLBI NIH HHS
  grantid: 1K12HL133304
– fundername: NHLBI NIH HHS
  grantid: K12 HL133304
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
YQJ
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4048-7c5a1d61daccf4cc8ba190f232850d9008e995a2f1bdb55683d23556c9496caf3
IEDL.DBID 24P
ISSN 0091-2751
1097-0096
IngestDate Sun Oct 26 03:30:36 EDT 2025
Tue Sep 30 17:03:40 EDT 2025
Thu Oct 02 10:48:26 EDT 2025
Tue Oct 07 06:24:09 EDT 2025
Thu May 22 05:05:15 EDT 2025
Wed Oct 01 06:26:26 EDT 2025
Tue May 20 10:00:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
2025 The Author(s). Journal of Clinical Ultrasound published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4048-7c5a1d61daccf4cc8ba190f232850d9008e995a2f1bdb55683d23556c9496caf3
Notes Funding
This work was supported by Mindray North America and National Heart, Lung, and Blood Institute (1K12HL133304).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding: This work was supported by Mindray North America and National Heart, Lung, and Blood Institute (1K12HL133304).
ORCID 0000-0003-3585-1385
0000-0001-5993-042X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcu.23908
PMID 39865298
PQID 3228921233
PQPubID 1006357
PageCount 8
ParticipantIDs unpaywall_primary_10_1002_jcu_23908
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12087715
proquest_miscellaneous_3160070051
proquest_journals_3228921233
pubmed_primary_39865298
crossref_primary_10_1002_jcu_23908
wiley_primary_10_1002_jcu_23908_JCU23908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2025
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Journal of clinical ultrasound
PublicationTitleAlternate J Clin Ultrasound
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 10
2021; 68
2019; 291
2004; 51
2021; 3
2017; 36
2016; 119
2019; 66
2023; 365
2015; 85
2016; 42
2020; 58
2018; 63
2005
2016; 71
2012; 57
2012; 31
2011; 197
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
References_xml – volume: 57
  start-page: 165
  issue: 1
  year: 2012
  end-page: 175
  article-title: Pulmonary Function Testing
  publication-title: Respiratory Care
– volume: 66
  start-page: 1346
  issue: 5
  year: 2019
  end-page: 1352
  article-title: Lung Ultrasound Surface Wave Elastography for Assessing Interstitial Lung Disease
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 36
  start-page: 2143
  issue: 10
  year: 2017
  end-page: 2147
  article-title: Color and Power Doppler Sonography for Pneumothorax Detection
  publication-title: Journal of Ultrasound in Medicine
– volume: 68
  start-page: 3417
  issue: 11
  year: 2021
  end-page: 3423
  article-title: Lung Ultrasound Surface Wave Elastography for Assessing Patients With Pulmonary Edema
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 291
  start-page: 479
  issue: 2
  year: 2019
  end-page: 484
  article-title: Lung US Surface Wave Elastography in Interstitial Lung Disease Staging
  publication-title: Radiology
– volume: 85
  start-page: 100
  year: 2015
  end-page: 109
  article-title: Imaging Regional Lung Function: A Critical Tool for Developing Inhaled Antimicrobial Therapies
  publication-title: Advanced Drug Delivery Reviews
– year: 2005
– volume: 3
  issue: 2
  year: 2021
  article-title: Lung Ultrasound: The Essentials
  publication-title: Radiology: Cardiothoracic Imaging
– volume: 31
  start-page: 469
  issue: 3
  year: 2012
  end-page: 481
  article-title: Potential Use of Ultrasound Speckle Tracking for Motion Management During Radiotherapy: Preliminary Report
  publication-title: Journal of Ultrasound in Medicine
– volume: 58
  start-page: 1309
  issue: 6
  year: 2020
  end-page: 1323
  article-title: An Optimisation‐Based Iterative Approach for Speckle Tracking Echocardiography
  publication-title: Medical & Biological Engineering & Computing
– volume: 197
  start-page: W970
  issue: 6
  year: 2011
  end-page: W977
  article-title: Mosaic Attenuation
  publication-title: American Journal of Roentgenology
– volume: 71
  start-page: 183
  year: 2016
  end-page: 188
  article-title: A Noninvasive Ultrasound Elastography Technique for Measuring Surface Waves on the Lung
  publication-title: Ultrasonics
– volume: 10
  year: 2023
  article-title: Functional Imaging for Assessing Regional Lung Ventilation in Preclinical and Clinical Research
  publication-title: Frontiers in Medicine
– volume: 51
  start-page: 540
  issue: 5
  year: 2004
  end-page: 550
  article-title: Lateral Speckle Tracking Using Synthetic Lateral Phase
  publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
– volume: 365
  start-page: 219
  issue: 3
  year: 2023
  end-page: 225
  article-title: Subpleural Sparing: Clinical, Physiological, and Radiological Implications
  publication-title: American Journal of the Medical Sciences
– volume: 63
  start-page: 219
  issue: 2
  year: 2018
  end-page: 226
  article-title: Understanding Pulmonary Stress‐Strain Relationships in Severe ARDS and Its Implications for Designing a Safer Approach to Setting the Ventilator
  publication-title: Respiratory Care
– volume: 119
  start-page: 96
  year: 2016
  end-page: 101
  article-title: Clinical Characteristics in Patients With Asymmetric Idiopathic Pulmonary Fibrosis
  publication-title: Respiratory Medicine
– volume: 42
  start-page: 2525
  issue: 11
  year: 2016
  end-page: 2531
  article-title: Ultrasound Strain Measurements for Evaluating Local Pulmonary Ventilation
  publication-title: Ultrasound in Medicine & Biology
– ident: e_1_2_10_6_1
  doi: 10.4187/respcare.05900
– ident: e_1_2_10_9_1
  doi: 10.1148/ryct.2021200564
– ident: e_1_2_10_12_1
  doi: 10.1109/TBME.2018.2872907
– ident: e_1_2_10_4_1
  doi: 10.3389/fmed.2023.1160292
– ident: e_1_2_10_8_1
  doi: 10.1016/j.addr.2015.03.010
– ident: e_1_2_10_15_1
  doi: 10.7863/jum.2012.31.3.469
– ident: e_1_2_10_18_1
  doi: 10.1109/TUFFC.2004.1320827
– ident: e_1_2_10_14_1
  doi: 10.1109/TBME.2021.3072891
– ident: e_1_2_10_5_1
  doi: 10.4187/respcare.01640
– ident: e_1_2_10_16_1
  doi: 10.1016/j.ultrasmedbio.2016.05.020
– ident: e_1_2_10_7_1
  doi: 10.1016/j.rmed.2016.08.028
– ident: e_1_2_10_3_1
  doi: 10.2214/AJR.11.7067
– ident: e_1_2_10_10_1
  doi: 10.1002/jum.14243
– ident: e_1_2_10_13_1
  doi: 10.1148/radiol.2019181729
– ident: e_1_2_10_2_1
  doi: 10.1016/j.amjms.2022.11.002
– ident: e_1_2_10_11_1
  doi: 10.1016/j.ultras.2016.06.012
– ident: e_1_2_10_17_1
  doi: 10.1007/s11517-020-02142-8
– ident: e_1_2_10_19_1
SSID ssj0006555
Score 2.3975582
Snippet ABSTRACT Background Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler‐based...
Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler-based techniques are limited by...
Background Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler‐based techniques are...
Representative workflow images from lung motion tracking software. (A) Screen capture of user marking lung surface. (B) Screen capture of displacement heatmap...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 639
SubjectTerms Adult
Algorithms
Breathing
COVID-19
COVID-19 - diagnostic imaging
COVID-19 - physiopathology
Displacement
Female
Healthy Volunteers
Humans
Lung - diagnostic imaging
Lung - physiopathology
Lungs
Male
Mechanical ventilation
Movement
Respiration
SARS-CoV-2
Surface motion
Tracking
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VrQS98E8JFOQCBy7Z1k7i2Meloqqq3aoSRCqnyH9RaVdpRTdC7amPwDPyJIydbCBUVNwieewkHo_ns2b8DcA7kwuaVNThIcelccq3q1g5amInDbOV0KINxcwO-F6R7h9lRyuwubwLM4zfs60T04wZnsvFHVjlGcLtEawWB4eTLy27JI1ZHkos-kBq7PH4kj3oz75Dn3MDSN7Mh7zX1Ofq8ruaz4eYNTid3Qe_r-60uSan42ahx-bqLybHW__nIdzvICeZtGvkEay4-jHcnXVB9ScwK-b4PRe-vtLP6x8f0K1ZMvUujkxxJyCzUOeHTHoKTxLSDMinyxrBI45JpspfY56Tw2Ps-xSK3Y-fd_birspCbFI03zg3maKWU6uMqVJjhFYIEipEWiLbthIxgpMyU6yi2mrPV5ZYhiCFG5lKblSVPINRfVa750AqrjmeN7XImU5tnqrcqirTKKd1wqWM4M1SD-V5S6ZRtrTJrMSJKcPERLCx1FDZ2dNFiduOkN7LJhFs9s1oCT68oWp31qAM9Vz7fpeJYL1VaP-WRAqeMYmDi4GqewHPsj1sqb8eB7ZtyjxnIs0ieNuvitu-_n1YL_-WKPd3ivDw4r8GfAlrzJccDjmWGzBafGvcK8RBC_26s4RfFu0D5A
  priority: 102
  providerName: Unpaywall
Title Ultrasound‐Based Local Lung Motion Assessment Using Synthetic Lateral Phase
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcu.23908
https://www.ncbi.nlm.nih.gov/pubmed/39865298
https://www.proquest.com/docview/3228921233
https://www.proquest.com/docview/3160070051
https://pubmed.ncbi.nlm.nih.gov/PMC12087715
https://doi.org/10.1002/jcu.23908
UnpaywallVersion publishedVersion
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0091-2751
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0096
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006555
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SBNpcSt9xmwb1cejFzUqWZImetmlDCLthaWtIT0YPizQsTshmKbn1J_Q35pdkJO-6LKGlF2PwSDYzmplPlvQNwFtXKloE2uAkp-E5l4OQm4a6vNGO-aCs6pZixkfyoOKHx-J4DT4sz8J0_BD9D7foGSleRwc3drb7hzT01M3fM5yxqzuwQRHHxOHN-KQPw1KIrnyBpjkrBV3SCg3Ybt90NRndQpi3N0rem7fn5uqnmU5XwWzKRvsP4P4CRpJhZ_eHsNa0j-DueLFQ_hjG1RS7msWaSde_fn_EVOXJKKYtMkLvJuNUu4cMe1pOkrYOkK9XLQJC7JOMTDyaPCWTE2z7BKr9z9_2DvJF5YTccXTJvHTCUC-pN84F7pyyBhN_QPSkxMBrzPuN1sKwQK23kYOs8AyBh3Saa-lMKJ7CenvWNltAgrQS55BWlcxyX3JTehOERTlrC6l1Bq-XKqzPO4KMuqNCZjXquU56zmB7qdx64SOzGkOJ0jFzFhm86h_j6I5LFqZtzuYoQyN_fowcGTzrbNG_pdBKCqaxc7VipV4gMmevPml_nCQGbcoiDyIVGbzpDfqvr3-XTP13ifpwr0o3z_9f9AVsslhLOG2e3Ib1y4t58xIBzqXdSQMZr5--sB3YqI4mw-83t8755g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VItFeUHk20IJ5HLiErh3bsaVeSkW1lKSqRFfqLfIjVkGrtKJdod74CfxGfknHzm7QqgJxi-SxHc14Xn58A_DWlYoWgbaY5LQ853IUctNSl7faMR-UVf1RTH0kxxN-eCpOV2B38Ramx4cYNtyiZiR7HRU8bkjv_EEN_eZm7xmm7OoO3OWSyph6MX482GEpRF-_QNOclYIucIVGbGfouuyNboWYt29Krs26C3P9w0yny9FsckcHG3B_HkeSvV7wD2Cl7R7CvXp-Uv4I6skUh7qMRZN-__z1AX2VJ1X0W6RC9SZ1Kt5D9gZcTpLuDpAv1x1GhDgmqUx8mzwlx2fY9zFMDj6e7I_zeemE3HHUybx0wlAvqTfOBe6csgY9f8DwSYmR1-j4W62FYYFabyMIWeEZRh7Saa6lM6F4AqvdedduAgnSSkwirSqZ5b7kpvQmCIt01hZS6wxeL1jYXPQIGU2Phcwa5HOT-JzB1oK5zVxJLhu0JUpH11lk8GpoxuUdzyxM157PkIZGAP1oOjJ42stimKXQSgqmcXC1JKWBIEJnL7d0X88ShDZlEQiRigzeDAL919-_S6L-O0VzuD9JH8_-n_QlrI1P6qqpPh19fg7rLBYWTjcpt2D16vus3cZo58q-SIv6Bnoh-rk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhUuvB-BAuZx4JLt2okTW-JSWlal7FYVsFIvKPJTbVmlK7oRKid-Ar-RX8LY2U21VCDELZLHTuzxeD7H428AXphS0MxTh5scl6d50fepctSkThpmvdCiPYoZ7RU743z3gB-swKvFXZiWH6L74RYsI67XwcDd1PqNc9bQY9P0GG7ZxSW4nHMpQkDf9vtz8qiC8zZ_gaQpKzld8Ar12UZXddkbXYCYFyMlrzT1VJ19VZPJMpqN7mhwHT4tOtJGoXzuNTPdM99-43j8357egGtznEo224l1E1ZcfQvWRvOT-NswGk_wU09DUqaf33-8Rl9oyTD4RTLE5YOMYnIgstnxfpIYm0A-nNWIOLFNMlTh7vOE7B9i3TswHrz5uLWTzlMzpCZHm09LwxW1BbXKGJ8bI7RCZOERngnetxKBhZOSK-aptjqQnGWWIbIpjMxlYZTP7sJqfVK7-0B8oQvcpGpRMp3bMlelVZ5rlNM6K6RM4NlCRdW0ZeCoWq5lVuHAVHFgElhfKK-aG-FphWuVkME1Zwk87YrRfMKZiKrdSYMyNBD0h6UpgXutrru3ZFIUnElsXCzNgk4gUHMvl9RHh5Gim7JAtEh5As-7CfO3r38Z9f9niWp3axwfHvy76BNY298eVMO3e-8ewlUW8hbHQM11WJ19adwjBFMz_TjazC-9bhsI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VrQS98E8JFOQCBy7Z1k7i2Meloqqq3aoSRCqnyH9RaVdpRTdC7amPwDPyJIydbCBUVNwieewkHo_ns2b8DcA7kwuaVNThIcelccq3q1g5amInDbOV0KINxcwO-F6R7h9lRyuwubwLM4zfs60T04wZnsvFHVjlGcLtEawWB4eTLy27JI1ZHkos-kBq7PH4kj3oz75Dn3MDSN7Mh7zX1Ofq8ruaz4eYNTid3Qe_r-60uSan42ahx-bqLybHW__nIdzvICeZtGvkEay4-jHcnXVB9ScwK-b4PRe-vtLP6x8f0K1ZMvUujkxxJyCzUOeHTHoKTxLSDMinyxrBI45JpspfY56Tw2Ps-xSK3Y-fd_birspCbFI03zg3maKWU6uMqVJjhFYIEipEWiLbthIxgpMyU6yi2mrPV5ZYhiCFG5lKblSVPINRfVa750AqrjmeN7XImU5tnqrcqirTKKd1wqWM4M1SD-V5S6ZRtrTJrMSJKcPERLCx1FDZ2dNFiduOkN7LJhFs9s1oCT68oWp31qAM9Vz7fpeJYL1VaP-WRAqeMYmDi4GqewHPsj1sqb8eB7ZtyjxnIs0ieNuvitu-_n1YL_-WKPd3ivDw4r8GfAlrzJccDjmWGzBafGvcK8RBC_26s4RfFu0D5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasound%E2%80%90Based+Local+Lung+Motion+Assessment+Using+Synthetic+Lateral+Phase&rft.jtitle=Journal+of+clinical+ultrasound&rft.au=Fung%2C+Christopher+M.&rft.au=Rubin%2C+Jonathan+M.&rft.au=Gao%2C+Jing&rft.au=Hamilton%2C+James+D.&rft.date=2025-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0091-2751&rft.eissn=1097-0096&rft.volume=53&rft.issue=4&rft.spage=639&rft.epage=646&rft_id=info:doi/10.1002%2Fjcu.23908&rft.externalDBID=10.1002%252Fjcu.23908&rft.externalDocID=JCU23908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-2751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-2751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-2751&client=summon