Using threshold regression to analyze survival data from complex surveys: With application to mortality linked NHANES III Phase II genetic data
The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time‐to‐event data. The assumption of PH, however, is not always appropriate in real applications. In cases where the assumption is not tenable, threshold regression (TR) and other survival methods, which do...
Saved in:
| Published in | Statistics in medicine Vol. 37; no. 7; pp. 1162 - 1177 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
30.03.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0277-6715 1097-0258 1097-0258 |
| DOI | 10.1002/sim.7575 |
Cover
| Abstract | The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time‐to‐event data. The assumption of PH, however, is not always appropriate in real applications. In cases where the assumption is not tenable, threshold regression (TR) and other survival methods, which do not require the PH assumption, are available and widely used. These alternative methods generally assume that the study data constitute simple random samples. In particular, TR has not been studied in the setting of complex surveys that involve (1) differential selection probabilities of study subjects and (2) intracluster correlations induced by multistage cluster sampling. In this paper, we extend TR procedures to account for complex sampling designs. The pseudo‐maximum likelihood estimation technique is applied to estimate the TR model parameters. Computationally efficient Taylor linearization variance estimators that consider both the intracluster correlation and the differential selection probabilities are developed. The proposed methods are evaluated by using simulation experiments with various complex designs and illustrated empirically by using mortality‐linked Third National Health and Nutrition Examination Survey Phase II genetic data. |
|---|---|
| AbstractList | The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time-to-event data. The assumption of PH, however, is not always appropriate in real applications. In cases where the assumption is not tenable, threshold regression (TR) and other survival methods, which do not require the PH assumption, are available and widely used. These alternative methods generally assume that the study data constitute simple random samples. In particular, TR has not been studied in the setting of complex surveys that involve (1) differential selection probabilities of study subjects and (2) intracluster correlations induced by multistage cluster sampling. In this paper, we extend TR procedures to account for complex sampling designs. The pseudo-maximum likelihood estimation technique is applied to estimate the TR model parameters. Computationally efficient Taylor linearization variance estimators that consider both the intracluster correlation and the differential selection probabilities are developed. The proposed methods are evaluated by using simulation experiments with various complex designs and illustrated empirically by using mortality-linked Third National Health and Nutrition Examination Survey Phase II genetic data. The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time-to-event data. The assumption of PH, however, is not always appropriate in real applications. In cases where the assumption is not tenable, threshold regression (TR) and other survival methods, which do not require the PH assumption, are available and widely used. These alternative methods generally assume that the study data constitute simple random samples. In particular, TR has not been studied in the setting of complex surveys that involve (1) differential selection probabilities of study subjects and (2) intracluster correlations induced by multistage cluster sampling. In this paper, we extend TR procedures to account for complex sampling designs. The pseudo-maximum likelihood estimation technique is applied to estimate the TR model parameters. Computationally efficient Taylor linearization variance estimators that consider both the intracluster correlation and the differential selection probabilities are developed. The proposed methods are evaluated by using simulation experiments with various complex designs and illustrated empirically by using mortality-linked Third National Health and Nutrition Examination Survey Phase II genetic data.The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time-to-event data. The assumption of PH, however, is not always appropriate in real applications. In cases where the assumption is not tenable, threshold regression (TR) and other survival methods, which do not require the PH assumption, are available and widely used. These alternative methods generally assume that the study data constitute simple random samples. In particular, TR has not been studied in the setting of complex surveys that involve (1) differential selection probabilities of study subjects and (2) intracluster correlations induced by multistage cluster sampling. In this paper, we extend TR procedures to account for complex sampling designs. The pseudo-maximum likelihood estimation technique is applied to estimate the TR model parameters. Computationally efficient Taylor linearization variance estimators that consider both the intracluster correlation and the differential selection probabilities are developed. The proposed methods are evaluated by using simulation experiments with various complex designs and illustrated empirically by using mortality-linked Third National Health and Nutrition Examination Survey Phase II genetic data. |
| Author | Xiao, Tao Liao, Dandan Li, Yan Lee, Mei‐Ling Ting |
| AuthorAffiliation | 4 Department of Epidemiology and Biostatistics, University of Maryland at College Park, College Park, MD, USA 3 Department of Measurement, Statistics and Evaluation, University of Maryland at College Park, College Park, MD, USA 2 College of Mathematics and Statistics, Shenzhen University, Shenzhen, China 1 Joint Program for Survey Methodology, University of Maryland at College Park, College Park, MD, USA |
| AuthorAffiliation_xml | – name: 2 College of Mathematics and Statistics, Shenzhen University, Shenzhen, China – name: 3 Department of Measurement, Statistics and Evaluation, University of Maryland at College Park, College Park, MD, USA – name: 4 Department of Epidemiology and Biostatistics, University of Maryland at College Park, College Park, MD, USA – name: 1 Joint Program for Survey Methodology, University of Maryland at College Park, College Park, MD, USA |
| Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0001-8241-7464 surname: Li fullname: Li, Yan email: yli6@umd.edu organization: University of Maryland at College Park – sequence: 2 givenname: Tao surname: Xiao fullname: Xiao, Tao organization: Shenzhen University – sequence: 3 givenname: Dandan surname: Liao fullname: Liao, Dandan organization: University of Maryland at College Park – sequence: 4 givenname: Mei‐Ling Ting surname: Lee fullname: Lee, Mei‐Ling Ting organization: University of Maryland at College Park |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29250813$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1Uttu1DAQtVAR3S5IfAGyxAsvWXyJc-EBqapKG6kUpFLxaHmdycbFiYPtLF1-gl8mu10KVPDkkeZcZjznCB30rgeEnlOyoISw18F0i1zk4hGaUVLmCWGiOEAzwvI8yXIqDtFRCDeEUCpY_gQdspIJUlA-Qz-ug-lXOLYeQutsjT2spjIY1-PosOqV3XwHHEa_Nmtlca2iwo13HdauGyzc7lqwCW_wZxNbrIbBGq3int85H5U1cYOt6b9AjS_Pjy9Pr3BVVfhjqwJMFV5BD9HonfZT9LhRNsCz_TtH1-9OP52cJxcfzqqT44tEpyQViUhZnbKSl3TJBPCmZroGoillhGU1KdOiFpxmnGSCcp0XHMpiqRuxFKJJU1bwOXp7pzuMyw5qDX30ysrBm075jXTKyL87vWnlyq1llnJOJ-c5erUX8O7rCCHKzgQN1qoe3BgkLSdXWuQ0naAvH0Bv3Oinnw2SEUrSPBPZVvDFnxPdj_LrVr8dtXcheGjuIZTIbQzkFAO5jcEEXTyAahN3R5l2MfZfhOSO8M1Y2PxXWF5V73f4n9rSw7Y |
| CitedBy_id | crossref_primary_10_1007_s10985_022_09583_3 |
| Cites_doi | 10.1177/096228029600500303 10.1002/cjs.5550360111 10.1016/j.jclinepi.2010.05.007 10.1177/1536867X1201200206 10.1177/096228029600500305 10.1214/088342306000000330 10.1007/s10985-006-9032-y 10.1093/biomet/87.1.37 10.1016/j.jspi.2008.05.023 10.1002/9781118032619 10.1111/1467-9868.00261 10.1002/cjs.5550340202 10.2202/1557-4679.1122 10.1007/978-1-4612-4378-6 10.1016/j.jmva.2011.01.005 10.1097/EDE.0b013e3182093f75 10.1093/biomet/63.3.581 10.1080/01621459.1982.10477792 10.1007/s10985-009-9138-0 10.1080/02664763.2010.505954 10.1093/biomet/79.1.139 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2018 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
| DOI | 10.1002/sim.7575 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Public Health |
| EISSN | 1097-0258 |
| EndPage | 1177 |
| ExternalDocumentID | PMC6433129 29250813 10_1002_sim_7575 SIM7575 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Science Foundation funderid: HRD1008117 – fundername: National Institute of Health funderid: R01EY02445 – fundername: NEI NIH HHS grantid: R01 EY022445 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AMVHM CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 53G 5PM |
| ID | FETCH-LOGICAL-c4045-542d429391b25e3fd2cde0c112026d0948d5316306513c783e98bcf5b55f44283 |
| IEDL.DBID | DR2 |
| ISSN | 0277-6715 1097-0258 |
| IngestDate | Thu Aug 21 14:12:04 EDT 2025 Thu Jul 10 23:07:50 EDT 2025 Tue Oct 07 05:32:32 EDT 2025 Thu Apr 03 07:08:36 EDT 2025 Thu Apr 24 23:03:05 EDT 2025 Wed Oct 01 04:09:03 EDT 2025 Wed Jan 22 17:09:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | cox proportional hazard intracluster correlation stratified multistage sampling cure rate pseudo-maximum likelihood estimation |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2017 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4045-542d429391b25e3fd2cde0c112026d0948d5316306513c783e98bcf5b55f44283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8241-7464 |
| PMID | 29250813 |
| PQID | 2010476569 |
| PQPubID | 48361 |
| PageCount | 16 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433129 proquest_miscellaneous_1978318714 proquest_journals_2010476569 pubmed_primary_29250813 crossref_primary_10_1002_sim_7575 crossref_citationtrail_10_1002_sim_7575 wiley_primary_10_1002_sim_7575_SIM7575 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 30 March 2018 |
| PublicationDateYYYYMMDD | 2018-03-30 |
| PublicationDate_xml | – month: 03 year: 2018 text: 30 March 2018 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: New York |
| PublicationTitle | Statistics in medicine |
| PublicationTitleAlternate | Stat Med |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1976; 63 2010; 16 2006; 34 2012 2000; 87 1982; 77 2008; 36 2009 2008; 34 1992; 79 1992 2003 2008; 4 2012; 12 2007; 13 2010; 63 1999 1977 2009; 139 2004; 30 2011; 102 1952; 47 2006; 21 1965 2014; 38 2000; 62 2011; 22 1996; 5 1989 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Cochran WG (e_1_2_8_17_1) 1977 Shah B (e_1_2_8_16_1) 2004; 30 e_1_2_8_3_1 e_1_2_8_2_1 Li Y (e_1_2_8_15_1) 2008; 34 Tong X (e_1_2_8_32_1) 2008; 4 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 Horvitz DG (e_1_2_8_10_1) 1952; 47 e_1_2_8_21_1 Skinner CJ (e_1_2_8_14_1) 1989 e_1_2_8_22_1 Wolter K (e_1_2_8_19_1) 2003 Xiao T (e_1_2_8_5_1) 2012; 12 e_1_2_8_13_1 Stogiannis D (e_1_2_8_29_1) 2014; 38 Cox DR (e_1_2_8_20_1) 1965 Folsom R (e_1_2_8_6_1) Särndal CE (e_1_2_8_18_1) 1992 Little RJ (e_1_2_8_23_1) 1982; 77 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – year: 2009 – volume: 87 start-page: 37 year: 2000 end-page: 47 article-title: On fitting Cox's proportional hazards models to survey data publication-title: Biometrika – volume: 4 year: 2008 article-title: Joint analysis of current status and marker data: an extension of bivariate threshold model publication-title: Int J Biostatistics – start-page: 153 year: 1992 end-page: 154 – volume: 13 start-page: 161 year: 2007 end-page: 190 article-title: Modeling low birth weights using threshold regression: results for U.S. birth data publication-title: Lifetime Data Anal – volume: 12 start-page: 257 year: 2012 end-page: 283 article-title: Threshold regression for time‐to‐event analysis: the stthreg package publication-title: The STATA Journal – year: 1989 – year: 2003 – volume: 34 start-page: 203 year: 2006 end-page: 216 article-title: Survey analysis based on the proportional hazards model and survey data publication-title: The Canadian Journal of Statistics – volume: 30 start-page: 29 year: 2004 article-title: Comment on ‘Linearization variance estimators for survey data’ by A. Demnati and JNK Rao publication-title: Survey Methodology – volume: 38 start-page: 1483 year: 2014 end-page: 1492 article-title: Comparing first hitting time and proportional hazards regression models publication-title: Journal of Applied Statistics – volume: 63 start-page: 581 year: 1976 end-page: 592 article-title: Inference and missing data publication-title: Biometrika – volume: 47 start-page: 663 year: 1952 end-page: 685 article-title: A generalization of sampling without replacement from a finite universe publication-title: Journal of the Royal Statistical Society Series B – year: 1977 – volume: 5 start-page: 283 year: 1996 end-page: 310 article-title: Variance estimation for complex surveys using replication methods publication-title: Statistical Methods in Medical Research – volume: 21 start-page: 501 year: 2006 end-page: 513 article-title: Threshold regression for survival analysis: modeling event times by a stochastic process reaching a boundary publication-title: Statistical Science – volume: 102 start-page: 884 year: 2011 end-page: 895 article-title: The proportional hazards model for survey data from independent and clustered super‐population publication-title: Journal of Multivariate Analysis – year: 2012 – volume: 63 start-page: 1324 issue: 12 year: 2010 end-page: 1331 article-title: A threshold regression model for recurrent exacerbations in chronic obstructive pulmonary disease publication-title: J Clinical Epidemiology – volume: 62 start-page: 747 year: 2000 end-page: 762 article-title: A model for markers and latent health status publication-title: Journal of the Royal Statistical Society Series B – volume: 34 start-page: 79 year: 2008 end-page: 89 article-title: Generalized regression estimators of a finite population total using the Box‐Cox technique publication-title: Survey Methodology – year: 1965 – volume: 36 start-page: 111 year: 2008 end-page: 127 article-title: Proportional hazards models based on biased samples and estimated selection probabilities publication-title: The Canadian Journal of Statistics – volume: 5 start-page: 239 year: 1996 end-page: 261 article-title: The use of sampling weights for survey data analysis publication-title: Stat Methods Med Res – volume: 16 start-page: 196 year: 2010 end-page: 214 article-title: Proportional hazards and threshold regression: their theoretical and practical connections publication-title: Lifetime Data Anal – volume: 79 start-page: 139 year: 1992 end-page: 147 article-title: Fitting Cox's proportional hazards models from survey data publication-title: Biometrika – volume: 139 start-page: 1633 year: 2009 end-page: 1642 article-title: A case‐control study relating railroad worker mortality to diesel exhaust exposure using a threshold regression model publication-title: J Statist Plann Inference – start-page: 108 end-page: 138 – volume: 5 start-page: 283 year: 1996 end-page: 310 article-title: Variance estimation for complex surveys using replication methods publication-title: Stat Methods Med Res – volume: 77 start-page: 237 year: 1982 end-page: 249 article-title: Models for non‐response in sample surveys publication-title: J Am Stat Assoc – volume: 22 start-page: 273 year: 2011 end-page: 278 article-title: Blood lead levels, ALAD gene polymorphisms, and mortality publication-title: Epidemiology – year: 1999 – ident: e_1_2_8_21_1 doi: 10.1177/096228029600500303 – ident: e_1_2_8_8_1 doi: 10.1002/cjs.5550360111 – ident: e_1_2_8_33_1 doi: 10.1016/j.jclinepi.2010.05.007 – volume: 12 start-page: 257 year: 2012 ident: e_1_2_8_5_1 article-title: Threshold regression for time‐to‐event analysis: the stthreg package publication-title: The STATA Journal doi: 10.1177/1536867X1201200206 – ident: e_1_2_8_34_1 doi: 10.1177/096228029600500305 – ident: e_1_2_8_3_1 doi: 10.1214/088342306000000330 – volume-title: Sampling Techniques year: 1977 ident: e_1_2_8_17_1 – volume: 34 start-page: 79 year: 2008 ident: e_1_2_8_15_1 article-title: Generalized regression estimators of a finite population total using the Box‐Cox technique publication-title: Survey Methodology – volume-title: Introduction to Variance Estimation year: 2003 ident: e_1_2_8_19_1 – ident: e_1_2_8_31_1 doi: 10.1007/s10985-006-9032-y – ident: e_1_2_8_28_1 doi: 10.1177/096228029600500305 – ident: e_1_2_8_12_1 doi: 10.1093/biomet/87.1.37 – ident: e_1_2_8_25_1 – ident: e_1_2_8_30_1 doi: 10.1016/j.jspi.2008.05.023 – start-page: 108 volume-title: Panel Surveys ident: e_1_2_8_6_1 – ident: e_1_2_8_9_1 doi: 10.1002/9781118032619 – ident: e_1_2_8_2_1 doi: 10.1111/1467-9868.00261 – volume-title: Analysis of Complex Surveys year: 1989 ident: e_1_2_8_14_1 – ident: e_1_2_8_13_1 doi: 10.1002/cjs.5550340202 – ident: e_1_2_8_24_1 – volume: 30 start-page: 29 year: 2004 ident: e_1_2_8_16_1 article-title: Comment on ‘Linearization variance estimators for survey data’ by A. Demnati and JNK Rao publication-title: Survey Methodology – volume: 4 year: 2008 ident: e_1_2_8_32_1 article-title: Joint analysis of current status and marker data: an extension of bivariate threshold model publication-title: Int J Biostatistics doi: 10.2202/1557-4679.1122 – volume-title: The Theory of Stochastic Processes year: 1965 ident: e_1_2_8_20_1 – start-page: 153 volume-title: Model Assisted Survey Sampling year: 1992 ident: e_1_2_8_18_1 doi: 10.1007/978-1-4612-4378-6 – ident: e_1_2_8_7_1 doi: 10.1016/j.jmva.2011.01.005 – ident: e_1_2_8_27_1 doi: 10.1097/EDE.0b013e3182093f75 – ident: e_1_2_8_22_1 doi: 10.1093/biomet/63.3.581 – volume: 77 start-page: 237 year: 1982 ident: e_1_2_8_23_1 article-title: Models for non‐response in sample surveys publication-title: J Am Stat Assoc doi: 10.1080/01621459.1982.10477792 – ident: e_1_2_8_4_1 doi: 10.1007/s10985-009-9138-0 – volume: 38 start-page: 1483 year: 2014 ident: e_1_2_8_29_1 article-title: Comparing first hitting time and proportional hazards regression models publication-title: Journal of Applied Statistics doi: 10.1080/02664763.2010.505954 – ident: e_1_2_8_11_1 doi: 10.1093/biomet/79.1.139 – volume: 47 start-page: 663 year: 1952 ident: e_1_2_8_10_1 article-title: A generalization of sampling without replacement from a finite universe publication-title: Journal of the Royal Statistical Society Series B – ident: e_1_2_8_26_1 |
| SSID | ssj0011527 |
| Score | 2.2502465 |
| Snippet | The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time‐to‐event data. The assumption of PH, however, is not always... The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time-to-event data. The assumption of PH, however, is not always... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1162 |
| SubjectTerms | Cluster Analysis Computer Simulation cox proportional hazard cure rate Databases, Genetic Genetics Humans intracluster correlation Likelihood Functions Medical statistics Mortality Multivariate Analysis Nutrition Surveys pseudo‐maximum likelihood estimation Regression Analysis stratified multistage sampling Survival Analysis |
| Title | Using threshold regression to analyze survival data from complex surveys: With application to mortality linked NHANES III Phase II genetic data |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7575 https://www.ncbi.nlm.nih.gov/pubmed/29250813 https://www.proquest.com/docview/2010476569 https://www.proquest.com/docview/1978318714 https://pubmed.ncbi.nlm.nih.gov/PMC6433129 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0277-6715 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD5IH6QgXuItWssIok-bZmZ39uJbkZZESBBrseDDsnPZJmg30t2A9E_0L_ecmd1tYxXEpyTM7DXn8p0553wD8GacGRkJpQKjyiyIdGGDLMriwFhO7rdMrKNjmM3jyXH08USetFWV1Avj-SH6BTfSDGevScELVe9dk4bWy7NRgmADzS8PYxdNfe6Zo3i3WytlKOOEy453diz2ugM3PdEteHm7SvImenXu5_ABfOtu3FedfB-tGzXSF79xOv7fkz2E-y0qZftejB7BHVsN4O6szbsP4J5f3WO-aWkA24RRPcXzY7h0ZQesQamoKZnFzu2pr66tWLNiBdGeXFhWr9EqoVwzKkpl1NbCXD27_eWGUKLes6_LZsFu5NTp-DMXIGCwwCjZbA2bT_bnB0dsOp2yTwt0wviNoRpQN6Y79xM4Pjz48mEStPs8BDpCRBmgsBh0i2HGlZA2LI3Qxo41IkEMEA3Gn6lBSxHTHvc81Eka2ixVupRKyjIiwrinsFWtKvscGC9kaUyRpFRnilKBRqWMtUgKJcMIfwzhXfef57olQae9OH7knr5Z5Pjyc3r5Q3jdz_zpiT_-MGenE5u8Vf06F47xCGFyhqfoh1FpKRNTVHa1rnNOC24cY9VoCM-8lPUXERmi0pSHQ0g25K-fQITgmyPVcuGIwWNqfxN43bdOvP563_nRdEafL_514kvYxsfyvZjjHdhqztf2FYKxRu06tbsC8OkysQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qBS2IL-fbadUVRD_lepv36KciLRftHWJb7IfCks1uvKNtrjQ5KP0T_cud2U1izyqIn5Kwm_eZnWd2Zp4FeDdMVOC7UjpKFonj55l2Ej8JHaU5md8i0oaOYTwJR_v-l4PgYAU-tbUwlh-im3AjzTDjNSk4TUhv_GINrWYngwjRxi247YfophAi-t5xR_F2vVaKUYYRD1rm2aG70Z65bItuAMybeZLX8asxQNsP4LB9dJt3cjRY1HKQX_zG6vif7_YQ7jfAlG1aSXoEK7rswZ1xE3rvwT07wcds3VIP1gimWpbnx3BpMg9YjYJRUTyLnemfNsG2ZPWcZcR8cqFZtcCBCUWbUV4qo8oWZlLa9blpQqH6yH7M6im7Flan80-Mj4D-AqN4s1ZsMtqcbO2yNE3ZtynaYdxjqAlUkGmu_QT2t7f2Po-cZqkHJ_cRVDooLwoto5dw6QbaK5SbKz3MEQyij6jQBY0VDhYhLXPPvTyKPZ3EMi8CGQSFT5xxT2G1nJf6OTCeBYVSWRRTqqkXejiuFGHuRpkMPB8P-vCh_ekib3jQaTmOY2EZnF2BH1_Qx-_D267nqeX--EOf9VZuRKP9lXAN6REi5QQv0TWj3lIwJiv1fFEJTnNuHN1Vvw_PrJh1N3ETBKYx9_oQLQlg14E4wZdbytnUcIOHVAHn4n3fG_n663OL3XRM2xf_2vEN3B3tjXfETjr5-hLW8BVtaeZwHVbrs4V-hdislq-NDl4BBVw20g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qhVIQX86XnlZdQfRTrpdNNi_6qdgeF_WOYi32Q2FJshvvqM2VJgfSP-FfdmY3iT2rIH5Kwm7eZ3ae2Zl5FuDlMFbC51nmqKyIHT9PtRP7ceAo7ZL5LUJt6Bgm02B85L8_Fsdr8LathbH8EN2EG2mGGa9JwfW5KnZ-sYZW87NBiGjjBtz0RRxRPt_ep447ym3Xa6UYZRC6omWeHfKd9sxVW3QNYF7Pk7yKX40BGt2Bk_bRbd7J6WBZZ4P88jdWx_98t7twuwGmbNdK0j1Y02UPNiZN6L0Ht-wEH7N1Sz3YJJhqWZ7vww-TecBqFIyK4lnsQn-1CbYlqxcsJeaTS82qJQ5MKNqM8lIZVbYwk9Kuv5smFKo37Mu8nrErYXU6_8z4COgvMIo3a8Wm493p_iFLkoQdzNAO4x5DTaCCTHPtB3A02v_8buw0Sz04uY-g0kF5UWgZvdjNuNBeoXiu9DBHMIg-okIXNFI4WAS0zL3r5WHk6TjK8kJkQhQ-ccY9hPVyUeotYG4qCqXSMKJUUy_wcFwpgpyHaSY8Hw_68Lr96TJveNBpOY5v0jI4c4kfX9LH78OLrue55f74Q5_tVm5ko_2V5Ib0CJFyjJfomlFvKRiTlnqxrKRLc24uuqt-Hx5ZMetuwmMEppHr9SFcEcCuA3GCr7aU85nhBg-oAo7jfV8Z-frrc8vDZELbx__a8TlsHOyN5Mdk-uEJbOIb2srM4Tas1xdL_RShWZ09Myr4E2SKNlY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+threshold+regression+to+analyze+survival+data+from+complex+surveys%3A+With+application+to+mortality+linked+NHANES+III+Phase+II+genetic+data&rft.jtitle=Statistics+in+medicine&rft.au=Li%2C+Yan&rft.au=Xiao%2C+Tao&rft.au=Liao%2C+Dandan&rft.au=Lee%2C+Mei-Ling+Ting&rft.date=2018-03-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=37&rft.issue=7&rft.spage=1162&rft.epage=1177&rft_id=info:doi/10.1002%2Fsim.7575&rft_id=info%3Apmid%2F29250813&rft.externalDocID=PMC6433129 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |