Using threshold regression to analyze survival data from complex surveys: With application to mortality linked NHANES III Phase II genetic data

The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time‐to‐event data. The assumption of PH, however, is not always appropriate in real applications. In cases where the assumption is not tenable, threshold regression (TR) and other survival methods, which do...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 37; no. 7; pp. 1162 - 1177
Main Authors Li, Yan, Xiao, Tao, Liao, Dandan, Lee, Mei‐Ling Ting
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 30.03.2018
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.7575

Cover

Abstract The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time‐to‐event data. The assumption of PH, however, is not always appropriate in real applications. In cases where the assumption is not tenable, threshold regression (TR) and other survival methods, which do not require the PH assumption, are available and widely used. These alternative methods generally assume that the study data constitute simple random samples. In particular, TR has not been studied in the setting of complex surveys that involve (1) differential selection probabilities of study subjects and (2) intracluster correlations induced by multistage cluster sampling. In this paper, we extend TR procedures to account for complex sampling designs. The pseudo‐maximum likelihood estimation technique is applied to estimate the TR model parameters. Computationally efficient Taylor linearization variance estimators that consider both the intracluster correlation and the differential selection probabilities are developed. The proposed methods are evaluated by using simulation experiments with various complex designs and illustrated empirically by using mortality‐linked Third National Health and Nutrition Examination Survey Phase II genetic data.
AbstractList The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time-to-event data. The assumption of PH, however, is not always appropriate in real applications. In cases where the assumption is not tenable, threshold regression (TR) and other survival methods, which do not require the PH assumption, are available and widely used. These alternative methods generally assume that the study data constitute simple random samples. In particular, TR has not been studied in the setting of complex surveys that involve (1) differential selection probabilities of study subjects and (2) intracluster correlations induced by multistage cluster sampling. In this paper, we extend TR procedures to account for complex sampling designs. The pseudo-maximum likelihood estimation technique is applied to estimate the TR model parameters. Computationally efficient Taylor linearization variance estimators that consider both the intracluster correlation and the differential selection probabilities are developed. The proposed methods are evaluated by using simulation experiments with various complex designs and illustrated empirically by using mortality-linked Third National Health and Nutrition Examination Survey Phase II genetic data.
The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time-to-event data. The assumption of PH, however, is not always appropriate in real applications. In cases where the assumption is not tenable, threshold regression (TR) and other survival methods, which do not require the PH assumption, are available and widely used. These alternative methods generally assume that the study data constitute simple random samples. In particular, TR has not been studied in the setting of complex surveys that involve (1) differential selection probabilities of study subjects and (2) intracluster correlations induced by multistage cluster sampling. In this paper, we extend TR procedures to account for complex sampling designs. The pseudo-maximum likelihood estimation technique is applied to estimate the TR model parameters. Computationally efficient Taylor linearization variance estimators that consider both the intracluster correlation and the differential selection probabilities are developed. The proposed methods are evaluated by using simulation experiments with various complex designs and illustrated empirically by using mortality-linked Third National Health and Nutrition Examination Survey Phase II genetic data.The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time-to-event data. The assumption of PH, however, is not always appropriate in real applications. In cases where the assumption is not tenable, threshold regression (TR) and other survival methods, which do not require the PH assumption, are available and widely used. These alternative methods generally assume that the study data constitute simple random samples. In particular, TR has not been studied in the setting of complex surveys that involve (1) differential selection probabilities of study subjects and (2) intracluster correlations induced by multistage cluster sampling. In this paper, we extend TR procedures to account for complex sampling designs. The pseudo-maximum likelihood estimation technique is applied to estimate the TR model parameters. Computationally efficient Taylor linearization variance estimators that consider both the intracluster correlation and the differential selection probabilities are developed. The proposed methods are evaluated by using simulation experiments with various complex designs and illustrated empirically by using mortality-linked Third National Health and Nutrition Examination Survey Phase II genetic data.
Author Xiao, Tao
Liao, Dandan
Li, Yan
Lee, Mei‐Ling Ting
AuthorAffiliation 4 Department of Epidemiology and Biostatistics, University of Maryland at College Park, College Park, MD, USA
3 Department of Measurement, Statistics and Evaluation, University of Maryland at College Park, College Park, MD, USA
2 College of Mathematics and Statistics, Shenzhen University, Shenzhen, China
1 Joint Program for Survey Methodology, University of Maryland at College Park, College Park, MD, USA
AuthorAffiliation_xml – name: 2 College of Mathematics and Statistics, Shenzhen University, Shenzhen, China
– name: 3 Department of Measurement, Statistics and Evaluation, University of Maryland at College Park, College Park, MD, USA
– name: 4 Department of Epidemiology and Biostatistics, University of Maryland at College Park, College Park, MD, USA
– name: 1 Joint Program for Survey Methodology, University of Maryland at College Park, College Park, MD, USA
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0001-8241-7464
  surname: Li
  fullname: Li, Yan
  email: yli6@umd.edu
  organization: University of Maryland at College Park
– sequence: 2
  givenname: Tao
  surname: Xiao
  fullname: Xiao, Tao
  organization: Shenzhen University
– sequence: 3
  givenname: Dandan
  surname: Liao
  fullname: Liao, Dandan
  organization: University of Maryland at College Park
– sequence: 4
  givenname: Mei‐Ling Ting
  surname: Lee
  fullname: Lee, Mei‐Ling Ting
  organization: University of Maryland at College Park
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29250813$$D View this record in MEDLINE/PubMed
BookMark eNp1Uttu1DAQtVAR3S5IfAGyxAsvWXyJc-EBqapKG6kUpFLxaHmdycbFiYPtLF1-gl8mu10KVPDkkeZcZjznCB30rgeEnlOyoISw18F0i1zk4hGaUVLmCWGiOEAzwvI8yXIqDtFRCDeEUCpY_gQdspIJUlA-Qz-ug-lXOLYeQutsjT2spjIY1-PosOqV3XwHHEa_Nmtlca2iwo13HdauGyzc7lqwCW_wZxNbrIbBGq3int85H5U1cYOt6b9AjS_Pjy9Pr3BVVfhjqwJMFV5BD9HonfZT9LhRNsCz_TtH1-9OP52cJxcfzqqT44tEpyQViUhZnbKSl3TJBPCmZroGoillhGU1KdOiFpxmnGSCcp0XHMpiqRuxFKJJU1bwOXp7pzuMyw5qDX30ysrBm075jXTKyL87vWnlyq1llnJOJ-c5erUX8O7rCCHKzgQN1qoe3BgkLSdXWuQ0naAvH0Bv3Oinnw2SEUrSPBPZVvDFnxPdj_LrVr8dtXcheGjuIZTIbQzkFAO5jcEEXTyAahN3R5l2MfZfhOSO8M1Y2PxXWF5V73f4n9rSw7Y
CitedBy_id crossref_primary_10_1007_s10985_022_09583_3
Cites_doi 10.1177/096228029600500303
10.1002/cjs.5550360111
10.1016/j.jclinepi.2010.05.007
10.1177/1536867X1201200206
10.1177/096228029600500305
10.1214/088342306000000330
10.1007/s10985-006-9032-y
10.1093/biomet/87.1.37
10.1016/j.jspi.2008.05.023
10.1002/9781118032619
10.1111/1467-9868.00261
10.1002/cjs.5550340202
10.2202/1557-4679.1122
10.1007/978-1-4612-4378-6
10.1016/j.jmva.2011.01.005
10.1097/EDE.0b013e3182093f75
10.1093/biomet/63.3.581
10.1080/01621459.1982.10477792
10.1007/s10985-009-9138-0
10.1080/02664763.2010.505954
10.1093/biomet/79.1.139
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.7575
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef


ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 1177
ExternalDocumentID PMC6433129
29250813
10_1002_sim_7575
SIM7575
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation
  funderid: HRD1008117
– fundername: National Institute of Health
  funderid: R01EY02445
– fundername: NEI NIH HHS
  grantid: R01 EY022445
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
53G
5PM
ID FETCH-LOGICAL-c4045-542d429391b25e3fd2cde0c112026d0948d5316306513c783e98bcf5b55f44283
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 14:12:04 EDT 2025
Thu Jul 10 23:07:50 EDT 2025
Tue Oct 07 05:32:32 EDT 2025
Thu Apr 03 07:08:36 EDT 2025
Thu Apr 24 23:03:05 EDT 2025
Wed Oct 01 04:09:03 EDT 2025
Wed Jan 22 17:09:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords cox proportional hazard
intracluster correlation
stratified multistage sampling
cure rate
pseudo-maximum likelihood estimation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2017 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4045-542d429391b25e3fd2cde0c112026d0948d5316306513c783e98bcf5b55f44283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8241-7464
PMID 29250813
PQID 2010476569
PQPubID 48361
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433129
proquest_miscellaneous_1978318714
proquest_journals_2010476569
pubmed_primary_29250813
crossref_primary_10_1002_sim_7575
crossref_citationtrail_10_1002_sim_7575
wiley_primary_10_1002_sim_7575_SIM7575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 March 2018
PublicationDateYYYYMMDD 2018-03-30
PublicationDate_xml – month: 03
  year: 2018
  text: 30 March 2018
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1976; 63
2010; 16
2006; 34
2012
2000; 87
1982; 77
2008; 36
2009
2008; 34
1992; 79
1992
2003
2008; 4
2012; 12
2007; 13
2010; 63
1999
1977
2009; 139
2004; 30
2011; 102
1952; 47
2006; 21
1965
2014; 38
2000; 62
2011; 22
1996; 5
1989
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Cochran WG (e_1_2_8_17_1) 1977
Shah B (e_1_2_8_16_1) 2004; 30
e_1_2_8_3_1
e_1_2_8_2_1
Li Y (e_1_2_8_15_1) 2008; 34
Tong X (e_1_2_8_32_1) 2008; 4
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
Horvitz DG (e_1_2_8_10_1) 1952; 47
e_1_2_8_21_1
Skinner CJ (e_1_2_8_14_1) 1989
e_1_2_8_22_1
Wolter K (e_1_2_8_19_1) 2003
Xiao T (e_1_2_8_5_1) 2012; 12
e_1_2_8_13_1
Stogiannis D (e_1_2_8_29_1) 2014; 38
Cox DR (e_1_2_8_20_1) 1965
Folsom R (e_1_2_8_6_1)
Särndal CE (e_1_2_8_18_1) 1992
Little RJ (e_1_2_8_23_1) 1982; 77
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – year: 2009
– volume: 87
  start-page: 37
  year: 2000
  end-page: 47
  article-title: On fitting Cox's proportional hazards models to survey data
  publication-title: Biometrika
– volume: 4
  year: 2008
  article-title: Joint analysis of current status and marker data: an extension of bivariate threshold model
  publication-title: Int J Biostatistics
– start-page: 153
  year: 1992
  end-page: 154
– volume: 13
  start-page: 161
  year: 2007
  end-page: 190
  article-title: Modeling low birth weights using threshold regression: results for U.S. birth data
  publication-title: Lifetime Data Anal
– volume: 12
  start-page: 257
  year: 2012
  end-page: 283
  article-title: Threshold regression for time‐to‐event analysis: the stthreg package
  publication-title: The STATA Journal
– year: 1989
– year: 2003
– volume: 34
  start-page: 203
  year: 2006
  end-page: 216
  article-title: Survey analysis based on the proportional hazards model and survey data
  publication-title: The Canadian Journal of Statistics
– volume: 30
  start-page: 29
  year: 2004
  article-title: Comment on ‘Linearization variance estimators for survey data’ by A. Demnati and JNK Rao
  publication-title: Survey Methodology
– volume: 38
  start-page: 1483
  year: 2014
  end-page: 1492
  article-title: Comparing first hitting time and proportional hazards regression models
  publication-title: Journal of Applied Statistics
– volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  article-title: Inference and missing data
  publication-title: Biometrika
– volume: 47
  start-page: 663
  year: 1952
  end-page: 685
  article-title: A generalization of sampling without replacement from a finite universe
  publication-title: Journal of the Royal Statistical Society Series B
– year: 1977
– volume: 5
  start-page: 283
  year: 1996
  end-page: 310
  article-title: Variance estimation for complex surveys using replication methods
  publication-title: Statistical Methods in Medical Research
– volume: 21
  start-page: 501
  year: 2006
  end-page: 513
  article-title: Threshold regression for survival analysis: modeling event times by a stochastic process reaching a boundary
  publication-title: Statistical Science
– volume: 102
  start-page: 884
  year: 2011
  end-page: 895
  article-title: The proportional hazards model for survey data from independent and clustered super‐population
  publication-title: Journal of Multivariate Analysis
– year: 2012
– volume: 63
  start-page: 1324
  issue: 12
  year: 2010
  end-page: 1331
  article-title: A threshold regression model for recurrent exacerbations in chronic obstructive pulmonary disease
  publication-title: J Clinical Epidemiology
– volume: 62
  start-page: 747
  year: 2000
  end-page: 762
  article-title: A model for markers and latent health status
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 34
  start-page: 79
  year: 2008
  end-page: 89
  article-title: Generalized regression estimators of a finite population total using the Box‐Cox technique
  publication-title: Survey Methodology
– year: 1965
– volume: 36
  start-page: 111
  year: 2008
  end-page: 127
  article-title: Proportional hazards models based on biased samples and estimated selection probabilities
  publication-title: The Canadian Journal of Statistics
– volume: 5
  start-page: 239
  year: 1996
  end-page: 261
  article-title: The use of sampling weights for survey data analysis
  publication-title: Stat Methods Med Res
– volume: 16
  start-page: 196
  year: 2010
  end-page: 214
  article-title: Proportional hazards and threshold regression: their theoretical and practical connections
  publication-title: Lifetime Data Anal
– volume: 79
  start-page: 139
  year: 1992
  end-page: 147
  article-title: Fitting Cox's proportional hazards models from survey data
  publication-title: Biometrika
– volume: 139
  start-page: 1633
  year: 2009
  end-page: 1642
  article-title: A case‐control study relating railroad worker mortality to diesel exhaust exposure using a threshold regression model
  publication-title: J Statist Plann Inference
– start-page: 108
  end-page: 138
– volume: 5
  start-page: 283
  year: 1996
  end-page: 310
  article-title: Variance estimation for complex surveys using replication methods
  publication-title: Stat Methods Med Res
– volume: 77
  start-page: 237
  year: 1982
  end-page: 249
  article-title: Models for non‐response in sample surveys
  publication-title: J Am Stat Assoc
– volume: 22
  start-page: 273
  year: 2011
  end-page: 278
  article-title: Blood lead levels, ALAD gene polymorphisms, and mortality
  publication-title: Epidemiology
– year: 1999
– ident: e_1_2_8_21_1
  doi: 10.1177/096228029600500303
– ident: e_1_2_8_8_1
  doi: 10.1002/cjs.5550360111
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jclinepi.2010.05.007
– volume: 12
  start-page: 257
  year: 2012
  ident: e_1_2_8_5_1
  article-title: Threshold regression for time‐to‐event analysis: the stthreg package
  publication-title: The STATA Journal
  doi: 10.1177/1536867X1201200206
– ident: e_1_2_8_34_1
  doi: 10.1177/096228029600500305
– ident: e_1_2_8_3_1
  doi: 10.1214/088342306000000330
– volume-title: Sampling Techniques
  year: 1977
  ident: e_1_2_8_17_1
– volume: 34
  start-page: 79
  year: 2008
  ident: e_1_2_8_15_1
  article-title: Generalized regression estimators of a finite population total using the Box‐Cox technique
  publication-title: Survey Methodology
– volume-title: Introduction to Variance Estimation
  year: 2003
  ident: e_1_2_8_19_1
– ident: e_1_2_8_31_1
  doi: 10.1007/s10985-006-9032-y
– ident: e_1_2_8_28_1
  doi: 10.1177/096228029600500305
– ident: e_1_2_8_12_1
  doi: 10.1093/biomet/87.1.37
– ident: e_1_2_8_25_1
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jspi.2008.05.023
– start-page: 108
  volume-title: Panel Surveys
  ident: e_1_2_8_6_1
– ident: e_1_2_8_9_1
  doi: 10.1002/9781118032619
– ident: e_1_2_8_2_1
  doi: 10.1111/1467-9868.00261
– volume-title: Analysis of Complex Surveys
  year: 1989
  ident: e_1_2_8_14_1
– ident: e_1_2_8_13_1
  doi: 10.1002/cjs.5550340202
– ident: e_1_2_8_24_1
– volume: 30
  start-page: 29
  year: 2004
  ident: e_1_2_8_16_1
  article-title: Comment on ‘Linearization variance estimators for survey data’ by A. Demnati and JNK Rao
  publication-title: Survey Methodology
– volume: 4
  year: 2008
  ident: e_1_2_8_32_1
  article-title: Joint analysis of current status and marker data: an extension of bivariate threshold model
  publication-title: Int J Biostatistics
  doi: 10.2202/1557-4679.1122
– volume-title: The Theory of Stochastic Processes
  year: 1965
  ident: e_1_2_8_20_1
– start-page: 153
  volume-title: Model Assisted Survey Sampling
  year: 1992
  ident: e_1_2_8_18_1
  doi: 10.1007/978-1-4612-4378-6
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jmva.2011.01.005
– ident: e_1_2_8_27_1
  doi: 10.1097/EDE.0b013e3182093f75
– ident: e_1_2_8_22_1
  doi: 10.1093/biomet/63.3.581
– volume: 77
  start-page: 237
  year: 1982
  ident: e_1_2_8_23_1
  article-title: Models for non‐response in sample surveys
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1982.10477792
– ident: e_1_2_8_4_1
  doi: 10.1007/s10985-009-9138-0
– volume: 38
  start-page: 1483
  year: 2014
  ident: e_1_2_8_29_1
  article-title: Comparing first hitting time and proportional hazards regression models
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2010.505954
– ident: e_1_2_8_11_1
  doi: 10.1093/biomet/79.1.139
– volume: 47
  start-page: 663
  year: 1952
  ident: e_1_2_8_10_1
  article-title: A generalization of sampling without replacement from a finite universe
  publication-title: Journal of the Royal Statistical Society Series B
– ident: e_1_2_8_26_1
SSID ssj0011527
Score 2.2502465
Snippet The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time‐to‐event data. The assumption of PH, however, is not always...
The Cox proportional hazards (PH) model is a common statistical technique used for analyzing time-to-event data. The assumption of PH, however, is not always...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1162
SubjectTerms Cluster Analysis
Computer Simulation
cox proportional hazard
cure rate
Databases, Genetic
Genetics
Humans
intracluster correlation
Likelihood Functions
Medical statistics
Mortality
Multivariate Analysis
Nutrition Surveys
pseudo‐maximum likelihood estimation
Regression Analysis
stratified multistage sampling
Survival Analysis
Title Using threshold regression to analyze survival data from complex surveys: With application to mortality linked NHANES III Phase II genetic data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7575
https://www.ncbi.nlm.nih.gov/pubmed/29250813
https://www.proquest.com/docview/2010476569
https://www.proquest.com/docview/1978318714
https://pubmed.ncbi.nlm.nih.gov/PMC6433129
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0277-6715
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD5IH6QgXuItWssIok-bZmZ39uJbkZZESBBrseDDsnPZJmg30t2A9E_0L_ecmd1tYxXEpyTM7DXn8p0553wD8GacGRkJpQKjyiyIdGGDLMriwFhO7rdMrKNjmM3jyXH08USetFWV1Avj-SH6BTfSDGevScELVe9dk4bWy7NRgmADzS8PYxdNfe6Zo3i3WytlKOOEy453diz2ugM3PdEteHm7SvImenXu5_ABfOtu3FedfB-tGzXSF79xOv7fkz2E-y0qZftejB7BHVsN4O6szbsP4J5f3WO-aWkA24RRPcXzY7h0ZQesQamoKZnFzu2pr66tWLNiBdGeXFhWr9EqoVwzKkpl1NbCXD27_eWGUKLes6_LZsFu5NTp-DMXIGCwwCjZbA2bT_bnB0dsOp2yTwt0wviNoRpQN6Y79xM4Pjz48mEStPs8BDpCRBmgsBh0i2HGlZA2LI3Qxo41IkEMEA3Gn6lBSxHTHvc81Eka2ixVupRKyjIiwrinsFWtKvscGC9kaUyRpFRnilKBRqWMtUgKJcMIfwzhXfef57olQae9OH7knr5Z5Pjyc3r5Q3jdz_zpiT_-MGenE5u8Vf06F47xCGFyhqfoh1FpKRNTVHa1rnNOC24cY9VoCM-8lPUXERmi0pSHQ0g25K-fQITgmyPVcuGIwWNqfxN43bdOvP563_nRdEafL_514kvYxsfyvZjjHdhqztf2FYKxRu06tbsC8OkysQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qBS2IL-fbadUVRD_lepv36KciLRftHWJb7IfCks1uvKNtrjQ5KP0T_cud2U1izyqIn5Kwm_eZnWd2Zp4FeDdMVOC7UjpKFonj55l2Ej8JHaU5md8i0oaOYTwJR_v-l4PgYAU-tbUwlh-im3AjzTDjNSk4TUhv_GINrWYngwjRxi247YfophAi-t5xR_F2vVaKUYYRD1rm2aG70Z65bItuAMybeZLX8asxQNsP4LB9dJt3cjRY1HKQX_zG6vif7_YQ7jfAlG1aSXoEK7rswZ1xE3rvwT07wcds3VIP1gimWpbnx3BpMg9YjYJRUTyLnemfNsG2ZPWcZcR8cqFZtcCBCUWbUV4qo8oWZlLa9blpQqH6yH7M6im7Flan80-Mj4D-AqN4s1ZsMtqcbO2yNE3ZtynaYdxjqAlUkGmu_QT2t7f2Po-cZqkHJ_cRVDooLwoto5dw6QbaK5SbKz3MEQyij6jQBY0VDhYhLXPPvTyKPZ3EMi8CGQSFT5xxT2G1nJf6OTCeBYVSWRRTqqkXejiuFGHuRpkMPB8P-vCh_ekib3jQaTmOY2EZnF2BH1_Qx-_D267nqeX--EOf9VZuRKP9lXAN6REi5QQv0TWj3lIwJiv1fFEJTnNuHN1Vvw_PrJh1N3ETBKYx9_oQLQlg14E4wZdbytnUcIOHVAHn4n3fG_n663OL3XRM2xf_2vEN3B3tjXfETjr5-hLW8BVtaeZwHVbrs4V-hdislq-NDl4BBVw20g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qhVIQX86XnlZdQfRTrpdNNi_6qdgeF_WOYi32Q2FJshvvqM2VJgfSP-FfdmY3iT2rIH5Kwm7eZ3ae2Zl5FuDlMFbC51nmqKyIHT9PtRP7ceAo7ZL5LUJt6Bgm02B85L8_Fsdr8LathbH8EN2EG2mGGa9JwfW5KnZ-sYZW87NBiGjjBtz0RRxRPt_ep447ym3Xa6UYZRC6omWeHfKd9sxVW3QNYF7Pk7yKX40BGt2Bk_bRbd7J6WBZZ4P88jdWx_98t7twuwGmbNdK0j1Y02UPNiZN6L0Ht-wEH7N1Sz3YJJhqWZ7vww-TecBqFIyK4lnsQn-1CbYlqxcsJeaTS82qJQ5MKNqM8lIZVbYwk9Kuv5smFKo37Mu8nrErYXU6_8z4COgvMIo3a8Wm493p_iFLkoQdzNAO4x5DTaCCTHPtB3A02v_8buw0Sz04uY-g0kF5UWgZvdjNuNBeoXiu9DBHMIg-okIXNFI4WAS0zL3r5WHk6TjK8kJkQhQ-ccY9hPVyUeotYG4qCqXSMKJUUy_wcFwpgpyHaSY8Hw_68Lr96TJveNBpOY5v0jI4c4kfX9LH78OLrue55f74Q5_tVm5ko_2V5Ib0CJFyjJfomlFvKRiTlnqxrKRLc24uuqt-Hx5ZMetuwmMEppHr9SFcEcCuA3GCr7aU85nhBg-oAo7jfV8Z-frrc8vDZELbx__a8TlsHOyN5Mdk-uEJbOIb2srM4Tas1xdL_RShWZ09Myr4E2SKNlY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+threshold+regression+to+analyze+survival+data+from+complex+surveys%3A+With+application+to+mortality+linked+NHANES+III+Phase+II+genetic+data&rft.jtitle=Statistics+in+medicine&rft.au=Li%2C+Yan&rft.au=Xiao%2C+Tao&rft.au=Liao%2C+Dandan&rft.au=Lee%2C+Mei-Ling+Ting&rft.date=2018-03-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=37&rft.issue=7&rft.spage=1162&rft.epage=1177&rft_id=info:doi/10.1002%2Fsim.7575&rft_id=info%3Apmid%2F29250813&rft.externalDocID=PMC6433129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon