EPI proton resonant frequency temperature mapping at 0.5T in the brain: Comparison to single‐echo gradient recalled echo
Purpose Evaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner, both in vivo and on a tissue mimicking gel. Methods Three 2D protocols were investigated (an SE‐GRE, single‐shot EPI, and an averaged single‐...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 93; no. 4; pp. 1733 - 1740 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.04.2025
John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.30373 |
Cover
| Abstract | Purpose
Evaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner, both in vivo and on a tissue mimicking gel.
Methods
Three 2D protocols were investigated (an SE‐GRE, single‐shot EPI, and an averaged single‐shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer T2*$$ {\mathrm{T}}_2^{\ast } $$ at lower field‐strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision.
Results
The use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE‐GRE protocol.
Conclusion
While SE‐GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid‐field. |
|---|---|
| AbstractList | Evaluate the use of both single-echo gradient recalled echo (SE-GRE) and EPI approaches to creating temperature maps on a mid-field head-only scanner, both in vivo and on a tissue mimicking gel.
Three 2D protocols were investigated (an SE-GRE, single-shot EPI, and an averaged single-shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer
at lower field-strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision.
The use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE-GRE protocol.
While SE-GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid-field. Evaluate the use of both single-echo gradient recalled echo (SE-GRE) and EPI approaches to creating temperature maps on a mid-field head-only scanner, both in vivo and on a tissue mimicking gel.PURPOSEEvaluate the use of both single-echo gradient recalled echo (SE-GRE) and EPI approaches to creating temperature maps on a mid-field head-only scanner, both in vivo and on a tissue mimicking gel.Three 2D protocols were investigated (an SE-GRE, single-shot EPI, and an averaged single-shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer T 2 * $$ {\mathrm{T}}_2^{\ast } $$ at lower field-strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision.METHODSThree 2D protocols were investigated (an SE-GRE, single-shot EPI, and an averaged single-shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer T 2 * $$ {\mathrm{T}}_2^{\ast } $$ at lower field-strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision.The use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE-GRE protocol.RESULTSThe use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE-GRE protocol.While SE-GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid-field.CONCLUSIONWhile SE-GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid-field. Purpose Evaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner, both in vivo and on a tissue mimicking gel. Methods Three 2D protocols were investigated (an SE‐GRE, single‐shot EPI, and an averaged single‐shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer T2*$$ {\mathrm{T}}_2^{\ast } $$ at lower field‐strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision. Results The use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE‐GRE protocol. Conclusion While SE‐GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid‐field. PurposeEvaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner, both in vivo and on a tissue mimicking gel.MethodsThree 2D protocols were investigated (an SE‐GRE, single‐shot EPI, and an averaged single‐shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer T2*$$ {\mathrm{T}}_2^{\ast } $$ at lower field‐strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision.ResultsThe use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE‐GRE protocol.ConclusionWhile SE‐GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid‐field. |
| Author | Handler, William B. Wiens, Curtis N. Chronik, Blaine A. Harris, Chad T. Martinez, Diego F. |
| AuthorAffiliation | 1 The xMR Labs, Department of Physics and Astronomy Western University London Ontario Canada 2 Research and Development Synaptive Medical Toronto Ontario Canada |
| AuthorAffiliation_xml | – name: 2 Research and Development Synaptive Medical Toronto Ontario Canada – name: 1 The xMR Labs, Department of Physics and Astronomy Western University London Ontario Canada |
| Author_xml | – sequence: 1 givenname: Diego F. orcidid: 0009-0004-4272-7782 surname: Martinez fullname: Martinez, Diego F. email: dmart62@uwo.ca organization: Western University – sequence: 2 givenname: Curtis N. surname: Wiens fullname: Wiens, Curtis N. organization: Synaptive Medical – sequence: 3 givenname: Chad T. surname: Harris fullname: Harris, Chad T. organization: Synaptive Medical – sequence: 4 givenname: William B. surname: Handler fullname: Handler, William B. organization: Western University – sequence: 5 givenname: Blaine A. surname: Chronik fullname: Chronik, Blaine A. organization: Western University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39529375$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URKeFBS-ALLGhSJn6J4kTNqgalVKpFQiVtXWT3My4SuzUTqiGFY_AM_IkdUkpBQlWV_L97tE5x3tkxzqLhDznbMkZE4e975eSSSUfkQXPhEhEVqY7ZMFUyhLJy3SX7IVwyRgrS5U-IbuyzEQpVbYgX48_ntLBu9FZ6jE4C3akrcerCW29pSP2A3oYJ4-0h2Ewdk1hpGyZXVBj6bhBWnkw9g1duX4Ab6ICHR0NEezwx7fvWG8cXXtoDEZhjzV0HTb09vkpedxCF_DZ3dwnn98dX6zeJ2cfTk5XR2dJnbJUJnkbzVYgqyaXIGTD0pQVFa84iCyHsqliJtlmHFXaYgzIayFzhEplkgkpKrlPXs-6kx1gex0N6MGbHvxWc6ZvC9SxQP2zwAi_neFhqnps6ujaw-8DB0b_ubFmo9fui-ZcFULxMiq8ulPwLrYYRt2bUGPXgUU3BS25KFSmmGARffkXeukmb2MZkcp5zgopi0i9eGjp3suvT4zAwQzU3oXgsf1vvsOZvTYdbv8N6vNP5_PFDaPNvJM |
| Cites_doi | 10.1016/J.PNMRS.2019.01.003 10.1007/978-1-4614-7657-3_28 10.1109/TMI.2007.892647 10.3109/02656736.2015.1108462 10.1080/02656730500272963 10.1002/MRM.29123 10.1162/imag_a_00362 10.3390/CANCERS13010031 10.3348/kjr.2008.9.4.291 10.1016/0360‐3016(93)90314‐L 10.1002/jmri.22499 10.1002/JMRI.28408 10.1002/MRM.24883 10.1002/JMRI.22270 10.3174/AJNR.A4865 10.1002/MRM.1910340606 10.1002/JMRI.27446 10.1080/02656736.2016.1179799 10.1002/MRM.25391 10.1002/LSM.23049 10.1148/RADIOL.2019190452 10.1002/JMRI.21265 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/mrm.30373 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | MARTINEZ et al |
| EISSN | 1522-2594 |
| EndPage | 1740 |
| ExternalDocumentID | 10.1002/mrm.30373 PMC11782719 39529375 10_1002_mrm_30373 MRM30373 |
| Genre | technicalNote Journal Article Comparative Study |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4043-6f952ba3bd63a23d04408b1b1a256a9db9973f51e74fe0991c236eab7530232b3 |
| IEDL.DBID | UNPAY |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Sun Oct 26 04:15:29 EDT 2025 Thu Aug 21 18:39:02 EDT 2025 Fri Sep 05 14:41:17 EDT 2025 Tue Oct 07 06:19:02 EDT 2025 Mon Jul 21 05:50:21 EDT 2025 Wed Oct 01 06:04:10 EDT 2025 Fri Jan 31 10:08:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | temperature mapping magnetic resonance imaging MRI phantom Echo planar imaging gradient recalled Echo thermometry |
| Language | English |
| License | Attribution 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4043-6f952ba3bd63a23d04408b1b1a256a9db9973f51e74fe0991c236eab7530232b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0004-4272-7782 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/mrm.30373 |
| PMID | 39529375 |
| PQID | 3161608338 |
| PQPubID | 1016391 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1002_mrm_30373 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11782719 proquest_miscellaneous_3128757020 proquest_journals_3161608338 pubmed_primary_39529375 crossref_primary_10_1002_mrm_30373 wiley_primary_10_1002_mrm_30373_MRM30373 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2023; 31 1993; 25 2010; 32 2023; 57 2019; 51 Imaging Neuroscience. Advance Publication. 2024 1995; 34 2015; 74 2015; 32 2008; 9 2016; 32 2011; 33 2005; 21 2020; 13 2022; 87 2016; 37 2001; 61 2023 2008; 27 2020; 28 2019 2019; 27 2014 2022; 55 2019; 293 2014; 71 2007; 26 2019; 110 e_1_2_6_10_1 e_1_2_6_31_1 Martinez DF (e_1_2_6_30_1) 2020 Harris CT (e_1_2_6_23_1) 2023 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 Huber PE (e_1_2_6_6_1) 2001; 61 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 32 start-page: 63 year: 2015 end-page: 75 article-title: Magnetic resonance thermometry: methodology, pitfalls and practical solutions publication-title: Int J Hyperth – volume: 34 start-page: 814 year: 1995 end-page: 823 article-title: A precise and fast temperature mapping using water proton chemical shift publication-title: Magn Reson Med – volume: 9 start-page: 291 year: 2008 end-page: 302 article-title: High‐intensity focused ultrasound therapy: an overview for radiologists publication-title: Korean J Radiol – volume: 61 start-page: 8441 year: 2001 end-page: 8447 article-title: A new noninvasive approach in breast cancer therapy using magnetic resonance imaging‐guided focused ultrasound surgery publication-title: Cancer Res – volume: 21 start-page: 489 year: 2005 end-page: 495 article-title: Introduction: non‐invasive thermometry for thermotherapy publication-title: Int J Hyperth – volume: 74 start-page: 136 year: 2015 end-page: 149 article-title: Scan time reduction for readout‐segmented EPI using simultaneous multislice acceleration: diffusion‐weighted imaging at 3 and 7 tesla publication-title: Magn Reson Med – start-page: 403 year: 2014 end-page: 412 – volume: 32 start-page: 673 year: 2016 end-page: 687 article-title: Drift correction for accurate PRF‐shift MR thermometry during mild hyperthermia treatments with MR‐HIFU publication-title: Int J Hyperth – volume: 28 year: 2020 – volume: 55 start-page: 389 year: 2022 end-page: 403 article-title: Proton resonance frequency shift thermometry: a review of modern clinical practices publication-title: J Magn Reson Imaging – volume: 31 year: 2023 – volume: 37 start-page: 1996 year: 2016 end-page: 2000 article-title: Optimized, minimal specific absorption rate MRI for high‐resolution imaging in patients with implanted deep brain stimulation electrodes publication-title: Am J Neuroradiol – volume: 110 start-page: 34 year: 2019 end-page: 61 article-title: Magnetic resonance thermometry and its biological applications – physical principles and practical considerations publication-title: Prog Nucl Magn Reson Spectrosc – volume: 71 start-page: 2139 year: 2014 end-page: 2154 article-title: Design of k‐space channel combination kernels and integration with parallel imaging publication-title: Magn Reson Med – volume: 87 start-page: 2224 year: 2022 end-page: 2238 article-title: Thermal variation in gradient response: measurement and modeling publication-title: Magn Reson Med – volume: 26 start-page: 813 year: 2007 end-page: 821 article-title: Referenceless MR thermometry for monitoring thermal ablation in the prostate publication-title: IEEE Trans Med Imaging – start-page: 1214 year: 2019 – volume: 33 start-page: 704 year: 2011 end-page: 709 article-title: Clinical evaluation of MR temperature monitoring of laser‐induced thermotherapy in human liver using the proton‐resonance‐frequency method and predictive models of cell death publication-title: J Magn Reson Imaging – volume: 27 start-page: 376 year: 2008 end-page: 390 article-title: MR thermometry publication-title: J Magn Reson Imaging – volume: 293 start-page: 384 year: 2019 end-page: 393 article-title: Opportunities in interventional and diagnostic imaging by using high‐performance low‐field‐strength MRI publication-title: Radiology – volume: 13 start-page: 31 issue: 1 year: 2020 article-title: Clinical performance and future potential of magnetic resonance thermometry in hyperthermia publication-title: Cancer – year: 2023 – year: Imaging Neuroscience. Advance Publication. 2024 – volume: 51 start-page: 286 year: 2019 end-page: 300 article-title: Improved MR thermometry for laser interstitial thermotherapy publication-title: Lasers Surg Med – volume: 25 start-page: 841 year: 1993 end-page: 847 article-title: Cumulative minutes with T90 greater than tempindex is predictive of response of superficial malignancies to hyperthermia and radiation publication-title: Int J Radiat Oncol Biol Phys – volume: 57 start-page: 25 year: 2023 end-page: 44 article-title: Low‐field MRI: clinical promise and challenges publication-title: J Magn Reson Imaging – year: 2019 – volume: 32 start-page: 684 year: 2010 end-page: 691 article-title: Pyrolytic graphite foam: a passive magnetic susceptibility matching material publication-title: J Magn Reson Imaging – volume: 27 start-page: 4167 year: 2019 – ident: e_1_2_6_2_1 doi: 10.1016/J.PNMRS.2019.01.003 – ident: e_1_2_6_20_1 – ident: e_1_2_6_7_1 doi: 10.1007/978-1-4614-7657-3_28 – ident: e_1_2_6_26_1 – volume: 61 start-page: 8441 year: 2001 ident: e_1_2_6_6_1 article-title: A new noninvasive approach in breast cancer therapy using magnetic resonance imaging‐guided focused ultrasound surgery publication-title: Cancer Res – ident: e_1_2_6_13_1 doi: 10.1109/TMI.2007.892647 – ident: e_1_2_6_8_1 doi: 10.3109/02656736.2015.1108462 – ident: e_1_2_6_10_1 doi: 10.1080/02656730500272963 – ident: e_1_2_6_31_1 doi: 10.1002/MRM.29123 – ident: e_1_2_6_29_1 doi: 10.1162/imag_a_00362 – ident: e_1_2_6_28_1 doi: 10.3390/CANCERS13010031 – ident: e_1_2_6_5_1 doi: 10.3348/kjr.2008.9.4.291 – ident: e_1_2_6_4_1 doi: 10.1016/0360‐3016(93)90314‐L – ident: e_1_2_6_17_1 – ident: e_1_2_6_12_1 doi: 10.1002/jmri.22499 – ident: e_1_2_6_19_1 – ident: e_1_2_6_14_1 doi: 10.1002/JMRI.28408 – ident: e_1_2_6_24_1 doi: 10.1002/MRM.24883 – ident: e_1_2_6_25_1 doi: 10.1002/JMRI.22270 – ident: e_1_2_6_18_1 doi: 10.3174/AJNR.A4865 – ident: e_1_2_6_11_1 doi: 10.1002/MRM.1910340606 – volume-title: Proceedings of the International Society for Magnetic Resonance in Medicine year: 2020 ident: e_1_2_6_30_1 – ident: e_1_2_6_9_1 doi: 10.1002/JMRI.27446 – ident: e_1_2_6_16_1 – ident: e_1_2_6_27_1 doi: 10.1080/02656736.2016.1179799 – ident: e_1_2_6_21_1 doi: 10.1002/MRM.25391 – ident: e_1_2_6_22_1 doi: 10.1002/LSM.23049 – ident: e_1_2_6_15_1 doi: 10.1148/RADIOL.2019190452 – ident: e_1_2_6_3_1 doi: 10.1002/JMRI.21265 – volume-title: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine year: 2023 ident: e_1_2_6_23_1 |
| SSID | ssj0009974 |
| Score | 2.4743936 |
| Snippet | Purpose
Evaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner,... Evaluate the use of both single-echo gradient recalled echo (SE-GRE) and EPI approaches to creating temperature maps on a mid-field head-only scanner, both in... PurposeEvaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner,... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1733 |
| SubjectTerms | Algorithms Body Temperature - physiology Brain Brain - diagnostic imaging Brain - physiology Control stability Echo planar imaging Echo-Planar Imaging - methods gradient recalled Echo Humans Image Processing, Computer-Assisted - methods Imaging Methodology In vivo methods and tests magnetic resonance imaging Magnetic Resonance Imaging - methods MRI phantom Optical fibers Optical scanners Phantoms, Imaging Protocol Protons Reproducibility of Results Resonant frequencies Technical Note Temperature Temperature control temperature mapping Temperature measurement Thermography - methods Thermometry Thermometry - methods Tracking |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHVSUelwLllVKQeRy4ZLu2YyeBE6paFaRFqGqlHpAiv1IqdpNqNyvUnvgIfEY-CWPnUS0VCHFbbWY3cTxj_-1MfgPwyo5NmTsh44yaJE4MLli1FS4WzmQ5zi-ZC-D5yUd5cJx8OBEna_C2fxem5UMMG24-MsJ47QNc6cXOFTR0Np-NcPxNPemTchmWU4dX6Kg8bwnMaeLHmTzpqUJjtjP8cnUuuiYwr-dJ3lpW5-rim5pOV7VsmIz278DnvhltDsrX0bLRI3P5G-HxP9t5FzY6kUretV51D9ZctQk3J91j-E24EfJGzeI-XO59ek8866GuCC7ca59WQ8p5m599QTz4qqM2k5nyKIhTohoyHokjclYRFJ9E-xoVb8juUA-RNDXxGxhT9_P7D4ejMzmdh7y0Bs9gfOkXS_zXD-B4f-9o9yDuyjnExiN8YlnmgmnFtZVcMW5DsWtNNVUou1RuNXYZLwV1aVI67D9qGJdO6TQUNmKaP4T1qq7cYyAuQSHLhRmX1iYpQ5vM4rqU4v9KK0sVwYu-Y4vzltpRtHxmVuD9LML9jGC77_KiC9xFwVEBS5SlPIvg-XAYQ84_R1GVq5fehvkyACi0I3jUeshwFo5tRMUnIshWfGcw8Djv1SPV2ZeA9aYU1VpK8wheDm72t6t_HbzmzxbF5HASPmz9u-kTuM18geOQmrQN68186Z6i6mr0sxBevwDikins priority: 102 providerName: Wiley-Blackwell |
| Title | EPI proton resonant frequency temperature mapping at 0.5T in the brain: Comparison to single‐echo gradient recalled echo |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30373 https://www.ncbi.nlm.nih.gov/pubmed/39529375 https://www.proquest.com/docview/3161608338 https://www.proquest.com/docview/3128757020 https://pubmed.ncbi.nlm.nih.gov/PMC11782719 https://doi.org/10.1002/mrm.30373 |
| UnpaywallVersion | publishedVersion |
| Volume | 93 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BohYufdDSpqXItD30ku3GjvPoDVEQrbRohViJniK_AojdBC1ZITj1J_Q39pd07GTTpqiolyiKJ3Zsjz2f4_E3AO_1QOWp4ZGfBCr0Q4ULVqm58blRSYr2JTGOeH54GB2Mw68n_GQJthdnYbr79_TjdDbt4ywbs2VYiTjC7R6sjA9HO99qek07h7hgh2iGqI9QPlywB_35btfm3AGSd_0hV-fFpbi5FpNJF7M6o7P_-PfRndrX5KI_r2Rf3f7F5HhvfZ7AowZykp1aR57CkinW4eGw2VRfhwfOC1RdPYPbvdEXYpkbyoLgMry0TjIkn9Xe1jfE0lg1HMxkKiyxwykRFRn0-TE5LwhCSSJtxIlPZLeNbkiqktjfERPz8_sPg3MtOZ05L7MKS1A2kIsm9vFzGO_vHe8e-E1wBl9ZQh4_ylNOpWBSR0xQpl3oahnIQCCIEqmWaRqznAcmDnODMDRQlEVGyNiFKaKSbUCvKAvzEogJEZYyrga51mFMUSbRuMoMMN9IR7nw4O2i-7LLmoMjq9mWaYbtmbn29GBz0bFZMwyvMoZ4NkKQyRIPtttkHEB2V0QUppxbGWpJ_RE2e_Ci1oO2FIZ1RPzGPUg6GtIKWHLubkpxfuZIuoMAsVccpB68a5Xpvq__4NTs3xLZ8Gjobl79V4avYY3aSMXOx2gTetVsbt4gfKrkFizTcITXz0d0qxlMvwCvRBgf |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RqpZeqpaWNpS27uPQS2D9iJMgLgiBlpYgVC0St8iOHYq0m6AlK0RP_Qn9jf0ljJ1s0Aq16i2KJy-PZ_yNPfkG4LMZFGVqIxkmtBChKDBg1SayYWSLJMX5JbGeeD47lsNT8fUsOluCnfm_MC0_RL_g5izD-2tn4G5BeuuONXQynWyiA475A3goJJUu9GLi5I5yN205mGPhPE0q5rxCA7bVX7o4G92DmPczJVdm1aW6uVbj8SKa9dPRwTN42uFIstsq_jks2WoVHmfdTvkqPPKpncXVC_i5f3JIHB1DXRGMrWuX-ULKaZtCfUMcN1VHrEwmyrE1nBPVkMFmNCIXFUF8SLQrI7FN9vqShaSpiVtjGNs_v35bdKDkfOpTxxp8QuGqsxjiTr-E04P90d4w7CouhIVj2QllmUZMK66N5Ipx4-tRa6qpQmSkUqOxT3kZURuL0mIH04JxaZWOfe0hpvkaLFd1ZV8DsQKxJo-KQWmMiBnKJAZDR4r3lUaWKoCP857PL1tijbylUGY5qif36glgY66TvLOtq5wjSJWIHHkSwIe-Ga3CbXWoytYzJ8McUz9i4QBetSrsn8LxGxGURQEkC8rtBRzj9mJLdfHDM29TioAqpmkAn_px8K-3_-JHyN8l8ux75g_W_1_0PawMR9lRfnR4_O0NPGGuHrHPJNqA5WY6s28RJDX6nbeFW6kMDU0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgqXAuWVtoB5HLhku4njJEZcUNtVC2xVVa3USxX5lVKxm6y2WaH2xE_gN_aXMHYe1VKBELconsSxZ8b-bE--AXir-yrnhsV-GqjIjxQuWKVmxmdGpRznl9Q44vnhXrxzFH06ZscL8KH9F6bmh-g23KxnuPHaOriZ6HzjmjV0PB33cABO6C24HTGe2oC-rYNr8ijOaw7mJLIjDY9aXqF-uNE9Oj8b3YCYNyMl786Kibj4LkajeTTrpqPBfThpG1JHoXzrzSrZU5e_cTz-b0sfwHKDU8nH2rAewoIpVmBp2JzEr8AdFzqqzh_B5fb-LrF0D2VBcO1e2sgakk_rEO0LYrmvGuJmMhaWDeKUiIr0e-yQnBUE8SeRNk3Fe7LZpUQkVUnsHsbIXP34aXCAJqdTF5pWYQ3KZn_RxN5-DEeD7cPNHb_J6OAry-LjxzlnoRRU6piKkGqX71oGMhCIvATXEnVGcxaYJMoNKjBQIY2NkInLbRRK-gQWi7Iwz4CYCLEsZaqfax0lIcqkGpemAb431nEuPHjdajab1MQdWU3RHGbYn5nrTw_WW51nje-eZxRBcIzIlKYevOqK0evsUYooTDmzMqHNBIBY24OntYl0tVBsI4I-5kE6ZzydgGX0ni8pzr46Zu8gQMCWBNyDN52d_e3r3zmz-bNENjwYuovVfxd9CUv7W4Psy-7e5zW4F9p0xy5QaR0Wq-nMPEcMVskXztV-AdqJLZE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTtwwFL2ig_rY9EFfaWll2i66yTCxYyfpDiEQrTQIVYxEV5FfoYiZBA0ZVbDqJ_Qb-RKunUzaFBV1FyU3dmxf28fx9TkAH8xIF5nlIkwjHYexxgWrMtyG3Oo0w_kltZ54frwv9ibxlyN-tAIby7Mw_f17ujmbz4Y4yibsDqwKjnB7AKuT_YOtbw29phtDvNghTkM0RCgfL9mD_ny3P-fcAJI34yHvL8ozefFDTqd9zOonnd1Hv4_uNLEmp8NFrYb68i8mx1vL8xgetpCTbDU-8gRWbLkG98btpvoa3PVRoPr8KVzuHHwmjrmhKgkuwysXJEOKeRNtfUEcjVXLwUxm0hE7HBNZk9GQH5KTkiCUJMopTnwi2526Iakr4n5HTO3Vz18Wx1pyPPdRZjXmoJ2QiyHu9jOY7O4cbu-FrThDqB0hTyiKjFMlmTKCScqMl65WkYokgiiZGZVlCSt4ZJO4sAhDI02ZsFIlXqaIKvYcBmVV2pdAbIywlHE9KoyJE4o2qcFVZoTpCiMKGcC7ZfPlZw0HR96wLdMc6zP39RnA-rJh87YbnucM8axAkMnSADa6x9iB3K6ILG21cDbUkfojbA7gReMHXS4My4j4jQeQ9jykM3Dk3P0n5cl3T9IdRYi9kigL4H3nTLd9_UfvZv-2yMdfx_7i1X8l-BoeUKdU7GOM1mFQzxf2DcKnWr1tO9A1n4cWXw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EPI+proton+resonant+frequency+temperature+mapping+at+0.5T+in+the+brain%3A+Comparison+to+single%E2%80%90echo+gradient+recalled+echo&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Martinez%2C+Diego+F.&rft.au=Wiens%2C+Curtis+N.&rft.au=Harris%2C+Chad+T.&rft.au=Handler%2C+William+B.&rft.date=2025-04-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=93&rft.issue=4&rft.spage=1733&rft.epage=1740&rft_id=info:doi/10.1002%2Fmrm.30373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30373 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |