Time‐Varying Spatial Propagation of Brain Networks in fMRI Data

ABSTRACT Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro‐scale level as measured by resting‐state functional magnetic resonance imaging (rsfMRI). Previous studies observe the...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 46; no. 2; pp. e70131 - n/a
Main Authors Bostami, Biozid, Lewis, Noah, Agcaoglu, Oktay, Turner, Jessica A., Erp, Theo, Ford, Judith M., Fouladivanda, Mahshid, Calhoun, Vince, Iraji, Armin
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.02.2025
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.70131

Cover

Abstract ABSTRACT Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro‐scale level as measured by resting‐state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags. However, to our knowledge, no studies have examined spatial propagation patterns evolving with time across multiple overlapping 4D networks. Here, we propose a novel approach to study how dynamic states of the brain networks spatially propagate and evaluate whether these propagating states contain information relevant to mental illness. We implement a lagged windowed correlation approach to capture voxel‐wise network‐specific spatial propagation patterns in dynamic states. Results show systematic spatial state changes over time, which we confirmed are replicable across multiple scan sessions using human connectome project data. We observe networks varying in propagation speed; for example, the default mode network (DMN) propagates slowly and remains positively correlated with blood oxygenation level‐dependent (BOLD) signal for 6–8 s, whereas the visual network propagates much quicker. We also show that summaries of network‐specific propagative patterns are linked to schizophrenia. More specifically, we find significant group differences in multiple dynamic parameters between patients with schizophrenia and controls within four large‐scale networks: default mode, temporal lobe, subcortical, and visual network. Individuals with schizophrenia spend more time in certain propagating states. In summary, this study introduces a promising general approach to exploring the spatial propagation in dynamic states of brain networks and their associated complexity and reveals novel insights into the neurobiology of schizophrenia. In this work, we proposed a novel methodology for tracking propagation of a specific brain network utilizing lagged, sliding window Pearson correlation to capture voxel‐level network propagation that evolves with time.
AbstractList Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro‐scale level as measured by resting‐state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags. However, to our knowledge, no studies have examined spatial propagation patterns evolving with time across multiple overlapping 4D networks. Here, we propose a novel approach to study how dynamic states of the brain networks spatially propagate and evaluate whether these propagating states contain information relevant to mental illness. We implement a lagged windowed correlation approach to capture voxel‐wise network‐specific spatial propagation patterns in dynamic states. Results show systematic spatial state changes over time, which we confirmed are replicable across multiple scan sessions using human connectome project data. We observe networks varying in propagation speed; for example, the default mode network (DMN) propagates slowly and remains positively correlated with blood oxygenation level‐dependent (BOLD) signal for 6–8 s, whereas the visual network propagates much quicker. We also show that summaries of network‐specific propagative patterns are linked to schizophrenia. More specifically, we find significant group differences in multiple dynamic parameters between patients with schizophrenia and controls within four large‐scale networks: default mode, temporal lobe, subcortical, and visual network. Individuals with schizophrenia spend more time in certain propagating states. In summary, this study introduces a promising general approach to exploring the spatial propagation in dynamic states of brain networks and their associated complexity and reveals novel insights into the neurobiology of schizophrenia. In this work, we proposed a novel methodology for tracking propagation of a specific brain network utilizing lagged, sliding window Pearson correlation to capture voxel‐level network propagation that evolves with time.
ABSTRACT Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro‐scale level as measured by resting‐state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags. However, to our knowledge, no studies have examined spatial propagation patterns evolving with time across multiple overlapping 4D networks. Here, we propose a novel approach to study how dynamic states of the brain networks spatially propagate and evaluate whether these propagating states contain information relevant to mental illness. We implement a lagged windowed correlation approach to capture voxel‐wise network‐specific spatial propagation patterns in dynamic states. Results show systematic spatial state changes over time, which we confirmed are replicable across multiple scan sessions using human connectome project data. We observe networks varying in propagation speed; for example, the default mode network (DMN) propagates slowly and remains positively correlated with blood oxygenation level‐dependent (BOLD) signal for 6–8 s, whereas the visual network propagates much quicker. We also show that summaries of network‐specific propagative patterns are linked to schizophrenia. More specifically, we find significant group differences in multiple dynamic parameters between patients with schizophrenia and controls within four large‐scale networks: default mode, temporal lobe, subcortical, and visual network. Individuals with schizophrenia spend more time in certain propagating states. In summary, this study introduces a promising general approach to exploring the spatial propagation in dynamic states of brain networks and their associated complexity and reveals novel insights into the neurobiology of schizophrenia. In this work, we proposed a novel methodology for tracking propagation of a specific brain network utilizing lagged, sliding window Pearson correlation to capture voxel‐level network propagation that evolves with time.
Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro‐scale level as measured by resting‐state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags. However, to our knowledge, no studies have examined spatial propagation patterns evolving with time across multiple overlapping 4D networks. Here, we propose a novel approach to study how dynamic states of the brain networks spatially propagate and evaluate whether these propagating states contain information relevant to mental illness. We implement a lagged windowed correlation approach to capture voxel‐wise network‐specific spatial propagation patterns in dynamic states. Results show systematic spatial state changes over time, which we confirmed are replicable across multiple scan sessions using human connectome project data. We observe networks varying in propagation speed; for example, the default mode network (DMN) propagates slowly and remains positively correlated with blood oxygenation level‐dependent (BOLD) signal for 6–8 s, whereas the visual network propagates much quicker. We also show that summaries of network‐specific propagative patterns are linked to schizophrenia. More specifically, we find significant group differences in multiple dynamic parameters between patients with schizophrenia and controls within four large‐scale networks: default mode, temporal lobe, subcortical, and visual network. Individuals with schizophrenia spend more time in certain propagating states. In summary, this study introduces a promising general approach to exploring the spatial propagation in dynamic states of brain networks and their associated complexity and reveals novel insights into the neurobiology of schizophrenia.
Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro-scale level as measured by resting-state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags. However, to our knowledge, no studies have examined spatial propagation patterns evolving with time across multiple overlapping 4D networks. Here, we propose a novel approach to study how dynamic states of the brain networks spatially propagate and evaluate whether these propagating states contain information relevant to mental illness. We implement a lagged windowed correlation approach to capture voxel-wise network-specific spatial propagation patterns in dynamic states. Results show systematic spatial state changes over time, which we confirmed are replicable across multiple scan sessions using human connectome project data. We observe networks varying in propagation speed; for example, the default mode network (DMN) propagates slowly and remains positively correlated with blood oxygenation level-dependent (BOLD) signal for 6-8 s, whereas the visual network propagates much quicker. We also show that summaries of network-specific propagative patterns are linked to schizophrenia. More specifically, we find significant group differences in multiple dynamic parameters between patients with schizophrenia and controls within four large-scale networks: default mode, temporal lobe, subcortical, and visual network. Individuals with schizophrenia spend more time in certain propagating states. In summary, this study introduces a promising general approach to exploring the spatial propagation in dynamic states of brain networks and their associated complexity and reveals novel insights into the neurobiology of schizophrenia.Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro-scale level as measured by resting-state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags. However, to our knowledge, no studies have examined spatial propagation patterns evolving with time across multiple overlapping 4D networks. Here, we propose a novel approach to study how dynamic states of the brain networks spatially propagate and evaluate whether these propagating states contain information relevant to mental illness. We implement a lagged windowed correlation approach to capture voxel-wise network-specific spatial propagation patterns in dynamic states. Results show systematic spatial state changes over time, which we confirmed are replicable across multiple scan sessions using human connectome project data. We observe networks varying in propagation speed; for example, the default mode network (DMN) propagates slowly and remains positively correlated with blood oxygenation level-dependent (BOLD) signal for 6-8 s, whereas the visual network propagates much quicker. We also show that summaries of network-specific propagative patterns are linked to schizophrenia. More specifically, we find significant group differences in multiple dynamic parameters between patients with schizophrenia and controls within four large-scale networks: default mode, temporal lobe, subcortical, and visual network. Individuals with schizophrenia spend more time in certain propagating states. In summary, this study introduces a promising general approach to exploring the spatial propagation in dynamic states of brain networks and their associated complexity and reveals novel insights into the neurobiology of schizophrenia.
ABSTRACT Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro‐scale level as measured by resting‐state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags. However, to our knowledge, no studies have examined spatial propagation patterns evolving with time across multiple overlapping 4D networks. Here, we propose a novel approach to study how dynamic states of the brain networks spatially propagate and evaluate whether these propagating states contain information relevant to mental illness. We implement a lagged windowed correlation approach to capture voxel‐wise network‐specific spatial propagation patterns in dynamic states. Results show systematic spatial state changes over time, which we confirmed are replicable across multiple scan sessions using human connectome project data. We observe networks varying in propagation speed; for example, the default mode network (DMN) propagates slowly and remains positively correlated with blood oxygenation level‐dependent (BOLD) signal for 6–8 s, whereas the visual network propagates much quicker. We also show that summaries of network‐specific propagative patterns are linked to schizophrenia. More specifically, we find significant group differences in multiple dynamic parameters between patients with schizophrenia and controls within four large‐scale networks: default mode, temporal lobe, subcortical, and visual network. Individuals with schizophrenia spend more time in certain propagating states. In summary, this study introduces a promising general approach to exploring the spatial propagation in dynamic states of brain networks and their associated complexity and reveals novel insights into the neurobiology of schizophrenia.
Author Agcaoglu, Oktay
Erp, Theo
Lewis, Noah
Fouladivanda, Mahshid
Bostami, Biozid
Ford, Judith M.
Calhoun, Vince
Iraji, Armin
Turner, Jessica A.
AuthorAffiliation 3 School of Computational Science and Engineering Georgia Institute of Technology Atlanta Georgia USA
6 Department of Psychiatry University of California San Francisco California USA
5 School of Medicine University of California Irvine California USA
2 Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State, Georgia Tech, and Emory Atlanta Georgia USA
4 Department of Psychiatry and Behavioral Health University of California Irvine California USA
7 Department of Computer Science Georgia State Atlanta Georgia USA
1 School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta Georgia USA
AuthorAffiliation_xml – name: 4 Department of Psychiatry and Behavioral Health University of California Irvine California USA
– name: 2 Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State, Georgia Tech, and Emory Atlanta Georgia USA
– name: 5 School of Medicine University of California Irvine California USA
– name: 1 School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta Georgia USA
– name: 6 Department of Psychiatry University of California San Francisco California USA
– name: 3 School of Computational Science and Engineering Georgia Institute of Technology Atlanta Georgia USA
– name: 7 Department of Computer Science Georgia State Atlanta Georgia USA
Author_xml – sequence: 1
  givenname: Biozid
  orcidid: 0000-0001-7771-2581
  surname: Bostami
  fullname: Bostami, Biozid
  email: bbostami1@gsu.edu
  organization: Georgia State, Georgia Tech, and Emory
– sequence: 2
  givenname: Noah
  surname: Lewis
  fullname: Lewis, Noah
  organization: Georgia Institute of Technology
– sequence: 3
  givenname: Oktay
  surname: Agcaoglu
  fullname: Agcaoglu, Oktay
  organization: Georgia State, Georgia Tech, and Emory
– sequence: 4
  givenname: Jessica A.
  surname: Turner
  fullname: Turner, Jessica A.
  organization: University of California
– sequence: 5
  givenname: Theo
  surname: Erp
  fullname: Erp, Theo
  organization: University of California
– sequence: 6
  givenname: Judith M.
  surname: Ford
  fullname: Ford, Judith M.
  organization: University of California
– sequence: 7
  givenname: Mahshid
  surname: Fouladivanda
  fullname: Fouladivanda, Mahshid
  organization: Georgia State, Georgia Tech, and Emory
– sequence: 8
  givenname: Vince
  surname: Calhoun
  fullname: Calhoun, Vince
  organization: Georgia State
– sequence: 9
  givenname: Armin
  surname: Iraji
  fullname: Iraji, Armin
  organization: Georgia State
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39835629$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAUhC1URNsLC14ARWIDSGl9Esc_q6othVZqAUFha50kzm1KYgc76dXd8Qg8I0-CLym_Eqw8kr8Zjce7ZMs6awh5CHQPKM32r8p-T1DI4Q7ZAapESkHlWxvNi1QxAdtkN4RrSgEKCvfIdq5kXvBM7ZDDy7Y3Xz9_-YB-3dpl8m7AscUueePdgMuonU1ckxx5bG3yyowr5z-GJOrm4u1Z8hxHvE_uNtgF8-D2XJD3L04uj0_T89cvz44Pz9OKUQZpzVTJsQGEQpZU5hKZqLNSUMMxF4zWUmaZkIo3ilUUKXJJay4z4DlnKhoW5NmcO9kB1yvsOj34to-9NVC92UHHHfT3HSJ8MMPDVPamrowdPf4yOGz1nze2vdJLd6MBBBNK5THhyW2Cd58mE0bdt6EyXYfWuCnoHApRcGBx6QV5_Bd67SZv4xiR4kwqkGLT_9HvlX52-fEXEXg6A5V3IXjT_Pd9-zO7ajuz_jeoT48uZsc35GCl3Q
Cites_doi 10.1002/jmri.21848
10.1016/j.conb.2003.09.012
10.3389/fnsys.2011.00002
10.1038/nrn2201
10.1063/5.0137223
10.1073/pnas.1216856110
10.1016/j.neuroimage.2011.11.088
10.1073/pnas.1503960112
10.1162/netn_a_00037
10.1016/j.nicl.2019.101653
10.1152/jn.00339.2011
10.1152/jn.90777.2008
10.3389/fncir.2021.649417
10.1371/journal.pone.0224744
10.1093/cercor/bhs352
10.1007/s12264-016-0090-1
10.1016/j.pscychresns.2019.01.003
10.1126/science.1093173
10.1016/j.schres.2020.11.055
10.1002/hbm.24505
10.3389/fnins.2021.682110
10.1002/hbm.20531
10.1016/j.neuroimage.2012.11.008
10.1097/WCO.0000000000001081
10.3389/fnins.2022.770468
10.1002/hbm.20581
10.1016/j.neuroimage.2020.117385
10.1002/brb3.1333
10.1016/j.neuroimage.2015.09.003
10.1016/j.neuron.2013.01.031
10.1038/srep14655
10.1001/archpsyc.1987.01800190080012
10.1016/j.neuroimage.2023.120165
10.1016/j.nicl.2014.07.003
10.1073/pnas.2235811100
10.1016/j.nicl.2022.103140
10.1073/pnas.1521299113
10.1002/hbm.1024
10.1016/j.neuroimage.2022.119013
10.1016/j.neuron.2014.10.015
10.1523/JNEUROSCI.1020-23.2023
10.1006/cbmr.1996.0014
10.1089/brain.2011.0036
10.1002/mrm.1910340409
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC.
2025 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC.
– notice: 2025 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.70131
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1097-0193
EndPage n/a
ExternalDocumentID 10.1002/hbm.70131
PMC11747993
39835629
10_1002_hbm_70131
HBM70131
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: 5R01MH119251; R01MH118695; R01MH123610
– fundername: National Science Foundation
  funderid: 2112455
– fundername: NIH HHS
  grantid: R01MH123610
– fundername: NIH HHS
  grantid: 5R01MH119251
– fundername: NIMH NIH HHS
  grantid: R01 MH123610
– fundername: National Science Foundation
  grantid: 2112455
– fundername: NIH HHS
  grantid: R01MH118695
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPKN
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
53G
AAFWJ
AAMMB
AANHP
AAYXX
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
EJD
FEDTE
GAKWD
HF~
HVGLF
LH4
LW6
M6M
PHGZM
PHGZT
PUEGO
RIWAO
RJQFR
SAMSI
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4041-d49b6af1a158b0838a47d2b70e6a3740d88227896f94c0a0a680d682163649083
IEDL.DBID UNPAY
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 04:17:18 EDT 2025
Tue Sep 30 17:06:12 EDT 2025
Fri Sep 05 09:41:04 EDT 2025
Tue Oct 07 06:06:27 EDT 2025
Mon Jul 21 05:43:03 EDT 2025
Wed Oct 01 01:55:58 EDT 2025
Mon Feb 10 09:20:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords spatial dynamic propagation
network propagation
sliding window
dynamic states
resting‐state fMRI
Language English
License Attribution
2025 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4041-d49b6af1a158b0838a47d2b70e6a3740d88227896f94c0a0a680d682163649083
Notes This work was supported by National Science Foundation (NSF) grant: 2112455 and National Institutes of Health (NIH) grants: R01MH123610, R01MH118695, 5R01MH119251.
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding: This work was supported by National Science Foundation (NSF) grant: 2112455 and National Institutes of Health (NIH) grants: R01MH123610, R01MH118695, 5R01MH119251.
ORCID 0000-0001-7771-2581
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/hbm.70131
PMID 39835629
PQID 3164891878
PQPubID 996345
PageCount 13
ParticipantIDs unpaywall_primary_10_1002_hbm_70131
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11747993
proquest_miscellaneous_3157561419
proquest_journals_3164891878
pubmed_primary_39835629
crossref_primary_10_1002_hbm_70131
wiley_primary_10_1002_hbm_70131_HBM70131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 1, 2025
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 1, 2025
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 9
2013; 69
2022; 251
2015; 5
2023; 33
2011; 1
2021; 224
1995; 34
2019; 14
2021; 228
2016; 124
2003; 13
2007
2014; 24
2012; 59
2014; 84
2011; 5
2004; 304
2019; 286
2023; 43
1987; 44
2021; 15
1996; 29
2014; 5
2009; 30
2018; 2
2019; 40
2011; 106
2013; 77
2019; 21
2008; 29
2017; 33
2015; 112
2023; 276
2007; 8
2016; 113
2022; 35
2009; 101
2013; 110
2001; 13
2022; 16
2003; 100
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
Xu N. (e_1_2_10_48_1) 2023; 276
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
Fu Z. (e_1_2_10_19_1) 2021; 15
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
Miller R. L. (e_1_2_10_37_1) 2022; 16
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Arthur D. (e_1_2_10_6_1) 2007
Tan E. (e_1_2_10_44_1) 2023; 33
e_1_2_10_29_1
e_1_2_10_27_1
Rashid B. (e_1_2_10_40_1) 2019; 9
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_25_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 8
  start-page: 700
  issue: 9
  year: 2007
  end-page: 711
  article-title: Spontaneous Fluctuations in Brain Activity Observed With Functional Magnetic Resonance Imaging
  publication-title: Nature Reviews. Neuroscience
– volume: 15
  year: 2021
  article-title: Aberrant Dynamic Functional Connectivity of Default Mode Network in Schizophrenia and Links to Symptom Severity
  publication-title: Frontiers in Neural Circuits
– volume: 15
  year: 2021
  article-title: Whole‐Brain Functional Network Connectivity Abnormalities in Affective and Non‐Affective Early Phase Psychosis
  publication-title: Frontiers in Neuroscience
– volume: 33
  issue: 3
  year: 2023
  article-title: Selecting Embedding Delays: An Overview of Embedding Techniques and a New Method Using Persistent Homology
  publication-title: Chaos
– volume: 106
  start-page: 2322
  issue: 5
  year: 2011
  end-page: 2345
  article-title: The Organization of the Human Cerebellum Estimated by Intrinsic Functional Connectivity
  publication-title: Journal of Neurophysiology
– volume: 43
  start-page: 6609
  issue: 39
  year: 2023
  end-page: 6618
  article-title: Echoes From Intrinsic Connectivity Networks in the Subcortex
  publication-title: Journal of Neuroscience
– volume: 5
  start-page: 14655
  year: 2015
  article-title: Evidence of a Dissociation Pattern in Default Mode Subnetwork Functional Connectivity in Schizophrenia
  publication-title: Scientific Reports
– volume: 35
  year: 2022
  article-title: Involvement of Cerebellar and Subcortical Connector Hubs in Schizophrenia
  publication-title: Neuroimage Clin
– volume: 2
  start-page: 397
  issue: 4
  year: 2018
  end-page: 417
  article-title: Spontaneous Cognitive Processes and the Behavioral Validation of Time‐Varying Brain Connectivity
  publication-title: Network Neuroscience
– volume: 30
  start-page: 625
  issue: 2
  year: 2009
  end-page: 637
  article-title: Functional Connectivity of Default Mode Network Components: Correlation, Anticorrelation, and Causality
  publication-title: Human Brain Mapping
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  article-title: Dynamic Functional Connectivity Analysis Reveals Transient States of Dysconnectivity in Schizophrenia
  publication-title: Neuroimage‐Clinical
– start-page: 1027
  year: 2007
  end-page: 1035
– volume: 228
  start-page: 103
  year: 2021
  end-page: 111
  article-title: Multiple Overlapping Dynamic Patterns of the Visual Sensory Network in Schizophrenia
  publication-title: Schizophrenia Research
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  end-page: 541
  article-title: Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo‐Planar MRI
  publication-title: Magnetic Resonance in Medicine
– volume: 13
  start-page: 43
  issue: 1
  year: 2001
  end-page: 53
  article-title: Spatial and Temporal Independent Component Analysis of Functional MRI Data Containing a Pair of Task‐Related Waveforms
  publication-title: Human Brain Mapping
– volume: 112
  start-page: E2235
  issue: 17
  year: 2015
  end-page: E2244
  article-title: Lag Threads Organize the Brain's Intrinsic Activity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 100
  start-page: 13638
  issue: 23
  year: 2003
  end-page: 13643
  article-title: Interaction of Sensory Responses With Spontaneous Depolarization in Layer 2/3 Barrel Cortex
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 24
  start-page: 663
  issue: 3
  year: 2014
  end-page: 676
  article-title: Tracking Whole‐Brain Connectivity Dynamics in the Resting State
  publication-title: Cerebral Cortex
– volume: 5
  start-page: 2
  year: 2011
  article-title: A Baseline for the Multivariate Comparison of Resting‐State Networks
  publication-title: Frontiers in Systems Neuroscience
– volume: 29
  start-page: 162
  issue: 3
  year: 1996
  end-page: 173
  article-title: AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages
  publication-title: Computers and Biomedical Research
– volume: 69
  start-page: 157
  year: 2013
  end-page: 197
  article-title: Group Information Guided ICA for fMRI Data Analysis
  publication-title: NeuroImage
– volume: 84
  start-page: 262
  issue: 2
  year: 2014
  end-page: 274
  article-title: The Chronnectome: Time‐Varying Connectivity Networks as the Next Frontier in fMRI Data Discovery
  publication-title: Neuron
– volume: 29
  start-page: 828
  issue: 7
  year: 2008
  end-page: 838
  article-title: Modulation of Temporally Coherent Brain Networks Estimated Using ICA at Rest and During Cognitive Tasks
  publication-title: Human Brain Mapping
– volume: 304
  start-page: 559
  issue: 5670
  year: 2004
  end-page: 564
  article-title: Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity
  publication-title: Science
– volume: 77
  start-page: 1136
  issue: 6
  year: 2013
  end-page: 1150
  article-title: Making Waves: Initiation and Propagation of Corticothalamic Ca2+ Waves In Vivo
  publication-title: Neuron
– volume: 59
  start-page: 4160
  issue: 4
  year: 2012
  end-page: 4167
  article-title: SimTB, a Simulation Toolbox for fMRI Data Under a Model of Spatiotemporal Separability
  publication-title: NeuroImage
– volume: 40
  start-page: 1969
  issue: 6
  year: 2019
  end-page: 1986
  article-title: Spatial Dynamics Within and Between Brain Functional Domains: A Hierarchical Approach to Study Time‐Varying Brain Function
  publication-title: Human Brain Mapping
– volume: 124
  start-page: 1074
  year: 2016
  end-page: 1079
  article-title: The Function Biomedical Informatics Research Network Data Repository
  publication-title: NeuroImage
– volume: 30
  start-page: 384
  issue: 2
  year: 2009
  end-page: 393
  article-title: Spatiotemporal Dynamics of Low Frequency Fluctuations in BOLD fMRI of the Rat
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 286
  start-page: 69
  year: 2019
  end-page: 75
  article-title: Subcortical Structures and Cognitive Dysfunction in First Episode Schizophrenia
  publication-title: Psychiatry Research: Neuroimaging
– volume: 14
  issue: 12
  year: 2019
  article-title: Whole Brain Polarity Regime Dynamics Are Significantly Disrupted in Schizophrenia and Correlate Strongly With Network Connectivity Measures
  publication-title: PLoS One
– volume: 101
  start-page: 3270
  issue: 6
  year: 2009
  end-page: 3283
  article-title: The Global Signal and Observed Anticorrelated Resting State Brain Networks
  publication-title: Journal of Neurophysiology
– volume: 9
  issue: 12
  year: 2019
  article-title: Aberrant Patterns of Default‐Mode Network Functional Connectivity Associated With Metabolic Syndrome: A Resting‐State Study
  publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective
– volume: 224
  year: 2021
  article-title: Dynamic State With Covarying Brain Activity‐Connectivity: On the Pathophysiology of Schizophrenia
  publication-title: NeuroImage
– volume: 33
  start-page: 73
  issue: 1
  year: 2017
  end-page: 84
  article-title: A Review of the Functional and Anatomical Default Mode Network in Schizophrenia
  publication-title: Neuroscience Bulletin
– volume: 1
  start-page: 339
  issue: 4
  year: 2011
  end-page: 347
  article-title: A Sliding Time‐Window ICA Reveals Spatial Variability of the Default Mode Network in Time
  publication-title: Brain Connectivity
– volume: 44
  start-page: 660
  issue: 7
  year: 1987
  end-page: 669
  article-title: Implications of Normal Brain Development for the Pathogenesis of Schizophrenia
  publication-title: Archives of General Psychiatry
– volume: 276
  year: 2023
  article-title: The Interaction Between Random and Systematic Visual Stimulation and Infraslow Quasiperiodic Spatiotemporal Patterns of Whole Brain Activity (Withdrawal of Vol 276, Art no 120165, 2023)
  publication-title: NeuroImage
– volume: 251
  year: 2022
  article-title: Moving Beyond the ‘CAP’ of the Iceberg: Intrinsic Connectivity Networks in fMRI Are Continuously Engaging and Overlapping
  publication-title: NeuroImage
– volume: 13
  start-page: 620
  issue: 5
  year: 2003
  end-page: 629
  article-title: Independent Component Analysis of Functional MRI: What Is Signal and What Is Noise?
  publication-title: Current Opinion in Neurobiology
– volume: 21
  year: 2019
  article-title: Quasi‐Periodic Patterns of Brain Activity in Individuals With Attention‐Deficit/Hyperactivity Disorder
  publication-title: NeuroImage: Clinical
– volume: 35
  start-page: 475
  issue: 4
  year: 2022
  end-page: 481
  article-title: Reproducibility and Replicability in Neuroimaging Data Analysis
  publication-title: Current Opinion in Neurology
– volume: 113
  start-page: 6556
  issue: 23
  year: 2016
  end-page: 6561
  article-title: Transient Neuronal Coactivations Embedded in Globally Propagating Waves Underlie Resting‐State Functional Connectivity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 110
  start-page: 4392
  issue: 11
  year: 2013
  end-page: 4397
  article-title: Time‐Varying Functional Network Information Extracted From Brief Instances of Spontaneous Brain Activity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 16
  year: 2022
  article-title: Multiframe Evolving Dynamic Functional Connectivity (EVOdFNC): A Method for Constructing and Investigating Functional Brain Motifs
  publication-title: Frontiers in Neuroscience
– ident: e_1_2_10_33_1
  doi: 10.1002/jmri.21848
– ident: e_1_2_10_35_1
  doi: 10.1016/j.conb.2003.09.012
– ident: e_1_2_10_5_1
  doi: 10.3389/fnsys.2011.00002
– ident: e_1_2_10_17_1
  doi: 10.1038/nrn2201
– volume: 33
  issue: 3
  year: 2023
  ident: e_1_2_10_44_1
  article-title: Selecting Embedding Delays: An Overview of Embedding Techniques and a New Method Using Persistent Homology
  publication-title: Chaos
  doi: 10.1063/5.0137223
– ident: e_1_2_10_32_1
  doi: 10.1073/pnas.1216856110
– ident: e_1_2_10_15_1
  doi: 10.1016/j.neuroimage.2011.11.088
– ident: e_1_2_10_38_1
  doi: 10.1073/pnas.1503960112
– ident: e_1_2_10_31_1
  doi: 10.1162/netn_a_00037
– ident: e_1_2_10_2_1
  doi: 10.1016/j.nicl.2019.101653
– ident: e_1_2_10_8_1
  doi: 10.1152/jn.00339.2011
– ident: e_1_2_10_18_1
  doi: 10.1152/jn.90777.2008
– ident: e_1_2_10_42_1
  doi: 10.3389/fncir.2021.649417
– ident: e_1_2_10_36_1
  doi: 10.1371/journal.pone.0224744
– ident: e_1_2_10_4_1
  doi: 10.1093/cercor/bhs352
– ident: e_1_2_10_25_1
  doi: 10.1007/s12264-016-0090-1
– ident: e_1_2_10_16_1
  doi: 10.1016/j.pscychresns.2019.01.003
– ident: e_1_2_10_24_1
– ident: e_1_2_10_26_1
  doi: 10.1126/science.1093173
– ident: e_1_2_10_41_1
  doi: 10.1016/j.schres.2020.11.055
– ident: e_1_2_10_28_1
  doi: 10.1002/hbm.24505
– volume: 15
  year: 2021
  ident: e_1_2_10_19_1
  article-title: Whole‐Brain Functional Network Connectivity Abnormalities in Affective and Non‐Affective Early Phase Psychosis
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2021.682110
– ident: e_1_2_10_23_1
– ident: e_1_2_10_45_1
  doi: 10.1002/hbm.20531
– ident: e_1_2_10_14_1
  doi: 10.1016/j.neuroimage.2012.11.008
– ident: e_1_2_10_3_1
  doi: 10.1097/WCO.0000000000001081
– volume: 16
  year: 2022
  ident: e_1_2_10_37_1
  article-title: Multiframe Evolving Dynamic Functional Connectivity (EVOdFNC): A Method for Constructing and Investigating Functional Brain Motifs
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2022.770468
– ident: e_1_2_10_10_1
  doi: 10.1002/hbm.20581
– ident: e_1_2_10_20_1
  doi: 10.1016/j.neuroimage.2020.117385
– volume: 9
  issue: 12
  year: 2019
  ident: e_1_2_10_40_1
  article-title: Aberrant Patterns of Default‐Mode Network Functional Connectivity Associated With Metabolic Syndrome: A Resting‐State Study
  publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective
  doi: 10.1002/brb3.1333
– ident: e_1_2_10_29_1
  doi: 10.1016/j.neuroimage.2015.09.003
– ident: e_1_2_10_43_1
  doi: 10.1016/j.neuron.2013.01.031
– ident: e_1_2_10_46_1
  doi: 10.1038/srep14655
– ident: e_1_2_10_47_1
  doi: 10.1001/archpsyc.1987.01800190080012
– volume: 276
  year: 2023
  ident: e_1_2_10_48_1
  article-title: The Interaction Between Random and Systematic Visual Stimulation and Infraslow Quasiperiodic Spatiotemporal Patterns of Whole Brain Activity (Withdrawal of Vol 276, Art no 120165, 2023)
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.120165
– ident: e_1_2_10_13_1
  doi: 10.1016/j.nicl.2014.07.003
– start-page: 1027
  volume-title: Proceedings of the Eighteenth Annual Acm‐Siam Symposium on Discrete Algorithms
  year: 2007
  ident: e_1_2_10_6_1
– ident: e_1_2_10_39_1
  doi: 10.1073/pnas.2235811100
– ident: e_1_2_10_49_1
  doi: 10.1016/j.nicl.2022.103140
– ident: e_1_2_10_34_1
  doi: 10.1073/pnas.1521299113
– ident: e_1_2_10_9_1
  doi: 10.1002/hbm.1024
– ident: e_1_2_10_27_1
  doi: 10.1016/j.neuroimage.2022.119013
– ident: e_1_2_10_11_1
  doi: 10.1016/j.neuron.2014.10.015
– ident: e_1_2_10_22_1
– ident: e_1_2_10_21_1
  doi: 10.1523/JNEUROSCI.1020-23.2023
– ident: e_1_2_10_12_1
  doi: 10.1006/cbmr.1996.0014
– ident: e_1_2_10_30_1
  doi: 10.1089/brain.2011.0036
– ident: e_1_2_10_7_1
  doi: 10.1002/mrm.1910340409
SSID ssj0011501
Score 2.465399
Snippet ABSTRACT Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural...
Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity...
ABSTRACT Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e70131
SubjectTerms Adult
Algorithms
Blood levels
Brain
Brain - diagnostic imaging
Brain - physiopathology
Brain mapping
Brain research
Connectome - methods
Datasets
Default Mode Network - diagnostic imaging
Default Mode Network - physiology
dynamic states
Female
Females
Functional magnetic resonance imaging
Humans
Information flow
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Males
Mental disorders
Nerve Net - diagnostic imaging
Nerve Net - physiology
network propagation
Networks
Neuroimaging
Oxygenation
Propagation
Propagation modes
Quality control
resting‐state fMRI
Schizophrenia
Schizophrenia - diagnostic imaging
Schizophrenia - physiopathology
sliding window
Spatial data
spatial dynamic propagation
Temporal lobe
Time Factors
Visual observation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_qFbQvRVu10SrrB-JLbLLZ7MeDyJ22nMIdpVjpW5hkc22hzZ3XO0rf_BP8G_1LnN18yFHs28IuJJmZ7P5mZ-Y3AG81pmVuC-ujuqEwuQx1rkXIrZFYpOQQ-Lq10VgOj8W3k_RkDcZtLYxLq2z3RL9R22nh7sj3EsL12sRa6U-zn6HrGuWiq20LDWxaK9iPnmLsHqxzx4zVg_XB_vjwqIsrEPzxLhgdvKGhfbnlGor43ll--UE59pnVE-oW7LydPflgWc3w5hovLlYRrj-iDh7CZoMtWb82hkewVlZbsN2vyK--vGHvmM_29NfoW3B_1ATVt6HvykD-_Pr9A-eu5om5LsVklexwTg71qdccm07YwDWTYOM6bfyK0XgyOvrKvuACH8Pxwf73z8Ow6awQFiIScWidUnASY5zqnECYRqEsz1VUSkyUiCzhblciKydGFBFGKHVkpeYE3qSLFCZPoFdNq3IHWJ5bNIqjLdJEiCJF8mxTq0qprbFGlQG8bqWZzWoCjaymSuYZiTzzIg9gt5Vz1vxDV9k_jQfwqpsm63chDazK6dKtIbhJCCM2ATyt1dI9JTGELiWnGb2isG6BY9ZenanOzzzDdkx-miLkFsCbTrd3vf17r_X_r8iGg5EfPLv7Q5_DBnf9hX1W-C70FvNl-YJAzyJ_2VjyX8PU_m8
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8QHsQXRfBjAU1BQ3zZu_3o9iM-HSI5SY4YAoQHk810uycG2CPcXQw--Sf4N_qXOO3erjkJxPjWpN102860v-lMfwPwRmFWGltY79UNuTYiVEbxMLFaYJGRQeDfrQ0ORP-Y759mpwvwrnkLU_NDtBduTjP8fu0UHM24-4c09MxcdqRji6H9N06FN6cOW-ooB3S8sUVHbKhpB25YhaKk2345fxbdApi34ySXptUV3nzDi4t5LOsPo73H8LkZRh2Dct6ZTkyn-P4Xw-N_jnMZHs1AKuvVUvUEFspqBVZ7FRnolzdsm_mwUX8fvwIPBjPv_Cr03HuSXz9-nlBndCIyl-6YxJt9uibL_IsXATYash2XlYId1PHnY0bl4eDwI9vFCT6F470PR-_74SxFQ1jwiMehdauLwxjjTBlCcwq5tImRUSkwlTyyBODdW1sx1LyIMEKhIitUQihQOJdj-gwWq1FVvgBmjEUtE7RFlnJeZEgmcmZlKZTVVssygK1msfKrmokjrzmXk5zmKPdzFMBGs4z5TBnHeUomodKxkiqAzbaa1Mj5RrAqR1PXhnArQZVYB_C8XvW2l1QTTBUJ1ag5eWgbOIru-Zrq65mn6o7J4JMEAQN43YrOfX__1kvC3S3y_s7AF9b-vek6PExc0mIfar4Bi5PrafmSkNTEvPIq8xvtShey
  priority: 102
  providerName: Wiley-Blackwell
Title Time‐Varying Spatial Propagation of Brain Networks in fMRI Data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.70131
https://www.ncbi.nlm.nih.gov/pubmed/39835629
https://www.proquest.com/docview/3164891878
https://www.proquest.com/docview/3157561419
https://pubmed.ncbi.nlm.nih.gov/PMC11747993
https://doi.org/10.1002/hbm.70131
UnpaywallVersion publishedVersion
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 7X7
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: BENPR
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwED9trQS8DNgYC4zKA4R4SUkcx38eW9hUkFpVFUXlKbLjlCG2dOpaofHER-Az8kk4O2mhTEy8WJbs_POdld_57n4H8FzqtDA2t96rGzJleCiNZCG1ius8RYPA5631B7w3Zu8m6WQLjla5MJv-e_rq1Jy3heOE2YYmTxFuN6A5Hgw7H70Xk6ehqo2qyLGKIhpZsQf9ee3mP-cakLweD3l7WV7oq6_67GwTs_qfzsnd36k7VazJl_ZyYdr5t7-YHG_8nnuwU0NO0ql05D5sFeUu7HVKNLfPr8gL4oNA_en6Ltzq1772Pei47JCf33980HOXCkVc8WJUVjKco539yQuUzKak62pMkEEVTX5JsD_tj96SN3qhH8D45Pj9615YF1wIcxaxOLROVnoa6ziVBrGZ1ExYakRUcJ0IFlmE4y5zlk8VyyMdaS4jyyVFTMedAzHZh0Y5K4sDIMZYrQTVNk8TxvJUo8GbWlFwaZVVogjg6Uok2UXFq5FVDMo0wzXK_BoFcLgSVlZvrcssQQNPqlgKGcDRehg3hfN06LKYLd0cRKEIPGIVwMNKtuunJApBJ6c4Ijekvp7gCLc3R8rPp554O0bzTSCgC-DZWkFuevuXXnX-PSPrdfu-8-i_bvgY7lBXfdjHjB9CYzFfFk8QEi1MC7YpG2IrJqIFze7xYDhq-eMF145oq940vwBmTwmJ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6iIBUuqIUuaaF1V_WSkjiOYx9QNVNAM4WMEIKKW-rEGagEmWEWobn1J_QX8WP6S_rsLNUIlRu3SLYS5y329_w2gPdChXmqM229ui6TKXdFKphLteQqC9EgsHlrcY93Tti30_B0AW7qXBgTVlnviXaj1oPM3JFvBYjrhfRFJL4Mr1zTNcp4V-sWGqpqraC3bYmxKrFjP59dowk33u7uIL8_ULq3e_y141ZdBtyMecx3tVmg6vvKD0WKgEQoFmmaRl7OVRAxTyMGNemivC9Z5ilPceFpLigCGW68ZgG-9wEssYBJNP6W2ru9w6PGj4Fwy5p8eNC7Es-BuraRR7fO08vPkal2M38i3oK5t6M1l6fFUM2u1cXFPKK2R-LeI1itsCxplcL3GBbyYg3WWwXa8Zcz8pHY6FJ7bb8GD-PKib8OLZN28ufX7-9qZHKsiOmKjFpADkdowJ9ZSSGDPmmb5hWkV4apjwk-9-OjLtlRE_UETu6Fxk9hsRgU-XMgaaqVjKjSWRgwloUKLelQRzkXWmoZ5Q68ramZDMuCHUlZmpkmSPLEktyBjZrOSaWz4-SfhDnwphlGbTMuFFXkg6mZg_AWEY0vHXhWsqX5SiARzXKKI2KOYc0EU8l7fqT4eW4revtoF0aIFB141_D2rtV_slz__4yk047tw4u7f_Q1LHeO44PkoNvbfwkr1PQ2thHpG7A4GU3zTQRck_RVJdUEfty3Iv0FOS04Ig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQxp7QbBxCQwwV_ESmjiOLw8IdZSqZbSaEEN9C06cbEhbWnrR1Dd-Ar-Hn8Mv4dhJiqqJve0tkq3EORf7Oz43gBdSx3lqMuO8uj5TKfdlKplPjeI6i9EgcHlrgyHvHbGPo3i0Ab-bXBgbVtnsiW6jNuPM3pG3IsT1UoVSyFZRh0UcdrrvJj9820HKelqbdhqViBzky3M032Zv-x3k9UtKux--vO_5dYcBP2MBC31jF6eLUIexTBGMSM2EoakIcq4jwQKD-NOmivJCsSzQgeYyMFxSBDHceswifO81uC6iSNlwQjFaGXsWaDljD494X-EJ0FQ1CmjrJD17I2ydm_Wz8ALAvRineWNRTvTyXJ-ermNpdxh2b8HNGsWSdiV2t2EjL3dgt12iBX-2JK-Iiyt1F_Y7sDWo3fe70LYJJ39-_vqqpza7ith-yCj_5HCKpvuxkxEyLsi-bVtBhlWA-ozgczH43CcdPdd34OhKKHwXNstxmd8HkqZGK0G1yeKIsSzWaEPHRuRcGmWUyD141lAzmVSlOpKqKDNNkOSJI7kHew2dk1pbZ8k_2fLg6WoY9cw6T3SZjxd2DgJbxDKh8uBexZbVVyKFOJZTHJFrDFtNsDW810fK7yeulneIFqFAjOjB8xVvL1v9a8f1_89IevsD9_Dg8h99AluoPsmn_vDgIWxT29TYhaLvweZ8usgfIdKap4-dSBP4dtU69BeWhTW8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxRBEK7gkqgXRBAZHqZRY7zMMo9-HheBrCa7IcY1eJp0T8-CEWbJshsCJ34Cv9FfYnXP7OpIJN46qZ5XV3X6q6mqrwDeSs0KY3Pro7ohVYaH0kgaJlZxnTN0CHzdWq_PuwP66ZgdL8DOrBamGb9Pdk_NeVs4TphHsMgZwu0WLA76R51vPorJWahqpypyrKKIRmbsQX9e2zxz7gHJ-_mQT6blhb6-0mdnTczqD53DZ79Ld6pckx_t6cS085u_mBwf_J5lWKohJ-lUNvIcFopyBVY7Jbrb59fkHfFJoP7v-go87tWx9lXouOqQn7d3X_XYlUIR17wYjZUcjdHPPvEKJaMh2XM9Jki_yia_JDge9j5_JPt6ol_A4PDgy4duWDdcCHMa0Ti0Tld6GOuYSYPYTGoqbGJEVHCdChpZhOOucpYPFc0jHWkuI8tlgpiOuwBiugatclQW60CMsVqJRNucpZTmTKPDy6wouLTKKlEE8Hqmkuyi4tXIKgblJMM1yvwaBbA1U1ZWb63LLEUHT6pYChnAzlyMm8JFOnRZjKZuDqJQBB6xCuBlpdv5U1KFoJMnKJENrc8nOMLtpqT8fuqJt2N03wQCugDezA3kobd_703n3zOy7l7PDzb-64ab8DRx3Yd9zvgWtCbjabGNkGhiXtWb4heY6QRT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-Varying+Spatial+Propagation+of+Brain+Networks+in+fMRI+Data&rft.jtitle=Human+brain+mapping&rft.au=Bostami%2C+Biozid&rft.au=Lewis%2C+Noah&rft.au=Agcaoglu%2C+Oktay&rft.au=Turner%2C+Jessica+A&rft.date=2025-02-01&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=46&rft.issue=2&rft.spage=e70131&rft_id=info:doi/10.1002%2Fhbm.70131&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon