Blood pressure and the risk of chronic kidney disease progression using multistate marginal structural models in the CRIC Study

In patients with chronic kidney disease (CKD), clinical interest often centers on determining treatments and exposures that are causally related to renal progression. Analyses of longitudinal clinical data in this population are often complicated by clinical competing events, such as end‐stage renal...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 36; no. 26; pp. 4167 - 4181
Main Authors Stephens‐Shields, Alisa J., Spieker, Andrew J., Anderson, Amanda, Drawz, Paul, Fischer, Michael, Sozio, Stephen M., Feldman, Harold, Joffe, Marshall, Yang, Wei, Greene, Tom
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 20.11.2017
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.7425

Cover

Abstract In patients with chronic kidney disease (CKD), clinical interest often centers on determining treatments and exposures that are causally related to renal progression. Analyses of longitudinal clinical data in this population are often complicated by clinical competing events, such as end‐stage renal disease (ESRD) and death, and time‐dependent confounding, where patient factors that are predictive of later exposures and outcomes are affected by past exposures. We developed multistate marginal structural models (MS‐MSMs) to assess the effect of time‐varying systolic blood pressure on disease progression in subjects with CKD. The multistate nature of the model allows us to jointly model disease progression characterized by changes in the estimated glomerular filtration rate (eGFR), the onset of ESRD, and death, and thereby avoid unnatural assumptions of death and ESRD as noninformative censoring events for subsequent changes in eGFR. We model the causal effect of systolic blood pressure on the probability of transitioning into 1 of 6 disease states given the current state. We use inverse probability weights with stabilization to account for potential time‐varying confounders, including past eGFR, total protein, serum creatinine, and hemoglobin. We apply the model to data from the Chronic Renal Insufficiency Cohort Study, a multisite observational study of patients with CKD.
AbstractList In patients with chronic kidney disease (CKD), clinical interest often centers on determining treatments and exposures that are causally related to renal progression. Analyses of longitudinal clinical data in this population are often complicated by clinical competing events, such as end-stage renal disease (ESRD) and death, and time-dependent confounding, where patient factors that are predictive of later exposures and outcomes are affected by past exposures. We developed multistate marginal structural models (MS-MSMs) to assess the effect of time-varying systolic blood pressure on disease progression in subjects with CKD. The multistate nature of the model allows us to jointly model disease progression characterized by changes in the estimated glomerular filtration rate (eGFR), the onset of ESRD, and death, and thereby avoid unnatural assumptions of death and ESRD as noninformative censoring events for subsequent changes in eGFR. We model the causal effect of systolic blood pressure on the probability of transitioning into 1 of 6 disease states given the current state. We use inverse probability weights with stabilization to account for potential time-varying confounders, including past eGFR, total protein, serum creatinine, and hemoglobin. We apply the model to data from the Chronic Renal Insufficiency Cohort Study, a multisite observational study of patients with CKD.
In patients with chronic kidney disease (CKD), clinical interest often centers on determining treatments and exposures that are causally related to renal progression. Analyses of longitudinal clinical data in this population are often complicated by clinical competing events, such as end-stage renal disease (ESRD) and death, and time-dependent confounding, where patient factors that are predictive of later exposures and outcomes are affected by past exposures. We developed multistate marginal structural models (MS-MSM) to assess the effect of time-varying systolic blood pressure on disease progression in subjects with CKD. The multistate nature of the model allows us to jointly model disease progression characterized by changes in the estimated glomerular filtration rate (eGFR), the onset of ESRD, and death, and thereby avoid unnatural assumptions of death and ESRD as non-informative censoring events for subsequent changes in eGFR. We model the causal effect of systolic blood pressure on the probability of transitioning into one of six disease states given the current state. We use inverse probability weights with stabilization to account for potential time-varying confounders, including past eGFR, total protein, serum creatinine, and hemoglobin. We apply the model to data from the Chronic Renal Insufficiency Cohort (CRIC) Study, a multisite observational study of patients with CKD.
In patients with chronic kidney disease (CKD), clinical interest often centers on determining treatments and exposures that are causally related to renal progression. Analyses of longitudinal clinical data in this population are often complicated by clinical competing events, such as end-stage renal disease (ESRD) and death, and time-dependent confounding, where patient factors that are predictive of later exposures and outcomes are affected by past exposures. We developed multistate marginal structural models (MS-MSMs) to assess the effect of time-varying systolic blood pressure on disease progression in subjects with CKD. The multistate nature of the model allows us to jointly model disease progression characterized by changes in the estimated glomerular filtration rate (eGFR), the onset of ESRD, and death, and thereby avoid unnatural assumptions of death and ESRD as noninformative censoring events for subsequent changes in eGFR. We model the causal effect of systolic blood pressure on the probability of transitioning into 1 of 6 disease states given the current state. We use inverse probability weights with stabilization to account for potential time-varying confounders, including past eGFR, total protein, serum creatinine, and hemoglobin. We apply the model to data from the Chronic Renal Insufficiency Cohort Study, a multisite observational study of patients with CKD.In patients with chronic kidney disease (CKD), clinical interest often centers on determining treatments and exposures that are causally related to renal progression. Analyses of longitudinal clinical data in this population are often complicated by clinical competing events, such as end-stage renal disease (ESRD) and death, and time-dependent confounding, where patient factors that are predictive of later exposures and outcomes are affected by past exposures. We developed multistate marginal structural models (MS-MSMs) to assess the effect of time-varying systolic blood pressure on disease progression in subjects with CKD. The multistate nature of the model allows us to jointly model disease progression characterized by changes in the estimated glomerular filtration rate (eGFR), the onset of ESRD, and death, and thereby avoid unnatural assumptions of death and ESRD as noninformative censoring events for subsequent changes in eGFR. We model the causal effect of systolic blood pressure on the probability of transitioning into 1 of 6 disease states given the current state. We use inverse probability weights with stabilization to account for potential time-varying confounders, including past eGFR, total protein, serum creatinine, and hemoglobin. We apply the model to data from the Chronic Renal Insufficiency Cohort Study, a multisite observational study of patients with CKD.
Author Fischer, Michael
Sozio, Stephen M.
Joffe, Marshall
Stephens‐Shields, Alisa J.
Drawz, Paul
Greene, Tom
Anderson, Amanda
Spieker, Andrew J.
Feldman, Harold
Yang, Wei
AuthorAffiliation Department of Population Health Sciences, University of Utah School of Medicine
Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania
Department of Medicine, Johns Hopkins University School of Medicine
Department of Medicine, University of Illinois College of Medicine
Department of Medicine, University of Minnesota
AuthorAffiliation_xml – name: Department of Population Health Sciences, University of Utah School of Medicine
– name: Department of Medicine, University of Minnesota
– name: Department of Medicine, Johns Hopkins University School of Medicine
– name: Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania
– name: Department of Medicine, University of Illinois College of Medicine
Author_xml – sequence: 1
  givenname: Alisa J.
  orcidid: 0000-0003-1926-0796
  surname: Stephens‐Shields
  fullname: Stephens‐Shields, Alisa J.
  email: ajsteph@post.harvard.edu
  organization: University of Pennsylvania
– sequence: 2
  givenname: Andrew J.
  surname: Spieker
  fullname: Spieker, Andrew J.
  organization: University of Pennsylvania
– sequence: 3
  givenname: Amanda
  surname: Anderson
  fullname: Anderson, Amanda
  organization: University of Pennsylvania
– sequence: 4
  givenname: Paul
  surname: Drawz
  fullname: Drawz, Paul
  organization: University of Minnesota
– sequence: 5
  givenname: Michael
  surname: Fischer
  fullname: Fischer, Michael
  organization: University of Illinois College of Medicine
– sequence: 6
  givenname: Stephen M.
  surname: Sozio
  fullname: Sozio, Stephen M.
  organization: Johns Hopkins University School of Medicine
– sequence: 7
  givenname: Harold
  surname: Feldman
  fullname: Feldman, Harold
  organization: University of Pennsylvania
– sequence: 8
  givenname: Marshall
  surname: Joffe
  fullname: Joffe, Marshall
  organization: University of Pennsylvania
– sequence: 9
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
  organization: University of Pennsylvania
– sequence: 10
  givenname: Tom
  surname: Greene
  fullname: Greene, Tom
  organization: University of Utah School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28791722$$D View this record in MEDLINE/PubMed
BookMark eNp1kV9vFCEUxYmpsdtq4icwJL74MiswMCwvJnbjn01qTKw-Exbu7NLOwAqDZp_86rJtrdroEyT8zrnnck7QUYgBEHpKyZwSwl5mP84lZ-IBmlGiZEOYWByhGWFSNp2k4hid5HxJCKWCyUfomC2kopKxGfpxNsTo8C5BziUBNsHhaQs4-XyFY4_tNsXgLb7yLsAeO5_BZKh83BwkPgZcsg8bPJZh8nkyE-DRpI0PZsB5SsVOJdXrGB0MGftw7b78tFrii6m4_WP0sDdDhie35yn68vbN5-X75vzju9Xy9XljOeGi6fp-bamlRHIjFHPEgaJCtoT23ZpRY6TooDNOdUYwthZgyKJvW8IBHOeGt6fo1Y3vrqxHcBbCVGPpXfI17V5H4_XfL8Fv9SZ-04chStFq8OLWIMWvBfKkR58tDIMJEEvWVDEplGgVqejze-hlLKl-yIHiHRFtx1mlnv2Z6C7Kr25-T7Qp5pygv0Mo0Yfada1dH2qv6Pwean2torZTd_HDvwTNjeC7H2D_X2N9sfpwzf8EJoq_6w
CitedBy_id crossref_primary_10_1093_aje_kwad217
crossref_primary_10_1177_1740774518789098
crossref_primary_10_1053_j_ajkd_2019_02_015
crossref_primary_10_1053_j_ajkd_2019_09_009
crossref_primary_10_1016_j_kint_2023_09_016
crossref_primary_10_1371_journal_pone_0271619
crossref_primary_10_1002_sim_8164
crossref_primary_10_1186_s12889_018_5688_y
crossref_primary_10_1002_psp4_13301
Cites_doi 10.1097/00001648-200009000-00011
10.1111/insr.12018
10.1053/j.ajkd.2011.12.009
10.1001/jama.288.19.2421
10.1177/0193841X07309115
10.1037/h0037350
10.1093/biomet/73.1.13
10.1214/088342306000000114
10.1093/ije/dyu262
10.1002/sim.6043
10.1198/016214501753168154
10.1186/s12889-015-2408-8
10.1056/NEJMoa1511939
10.1097/EDE.0b013e31818ef366
10.1002/sim.5472
10.7326/M14-0488
10.7326/0003-4819-123-10-199511150-00003
10.1007/978-1-4899-4541-9
10.1186/1742-7622-2-5
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
CorporateAuthor CRIC Study Investigators
CorporateAuthor_xml – name: CRIC Study Investigators
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.7425
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 4181
ExternalDocumentID PMC5730991
28791722
10_1002_sim_7425
SIM7425
Genre article
Journal Article
GrantInformation_xml – fundername: Perelman School of Medicine at the University of Pennsylvania Clinical and Translational Science Award NIH/NCATS
  funderid: UL1TR000003
– fundername: Health Resources & Services Adminstration
  funderid: D34HP24459‐01
– fundername: Kaiser Permanente NIH/NCRR UCSF‐CTSI
  funderid: UL1 RR‐024131
– fundername: National Center for Advancing Translational Sciences (NCATS)
– fundername: Johns Hopkins University
  funderid: UL1 TR‐000424
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  funderid: R01 DK090046
– fundername: Clinical and Translational Science Collaborative of Cleveland
  funderid: UL1TR000439
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  funderid: U01DK060990; U01DK060984; U01DK061022; U01DK061021; U01DK061028; U01DK060980; U01DK060963; U01DK060902
– fundername: Michigan Institute for Clinical and Health Research (MICHR)
  funderid: UL1TR000433
– fundername: University of Maryland GCRC
  funderid: M01 RR‐16500
– fundername: NIDDK NIH HHS
  grantid: R01 DK090046
– fundername: NIDDK NIH HHS
  grantid: U01 DK060963
– fundername: NIDDK NIH HHS
  grantid: U01 DK060990
– fundername: NCRR NIH HHS
  grantid: UL1 RR024131
– fundername: NIDDK NIH HHS
  grantid: U01 DK061021
– fundername: NIDDK NIH HHS
  grantid: U01 DK061028
– fundername: NIDDK NIH HHS
  grantid: U01 DK061022
– fundername: NCATS NIH HHS
  grantid: UL1 TR000433
– fundername: NIGMS NIH HHS
  grantid: P30 GM103337
– fundername: NIDDK NIH HHS
  grantid: U01 DK060902
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4045-6ffbc1c1074a592d0de9157301f6b21aa756e6ad96a522b5ea08f3304eed44a43
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:34:27 EDT 2025
Fri Jul 11 12:38:29 EDT 2025
Tue Oct 07 05:26:11 EDT 2025
Mon Jul 21 06:05:42 EDT 2025
Thu Apr 24 22:54:19 EDT 2025
Wed Oct 01 04:09:02 EDT 2025
Tue Sep 09 05:10:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords inverse probability weighting
multistate models
renal disease progression
causal inference
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2017 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4045-6ffbc1c1074a592d0de9157301f6b21aa756e6ad96a522b5ea08f3304eed44a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Wei Yang and Tom Greene contributed equally to this manuscript
John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
The CRIC Study Investigators: Lawrence J. Appel, MD, MPH, Alan S. Go, MD, Jiang He, MD, PhD, John W. Kusek, PhD, James P. Lash, MD, Akinlolu Ojo, MD, PhD, Mahboob Rahman, MD, Raymond R. Townsend, MD
ORCID 0000-0003-1926-0796
PMID 28791722
PQID 1946053642
PQPubID 48361
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5730991
proquest_miscellaneous_1927595390
proquest_journals_1946053642
pubmed_primary_28791722
crossref_primary_10_1002_sim_7425
crossref_citationtrail_10_1002_sim_7425
wiley_primary_10_1002_sim_7425_SIM7425
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20 November 2017
PublicationDateYYYYMMDD 2017-11-20
PublicationDate_xml – month: 11
  year: 2017
  text: 20 November 2017
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2015; 15
1986; 81
2009; 20
1986; 73
2012
2006; 21
2000; 11
2015; 44
2002; 288
2015; 373
1998
2013; 81
2008; 32
1993
1995; 123
2005; 2
1974; 6
2014; 33
2001; 96
2012; 31
1999
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
Robins JM (e_1_2_7_19_1) 1999
e_1_2_7_12_1
e_1_2_7_23_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
Rubin DB (e_1_2_7_13_1) 1986; 81
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 373
  start-page: 2103
  issue: 22
  year: 2015
  end-page: 2116
  article-title: A randomized trial of intensive versus stnadard blood‐pressure control
  publication-title: N Engl J Med
– volume: 44
  start-page: 334
  year: 2015
  end-page: 344
  article-title: Joint modelling of repeated measurement and time‐to‐event data: an introductory tutorial
  publication-title: Int J Epidemiol
– volume: 20
  start-page: 3
  year: 2009
  end-page: 5
  article-title: the consistency statement in causal inference: a definition or an assumption
  publication-title: Epidemiology
– volume: 288
  start-page: 2421
  issue: 19
  year: 2002
  end-page: 2431
  article-title: Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the aask trial
  publication-title: JAMA
– start-page: 1
  year: 1998
  end-page: 10
– volume: 31
  start-page: 4190
  issue: 30
  year: 2012
  end-page: 4206
  article-title: Simulating from marginal structural models with time‐dependent confounding
  publication-title: Stat Med
– volume: 81
  start-page: 249
  year: 2013
  end-page: 269
  article-title: Advances in joint modelling: a review of recent developments with application to the survival of end stage renal disease patients
  publication-title: Int Stat Rev
– volume: 81
  start-page: 961
  issue: 396
  year: 1986
  end-page: 962
  article-title: Which ifs have causal answers
  publication-title: J Am Stat Assoc
– volume: 11
  start-page: 550
  issue: 5
  year: 2000
  end-page: 560
  article-title: Marginal structural models and causal inference in epidemiology
  publication-title: Epidemiology
– volume: 162
  start-page: 258
  year: 2015
  end-page: 265
  article-title: Time‐updated systolic blood pressure and the progression of chronic kidney disease
  publication-title: Ann Intern Med
– volume: 33
  start-page: 1409
  year: 2014
  end-page: 1425
  article-title: A marginal structural model multiple‐outcome survival data: assessing the impact of injection drug use on several causes of death in the canadican co‐infection cohort
  publication-title: Stat Med
– start-page: 504
  year: 2012
  end-page: 512
  article-title: Longitudinal progression trajectory of gfr among patients with ckd
  publication-title: Am J Kidney Dis
– volume: 96
  start-page: 440
  year: 2001
  end-page: 448
  article-title: Marginal structural models to estimate the joint causal effect of nonrandomized treatments
  publication-title: J Am Stat Assoc
– volume: 2:
  start-page: 5
  year: 2005
  article-title: Epidemiologic measures and policy formulation: lessons from potentional outcomes
  publication-title: Emerg Themes Epidemiol
– volume: 15
  start-page: 1082
  year: 2015
  article-title: Causal inference in multi‐state models‐sickness absence and work for 1145 participants after work rehabilitation
  publication-title: BMC Public Health
– volume: 21
  start-page: 299
  year: 2006
  end-page: 309
  article-title: Causal inference through potential outcomes and principal stratification: application to studies with “censoring” due to death
  publication-title: Stat Sci
– volume: 123
  start-page: 754
  issue: 10
  year: 1995
  end-page: 762
  article-title: Blood pressure control, proteinuria, and the progression of renal disease: the modification of diet in renal disease study
  publication-title: Ann Intern Med
– start-page: 95134
  year: 1999
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– volume: 32
  start-page: 157
  year: 2008
  end-page: 186
  article-title: The truncation by death problem. what do do in an experimental evaluation when the outcome is not always measured
  publication-title: Eval Rev
– volume: 6
  start-page: 688
  year: 1974
  end-page: 701
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J Educ Psychol
– year: 1993
– ident: e_1_2_7_6_1
  doi: 10.1097/00001648-200009000-00011
– ident: e_1_2_7_4_1
  doi: 10.1111/insr.12018
– ident: e_1_2_7_10_1
  doi: 10.1053/j.ajkd.2011.12.009
– ident: e_1_2_7_21_1
  doi: 10.1001/jama.288.19.2421
– ident: e_1_2_7_2_1
  doi: 10.1177/0193841X07309115
– ident: e_1_2_7_11_1
  doi: 10.1037/h0037350
– ident: e_1_2_7_15_1
  doi: 10.1093/biomet/73.1.13
– ident: e_1_2_7_3_1
  doi: 10.1214/088342306000000114
– ident: e_1_2_7_5_1
  doi: 10.1093/ije/dyu262
– ident: e_1_2_7_9_1
  doi: 10.1002/sim.6043
– ident: e_1_2_7_16_1
  doi: 10.1198/016214501753168154
– volume: 81
  start-page: 961
  issue: 396
  year: 1986
  ident: e_1_2_7_13_1
  article-title: Which ifs have causal answers
  publication-title: J Am Stat Assoc
– ident: e_1_2_7_8_1
  doi: 10.1186/s12889-015-2408-8
– ident: e_1_2_7_22_1
  doi: 10.1056/NEJMoa1511939
– ident: e_1_2_7_14_1
  doi: 10.1097/EDE.0b013e31818ef366
– ident: e_1_2_7_18_1
  doi: 10.1002/sim.5472
– start-page: 95134
  volume-title: Statistical methods in epidemiology: The environment and clinical trials
  year: 1999
  ident: e_1_2_7_19_1
– ident: e_1_2_7_7_1
– ident: e_1_2_7_12_1
  doi: 10.7326/M14-0488
– ident: e_1_2_7_20_1
  doi: 10.7326/0003-4819-123-10-199511150-00003
– ident: e_1_2_7_17_1
  doi: 10.1007/978-1-4899-4541-9
– ident: e_1_2_7_23_1
  doi: 10.1186/1742-7622-2-5
SSID ssj0011527
Score 2.2889543
Snippet In patients with chronic kidney disease (CKD), clinical interest often centers on determining treatments and exposures that are causally related to renal...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4167
SubjectTerms Blood Pressure
causal inference
Causality
Cohort Studies
Computer Simulation
Confounding Factors, Epidemiologic
Disease Progression
Glomerular Filtration Rate
Humans
inverse probability weighting
Kidney diseases
Markov Chains
Medical statistics
Models, Statistical
multistate models
Probability
renal disease progression
Renal Insufficiency, Chronic
Risk Factors
Title Blood pressure and the risk of chronic kidney disease progression using multistate marginal structural models in the CRIC Study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7425
https://www.ncbi.nlm.nih.gov/pubmed/28791722
https://www.proquest.com/docview/1946053642
https://www.proquest.com/docview/1927595390
https://pubmed.ncbi.nlm.nih.gov/PMC5730991
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 0277-6715
  databaseCode: AMVHM
  dateStart: 20120220
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0277-6715
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQD6gS4rG8thQ0SAhO2caJ7WyOsKJqkZZDoVIlDpGfsCrNom730F7468zYSWApSIjTHjJ5rD1jz3i--YaxF54munZlZspCUkmOyYzVFifE59qFIISjA_35e3VwLN6dyJMOVUm1MIkfYjhwI8uI6zUZuDarvZ-koavF2QTjOqov56WK0dTRwBzF-26tlKFUFZc972xe7PU3bu5E19zL6yjJX73XuP3s32Gf-g9PqJPTyfrCTOzVb5yO__fP7rLbnVcKr5Ma3WM3fDtiN-dd3n3EbqXTPUhFSyO2TT5qoni-z76_IfA7RETt-tyDbh2gWwmEWodlAJv4d-F04Vp_CV1KCCIyLLGCAKHvP0MEN8YKJzjT57FfFyR-W-IGgdi0ZwWLNj59dnQ4A0JBXj5gx_tvP84Osq6vQ2YFepCZCsFYbgkKqmVduNz5mktaaoIyBde6ksor7Wql0Ts00ut8GujcBfdzIbQoH7Ktdtn6xwyUcroSYSqNEcJPrRZacVyCChWqgC8Ys1f9HDe2Iz2n3htfm0TXXDQ42A0N9pg9HyS_JaKPP8js9mrSdKa-anhNqeUS4zh8xHAZjZQyL7r1yzXJFJWsZVnnY_YoadXwEgxZMWQu8O5qQ98GASIA37zSLr5EInAaM_Tvx-xlVKe_fnfz4XBOvzv_KviEbRfkvnCORrvLtnCq_VN0vi7Ms2hmPwBHny7k
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIkElxCMUCBQwEoLTpvuwvVlxgogqgaaH0ko9IK1sr02jthvUNIdy4a8zY-8uhIKEOOWws4_YM_Y3D38D8NLSRBdVFuksFXQkR0faKIMTYmNVOcd5RQH96Z4cH_IPR-JoDd60Z2ECP0QXcCPL8Os1GTgFpLd_soYuZmcDdOzENbjOJbophIj2O-6opO3XSjlKmSeiZZ6N0-32ztW96ArAvFon-St-9RvQzh343H56qDs5GSwv9MB8-43V8T__21243QBT9jZo0j1Ys3UPbkyb1HsPboUAHwvnlnqwQTA1sDzfh-_vqP6d-aLa5bllqq4YIktGhets7pgJFLzsZFbV9pI1WSHmi8MCMQijAvwvzNc3-kNO7Eyd-5ZdLFDcEj0I8317FmxW-6eP9icjRoWQl5twuPP-YDSOmtYOkeEIIiPpnDaJoWpQJYq0iitbJIJWGyd1miiVC2mlqgqpECBqYVU8dBR6wS2dc8WzB7Bez2v7CJiUlcq5GwqtObdDo7iSCa5CqXS5wxf04XU7yaVpeM-p_cZpGRib0xIHu6TB7sOLTvJr4Pr4g8xWqydlY-2LMikou5yhK4eP6C6jnVLyRdV2viSZNBeFyIq4Dw-DWnUvQa8VveYU785XFK4TIA7w1Sv17NhzgdOYIcTvwyuvT3_97vLTZEq_j_9V8DncHB9Md8vdyd7HJ7CREppJErThLVjHabdPEYtd6Gfe5n4AGwYzBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIlWVEI_wChQYJASnTfdhe7PiBClRA6RChUo9VFrZaxui0k3VNIdy4a_jsXcXQkFCnHLY2UfsGfuz5_M3AM8MdXShs0hlKacjOSpSlaxch5hYamsZ07ShP90Tuwfs7SE_XIOX7VmYoA_RbbhRZPjxmgLcnGq7_VM1dDE7GbiFHb8CVxkvhsTn29nvtKOStl4r5ShFnvBWeTZOt9s7V-eiSwDzMk_yV_zqJ6DxDThqPz3wTo4Hy3M1qL79pur4n__tJlxvgCm-Cp50C9ZM3YONaZN678G1sMGH4dxSDzYJpgaV59vw_TXx39GTapdnBmWt0SFLJOI6zi1WQYIXj2e6NhfYZIXQk8OCMAgSAf8zen6jP-SEJ_LMl-zCIHFL8iDo6_YscFb7p4_2JyMkIuTFHTgYv_k02o2a0g5RxRyIjIS1qkoqYoNKXqQ61qZIOI02Vqg0kTLnwgipCyEdQFTcyHhoaevFTemMSZbdhfV6Xpv7gEJomTM75EoxZoaVZFIkbhRKhc2te0EfXrSdXFaN7jmV3_haBsXmtHSNXVJj9-FpZ3katD7-YLPV-knZRPuiTArKLmduKece0V12cUrJF1mb-ZJs0pwXPCviPtwLbtW9xK1a3ao5dXfnKw7XGZAG-OqVevbFa4FTmzmI34fn3p_--t3lx8mUfh_8q-ET2PiwMy7fT_bePYTNlMBMkrgQ3oJ11-vmkYNi5-qxD7kff_4yiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+pressure+and+the+risk+of+chronic+kidney+disease+progression+using+multistate+marginal+structural+models+in+the+CRIC+Study&rft.jtitle=Statistics+in+medicine&rft.au=Stephens-Shields%2C+Alisa+J&rft.au=Spieker%2C+Andrew+J&rft.au=Anderson%2C+Amanda&rft.au=Drawz%2C+Paul&rft.date=2017-11-20&rft.eissn=1097-0258&rft.volume=36&rft.issue=26&rft.spage=4167&rft_id=info:doi/10.1002%2Fsim.7425&rft_id=info%3Apmid%2F28791722&rft.externalDocID=28791722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon