EPI proton resonant frequency temperature mapping at 0.5T in the brain: Comparison to single‐echo gradient recalled echo

Purpose Evaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner, both in vivo and on a tissue mimicking gel. Methods Three 2D protocols were investigated (an SE‐GRE, single‐shot EPI, and an averaged single‐...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 93; no. 4; pp. 1733 - 1740
Main Authors Martinez, Diego F., Wiens, Curtis N., Harris, Chad T., Handler, William B., Chronik, Blaine A.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2025
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30373

Cover

Abstract Purpose Evaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner, both in vivo and on a tissue mimicking gel. Methods Three 2D protocols were investigated (an SE‐GRE, single‐shot EPI, and an averaged single‐shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer T2*$$ {\mathrm{T}}_2^{\ast } $$ at lower field‐strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision. Results The use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE‐GRE protocol. Conclusion While SE‐GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid‐field.
AbstractList Evaluate the use of both single-echo gradient recalled echo (SE-GRE) and EPI approaches to creating temperature maps on a mid-field head-only scanner, both in vivo and on a tissue mimicking gel. Three 2D protocols were investigated (an SE-GRE, single-shot EPI, and an averaged single-shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer at lower field-strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision. The use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE-GRE protocol. While SE-GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid-field.
Evaluate the use of both single-echo gradient recalled echo (SE-GRE) and EPI approaches to creating temperature maps on a mid-field head-only scanner, both in vivo and on a tissue mimicking gel.PURPOSEEvaluate the use of both single-echo gradient recalled echo (SE-GRE) and EPI approaches to creating temperature maps on a mid-field head-only scanner, both in vivo and on a tissue mimicking gel.Three 2D protocols were investigated (an SE-GRE, single-shot EPI, and an averaged single-shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer T 2 * $$ {\mathrm{T}}_2^{\ast } $$ at lower field-strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision.METHODSThree 2D protocols were investigated (an SE-GRE, single-shot EPI, and an averaged single-shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer T 2 * $$ {\mathrm{T}}_2^{\ast } $$ at lower field-strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision.The use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE-GRE protocol.RESULTSThe use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE-GRE protocol.While SE-GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid-field.CONCLUSIONWhile SE-GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid-field.
Purpose Evaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner, both in vivo and on a tissue mimicking gel. Methods Three 2D protocols were investigated (an SE‐GRE, single‐shot EPI, and an averaged single‐shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer T2*$$ {\mathrm{T}}_2^{\ast } $$ at lower field‐strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision. Results The use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE‐GRE protocol. Conclusion While SE‐GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid‐field.
PurposeEvaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner, both in vivo and on a tissue mimicking gel.MethodsThree 2D protocols were investigated (an SE‐GRE, single‐shot EPI, and an averaged single‐shot EPI). The protocols used either a gradient recalled acquisition or an echo planar acquisition, with EPI parameters optimized for the longer T2*$$ {\mathrm{T}}_2^{\ast } $$ at lower field‐strengths. Phantom experiments were conducted to evaluate temperature tracking while cooling, comparing protocol to measurements from an optical fiber thermometer. Studies were performed on a 0.5T head only MR scanner. Temperature stability maps were produced in vivo for the various protocols to evaluate precision.ResultsThe use of an EPI protocol for thermometry improved temperature precision in a temperature control phantom and provided an 18% improvement in temperature measurement precision in vivo. Temperature tracking using a fast (<2 s) update rate EPI thermometry sequence provided a similar precision to the slower SE‐GRE protocol.ConclusionWhile SE‐GRE PRF thermometry shows good performance, EPI methods offer improved tracking precision or update rate, making them a better option for thermometry in the brain at mid‐field.
Author Handler, William B.
Wiens, Curtis N.
Chronik, Blaine A.
Harris, Chad T.
Martinez, Diego F.
AuthorAffiliation 1 The xMR Labs, Department of Physics and Astronomy Western University London Ontario Canada
2 Research and Development Synaptive Medical Toronto Ontario Canada
AuthorAffiliation_xml – name: 2 Research and Development Synaptive Medical Toronto Ontario Canada
– name: 1 The xMR Labs, Department of Physics and Astronomy Western University London Ontario Canada
Author_xml – sequence: 1
  givenname: Diego F.
  orcidid: 0009-0004-4272-7782
  surname: Martinez
  fullname: Martinez, Diego F.
  email: dmart62@uwo.ca
  organization: Western University
– sequence: 2
  givenname: Curtis N.
  surname: Wiens
  fullname: Wiens, Curtis N.
  organization: Synaptive Medical
– sequence: 3
  givenname: Chad T.
  surname: Harris
  fullname: Harris, Chad T.
  organization: Synaptive Medical
– sequence: 4
  givenname: William B.
  surname: Handler
  fullname: Handler, William B.
  organization: Western University
– sequence: 5
  givenname: Blaine A.
  surname: Chronik
  fullname: Chronik, Blaine A.
  organization: Western University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39529375$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFBS-ALLGhSJn6J4kTNqgalVKpFQiVtXWT3My4SuzUTqiGFY_AM_IkdUkpBQlWV_L97tE5x3tkxzqLhDznbMkZE4e975eSSSUfkQXPhEhEVqY7ZMFUyhLJy3SX7IVwyRgrS5U-IbuyzEQpVbYgX48_ntLBu9FZ6jE4C3akrcerCW29pSP2A3oYJ4-0h2Ewdk1hpGyZXVBj6bhBWnkw9g1duX4Ab6ICHR0NEezwx7fvWG8cXXtoDEZhjzV0HTb09vkpedxCF_DZ3dwnn98dX6zeJ2cfTk5XR2dJnbJUJnkbzVYgqyaXIGTD0pQVFa84iCyHsqliJtlmHFXaYgzIayFzhEplkgkpKrlPXs-6kx1gex0N6MGbHvxWc6ZvC9SxQP2zwAi_neFhqnps6ujaw-8DB0b_ubFmo9fui-ZcFULxMiq8ulPwLrYYRt2bUGPXgUU3BS25KFSmmGARffkXeukmb2MZkcp5zgopi0i9eGjp3suvT4zAwQzU3oXgsf1vvsOZvTYdbv8N6vNP5_PFDaPNvJM
Cites_doi 10.1016/J.PNMRS.2019.01.003
10.1007/978-1-4614-7657-3_28
10.1109/TMI.2007.892647
10.3109/02656736.2015.1108462
10.1080/02656730500272963
10.1002/MRM.29123
10.1162/imag_a_00362
10.3390/CANCERS13010031
10.3348/kjr.2008.9.4.291
10.1016/0360‐3016(93)90314‐L
10.1002/jmri.22499
10.1002/JMRI.28408
10.1002/MRM.24883
10.1002/JMRI.22270
10.3174/AJNR.A4865
10.1002/MRM.1910340606
10.1002/JMRI.27446
10.1080/02656736.2016.1179799
10.1002/MRM.25391
10.1002/LSM.23049
10.1148/RADIOL.2019190452
10.1002/JMRI.21265
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mrm.30373
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate MARTINEZ et al
EISSN 1522-2594
EndPage 1740
ExternalDocumentID 10.1002/mrm.30373
PMC11782719
39529375
10_1002_mrm_30373
MRM30373
Genre technicalNote
Journal Article
Comparative Study
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4043-6f952ba3bd63a23d04408b1b1a256a9db9973f51e74fe0991c236eab7530232b3
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 04:15:29 EDT 2025
Thu Aug 21 18:39:02 EDT 2025
Fri Sep 05 14:41:17 EDT 2025
Tue Oct 07 06:19:02 EDT 2025
Mon Jul 21 05:50:21 EDT 2025
Wed Oct 01 06:04:10 EDT 2025
Fri Jan 31 10:08:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords temperature mapping
magnetic resonance imaging
MRI phantom
Echo planar imaging
gradient recalled Echo
thermometry
Language English
License Attribution
2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4043-6f952ba3bd63a23d04408b1b1a256a9db9973f51e74fe0991c236eab7530232b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0004-4272-7782
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/mrm.30373
PMID 39529375
PQID 3161608338
PQPubID 1016391
PageCount 8
ParticipantIDs unpaywall_primary_10_1002_mrm_30373
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11782719
proquest_miscellaneous_3128757020
proquest_journals_3161608338
pubmed_primary_39529375
crossref_primary_10_1002_mrm_30373
wiley_primary_10_1002_mrm_30373_MRM30373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2025
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2023; 31
1993; 25
2010; 32
2023; 57
2019; 51
Imaging Neuroscience. Advance Publication. 2024
1995; 34
2015; 74
2015; 32
2008; 9
2016; 32
2011; 33
2005; 21
2020; 13
2022; 87
2016; 37
2001; 61
2023
2008; 27
2020; 28
2019
2019; 27
2014
2022; 55
2019; 293
2014; 71
2007; 26
2019; 110
e_1_2_6_10_1
e_1_2_6_31_1
Martinez DF (e_1_2_6_30_1) 2020
Harris CT (e_1_2_6_23_1) 2023
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
Huber PE (e_1_2_6_6_1) 2001; 61
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 32
  start-page: 63
  year: 2015
  end-page: 75
  article-title: Magnetic resonance thermometry: methodology, pitfalls and practical solutions
  publication-title: Int J Hyperth
– volume: 34
  start-page: 814
  year: 1995
  end-page: 823
  article-title: A precise and fast temperature mapping using water proton chemical shift
  publication-title: Magn Reson Med
– volume: 9
  start-page: 291
  year: 2008
  end-page: 302
  article-title: High‐intensity focused ultrasound therapy: an overview for radiologists
  publication-title: Korean J Radiol
– volume: 61
  start-page: 8441
  year: 2001
  end-page: 8447
  article-title: A new noninvasive approach in breast cancer therapy using magnetic resonance imaging‐guided focused ultrasound surgery
  publication-title: Cancer Res
– volume: 21
  start-page: 489
  year: 2005
  end-page: 495
  article-title: Introduction: non‐invasive thermometry for thermotherapy
  publication-title: Int J Hyperth
– volume: 74
  start-page: 136
  year: 2015
  end-page: 149
  article-title: Scan time reduction for readout‐segmented EPI using simultaneous multislice acceleration: diffusion‐weighted imaging at 3 and 7 tesla
  publication-title: Magn Reson Med
– start-page: 403
  year: 2014
  end-page: 412
– volume: 32
  start-page: 673
  year: 2016
  end-page: 687
  article-title: Drift correction for accurate PRF‐shift MR thermometry during mild hyperthermia treatments with MR‐HIFU
  publication-title: Int J Hyperth
– volume: 28
  year: 2020
– volume: 55
  start-page: 389
  year: 2022
  end-page: 403
  article-title: Proton resonance frequency shift thermometry: a review of modern clinical practices
  publication-title: J Magn Reson Imaging
– volume: 31
  year: 2023
– volume: 37
  start-page: 1996
  year: 2016
  end-page: 2000
  article-title: Optimized, minimal specific absorption rate MRI for high‐resolution imaging in patients with implanted deep brain stimulation electrodes
  publication-title: Am J Neuroradiol
– volume: 110
  start-page: 34
  year: 2019
  end-page: 61
  article-title: Magnetic resonance thermometry and its biological applications – physical principles and practical considerations
  publication-title: Prog Nucl Magn Reson Spectrosc
– volume: 71
  start-page: 2139
  year: 2014
  end-page: 2154
  article-title: Design of k‐space channel combination kernels and integration with parallel imaging
  publication-title: Magn Reson Med
– volume: 87
  start-page: 2224
  year: 2022
  end-page: 2238
  article-title: Thermal variation in gradient response: measurement and modeling
  publication-title: Magn Reson Med
– volume: 26
  start-page: 813
  year: 2007
  end-page: 821
  article-title: Referenceless MR thermometry for monitoring thermal ablation in the prostate
  publication-title: IEEE Trans Med Imaging
– start-page: 1214
  year: 2019
– volume: 33
  start-page: 704
  year: 2011
  end-page: 709
  article-title: Clinical evaluation of MR temperature monitoring of laser‐induced thermotherapy in human liver using the proton‐resonance‐frequency method and predictive models of cell death
  publication-title: J Magn Reson Imaging
– volume: 27
  start-page: 376
  year: 2008
  end-page: 390
  article-title: MR thermometry
  publication-title: J Magn Reson Imaging
– volume: 293
  start-page: 384
  year: 2019
  end-page: 393
  article-title: Opportunities in interventional and diagnostic imaging by using high‐performance low‐field‐strength MRI
  publication-title: Radiology
– volume: 13
  start-page: 31
  issue: 1
  year: 2020
  article-title: Clinical performance and future potential of magnetic resonance thermometry in hyperthermia
  publication-title: Cancer
– year: 2023
– year: Imaging Neuroscience. Advance Publication. 2024
– volume: 51
  start-page: 286
  year: 2019
  end-page: 300
  article-title: Improved MR thermometry for laser interstitial thermotherapy
  publication-title: Lasers Surg Med
– volume: 25
  start-page: 841
  year: 1993
  end-page: 847
  article-title: Cumulative minutes with T90 greater than tempindex is predictive of response of superficial malignancies to hyperthermia and radiation
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 57
  start-page: 25
  year: 2023
  end-page: 44
  article-title: Low‐field MRI: clinical promise and challenges
  publication-title: J Magn Reson Imaging
– year: 2019
– volume: 32
  start-page: 684
  year: 2010
  end-page: 691
  article-title: Pyrolytic graphite foam: a passive magnetic susceptibility matching material
  publication-title: J Magn Reson Imaging
– volume: 27
  start-page: 4167
  year: 2019
– ident: e_1_2_6_2_1
  doi: 10.1016/J.PNMRS.2019.01.003
– ident: e_1_2_6_20_1
– ident: e_1_2_6_7_1
  doi: 10.1007/978-1-4614-7657-3_28
– ident: e_1_2_6_26_1
– volume: 61
  start-page: 8441
  year: 2001
  ident: e_1_2_6_6_1
  article-title: A new noninvasive approach in breast cancer therapy using magnetic resonance imaging‐guided focused ultrasound surgery
  publication-title: Cancer Res
– ident: e_1_2_6_13_1
  doi: 10.1109/TMI.2007.892647
– ident: e_1_2_6_8_1
  doi: 10.3109/02656736.2015.1108462
– ident: e_1_2_6_10_1
  doi: 10.1080/02656730500272963
– ident: e_1_2_6_31_1
  doi: 10.1002/MRM.29123
– ident: e_1_2_6_29_1
  doi: 10.1162/imag_a_00362
– ident: e_1_2_6_28_1
  doi: 10.3390/CANCERS13010031
– ident: e_1_2_6_5_1
  doi: 10.3348/kjr.2008.9.4.291
– ident: e_1_2_6_4_1
  doi: 10.1016/0360‐3016(93)90314‐L
– ident: e_1_2_6_17_1
– ident: e_1_2_6_12_1
  doi: 10.1002/jmri.22499
– ident: e_1_2_6_19_1
– ident: e_1_2_6_14_1
  doi: 10.1002/JMRI.28408
– ident: e_1_2_6_24_1
  doi: 10.1002/MRM.24883
– ident: e_1_2_6_25_1
  doi: 10.1002/JMRI.22270
– ident: e_1_2_6_18_1
  doi: 10.3174/AJNR.A4865
– ident: e_1_2_6_11_1
  doi: 10.1002/MRM.1910340606
– volume-title: Proceedings of the International Society for Magnetic Resonance in Medicine
  year: 2020
  ident: e_1_2_6_30_1
– ident: e_1_2_6_9_1
  doi: 10.1002/JMRI.27446
– ident: e_1_2_6_16_1
– ident: e_1_2_6_27_1
  doi: 10.1080/02656736.2016.1179799
– ident: e_1_2_6_21_1
  doi: 10.1002/MRM.25391
– ident: e_1_2_6_22_1
  doi: 10.1002/LSM.23049
– ident: e_1_2_6_15_1
  doi: 10.1148/RADIOL.2019190452
– ident: e_1_2_6_3_1
  doi: 10.1002/JMRI.21265
– volume-title: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine
  year: 2023
  ident: e_1_2_6_23_1
SSID ssj0009974
Score 2.4743936
Snippet Purpose Evaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner,...
Evaluate the use of both single-echo gradient recalled echo (SE-GRE) and EPI approaches to creating temperature maps on a mid-field head-only scanner, both in...
PurposeEvaluate the use of both single‐echo gradient recalled echo (SE‐GRE) and EPI approaches to creating temperature maps on a mid‐field head‐only scanner,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1733
SubjectTerms Algorithms
Body Temperature - physiology
Brain
Brain - diagnostic imaging
Brain - physiology
Control stability
Echo planar imaging
Echo-Planar Imaging - methods
gradient recalled Echo
Humans
Image Processing, Computer-Assisted - methods
Imaging Methodology
In vivo methods and tests
magnetic resonance imaging
Magnetic Resonance Imaging - methods
MRI phantom
Optical fibers
Optical scanners
Phantoms, Imaging
Protocol
Protons
Reproducibility of Results
Resonant frequencies
Technical Note
Temperature
Temperature control
temperature mapping
Temperature measurement
Thermography - methods
Thermometry
Thermometry - methods
Tracking
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHVSUelwLllVKQeRy4ZLu2YyeBE6paFaRFqGqlHpAiv1IqdpNqNyvUnvgIfEY-CWPnUS0VCHFbbWY3cTxj_-1MfgPwyo5NmTsh44yaJE4MLli1FS4WzmQ5zi-ZC-D5yUd5cJx8OBEna_C2fxem5UMMG24-MsJ47QNc6cXOFTR0Np-NcPxNPemTchmWU4dX6Kg8bwnMaeLHmTzpqUJjtjP8cnUuuiYwr-dJ3lpW5-rim5pOV7VsmIz278DnvhltDsrX0bLRI3P5G-HxP9t5FzY6kUretV51D9ZctQk3J91j-E24EfJGzeI-XO59ek8866GuCC7ca59WQ8p5m599QTz4qqM2k5nyKIhTohoyHokjclYRFJ9E-xoVb8juUA-RNDXxGxhT9_P7D4ejMzmdh7y0Bs9gfOkXS_zXD-B4f-9o9yDuyjnExiN8YlnmgmnFtZVcMW5DsWtNNVUou1RuNXYZLwV1aVI67D9qGJdO6TQUNmKaP4T1qq7cYyAuQSHLhRmX1iYpQ5vM4rqU4v9KK0sVwYu-Y4vzltpRtHxmVuD9LML9jGC77_KiC9xFwVEBS5SlPIvg-XAYQ84_R1GVq5fehvkyACi0I3jUeshwFo5tRMUnIshWfGcw8Djv1SPV2ZeA9aYU1VpK8wheDm72t6t_HbzmzxbF5HASPmz9u-kTuM18geOQmrQN68186Z6i6mr0sxBevwDikins
  priority: 102
  providerName: Wiley-Blackwell
Title EPI proton resonant frequency temperature mapping at 0.5T in the brain: Comparison to single‐echo gradient recalled echo
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30373
https://www.ncbi.nlm.nih.gov/pubmed/39529375
https://www.proquest.com/docview/3161608338
https://www.proquest.com/docview/3128757020
https://pubmed.ncbi.nlm.nih.gov/PMC11782719
https://doi.org/10.1002/mrm.30373
UnpaywallVersion publishedVersion
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BohYufdDSpqXItD30ku3GjvPoDVEQrbRohViJniK_AojdBC1ZITj1J_Q39pd07GTTpqiolyiKJ3Zsjz2f4_E3AO_1QOWp4ZGfBCr0Q4ULVqm58blRSYr2JTGOeH54GB2Mw68n_GQJthdnYbr79_TjdDbt4ywbs2VYiTjC7R6sjA9HO99qek07h7hgh2iGqI9QPlywB_35btfm3AGSd_0hV-fFpbi5FpNJF7M6o7P_-PfRndrX5KI_r2Rf3f7F5HhvfZ7AowZykp1aR57CkinW4eGw2VRfhwfOC1RdPYPbvdEXYpkbyoLgMry0TjIkn9Xe1jfE0lg1HMxkKiyxwykRFRn0-TE5LwhCSSJtxIlPZLeNbkiqktjfERPz8_sPg3MtOZ05L7MKS1A2kIsm9vFzGO_vHe8e-E1wBl9ZQh4_ylNOpWBSR0xQpl3oahnIQCCIEqmWaRqznAcmDnODMDRQlEVGyNiFKaKSbUCvKAvzEogJEZYyrga51mFMUSbRuMoMMN9IR7nw4O2i-7LLmoMjq9mWaYbtmbn29GBz0bFZMwyvMoZ4NkKQyRIPtttkHEB2V0QUppxbGWpJ_RE2e_Ci1oO2FIZ1RPzGPUg6GtIKWHLubkpxfuZIuoMAsVccpB68a5Xpvq__4NTs3xLZ8Gjobl79V4avYY3aSMXOx2gTetVsbt4gfKrkFizTcITXz0d0qxlMvwCvRBgf
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RqpZeqpaWNpS27uPQS2D9iJMgLgiBlpYgVC0St8iOHYq0m6AlK0RP_Qn9jf0ljJ1s0Aq16i2KJy-PZ_yNPfkG4LMZFGVqIxkmtBChKDBg1SayYWSLJMX5JbGeeD47lsNT8fUsOluCnfm_MC0_RL_g5izD-2tn4G5BeuuONXQynWyiA475A3goJJUu9GLi5I5yN205mGPhPE0q5rxCA7bVX7o4G92DmPczJVdm1aW6uVbj8SKa9dPRwTN42uFIstsq_jks2WoVHmfdTvkqPPKpncXVC_i5f3JIHB1DXRGMrWuX-ULKaZtCfUMcN1VHrEwmyrE1nBPVkMFmNCIXFUF8SLQrI7FN9vqShaSpiVtjGNs_v35bdKDkfOpTxxp8QuGqsxjiTr-E04P90d4w7CouhIVj2QllmUZMK66N5Ipx4-tRa6qpQmSkUqOxT3kZURuL0mIH04JxaZWOfe0hpvkaLFd1ZV8DsQKxJo-KQWmMiBnKJAZDR4r3lUaWKoCP857PL1tijbylUGY5qif36glgY66TvLOtq5wjSJWIHHkSwIe-Ga3CbXWoytYzJ8McUz9i4QBetSrsn8LxGxGURQEkC8rtBRzj9mJLdfHDM29TioAqpmkAn_px8K-3_-JHyN8l8ux75g_W_1_0PawMR9lRfnR4_O0NPGGuHrHPJNqA5WY6s28RJDX6nbeFW6kMDU0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgqXAuWVtoB5HLhku4njJEZcUNtVC2xVVa3USxX5lVKxm6y2WaH2xE_gN_aXMHYe1VKBELconsSxZ8b-bE--AXir-yrnhsV-GqjIjxQuWKVmxmdGpRznl9Q44vnhXrxzFH06ZscL8KH9F6bmh-g23KxnuPHaOriZ6HzjmjV0PB33cABO6C24HTGe2oC-rYNr8ijOaw7mJLIjDY9aXqF-uNE9Oj8b3YCYNyMl786Kibj4LkajeTTrpqPBfThpG1JHoXzrzSrZU5e_cTz-b0sfwHKDU8nH2rAewoIpVmBp2JzEr8AdFzqqzh_B5fb-LrF0D2VBcO1e2sgakk_rEO0LYrmvGuJmMhaWDeKUiIr0e-yQnBUE8SeRNk3Fe7LZpUQkVUnsHsbIXP34aXCAJqdTF5pWYQ3KZn_RxN5-DEeD7cPNHb_J6OAry-LjxzlnoRRU6piKkGqX71oGMhCIvATXEnVGcxaYJMoNKjBQIY2NkInLbRRK-gQWi7Iwz4CYCLEsZaqfax0lIcqkGpemAb431nEuPHjdajab1MQdWU3RHGbYn5nrTw_WW51nje-eZxRBcIzIlKYevOqK0evsUYooTDmzMqHNBIBY24OntYl0tVBsI4I-5kE6ZzydgGX0ni8pzr46Zu8gQMCWBNyDN52d_e3r3zmz-bNENjwYuovVfxd9CUv7W4Psy-7e5zW4F9p0xy5QaR0Wq-nMPEcMVskXztV-AdqJLZE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTtwwFL2ig_rY9EFfaWll2i66yTCxYyfpDiEQrTQIVYxEV5FfoYiZBA0ZVbDqJ_Qb-RKunUzaFBV1FyU3dmxf28fx9TkAH8xIF5nlIkwjHYexxgWrMtyG3Oo0w_kltZ54frwv9ibxlyN-tAIby7Mw_f17ujmbz4Y4yibsDqwKjnB7AKuT_YOtbw29phtDvNghTkM0RCgfL9mD_ny3P-fcAJI34yHvL8ozefFDTqd9zOonnd1Hv4_uNLEmp8NFrYb68i8mx1vL8xgetpCTbDU-8gRWbLkG98btpvoa3PVRoPr8KVzuHHwmjrmhKgkuwysXJEOKeRNtfUEcjVXLwUxm0hE7HBNZk9GQH5KTkiCUJMopTnwi2526Iakr4n5HTO3Vz18Wx1pyPPdRZjXmoJ2QiyHu9jOY7O4cbu-FrThDqB0hTyiKjFMlmTKCScqMl65WkYokgiiZGZVlCSt4ZJO4sAhDI02ZsFIlXqaIKvYcBmVV2pdAbIywlHE9KoyJE4o2qcFVZoTpCiMKGcC7ZfPlZw0HR96wLdMc6zP39RnA-rJh87YbnucM8axAkMnSADa6x9iB3K6ILG21cDbUkfojbA7gReMHXS4My4j4jQeQ9jykM3Dk3P0n5cl3T9IdRYi9kigL4H3nTLd9_UfvZv-2yMdfx_7i1X8l-BoeUKdU7GOM1mFQzxf2DcKnWr1tO9A1n4cWXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EPI+proton+resonant+frequency+temperature+mapping+at+0.5T+in+the+brain%3A+Comparison+to+single%E2%80%90echo+gradient+recalled+echo&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Martinez%2C+Diego+F.&rft.au=Wiens%2C+Curtis+N.&rft.au=Harris%2C+Chad+T.&rft.au=Handler%2C+William+B.&rft.date=2025-04-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=93&rft.issue=4&rft.spage=1733&rft.epage=1740&rft_id=info:doi/10.1002%2Fmrm.30373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon