FuzzyID2: A software package for large data set species identification via barcoding and metabarcoding using hidden Markov models and fuzzy set methods
Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid accumulation of barcoding data has created some difficulties: for instance, global enquiries to a large reference library can take a very lon...
Saved in:
| Published in | Molecular ecology resources Vol. 18; no. 3; pp. 666 - 675 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
01.05.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1755-098X 1755-0998 1755-0998 |
| DOI | 10.1111/1755-0998.12738 |
Cover
| Abstract | Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid accumulation of barcoding data has created some difficulties: for instance, global enquiries to a large reference library can take a very long time. We here devise a two‐step searching strategy to speed identification procedures of such queries. This firstly uses a Hidden Markov Model (HMM) algorithm to narrow the searching scope to genus level and then determines the corresponding species using minimum genetic distance. Moreover, using a fuzzy membership function, our approach also estimates the credibility of assignment results for each query. To perform this task, we developed a new software pipeline, FuzzyID2, using Python and C++. Performance of the new method was assessed using eight empirical data sets ranging from 70 to 234,535 barcodes. Five data sets (four animal, one plant) deployed the conventional barcode approach, one used metabarcodes, and two were eDNA‐based. The results showed mean accuracies of generic and species identification of 98.60% (with a minimum of 95.00% and a maximum of 100.00%) and 94.17% (with a range of 84.40%–100.00%), respectively. Tests with simulated NGS sequences based on realistic eDNA and metabarcode data demonstrated that FuzzyID2 achieved a significantly higher identification success rate than the commonly used Blast method, and the TIPP method tends to find many fewer species than either FuzztID2 or Blast. Furthermore, data sets with tens of thousands of barcodes need only a few seconds for each query assignment using FuzzyID2. Our approach provides an efficient and accurate species identification protocol for biodiversity‐related projects with large DNA sequence data sets. |
|---|---|
| AbstractList | Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid accumulation of barcoding data has created some difficulties: for instance, global enquiries to a large reference library can take a very long time. We here devise a two‐step searching strategy to speed identification procedures of such queries. This firstly uses a Hidden Markov Model (HMM) algorithm to narrow the searching scope to genus level and then determines the corresponding species using minimum genetic distance. Moreover, using a fuzzy membership function, our approach also estimates the credibility of assignment results for each query. To perform this task, we developed a new software pipeline, FuzzyID2, using Python and C++. Performance of the new method was assessed using eight empirical data sets ranging from 70 to 234,535 barcodes. Five data sets (four animal, one plant) deployed the conventional barcode approach, one used metabarcodes, and two were eDNA‐based. The results showed mean accuracies of generic and species identification of 98.60% (with a minimum of 95.00% and a maximum of 100.00%) and 94.17% (with a range of 84.40%–100.00%), respectively. Tests with simulated NGS sequences based on realistic eDNA and metabarcode data demonstrated that FuzzyID2 achieved a significantly higher identification success rate than the commonly used Blast method, and the TIPP method tends to find many fewer species than either FuzztID2 or Blast. Furthermore, data sets with tens of thousands of barcodes need only a few seconds for each query assignment using FuzzyID2. Our approach provides an efficient and accurate species identification protocol for biodiversity‐related projects with large DNA sequence data sets. Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid accumulation of barcoding data has created some difficulties: for instance, global enquiries to a large reference library can take a very long time. We here devise a two-step searching strategy to speed identification procedures of such queries. This firstly uses a Hidden Markov Model (HMM) algorithm to narrow the searching scope to genus level and then determines the corresponding species using minimum genetic distance. Moreover, using a fuzzy membership function, our approach also estimates the credibility of assignment results for each query. To perform this task, we developed a new software pipeline, FuzzyID2, using Python and C++. Performance of the new method was assessed using eight empirical data sets ranging from 70 to 234,535 barcodes. Five data sets (four animal, one plant) deployed the conventional barcode approach, one used metabarcodes, and two were eDNA-based. The results showed mean accuracies of generic and species identification of 98.60% (with a minimum of 95.00% and a maximum of 100.00%) and 94.17% (with a range of 84.40%-100.00%), respectively. Tests with simulated NGS sequences based on realistic eDNA and metabarcode data demonstrated that FuzzyID2 achieved a significantly higher identification success rate than the commonly used Blast method, and the TIPP method tends to find many fewer species than either FuzztID2 or Blast. Furthermore, data sets with tens of thousands of barcodes need only a few seconds for each query assignment using FuzzyID2. Our approach provides an efficient and accurate species identification protocol for biodiversity-related projects with large DNA sequence data sets.Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid accumulation of barcoding data has created some difficulties: for instance, global enquiries to a large reference library can take a very long time. We here devise a two-step searching strategy to speed identification procedures of such queries. This firstly uses a Hidden Markov Model (HMM) algorithm to narrow the searching scope to genus level and then determines the corresponding species using minimum genetic distance. Moreover, using a fuzzy membership function, our approach also estimates the credibility of assignment results for each query. To perform this task, we developed a new software pipeline, FuzzyID2, using Python and C++. Performance of the new method was assessed using eight empirical data sets ranging from 70 to 234,535 barcodes. Five data sets (four animal, one plant) deployed the conventional barcode approach, one used metabarcodes, and two were eDNA-based. The results showed mean accuracies of generic and species identification of 98.60% (with a minimum of 95.00% and a maximum of 100.00%) and 94.17% (with a range of 84.40%-100.00%), respectively. Tests with simulated NGS sequences based on realistic eDNA and metabarcode data demonstrated that FuzzyID2 achieved a significantly higher identification success rate than the commonly used Blast method, and the TIPP method tends to find many fewer species than either FuzztID2 or Blast. Furthermore, data sets with tens of thousands of barcodes need only a few seconds for each query assignment using FuzzyID2. Our approach provides an efficient and accurate species identification protocol for biodiversity-related projects with large DNA sequence data sets. |
| Author | Ward, Robert D. Wang, Xiao‐yang Shi, Zhi‐yong Zhang, Ai‐bing Yang, Cai‐qing Hao, Meng‐di |
| Author_xml | – sequence: 1 givenname: Zhi‐yong surname: Shi fullname: Shi, Zhi‐yong organization: Capital Normal University – sequence: 2 givenname: Cai‐qing surname: Yang fullname: Yang, Cai‐qing organization: Capital Normal University – sequence: 3 givenname: Meng‐di surname: Hao fullname: Hao, Meng‐di organization: Capital Normal University – sequence: 4 givenname: Xiao‐yang surname: Wang fullname: Wang, Xiao‐yang organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Robert D. surname: Ward fullname: Ward, Robert D. organization: CSIRO National Research Collections Australia – sequence: 6 givenname: Ai‐bing orcidid: 0000-0002-6580-5462 surname: Zhang fullname: Zhang, Ai‐bing email: zhangab2008@mail.cnu.edu.cn organization: Capital Normal University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29154499$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1PHCEYxkmjqbr23FtD0ksvq8DADPRm_Kgm2l5s0hth4B1FZ4YtzGjWf6T_bpnd1SYmjRzgzZvf8_DxsIe2-tADQh8pOaB5HNJKiDlRSh5QVhXyHdp96Wy91PLXDtpL6Y6QkqiKv0c7TFHBuVK76M_Z-PS0vDhhX_ERTqEZHk0EvDD23twAbkLErYm5cmYwOMGA0wKsh4S9g37wjbdm8KHHD97g2kQbnO9vsOkd7mAw_zpjmuZb77IMX5l4Hx5wFxy0aQU30ylW_ll2G1zaR9uNaRN82Kwz9PPs9Pr4fH7549vF8dHl3HLC5bwoBXNcUVVLyzgvi1pSJXkFtKoYE7bgwKQRjBorJJCmlpVg1lFOHKurui5m6MvadxHD7xHSoDufLLSt6SGMSTNSVkwWpZRvolSVJRdM5CBm6PMr9C6Msc8XyYYFZ2WpFM_Upw011h04vYi-M3Gpn9PJgFgDNoaUIjTa-mH13kM0vtWU6OkX6ClnPWWuV78g6w5f6Z6t_6_Y7PToW1i-heur0-9r3V8alsHf |
| CitedBy_id | crossref_primary_10_1139_cjfas_2021_0215 crossref_primary_10_1038_s41598_018_32123_9 crossref_primary_10_1111_1755_0998_13384 crossref_primary_10_1186_s40657_021_00276_3 crossref_primary_10_1007_s10682_020_10072_y crossref_primary_10_1111_mec_15412 crossref_primary_10_3389_fevo_2020_00057 crossref_primary_10_1111_mec_14478 crossref_primary_10_1002_ece3_7788 |
| Cites_doi | 10.1080/10635150802032982 10.1371/journal.pcbi.1002195 10.1007/s13353-013-0180-y 10.1371/journal.pone.0030986 10.1111/1755-0998.12063 10.1371/journal.pone.0076910 10.1038/ismej.2011.208 10.1093/bioinformatics/btu721 10.1073/pnas.1503283112 10.1016/j.tree.2008.09.011 10.1111/1755-0998.12628 10.1016/S0022-2836(05)80360-2 10.1080/10635150802422316 10.1098/rstb.2005.1713 10.1073/pnas.85.8.2444 10.1007/s10059-010-0148-2 10.1186/1471-2105-7-188 10.1111/1755-0998.12428 10.1111/j.1471-8286.2007.01670.x 10.1111/1755-0998.12643 10.1371/journal.pone.0008613 10.1101/gr.120618.111 10.1111/1755-0998.12235 10.1007/BF01731581 10.1093/nar/gkr367 10.1111/1755-0998.12001 10.1080/10635150802032990 10.1111/j.2041-210X.2011.00176.x 10.1111/j.1365-294X.2011.05235.x 10.1016/j.tig.2007.02.001 10.1111/j.1096-0031.2006.00126.x 10.1111/1755-0998.12238 10.1111/j.1471-8286.2007.01678.x 10.1111/mec.13278 10.1093/bioinformatics/14.9.755 10.1007/BF01734359 10.1111/j.1755-0998.2012.03171.x 10.1111/mec.13428 10.1128/AEM.00062-07 10.1007/s12038-012-9255-x 10.1111/2041-210X.12682 10.1186/1471-2105-10-S14-S10 10.1093/bioinformatics/btq461 |
| ContentType | Journal Article |
| Copyright | 2017 John Wiley & Sons Ltd 2017 John Wiley & Sons Ltd. Copyright © 2018 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2017 John Wiley & Sons Ltd – notice: 2017 John Wiley & Sons Ltd. – notice: Copyright © 2018 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1111/1755-0998.12738 |
| DatabaseName | CrossRef PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Entomology Abstracts MEDLINE - Academic PubMed AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology |
| EISSN | 1755-0998 |
| EndPage | 675 |
| ExternalDocumentID | 29154499 10_1111_1755_0998_12738 MEN12738 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Changjiang Scholars and Innovative Research Team in University funderid: IRT‐17R75 – fundername: China National Funds for Distinguished Young Scientists funderid: 31425023 – fundername: National Natural Science Foundation of China funderid: 31401121; 31772501 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 ~IA ~WT AAYXX CITATION AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ESX NPM WRC 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4048-3652d4919b8c24463b819847e177225c34e28a521ac58e0fb8752cd140d2b7bb3 |
| IEDL.DBID | DR2 |
| ISSN | 1755-098X 1755-0998 |
| IngestDate | Fri Jul 11 18:34:30 EDT 2025 Thu Oct 02 11:13:43 EDT 2025 Fri Jul 25 10:41:32 EDT 2025 Wed Feb 19 02:43:43 EST 2025 Wed Oct 01 02:02:34 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 Wed Aug 20 07:25:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | hidden Markov models metabarcoding DNA barcoding high-throughput sequencing (HTS) fuzzy membership function eDNA plant barcodes |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4048-3652d4919b8c24463b819847e177225c34e28a521ac58e0fb8752cd140d2b7bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6580-5462 |
| PMID | 29154499 |
| PQID | 2034266994 |
| PQPubID | 1096410 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2067283688 proquest_miscellaneous_1966452527 proquest_journals_2034266994 pubmed_primary_29154499 crossref_citationtrail_10_1111_1755_0998_12738 crossref_primary_10_1111_1755_0998_12738 wiley_primary_10_1111_1755_0998_12738_MEN12738 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2018 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Molecular ecology resources |
| PublicationTitleAlternate | Mol Ecol Resour |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2009; 24 2017; 8 2006; 7 1986; 17 2008; 57 2007; 73 2012; 37 2011; 39 2016; 17 2013; 8 2016; 16 2012; 12 2011; 7 2015; 24 1980; 16 1990; 215 2005; 360 2012; 3 2010; 26 2009; 10 2013; 13 2017; 17 2015; 112 2013; 50 2014; 14 2011; 21 2007; 7 1981; 17 1996; 1 1988; 85 2014; 30 2012; 6 2012; 7 2010; 5 2007; 23 2010; 30 2016; 25 2012; 21 2014; 55 1998; 14 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 Yada T. (e_1_2_9_43_1) 1996; 1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 Tavare S. (e_1_2_9_39_1) 1986; 17 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Qin J. (e_1_2_9_33_1) 2013; 50 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 17 start-page: 368 year: 1981 end-page: 376 article-title: Evolutionary trees from DNA sequences: A maximum likelihood approach publication-title: Journal of Molecular Evolution – volume: 39 start-page: W29 year: 2011 end-page: W37 article-title: HMMER web server: Interactive sequence similarity searching publication-title: Nucleic Acids Research – volume: 17 start-page: 57 year: 1986 end-page: 86 article-title: Some probabilistic and statistical problems in the analysis of DNA sequences publication-title: Lectures on Mathematics in the Life Sciences – volume: 7 start-page: e30986 year: 2012 article-title: A new method for species identification via protein‐coding and non‐coding DNA barcodes by combining machine learning with bioinformatics methods publication-title: PLoS One – volume: 16 start-page: 111 year: 1980 end-page: 120 article-title: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences publication-title: Journal of Molecular Evolution – volume: 360 start-page: 1813 year: 2005 end-page: 1823 article-title: DNA barcodes for biosecurity: Invasive species identification publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences – volume: 6 start-page: 1440 year: 2012 end-page: 1444 article-title: Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences publication-title: The ISME Journal – volume: 8 start-page: e76910 year: 2013 article-title: Two new computational methods for universal DNA barcoding: A benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants publication-title: PLoS One – volume: 26 start-page: 2460 year: 2010 end-page: 2461 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics – volume: 14 start-page: 1060 year: 2014 end-page: 1071 article-title: A reliable DNA barcode reference library for the identification of the North European shelf fish fauna publication-title: Molecular Ecology Resources – volume: 12 start-page: 1151 year: 2012 end-page: 1157 article-title: |SE|S|AM|E| Barcode: NGS‐oriented software for amplicon characterization – application to species and environmental barcoding publication-title: Molecular Ecology Resources – volume: 112 start-page: 8019 year: 2015 end-page: 8024 article-title: DNA metabarcoding illuminates dietary niche partitioning by African large herbivores publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 17 start-page: 760 year: 2017 end-page: 769 article-title: Evaluating and optimizing the performance of software commonly used for the taxonomic classification of DNA metabarcoding sequence data publication-title: Molecular Ecology Resources – volume: 3 start-page: 457 year: 2012 end-page: 465 article-title: Barcoding's next top model: An evaluation of nucleotide substitution models for specimen identification publication-title: Methods in Ecology and Evolution – volume: 14 start-page: 755 year: 1998 end-page: 763 article-title: Profile hidden Markov models publication-title: Bioinformatics Review – volume: 17 start-page: 904 year: 2016 end-page: 914 article-title: eDNA metabarcoding: A promising method for anuran surveys in highly diverse tropical forests publication-title: Molecular Ecology Resources – volume: 16 start-page: 176 year: 2016 end-page: 182 article-title: Obitools: A unix‐inspired software package for DNA metabarcoding publication-title: Molecular Ecology Resources – volume: 23 start-page: 1 year: 2007 end-page: 21 article-title: A comparison of algorithms for the identification of specimens using DNA barcodes: Examples from gymnosperms publication-title: Cladistics – volume: 7 start-page: e1002195 year: 2011 article-title: Accelerated profile HMM searches publication-title: PLoS Computational Biology – volume: 73 start-page: 5261 year: 2007 end-page: 5267 article-title: Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Applied and Environmental Microbiology – volume: 85 start-page: 2444 year: 1988 end-page: 2448 article-title: Improved tools for biological sequence comparison publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 57 start-page: 216 year: 2008 end-page: 230 article-title: Testing the reliability of genetic methods of species identification via simulation publication-title: Systematic Biology – volume: 7 start-page: 188 year: 2006 end-page: 193 article-title: Bio++: A set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics publication-title: BMC Bioinformatics – volume: 7 start-page: 355 year: 2007 end-page: 364 article-title: BOLD: The barcode of life data system publication-title: Molecular Ecology Notes – volume: 24 start-page: 110 year: 2009 end-page: 117 article-title: DNA barcoding for ecologists publication-title: Trends in Ecology and Evolution – volume: 23 start-page: 167 year: 2007 end-page: 172 article-title: DNA barcoding: How it complements taxonomy, molecular phylogenetics and population genetics publication-title: Trends in Genetics – volume: 25 start-page: 929 year: 2016 end-page: 942 article-title: Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding publication-title: Molecular Ecology – volume: 21 start-page: 1552 year: 2011 end-page: 1560 article-title: Integrative analysis of environmental sequences using MEGAN 4 publication-title: Genome Research – volume: 30 start-page: 3548 year: 2014 end-page: 3555 article-title: TIPP: Taxonomic identification and phylogenetic profiling publication-title: Bioinformatics – volume: 37 start-page: 887 year: 2012 end-page: 896 article-title: Molecular‐based rapid inventories of sympatric diversity: A comparison of DNA barcode clustering methods applied to geography‐based vs clade‐based sampling of amphibians publication-title: Journal of Biosciences – volume: 12 start-page: 990 year: 2012 end-page: 998 article-title: DNA barcoding a regional fauna: Irish solitary bees publication-title: Molecular Ecology Resources – volume: 215 start-page: 403 year: 1990 end-page: 410 article-title: Basic local alignment search tool publication-title: Journal of Molecular Biology – volume: 55 start-page: 43 year: 2014 end-page: 52 article-title: 20 years since the introduction of DNA barcoding: From theory to application publication-title: Journal of Applied Genetics – volume: 50 start-page: 288 year: 2013 end-page: 292 article-title: Commonly used methods for phylogenetic reconstruction of insects publication-title: Chinese Journal of Applied Entomology – volume: 57 start-page: 750 year: 2008 end-page: 757 article-title: Statistical assignment of DNA sequences using Bayesian phylogenetics publication-title: Systematic Biology – volume: 8 start-page: 627 year: 2017 end-page: 634 article-title: BarcodingR: An integrated R package for species identification using DNA barcodes publication-title: Methods in Ecology and Evolution – volume: 24 start-page: 4023 year: 2015 end-page: 4038 article-title: Plant–herbivorous beetle networks: Molecular characterization of trophic ecology within a threatened steppic environment publication-title: Molecular Ecology – volume: 5 start-page: e8613 year: 2010 article-title: Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species publication-title: PLoS One – volume: 1 start-page: 686 year: 1996 end-page: 696 article-title: Extraction of hidden Markov model representations of signal patterns in DNA sequences publication-title: Pacific Symposium on Biocomputing – volume: 14 start-page: 871 year: 2014 end-page: 881 article-title: VIP Barcoding: Composition vector‐based software for rapid species identification based on DNA barcoding publication-title: Molecular Ecology Resources – volume: 10 start-page: S10 year: 2009 article-title: DNA barcode analysis: A comparison of phylogenetic and statistical classification methods publication-title: BMC Bioinformatics – volume: 7 start-page: 535 year: 2007 end-page: 543 article-title: Comprehensive DNA barcode coverage of North American birds publication-title: Molecular Ecology Notes – volume: 30 start-page: 507 year: 2010 end-page: 512 article-title: DNA barcode‐based molecular identification system for fish species publication-title: Molecules and Cells – volume: 21 start-page: 1848 year: 2012 end-page: 1863 article-title: A fuzzy‐set‐theory‐based approach to analyse species membership in DNA barcoding publication-title: Molecular Ecology – volume: 13 start-page: 337 year: 2013 end-page: 340 article-title: Pool‐hmm: A Python program for estimating the allele frequency spectrum and detecting selective sweeps from next generation sequencing of pooled samples publication-title: Molecular Ecology Resources – volume: 57 start-page: 202 year: 2008 end-page: 215 article-title: Inferring species membership using DNA sequences with Back‐Propagation neural networks publication-title: Systematic Biology – volume: 1 start-page: 686 year: 1996 ident: e_1_2_9_43_1 article-title: Extraction of hidden Markov model representations of signal patterns in DNA sequences publication-title: Pacific Symposium on Biocomputing – ident: e_1_2_9_47_1 doi: 10.1080/10635150802032982 – ident: e_1_2_9_11_1 doi: 10.1371/journal.pcbi.1002195 – ident: e_1_2_9_31_1 doi: 10.1007/s13353-013-0180-y – ident: e_1_2_9_44_1 doi: 10.1371/journal.pone.0030986 – ident: e_1_2_9_5_1 doi: 10.1111/1755-0998.12063 – ident: e_1_2_9_38_1 doi: 10.1371/journal.pone.0076910 – ident: e_1_2_9_37_1 doi: 10.1038/ismej.2011.208 – ident: e_1_2_9_28_1 doi: 10.1093/bioinformatics/btu721 – ident: e_1_2_9_19_1 doi: 10.1073/pnas.1503283112 – ident: e_1_2_9_40_1 doi: 10.1016/j.tree.2008.09.011 – ident: e_1_2_9_35_1 doi: 10.1111/1755-0998.12628 – ident: e_1_2_9_2_1 doi: 10.1016/S0022-2836(05)80360-2 – ident: e_1_2_9_27_1 doi: 10.1080/10635150802422316 – ident: e_1_2_9_3_1 doi: 10.1098/rstb.2005.1713 – ident: e_1_2_9_30_1 doi: 10.1073/pnas.85.8.2444 – ident: e_1_2_9_21_1 doi: 10.1007/s10059-010-0148-2 – ident: e_1_2_9_9_1 doi: 10.1186/1471-2105-7-188 – volume: 50 start-page: 288 year: 2013 ident: e_1_2_9_33_1 article-title: Commonly used methods for phylogenetic reconstruction of insects publication-title: Chinese Journal of Applied Entomology – ident: e_1_2_9_6_1 doi: 10.1111/1755-0998.12428 – ident: e_1_2_9_20_1 doi: 10.1111/j.1471-8286.2007.01670.x – ident: e_1_2_9_25_1 doi: 10.1111/1755-0998.12643 – volume: 17 start-page: 57 year: 1986 ident: e_1_2_9_39_1 article-title: Some probabilistic and statistical problems in the analysis of DNA sequences publication-title: Lectures on Mathematics in the Life Sciences – ident: e_1_2_9_7_1 doi: 10.1371/journal.pone.0008613 – ident: e_1_2_9_17_1 doi: 10.1101/gr.120618.111 – ident: e_1_2_9_13_1 doi: 10.1111/1755-0998.12235 – ident: e_1_2_9_22_1 doi: 10.1007/BF01731581 – ident: e_1_2_9_15_1 doi: 10.1093/nar/gkr367 – ident: e_1_2_9_26_1 doi: 10.1111/1755-0998.12001 – ident: e_1_2_9_36_1 doi: 10.1080/10635150802032990 – ident: e_1_2_9_8_1 doi: 10.1111/j.2041-210X.2011.00176.x – ident: e_1_2_9_46_1 doi: 10.1111/j.1365-294X.2011.05235.x – ident: e_1_2_9_16_1 doi: 10.1016/j.tig.2007.02.001 – ident: e_1_2_9_24_1 doi: 10.1111/j.1096-0031.2006.00126.x – ident: e_1_2_9_23_1 doi: 10.1111/1755-0998.12238 – ident: e_1_2_9_34_1 doi: 10.1111/j.1471-8286.2007.01678.x – ident: e_1_2_9_18_1 doi: 10.1111/mec.13278 – ident: e_1_2_9_10_1 doi: 10.1093/bioinformatics/14.9.755 – ident: e_1_2_9_14_1 doi: 10.1007/BF01734359 – ident: e_1_2_9_32_1 doi: 10.1111/j.1755-0998.2012.03171.x – ident: e_1_2_9_41_1 doi: 10.1111/mec.13428 – ident: e_1_2_9_42_1 doi: 10.1128/AEM.00062-07 – ident: e_1_2_9_29_1 doi: 10.1007/s12038-012-9255-x – ident: e_1_2_9_45_1 doi: 10.1111/2041-210X.12682 – ident: e_1_2_9_4_1 doi: 10.1186/1471-2105-10-S14-S10 – ident: e_1_2_9_12_1 doi: 10.1093/bioinformatics/btq461 |
| SSID | ssj0060974 |
| Score | 2.2910511 |
| Snippet | Species identification through DNA barcoding or metabarcoding has become a key approach for biodiversity evaluation and ecological studies. However, the rapid... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 666 |
| SubjectTerms | algorithms animals Bar codes barcoding Biodiversity Computer programs Computer simulation computer software data collection Datasets Deoxyribonucleic acid DNA DNA barcoding Ecological monitoring Ecological studies eDNA Environmental DNA fuzzy membership function Fuzzy sets Gene sequencing Genetic distance hidden Markov models high‐throughput sequencing (HTS) Identification Identification methods libraries Markov chain Markov chains metabarcoding Nucleotide sequence nucleotide sequences plant barcodes Searching Software Species species identification |
| Title | FuzzyID2: A software package for large data set species identification via barcoding and metabarcoding using hidden Markov models and fuzzy set methods |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12738 https://www.ncbi.nlm.nih.gov/pubmed/29154499 https://www.proquest.com/docview/2034266994 https://www.proquest.com/docview/1966452527 https://www.proquest.com/docview/2067283688 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1755-098X databaseCode: DR2 dateStart: 20010101 customDbUrl: isFulltext: true eissn: 1755-0998 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQUiUuLaWvBVpNJQ69ZBU7iWP3htpd0UpwQEXiFtmO0yJotiJZEPtH-nc74zxaQKiqeosSO7GdeXyTzHxmbM_HrsxkhW-AVyZKvUkj62Md5VxUPrZVbgxVIx8eyYOT9PNpNmQTUi1Mxw8xfnAjzQj2mhTc2OYPJUe_l0WIb9SUU3kJWmGeyBBUHY8EUjLWgYe5b6tOe3IfyuW50_-2X7oHNm9j1-B85k-YHYbd5ZycT5etnbrVHUbH_5rXJnvcQ1PY72TpKVvz9RZ7NAu01jfP2M_5crW6-fRRvId9aNB6X5tLDxhyn6NJAsS-cEFZ5UA5p9D4FqiIE-NwOCv7jKQgBHB1ZsCiei3Ia4KpS_juW_P7DGXif4VvRG1SA5USLa4g7NfThMYVjSLcv9v8unnOTuazLx8Oon5bh8ilaC-iRGaiTDXXVjkEFzKxiErQSXqOSF9kLkm9UAZhhXGZ8nFlMaQSrsRIsBQ2tzZ5wdbrRe1fMeCJs0omCRfSpl4KqxFd5Rjve57lNlcTNh1eauF6znPaeuOiGGIfWu2CVrsIqz1h78YOPzq6j4eb7g5SUvR63xSCGBWl1DqdsLfjZdRY-g1jar9YNgXavPA3WeQPtyFSfQR-UuFjXnYSOI5HaGJQ0honF-TobwMtDmdH4WD7XzvssA3Eh6rL79xl6-3l0r9GDNbaN0HNfgEoRiRt |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMGF8mZpC0biwCWrxHEcm1sFu9pCdw-olfZm2Y4DVUsWNdmi7h_h7zLjZNMHqhDiFiVO4sc8vklmPhPy1seuyEQJK5CUJuLe8Mj6WEV5wkof2zI3BquRpzMxOeSf5tn8Ui1Myw_Rf3BDzQj2GhUcP0hf0nJwfFkEAEcOE6wvuU3ucAHRCgKjLz2FlIhVYGLuGst5R--D2TzXHnDVM_0BN6-i1-B-xpvErTveZp0cD5eNHbrVNU7H_xvZQ_KgQ6d0txWnR-SWrx6Tu6PAbH3-hPwaL1er872P7D3dpTUY8J_m1FOIuo_BKlGAv_QEE8sppp3S2jcU6zghFKdHRZeUFOSAnh0ZakHDFug4qakK-t035uIMJuN_pd-Q3aSiWE20OKNhy546NC6xF-H57f7X9VNyOB4dfJhE3c4OkeNgMqJUZKzgKlFWOsAXIrUATMBP-gTAPstcyj2TBpCFcZn0cWkhqmKugGCwYDa3Nn1GNqpF5V8QmqTOSpGmCROWe8GsAoCVQ8jvkyy3uRyQ4XpVtetoz3H3jRO9Dn9wtjXOtg6zPSDv-ht-tIwfNzfdXouJ7lS_1gxJFYVQig_Im_4yKC3-iTGVXyxrDWYv_FBm-c1tkFcfsJ-Q8JrnrQj2_WEKSZSUgsEFQfpbR_V0NAsHL__1htfk3uRguq_392aft8h9gIuyTffcJhvN6dLvACRr7Kugc78BhNIojg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMSF92OhgJE4cMkqcRzH7q3q7qoFukKISnuzbMcpVUu2arJF3T_C3-2Mk00fqEKIW5TYiWPP45tk5jMhH3zsikyUsAJJaSLuDY-sj1WUJ6z0sS1zY7AaeXcqtvf4p1k2u1QL0_JD9B_cUDOCvUYF98dFeUnLwfFlEQAcOUywvuQ2ucMzJTGtb_Stp5ASsQpMzF1jOevofTCb59oNrnqmP-DmVfQa3M_kIXGrgbdZJ4fDRWOHbnmN0_H_3uwRedChU7rZitNjcstXT8jdcWC2PntKfk8Wy-XZzoht0E1agwH_ZU48haj7EKwSBfhLjzCxnGLaKa19Q7GOE0JxelB0SUlBDujpgaEWNGyOjpOaqqA_fWMuzmAy_j79gewmFcVqovkpDVv21KFxiaMI92_3v66fkb3J-PvWdtTt7BA5DiYjSkXGCq4SZaUDfCFSC8AE_KRPAOyzzKXcM2kAWRiXSR-XFqIq5goIBgtmc2vT52Stmlf-JaFJ6qwUaZowYbkXzCoAWDmE_D7JcpvLARmuVlW7jvYcd9840qvwB2db42zrMNsD8rHvcNwyftzcdH0lJrpT_VozJFUUQik-IO_7y6C0-CfGVH6-qDWYvfBDmeU3t0FefcB-QsJjXrQi2I-HKSRRUgpeLgjS3waqd8fTcPDqXzu8I_e-jib6y87082tyH9CibLM918lac7LwbwCRNfZtULlz8wQoEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FuzzyID2%3A+A+software+package+for+large+data+set+species+identification+via+barcoding+and+metabarcoding+using+hidden+Markov+models+and+fuzzy+set+methods&rft.jtitle=Molecular+ecology+resources&rft.au=Shi%2C+Zhi%E2%80%90yong&rft.au=Yang%2C+Cai%E2%80%90qing&rft.au=Hao%2C+Meng%E2%80%90di&rft.au=Wang%2C+Xiao%E2%80%90yang&rft.date=2018-05-01&rft.issn=1755-098X&rft.eissn=1755-0998&rft.volume=18&rft.issue=3&rft.spage=666&rft.epage=675&rft_id=info:doi/10.1111%2F1755-0998.12738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1755_0998_12738 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon |