FuzzyID2: A software package for large data set species identification via barcoding and metabarcoding using hidden Markov models and fuzzy set methods

Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid accumulation of barcoding data has created some difficulties: for instance, global enquiries to a large reference library can take a very lon...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology resources Vol. 18; no. 3; pp. 666 - 675
Main Authors Shi, Zhi‐yong, Yang, Cai‐qing, Hao, Meng‐di, Wang, Xiao‐yang, Ward, Robert D., Zhang, Ai‐bing
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text
ISSN1755-098X
1755-0998
1755-0998
DOI10.1111/1755-0998.12738

Cover

Abstract Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid accumulation of barcoding data has created some difficulties: for instance, global enquiries to a large reference library can take a very long time. We here devise a two‐step searching strategy to speed identification procedures of such queries. This firstly uses a Hidden Markov Model (HMM) algorithm to narrow the searching scope to genus level and then determines the corresponding species using minimum genetic distance. Moreover, using a fuzzy membership function, our approach also estimates the credibility of assignment results for each query. To perform this task, we developed a new software pipeline, FuzzyID2, using Python and C++. Performance of the new method was assessed using eight empirical data sets ranging from 70 to 234,535 barcodes. Five data sets (four animal, one plant) deployed the conventional barcode approach, one used metabarcodes, and two were eDNA‐based. The results showed mean accuracies of generic and species identification of 98.60% (with a minimum of 95.00% and a maximum of 100.00%) and 94.17% (with a range of 84.40%–100.00%), respectively. Tests with simulated NGS sequences based on realistic eDNA and metabarcode data demonstrated that FuzzyID2 achieved a significantly higher identification success rate than the commonly used Blast method, and the TIPP method tends to find many fewer species than either FuzztID2 or Blast. Furthermore, data sets with tens of thousands of barcodes need only a few seconds for each query assignment using FuzzyID2. Our approach provides an efficient and accurate species identification protocol for biodiversity‐related projects with large DNA sequence data sets.
AbstractList Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid accumulation of barcoding data has created some difficulties: for instance, global enquiries to a large reference library can take a very long time. We here devise a two‐step searching strategy to speed identification procedures of such queries. This firstly uses a Hidden Markov Model (HMM) algorithm to narrow the searching scope to genus level and then determines the corresponding species using minimum genetic distance. Moreover, using a fuzzy membership function, our approach also estimates the credibility of assignment results for each query. To perform this task, we developed a new software pipeline, FuzzyID2, using Python and C++. Performance of the new method was assessed using eight empirical data sets ranging from 70 to 234,535 barcodes. Five data sets (four animal, one plant) deployed the conventional barcode approach, one used metabarcodes, and two were eDNA‐based. The results showed mean accuracies of generic and species identification of 98.60% (with a minimum of 95.00% and a maximum of 100.00%) and 94.17% (with a range of 84.40%–100.00%), respectively. Tests with simulated NGS sequences based on realistic eDNA and metabarcode data demonstrated that FuzzyID2 achieved a significantly higher identification success rate than the commonly used Blast method, and the TIPP method tends to find many fewer species than either FuzztID2 or Blast. Furthermore, data sets with tens of thousands of barcodes need only a few seconds for each query assignment using FuzzyID2. Our approach provides an efficient and accurate species identification protocol for biodiversity‐related projects with large DNA sequence data sets.
Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid accumulation of barcoding data has created some difficulties: for instance, global enquiries to a large reference library can take a very long time. We here devise a two-step searching strategy to speed identification procedures of such queries. This firstly uses a Hidden Markov Model (HMM) algorithm to narrow the searching scope to genus level and then determines the corresponding species using minimum genetic distance. Moreover, using a fuzzy membership function, our approach also estimates the credibility of assignment results for each query. To perform this task, we developed a new software pipeline, FuzzyID2, using Python and C++. Performance of the new method was assessed using eight empirical data sets ranging from 70 to 234,535 barcodes. Five data sets (four animal, one plant) deployed the conventional barcode approach, one used metabarcodes, and two were eDNA-based. The results showed mean accuracies of generic and species identification of 98.60% (with a minimum of 95.00% and a maximum of 100.00%) and 94.17% (with a range of 84.40%-100.00%), respectively. Tests with simulated NGS sequences based on realistic eDNA and metabarcode data demonstrated that FuzzyID2 achieved a significantly higher identification success rate than the commonly used Blast method, and the TIPP method tends to find many fewer species than either FuzztID2 or Blast. Furthermore, data sets with tens of thousands of barcodes need only a few seconds for each query assignment using FuzzyID2. Our approach provides an efficient and accurate species identification protocol for biodiversity-related projects with large DNA sequence data sets.Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid accumulation of barcoding data has created some difficulties: for instance, global enquiries to a large reference library can take a very long time. We here devise a two-step searching strategy to speed identification procedures of such queries. This firstly uses a Hidden Markov Model (HMM) algorithm to narrow the searching scope to genus level and then determines the corresponding species using minimum genetic distance. Moreover, using a fuzzy membership function, our approach also estimates the credibility of assignment results for each query. To perform this task, we developed a new software pipeline, FuzzyID2, using Python and C++. Performance of the new method was assessed using eight empirical data sets ranging from 70 to 234,535 barcodes. Five data sets (four animal, one plant) deployed the conventional barcode approach, one used metabarcodes, and two were eDNA-based. The results showed mean accuracies of generic and species identification of 98.60% (with a minimum of 95.00% and a maximum of 100.00%) and 94.17% (with a range of 84.40%-100.00%), respectively. Tests with simulated NGS sequences based on realistic eDNA and metabarcode data demonstrated that FuzzyID2 achieved a significantly higher identification success rate than the commonly used Blast method, and the TIPP method tends to find many fewer species than either FuzztID2 or Blast. Furthermore, data sets with tens of thousands of barcodes need only a few seconds for each query assignment using FuzzyID2. Our approach provides an efficient and accurate species identification protocol for biodiversity-related projects with large DNA sequence data sets.
Author Ward, Robert D.
Wang, Xiao‐yang
Shi, Zhi‐yong
Zhang, Ai‐bing
Yang, Cai‐qing
Hao, Meng‐di
Author_xml – sequence: 1
  givenname: Zhi‐yong
  surname: Shi
  fullname: Shi, Zhi‐yong
  organization: Capital Normal University
– sequence: 2
  givenname: Cai‐qing
  surname: Yang
  fullname: Yang, Cai‐qing
  organization: Capital Normal University
– sequence: 3
  givenname: Meng‐di
  surname: Hao
  fullname: Hao, Meng‐di
  organization: Capital Normal University
– sequence: 4
  givenname: Xiao‐yang
  surname: Wang
  fullname: Wang, Xiao‐yang
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Robert D.
  surname: Ward
  fullname: Ward, Robert D.
  organization: CSIRO National Research Collections Australia
– sequence: 6
  givenname: Ai‐bing
  orcidid: 0000-0002-6580-5462
  surname: Zhang
  fullname: Zhang, Ai‐bing
  email: zhangab2008@mail.cnu.edu.cn
  organization: Capital Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29154499$$D View this record in MEDLINE/PubMed
BookMark eNqFks1PHCEYxkmjqbr23FtD0ksvq8DADPRm_Kgm2l5s0hth4B1FZ4YtzGjWf6T_bpnd1SYmjRzgzZvf8_DxsIe2-tADQh8pOaB5HNJKiDlRSh5QVhXyHdp96Wy91PLXDtpL6Y6QkqiKv0c7TFHBuVK76M_Z-PS0vDhhX_ERTqEZHk0EvDD23twAbkLErYm5cmYwOMGA0wKsh4S9g37wjbdm8KHHD97g2kQbnO9vsOkd7mAw_zpjmuZb77IMX5l4Hx5wFxy0aQU30ylW_ll2G1zaR9uNaRN82Kwz9PPs9Pr4fH7549vF8dHl3HLC5bwoBXNcUVVLyzgvi1pSJXkFtKoYE7bgwKQRjBorJJCmlpVg1lFOHKurui5m6MvadxHD7xHSoDufLLSt6SGMSTNSVkwWpZRvolSVJRdM5CBm6PMr9C6Msc8XyYYFZ2WpFM_Upw011h04vYi-M3Gpn9PJgFgDNoaUIjTa-mH13kM0vtWU6OkX6ClnPWWuV78g6w5f6Z6t_6_Y7PToW1i-heur0-9r3V8alsHf
CitedBy_id crossref_primary_10_1139_cjfas_2021_0215
crossref_primary_10_1038_s41598_018_32123_9
crossref_primary_10_1111_1755_0998_13384
crossref_primary_10_1186_s40657_021_00276_3
crossref_primary_10_1007_s10682_020_10072_y
crossref_primary_10_1111_mec_15412
crossref_primary_10_3389_fevo_2020_00057
crossref_primary_10_1111_mec_14478
crossref_primary_10_1002_ece3_7788
Cites_doi 10.1080/10635150802032982
10.1371/journal.pcbi.1002195
10.1007/s13353-013-0180-y
10.1371/journal.pone.0030986
10.1111/1755-0998.12063
10.1371/journal.pone.0076910
10.1038/ismej.2011.208
10.1093/bioinformatics/btu721
10.1073/pnas.1503283112
10.1016/j.tree.2008.09.011
10.1111/1755-0998.12628
10.1016/S0022-2836(05)80360-2
10.1080/10635150802422316
10.1098/rstb.2005.1713
10.1073/pnas.85.8.2444
10.1007/s10059-010-0148-2
10.1186/1471-2105-7-188
10.1111/1755-0998.12428
10.1111/j.1471-8286.2007.01670.x
10.1111/1755-0998.12643
10.1371/journal.pone.0008613
10.1101/gr.120618.111
10.1111/1755-0998.12235
10.1007/BF01731581
10.1093/nar/gkr367
10.1111/1755-0998.12001
10.1080/10635150802032990
10.1111/j.2041-210X.2011.00176.x
10.1111/j.1365-294X.2011.05235.x
10.1016/j.tig.2007.02.001
10.1111/j.1096-0031.2006.00126.x
10.1111/1755-0998.12238
10.1111/j.1471-8286.2007.01678.x
10.1111/mec.13278
10.1093/bioinformatics/14.9.755
10.1007/BF01734359
10.1111/j.1755-0998.2012.03171.x
10.1111/mec.13428
10.1128/AEM.00062-07
10.1007/s12038-012-9255-x
10.1111/2041-210X.12682
10.1186/1471-2105-10-S14-S10
10.1093/bioinformatics/btq461
ContentType Journal Article
Copyright 2017 John Wiley & Sons Ltd
2017 John Wiley & Sons Ltd.
Copyright © 2018 John Wiley & Sons Ltd
Copyright_xml – notice: 2017 John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons Ltd.
– notice: Copyright © 2018 John Wiley & Sons Ltd
DBID AAYXX
CITATION
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/1755-0998.12738
DatabaseName CrossRef
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Entomology Abstracts
MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1755-0998
EndPage 675
ExternalDocumentID 29154499
10_1111_1755_0998_12738
MEN12738
Genre article
Journal Article
GrantInformation_xml – fundername: Changjiang Scholars and Innovative Research Team in University
  funderid: IRT‐17R75
– fundername: China National Funds for Distinguished Young Scientists
  funderid: 31425023
– fundername: National Natural Science Foundation of China
  funderid: 31401121; 31772501
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
~IA
~WT
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
NPM
WRC
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4048-3652d4919b8c24463b819847e177225c34e28a521ac58e0fb8752cd140d2b7bb3
IEDL.DBID DR2
ISSN 1755-098X
1755-0998
IngestDate Fri Jul 11 18:34:30 EDT 2025
Thu Oct 02 11:13:43 EDT 2025
Fri Jul 25 10:41:32 EDT 2025
Wed Feb 19 02:43:43 EST 2025
Wed Oct 01 02:02:34 EDT 2025
Thu Apr 24 23:10:53 EDT 2025
Wed Aug 20 07:25:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords hidden Markov models
metabarcoding
DNA barcoding
high-throughput sequencing (HTS)
fuzzy membership function
eDNA
plant barcodes
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4048-3652d4919b8c24463b819847e177225c34e28a521ac58e0fb8752cd140d2b7bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6580-5462
PMID 29154499
PQID 2034266994
PQPubID 1096410
PageCount 10
ParticipantIDs proquest_miscellaneous_2067283688
proquest_miscellaneous_1966452527
proquest_journals_2034266994
pubmed_primary_29154499
crossref_citationtrail_10_1111_1755_0998_12738
crossref_primary_10_1111_1755_0998_12738
wiley_primary_10_1111_1755_0998_12738_MEN12738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology resources
PublicationTitleAlternate Mol Ecol Resour
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 24
2017; 8
2006; 7
1986; 17
2008; 57
2007; 73
2012; 37
2011; 39
2016; 17
2013; 8
2016; 16
2012; 12
2011; 7
2015; 24
1980; 16
1990; 215
2005; 360
2012; 3
2010; 26
2009; 10
2013; 13
2017; 17
2015; 112
2013; 50
2014; 14
2011; 21
2007; 7
1981; 17
1996; 1
1988; 85
2014; 30
2012; 6
2012; 7
2010; 5
2007; 23
2010; 30
2016; 25
2012; 21
2014; 55
1998; 14
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
Yada T. (e_1_2_9_43_1) 1996; 1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
Tavare S. (e_1_2_9_39_1) 1986; 17
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Qin J. (e_1_2_9_33_1) 2013; 50
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 17
  start-page: 368
  year: 1981
  end-page: 376
  article-title: Evolutionary trees from DNA sequences: A maximum likelihood approach
  publication-title: Journal of Molecular Evolution
– volume: 39
  start-page: W29
  year: 2011
  end-page: W37
  article-title: HMMER web server: Interactive sequence similarity searching
  publication-title: Nucleic Acids Research
– volume: 17
  start-page: 57
  year: 1986
  end-page: 86
  article-title: Some probabilistic and statistical problems in the analysis of DNA sequences
  publication-title: Lectures on Mathematics in the Life Sciences
– volume: 7
  start-page: e30986
  year: 2012
  article-title: A new method for species identification via protein‐coding and non‐coding DNA barcodes by combining machine learning with bioinformatics methods
  publication-title: PLoS One
– volume: 16
  start-page: 111
  year: 1980
  end-page: 120
  article-title: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences
  publication-title: Journal of Molecular Evolution
– volume: 360
  start-page: 1813
  year: 2005
  end-page: 1823
  article-title: DNA barcodes for biosecurity: Invasive species identification
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
– volume: 6
  start-page: 1440
  year: 2012
  end-page: 1444
  article-title: Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences
  publication-title: The ISME Journal
– volume: 8
  start-page: e76910
  year: 2013
  article-title: Two new computational methods for universal DNA barcoding: A benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants
  publication-title: PLoS One
– volume: 26
  start-page: 2460
  year: 2010
  end-page: 2461
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
– volume: 14
  start-page: 1060
  year: 2014
  end-page: 1071
  article-title: A reliable DNA barcode reference library for the identification of the North European shelf fish fauna
  publication-title: Molecular Ecology Resources
– volume: 12
  start-page: 1151
  year: 2012
  end-page: 1157
  article-title: |SE|S|AM|E| Barcode: NGS‐oriented software for amplicon characterization – application to species and environmental barcoding
  publication-title: Molecular Ecology Resources
– volume: 112
  start-page: 8019
  year: 2015
  end-page: 8024
  article-title: DNA metabarcoding illuminates dietary niche partitioning by African large herbivores
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 17
  start-page: 760
  year: 2017
  end-page: 769
  article-title: Evaluating and optimizing the performance of software commonly used for the taxonomic classification of DNA metabarcoding sequence data
  publication-title: Molecular Ecology Resources
– volume: 3
  start-page: 457
  year: 2012
  end-page: 465
  article-title: Barcoding's next top model: An evaluation of nucleotide substitution models for specimen identification
  publication-title: Methods in Ecology and Evolution
– volume: 14
  start-page: 755
  year: 1998
  end-page: 763
  article-title: Profile hidden Markov models
  publication-title: Bioinformatics Review
– volume: 17
  start-page: 904
  year: 2016
  end-page: 914
  article-title: eDNA metabarcoding: A promising method for anuran surveys in highly diverse tropical forests
  publication-title: Molecular Ecology Resources
– volume: 16
  start-page: 176
  year: 2016
  end-page: 182
  article-title: Obitools: A unix‐inspired software package for DNA metabarcoding
  publication-title: Molecular Ecology Resources
– volume: 23
  start-page: 1
  year: 2007
  end-page: 21
  article-title: A comparison of algorithms for the identification of specimens using DNA barcodes: Examples from gymnosperms
  publication-title: Cladistics
– volume: 7
  start-page: e1002195
  year: 2011
  article-title: Accelerated profile HMM searches
  publication-title: PLoS Computational Biology
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  article-title: Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Applied and Environmental Microbiology
– volume: 85
  start-page: 2444
  year: 1988
  end-page: 2448
  article-title: Improved tools for biological sequence comparison
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 57
  start-page: 216
  year: 2008
  end-page: 230
  article-title: Testing the reliability of genetic methods of species identification via simulation
  publication-title: Systematic Biology
– volume: 7
  start-page: 188
  year: 2006
  end-page: 193
  article-title: Bio++: A set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics
  publication-title: BMC Bioinformatics
– volume: 7
  start-page: 355
  year: 2007
  end-page: 364
  article-title: BOLD: The barcode of life data system
  publication-title: Molecular Ecology Notes
– volume: 24
  start-page: 110
  year: 2009
  end-page: 117
  article-title: DNA barcoding for ecologists
  publication-title: Trends in Ecology and Evolution
– volume: 23
  start-page: 167
  year: 2007
  end-page: 172
  article-title: DNA barcoding: How it complements taxonomy, molecular phylogenetics and population genetics
  publication-title: Trends in Genetics
– volume: 25
  start-page: 929
  year: 2016
  end-page: 942
  article-title: Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding
  publication-title: Molecular Ecology
– volume: 21
  start-page: 1552
  year: 2011
  end-page: 1560
  article-title: Integrative analysis of environmental sequences using MEGAN 4
  publication-title: Genome Research
– volume: 30
  start-page: 3548
  year: 2014
  end-page: 3555
  article-title: TIPP: Taxonomic identification and phylogenetic profiling
  publication-title: Bioinformatics
– volume: 37
  start-page: 887
  year: 2012
  end-page: 896
  article-title: Molecular‐based rapid inventories of sympatric diversity: A comparison of DNA barcode clustering methods applied to geography‐based vs clade‐based sampling of amphibians
  publication-title: Journal of Biosciences
– volume: 12
  start-page: 990
  year: 2012
  end-page: 998
  article-title: DNA barcoding a regional fauna: Irish solitary bees
  publication-title: Molecular Ecology Resources
– volume: 215
  start-page: 403
  year: 1990
  end-page: 410
  article-title: Basic local alignment search tool
  publication-title: Journal of Molecular Biology
– volume: 55
  start-page: 43
  year: 2014
  end-page: 52
  article-title: 20 years since the introduction of DNA barcoding: From theory to application
  publication-title: Journal of Applied Genetics
– volume: 50
  start-page: 288
  year: 2013
  end-page: 292
  article-title: Commonly used methods for phylogenetic reconstruction of insects
  publication-title: Chinese Journal of Applied Entomology
– volume: 57
  start-page: 750
  year: 2008
  end-page: 757
  article-title: Statistical assignment of DNA sequences using Bayesian phylogenetics
  publication-title: Systematic Biology
– volume: 8
  start-page: 627
  year: 2017
  end-page: 634
  article-title: BarcodingR: An integrated R package for species identification using DNA barcodes
  publication-title: Methods in Ecology and Evolution
– volume: 24
  start-page: 4023
  year: 2015
  end-page: 4038
  article-title: Plant–herbivorous beetle networks: Molecular characterization of trophic ecology within a threatened steppic environment
  publication-title: Molecular Ecology
– volume: 5
  start-page: e8613
  year: 2010
  article-title: Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species
  publication-title: PLoS One
– volume: 1
  start-page: 686
  year: 1996
  end-page: 696
  article-title: Extraction of hidden Markov model representations of signal patterns in DNA sequences
  publication-title: Pacific Symposium on Biocomputing
– volume: 14
  start-page: 871
  year: 2014
  end-page: 881
  article-title: VIP Barcoding: Composition vector‐based software for rapid species identification based on DNA barcoding
  publication-title: Molecular Ecology Resources
– volume: 10
  start-page: S10
  year: 2009
  article-title: DNA barcode analysis: A comparison of phylogenetic and statistical classification methods
  publication-title: BMC Bioinformatics
– volume: 7
  start-page: 535
  year: 2007
  end-page: 543
  article-title: Comprehensive DNA barcode coverage of North American birds
  publication-title: Molecular Ecology Notes
– volume: 30
  start-page: 507
  year: 2010
  end-page: 512
  article-title: DNA barcode‐based molecular identification system for fish species
  publication-title: Molecules and Cells
– volume: 21
  start-page: 1848
  year: 2012
  end-page: 1863
  article-title: A fuzzy‐set‐theory‐based approach to analyse species membership in DNA barcoding
  publication-title: Molecular Ecology
– volume: 13
  start-page: 337
  year: 2013
  end-page: 340
  article-title: Pool‐hmm: A Python program for estimating the allele frequency spectrum and detecting selective sweeps from next generation sequencing of pooled samples
  publication-title: Molecular Ecology Resources
– volume: 57
  start-page: 202
  year: 2008
  end-page: 215
  article-title: Inferring species membership using DNA sequences with Back‐Propagation neural networks
  publication-title: Systematic Biology
– volume: 1
  start-page: 686
  year: 1996
  ident: e_1_2_9_43_1
  article-title: Extraction of hidden Markov model representations of signal patterns in DNA sequences
  publication-title: Pacific Symposium on Biocomputing
– ident: e_1_2_9_47_1
  doi: 10.1080/10635150802032982
– ident: e_1_2_9_11_1
  doi: 10.1371/journal.pcbi.1002195
– ident: e_1_2_9_31_1
  doi: 10.1007/s13353-013-0180-y
– ident: e_1_2_9_44_1
  doi: 10.1371/journal.pone.0030986
– ident: e_1_2_9_5_1
  doi: 10.1111/1755-0998.12063
– ident: e_1_2_9_38_1
  doi: 10.1371/journal.pone.0076910
– ident: e_1_2_9_37_1
  doi: 10.1038/ismej.2011.208
– ident: e_1_2_9_28_1
  doi: 10.1093/bioinformatics/btu721
– ident: e_1_2_9_19_1
  doi: 10.1073/pnas.1503283112
– ident: e_1_2_9_40_1
  doi: 10.1016/j.tree.2008.09.011
– ident: e_1_2_9_35_1
  doi: 10.1111/1755-0998.12628
– ident: e_1_2_9_2_1
  doi: 10.1016/S0022-2836(05)80360-2
– ident: e_1_2_9_27_1
  doi: 10.1080/10635150802422316
– ident: e_1_2_9_3_1
  doi: 10.1098/rstb.2005.1713
– ident: e_1_2_9_30_1
  doi: 10.1073/pnas.85.8.2444
– ident: e_1_2_9_21_1
  doi: 10.1007/s10059-010-0148-2
– ident: e_1_2_9_9_1
  doi: 10.1186/1471-2105-7-188
– volume: 50
  start-page: 288
  year: 2013
  ident: e_1_2_9_33_1
  article-title: Commonly used methods for phylogenetic reconstruction of insects
  publication-title: Chinese Journal of Applied Entomology
– ident: e_1_2_9_6_1
  doi: 10.1111/1755-0998.12428
– ident: e_1_2_9_20_1
  doi: 10.1111/j.1471-8286.2007.01670.x
– ident: e_1_2_9_25_1
  doi: 10.1111/1755-0998.12643
– volume: 17
  start-page: 57
  year: 1986
  ident: e_1_2_9_39_1
  article-title: Some probabilistic and statistical problems in the analysis of DNA sequences
  publication-title: Lectures on Mathematics in the Life Sciences
– ident: e_1_2_9_7_1
  doi: 10.1371/journal.pone.0008613
– ident: e_1_2_9_17_1
  doi: 10.1101/gr.120618.111
– ident: e_1_2_9_13_1
  doi: 10.1111/1755-0998.12235
– ident: e_1_2_9_22_1
  doi: 10.1007/BF01731581
– ident: e_1_2_9_15_1
  doi: 10.1093/nar/gkr367
– ident: e_1_2_9_26_1
  doi: 10.1111/1755-0998.12001
– ident: e_1_2_9_36_1
  doi: 10.1080/10635150802032990
– ident: e_1_2_9_8_1
  doi: 10.1111/j.2041-210X.2011.00176.x
– ident: e_1_2_9_46_1
  doi: 10.1111/j.1365-294X.2011.05235.x
– ident: e_1_2_9_16_1
  doi: 10.1016/j.tig.2007.02.001
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1096-0031.2006.00126.x
– ident: e_1_2_9_23_1
  doi: 10.1111/1755-0998.12238
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1471-8286.2007.01678.x
– ident: e_1_2_9_18_1
  doi: 10.1111/mec.13278
– ident: e_1_2_9_10_1
  doi: 10.1093/bioinformatics/14.9.755
– ident: e_1_2_9_14_1
  doi: 10.1007/BF01734359
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1755-0998.2012.03171.x
– ident: e_1_2_9_41_1
  doi: 10.1111/mec.13428
– ident: e_1_2_9_42_1
  doi: 10.1128/AEM.00062-07
– ident: e_1_2_9_29_1
  doi: 10.1007/s12038-012-9255-x
– ident: e_1_2_9_45_1
  doi: 10.1111/2041-210X.12682
– ident: e_1_2_9_4_1
  doi: 10.1186/1471-2105-10-S14-S10
– ident: e_1_2_9_12_1
  doi: 10.1093/bioinformatics/btq461
SSID ssj0060974
Score 2.2910511
Snippet Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 666
SubjectTerms algorithms
animals
Bar codes
barcoding
Biodiversity
Computer programs
Computer simulation
computer software
data collection
Datasets
Deoxyribonucleic acid
DNA
DNA barcoding
Ecological monitoring
Ecological studies
eDNA
Environmental DNA
fuzzy membership function
Fuzzy sets
Gene sequencing
Genetic distance
hidden Markov models
high‐throughput sequencing (HTS)
Identification
Identification methods
libraries
Markov chain
Markov chains
metabarcoding
Nucleotide sequence
nucleotide sequences
plant barcodes
Searching
Software
Species
species identification
Title FuzzyID2: A software package for large data set species identification via barcoding and metabarcoding using hidden Markov models and fuzzy set methods
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12738
https://www.ncbi.nlm.nih.gov/pubmed/29154499
https://www.proquest.com/docview/2034266994
https://www.proquest.com/docview/1966452527
https://www.proquest.com/docview/2067283688
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1755-098X
  databaseCode: DR2
  dateStart: 20010101
  customDbUrl:
  isFulltext: true
  eissn: 1755-0998
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQUiUuLaWvBVpNJQ69ZBU7iWP3htpd0UpwQEXiFtmO0yJotiJZEPtH-nc74zxaQKiqeosSO7GdeXyTzHxmbM_HrsxkhW-AVyZKvUkj62Md5VxUPrZVbgxVIx8eyYOT9PNpNmQTUi1Mxw8xfnAjzQj2mhTc2OYPJUe_l0WIb9SUU3kJWmGeyBBUHY8EUjLWgYe5b6tOe3IfyuW50_-2X7oHNm9j1-B85k-YHYbd5ZycT5etnbrVHUbH_5rXJnvcQ1PY72TpKVvz9RZ7NAu01jfP2M_5crW6-fRRvId9aNB6X5tLDxhyn6NJAsS-cEFZ5UA5p9D4FqiIE-NwOCv7jKQgBHB1ZsCiei3Ia4KpS_juW_P7DGXif4VvRG1SA5USLa4g7NfThMYVjSLcv9v8unnOTuazLx8Oon5bh8ilaC-iRGaiTDXXVjkEFzKxiErQSXqOSF9kLkm9UAZhhXGZ8nFlMaQSrsRIsBQ2tzZ5wdbrRe1fMeCJs0omCRfSpl4KqxFd5Rjve57lNlcTNh1eauF6znPaeuOiGGIfWu2CVrsIqz1h78YOPzq6j4eb7g5SUvR63xSCGBWl1DqdsLfjZdRY-g1jar9YNgXavPA3WeQPtyFSfQR-UuFjXnYSOI5HaGJQ0honF-TobwMtDmdH4WD7XzvssA3Eh6rL79xl6-3l0r9GDNbaN0HNfgEoRiRt
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMGF8mZpC0biwCWrxHEcm1sFu9pCdw-olfZm2Y4DVUsWNdmi7h_h7zLjZNMHqhDiFiVO4sc8vklmPhPy1seuyEQJK5CUJuLe8Mj6WEV5wkof2zI3BquRpzMxOeSf5tn8Ui1Myw_Rf3BDzQj2GhUcP0hf0nJwfFkEAEcOE6wvuU3ucAHRCgKjLz2FlIhVYGLuGst5R--D2TzXHnDVM_0BN6-i1-B-xpvErTveZp0cD5eNHbrVNU7H_xvZQ_KgQ6d0txWnR-SWrx6Tu6PAbH3-hPwaL1er872P7D3dpTUY8J_m1FOIuo_BKlGAv_QEE8sppp3S2jcU6zghFKdHRZeUFOSAnh0ZakHDFug4qakK-t035uIMJuN_pd-Q3aSiWE20OKNhy546NC6xF-H57f7X9VNyOB4dfJhE3c4OkeNgMqJUZKzgKlFWOsAXIrUATMBP-gTAPstcyj2TBpCFcZn0cWkhqmKugGCwYDa3Nn1GNqpF5V8QmqTOSpGmCROWe8GsAoCVQ8jvkyy3uRyQ4XpVtetoz3H3jRO9Dn9wtjXOtg6zPSDv-ht-tIwfNzfdXouJ7lS_1gxJFYVQig_Im_4yKC3-iTGVXyxrDWYv_FBm-c1tkFcfsJ-Q8JrnrQj2_WEKSZSUgsEFQfpbR_V0NAsHL__1htfk3uRguq_392aft8h9gIuyTffcJhvN6dLvACRr7Kugc78BhNIojg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMSF92OhgJE4cMkqcRzH7q3q7qoFukKISnuzbMcpVUu2arJF3T_C3-2Mk00fqEKIW5TYiWPP45tk5jMhH3zsikyUsAJJaSLuDY-sj1WUJ6z0sS1zY7AaeXcqtvf4p1k2u1QL0_JD9B_cUDOCvUYF98dFeUnLwfFlEQAcOUywvuQ2ucMzJTGtb_Stp5ASsQpMzF1jOevofTCb59oNrnqmP-DmVfQa3M_kIXGrgbdZJ4fDRWOHbnmN0_H_3uwRedChU7rZitNjcstXT8jdcWC2PntKfk8Wy-XZzoht0E1agwH_ZU48haj7EKwSBfhLjzCxnGLaKa19Q7GOE0JxelB0SUlBDujpgaEWNGyOjpOaqqA_fWMuzmAy_j79gewmFcVqovkpDVv21KFxiaMI92_3v66fkb3J-PvWdtTt7BA5DiYjSkXGCq4SZaUDfCFSC8AE_KRPAOyzzKXcM2kAWRiXSR-XFqIq5goIBgtmc2vT52Stmlf-JaFJ6qwUaZowYbkXzCoAWDmE_D7JcpvLARmuVlW7jvYcd9840qvwB2db42zrMNsD8rHvcNwyftzcdH0lJrpT_VozJFUUQik-IO_7y6C0-CfGVH6-qDWYvfBDmeU3t0FefcB-QsJjXrQi2I-HKSRRUgpeLgjS3waqd8fTcPDqXzu8I_e-jib6y87082tyH9CibLM918lac7LwbwCRNfZtULlz8wQoEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FuzzyID2%3A+A+software+package+for+large+data+set+species+identification+via+barcoding+and+metabarcoding+using+hidden+Markov+models+and+fuzzy+set+methods&rft.jtitle=Molecular+ecology+resources&rft.au=Shi%2C+Zhi%E2%80%90yong&rft.au=Yang%2C+Cai%E2%80%90qing&rft.au=Hao%2C+Meng%E2%80%90di&rft.au=Wang%2C+Xiao%E2%80%90yang&rft.date=2018-05-01&rft.issn=1755-098X&rft.eissn=1755-0998&rft.volume=18&rft.issue=3&rft.spage=666&rft.epage=675&rft_id=info:doi/10.1111%2F1755-0998.12738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1755_0998_12738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon