A Site‐Wise Reliability Analysis of the ABCD Diffusion Fractional Anisotropy and Cortical Thickness: Impact of Scanner Platforms

ABSTRACT The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 45; no. 16; pp. e70070 - n/a
Main Authors Pan, Yezhi, Hong, L. Elliot, Acheson, Ashley, Thompson, Paul M., Jahanshad, Neda, Zhu, Alyssa H., Yu, Jiaao, Chen, Chixiang, Ma, Tianzhou, Liu, Ho‐Ling, Veraart, Jelle, Fieremans, Els, Karcher, Nicole R., Kochunov, Peter, Chen, Shuo
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2024
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.70070

Cover

Abstract ABSTRACT The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site and multi‐scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner‐related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test–retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site‐wise adaptive ICC (AICC) to evaluate the reliability of imaging‐derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population‐level age‐related brain development trajectory using a weighted mixed model and updates age‐corrected site‐wise reliability until convergence. We evaluated the test–retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site‐and‐scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses. The test–retest reliability of structural neuroimaging data in the Adolescent Brain and Cognitive Development (ABCD) study varies by scanner manufacturers. A novel adaptive interclass correlation coefficient was introduced to assess the reliability of longitudinal imaging data of developing brains.
AbstractList The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9-10 years from 21 sites using standardized protocols for multi-site MRI data collection and analysis. While the multi-site and multi-scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner-related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test-retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site-wise adaptive ICC (AICC) to evaluate the reliability of imaging-derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population-level age-related brain development trajectory using a weighted mixed model and updates age-corrected site-wise reliability until convergence. We evaluated the test-retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site-and-scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses.The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9-10 years from 21 sites using standardized protocols for multi-site MRI data collection and analysis. While the multi-site and multi-scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner-related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test-retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site-wise adaptive ICC (AICC) to evaluate the reliability of imaging-derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population-level age-related brain development trajectory using a weighted mixed model and updates age-corrected site-wise reliability until convergence. We evaluated the test-retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site-and-scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses.
The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site and multi‐scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner‐related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test–retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site‐wise adaptive ICC (AICC) to evaluate the reliability of imaging‐derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population‐level age‐related brain development trajectory using a weighted mixed model and updates age‐corrected site‐wise reliability until convergence. We evaluated the test–retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site‐and‐scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses. The test–retest reliability of structural neuroimaging data in the Adolescent Brain and Cognitive Development (ABCD) study varies by scanner manufacturers. A novel adaptive interclass correlation coefficient was introduced to assess the reliability of longitudinal imaging data of developing brains.
ABSTRACT The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site and multi‐scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner‐related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test–retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site‐wise adaptive ICC (AICC) to evaluate the reliability of imaging‐derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population‐level age‐related brain development trajectory using a weighted mixed model and updates age‐corrected site‐wise reliability until convergence. We evaluated the test–retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site‐and‐scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses. The test–retest reliability of structural neuroimaging data in the Adolescent Brain and Cognitive Development (ABCD) study varies by scanner manufacturers. A novel adaptive interclass correlation coefficient was introduced to assess the reliability of longitudinal imaging data of developing brains.
The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9-10 years from 21 sites using standardized protocols for multi-site MRI data collection and analysis. While the multi-site and multi-scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner-related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test-retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site-wise adaptive ICC (AICC) to evaluate the reliability of imaging-derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population-level age-related brain development trajectory using a weighted mixed model and updates age-corrected site-wise reliability until convergence. We evaluated the test-retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site-and-scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses.
ABSTRACT The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site and multi‐scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner‐related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test–retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site‐wise adaptive ICC (AICC) to evaluate the reliability of imaging‐derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population‐level age‐related brain development trajectory using a weighted mixed model and updates age‐corrected site‐wise reliability until convergence. We evaluated the test–retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site‐and‐scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses.
The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site and multi‐scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner‐related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test–retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site‐wise adaptive ICC (AICC) to evaluate the reliability of imaging‐derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population‐level age‐related brain development trajectory using a weighted mixed model and updates age‐corrected site‐wise reliability until convergence. We evaluated the test–retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p  < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p  < 0.001). These findings demonstrate site‐and‐scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses.
Author Acheson, Ashley
Yu, Jiaao
Hong, L. Elliot
Zhu, Alyssa H.
Veraart, Jelle
Fieremans, Els
Karcher, Nicole R.
Jahanshad, Neda
Liu, Ho‐Ling
Kochunov, Peter
Chen, Shuo
Chen, Chixiang
Pan, Yezhi
Ma, Tianzhou
Thompson, Paul M.
AuthorAffiliation 6 Department of Mathematics University of Maryland College Park Maryland USA
4 Department of Psychiatry University of Arkansas for Medical Sciences Little Rock Arkansas USA
2 Institute for Health Computing University of Maryland North Bethesda Maryland USA
3 Department of Psychiatry and Behavioral Science University of Texas Health Science Center Houston Texas USA
1 Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine University of Maryland Baltimore Maryland USA
8 Department of Epidemiology and Biostatistics, School of Public Health University of Maryland College Park Maryland USA
7 Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine University of Maryland Baltimore Maryland USA
5 Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine University of Southern California Los Angeles California USA
11 Department of Psychiatry Washington University School
AuthorAffiliation_xml – name: 4 Department of Psychiatry University of Arkansas for Medical Sciences Little Rock Arkansas USA
– name: 10 Center for Biomedical Imaging, Department of Radiology New York University School of Medicine New York New York USA
– name: 1 Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine University of Maryland Baltimore Maryland USA
– name: 7 Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine University of Maryland Baltimore Maryland USA
– name: 9 Department of Imaging Physics, Division of Diagnostic Imaging The University of Texas MD Anderson Cancer Center Houston Texas USA
– name: 6 Department of Mathematics University of Maryland College Park Maryland USA
– name: 3 Department of Psychiatry and Behavioral Science University of Texas Health Science Center Houston Texas USA
– name: 8 Department of Epidemiology and Biostatistics, School of Public Health University of Maryland College Park Maryland USA
– name: 2 Institute for Health Computing University of Maryland North Bethesda Maryland USA
– name: 5 Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine University of Southern California Los Angeles California USA
– name: 11 Department of Psychiatry Washington University School of Medicine St. Louis Missouri USA
Author_xml – sequence: 1
  givenname: Yezhi
  orcidid: 0009-0001-4014-0302
  surname: Pan
  fullname: Pan, Yezhi
  organization: University of Maryland
– sequence: 2
  givenname: L. Elliot
  surname: Hong
  fullname: Hong, L. Elliot
  organization: University of Texas Health Science Center
– sequence: 3
  givenname: Ashley
  surname: Acheson
  fullname: Acheson, Ashley
  organization: University of Arkansas for Medical Sciences
– sequence: 4
  givenname: Paul M.
  surname: Thompson
  fullname: Thompson, Paul M.
  organization: University of Southern California
– sequence: 5
  givenname: Neda
  surname: Jahanshad
  fullname: Jahanshad, Neda
  organization: University of Southern California
– sequence: 6
  givenname: Alyssa H.
  surname: Zhu
  fullname: Zhu, Alyssa H.
  organization: University of Southern California
– sequence: 7
  givenname: Jiaao
  surname: Yu
  fullname: Yu, Jiaao
  organization: University of Maryland
– sequence: 8
  givenname: Chixiang
  surname: Chen
  fullname: Chen, Chixiang
  organization: University of Maryland
– sequence: 9
  givenname: Tianzhou
  surname: Ma
  fullname: Ma, Tianzhou
  organization: University of Maryland
– sequence: 10
  givenname: Ho‐Ling
  surname: Liu
  fullname: Liu, Ho‐Ling
  organization: The University of Texas MD Anderson Cancer Center
– sequence: 11
  givenname: Jelle
  surname: Veraart
  fullname: Veraart, Jelle
  organization: New York University School of Medicine
– sequence: 12
  givenname: Els
  surname: Fieremans
  fullname: Fieremans, Els
  organization: New York University School of Medicine
– sequence: 13
  givenname: Nicole R.
  surname: Karcher
  fullname: Karcher, Nicole R.
  organization: Washington University School of Medicine
– sequence: 14
  givenname: Peter
  surname: Kochunov
  fullname: Kochunov, Peter
  organization: University of Texas Health Science Center
– sequence: 15
  givenname: Shuo
  orcidid: 0000-0002-7990-4947
  surname: Chen
  fullname: Chen, Shuo
  email: shuochen@som.umaryland.edu
  organization: University of Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39526419$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1TAQhiNURC-w4AWQJTaAlNZ2EjvpBp2eUlqpCESLWFqOM-a4OPbBTqiyQzwBz8iT4EPKVYKVR_Y3v2Y-72ZbzjvIsvsE7xOM6cGq7fc5xhzfynYIbniOSVNsbWpW5U3JyXa2G-MVxoRUmNzJtoumoqwkzU72eYEuzABfP315ayKg12CNbI01w4QWTtopmoi8RsMK0OJoeYyOjdZjNN6hkyDVkAppE2miH4JfT0i6Di19GIxK95cro947iPEQnfXrhG-iLpR0DgJ6ZeWgfejj3ey2ljbCvZtzL3tz8uxyeZqfv3x-tlyc56rEJc6hBuAlK4u65YrwkpKGUi0LTXVXcWhJQWnJOlbXrCnqSre6g461ZVEwDUSpYi97MueObi2na2mtWAfTyzAJgsVGpEgixXeRCX46w-ux7aFT4IYgfzV4acSfL86sxDv_USTFFeE1TwmPbhKC_zBCHERvogJrpQM_RlEQWvOKULZBH_6FXvkxJLMzVda0YixRD34f6ecsPz4zAY9nQAUfYwD93_0OZvbaWJj-DYrToxdzxzfg1L8Z
Cites_doi 10.1016/j.neuroimage.2003.07.005
10.1080/10543400701376480
10.1016/j.neurobiolaging.2008.08.015
10.1196/annals.1440.010
10.1002/mrm.1910360612
10.1002/mrm.1910340327
10.1097/WCO.0b013e3280a02f78
10.1006/nimg.2000.0582
10.1111/jon.12521
10.1037/0033-2909.86.2.420
10.1016/j.neuroimage.2005.09.046
10.1093/biostatistics/kxj037
10.1016/j.neuroimage.2011.05.050
10.21037/qims-21-86
10.1016/j.neuroimage.2015.10.050
10.1016/j.neurobiolaging.2010.01.014
10.1007/978-1-4419-0318-1
10.1016/j.neuroimage.2019.116091
10.1109/10.293248
10.1101/2023.02.28.530498
10.1016/S0140-6736(01)01429-5
10.1093/cercor/bhi062
10.1002/jmri.21053
10.1016/j.dcn.2018.04.004
10.1038/s41386-020-0736-6
10.1016/S1053-8119(01)91393-X
10.1016/j.neubiorev.2014.05.009
10.1016/j.neuroimage.2005.01.028
10.1002/hbm.20619
10.1002/jmri.20727
10.1007/s11920-005-0001-z
10.1016/j.bandc.2009.08.009
10.1002/mrm.21200
10.1016/j.neuroimage.2014.06.021
10.1002/brb1003.1615
10.2307/2530491
10.1016/S1361-8415(01)80004-9
10.1073/pnas.0402680101
10.1038/s41598-017-11747-3
10.1101/2023.07.17.548591
10.1002/mrm.1910350319
10.1016/j.jneumeth.2017.12.017
10.1002/mrm.22361
10.1126/science.1215330
10.1016/j.nurt.2007.05.011
10.1002/nbm.782
10.1016/j.dcn.2018.03.001
10.1109/42.668698
10.1016/j.neuroimage.2006.01.021
10.1016/j.metabol.2008.07.009
10.1101/309260
10.1002/mrm.24959
10.1016/j.mri.2008.01.047
10.1016/j.neuroimage.2017.11.024
10.1056/NEJMoa1008069
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC.
2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC.
– notice: 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.70070
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1097-0193
EndPage n/a
ExternalDocumentID 10.1002/hbm.70070
PMC11551787
39526419
10_1002_hbm_70070
HBM70070
Genre researchArticle
Multicenter Study
Journal Article
GrantInformation_xml – fundername: National Institute on Drug Abuse
  funderid: 1DP1DA048968‐01
– fundername: National Institutes of Health
  funderid: P50 MH103222; R01 AA012207; R01 EB015611; R01 MH094520; R01 MH096263
– fundername: NINDS NIH HHS
  grantid: R01 NS114628
– fundername: NIH HHS
  grantid: R01 MH096263
– fundername: NIMH NIH HHS
  grantid: R01 MH116948
– fundername: NIMH NIH HHS
  grantid: R01 MH134004
– fundername: NIMH NIH HHS
  grantid: R01 MH096263
– fundername: NIAAA NIH HHS
  grantid: R01 AA012207
– fundername: NIDA NIH HHS
  grantid: K01 DA059603
– fundername: NIDA NIH HHS
  grantid: 1DP1DA048968-01
– fundername: NIH HHS
  grantid: R01 AA012207
– fundername: NIMH NIH HHS
  grantid: RF1 MH123163
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
AEFGJ
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
PHGZM
PHGZT
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4040-e8ee746438b7c17421922fa3f2fd57eb132246d68869385fbfded6b4336fe1cc3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Sun Sep 07 11:17:22 EDT 2025
Tue Sep 30 17:06:52 EDT 2025
Fri Sep 05 08:51:38 EDT 2025
Sat Jul 26 00:08:00 EDT 2025
Thu Aug 28 04:42:52 EDT 2025
Wed Oct 01 01:55:57 EDT 2025
Wed Jan 22 17:14:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords brain development
diffusion tensor imaging
structural MRI
test–retest reliability
quality control
longitudinal
Language English
License Attribution-NonCommercial
2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4040-e8ee746438b7c17421922fa3f2fd57eb132246d68869385fbfded6b4336fe1cc3
Notes Peter Kochunov and Shuo Chen share the senior authorship.
Funding
The project was funded by the National Institute on Drug Abuse of the National Institutes of Health, Award Number 1DP1DA048968‐01, and by the following NIH grants: R01 EB015611, R01 MH094520, R01 MH096263, R01 AA012207, and P50 MH103222.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding: The project was funded by the National Institute on Drug Abuse of the National Institutes of Health, Award Number 1DP1DA048968‐01, and by the following NIH grants: R01 EB015611, R01 MH094520, R01 MH096263, R01 AA012207, and P50 MH103222.
ORCID 0009-0001-4014-0302
0000-0002-7990-4947
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.70070
PMID 39526419
PQID 3128482566
PQPubID 996345
PageCount 11
ParticipantIDs unpaywall_primary_10_1002_hbm_70070
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11551787
proquest_miscellaneous_3128751267
proquest_journals_3128482566
pubmed_primary_39526419
crossref_primary_10_1002_hbm_70070
wiley_primary_10_1002_hbm_70070_HBM70070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
2002; 15
2006; 30
2006; 31
2018; 167
1995; 34
2019; 202
2008; 30
2011; 58
1996; 36
2005; 26
1996; 35
2010; 63
1979
2018; 296
1980; 36
1998; 17
2008; 1124
2000
2006; 24
2000; 11
2007; 8
2008; 26
2007; 4
1996; 1
2013; 110
2007; 20
2012; 335
2018; 32
2011; 364
2007; 26
2007; 17
2004; 101
2021; 46
2010; 31
2018; 28
2015; 125
2009
2008; 57
2017; 296
2012; 33
2011; 5
1994; 41
2007; 57
2014; 45
2021; 11
2023
2001; 6
2009; 72
2013; 72
2018
2005; 7
1901; 158
2005; 15
1979; 86
2014; 100
2003; 20
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
Kenny D. A. (e_1_2_7_33_1) 1979
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Fuller W. A. (e_1_2_7_23_1) 2009
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
Kochunov P. (e_1_2_7_36_1) 2011; 5
e_1_2_7_14_1
Konrad K. (e_1_2_7_38_1) 2013; 110
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_59_1
38915669 - bioRxiv. 2024 Jun 14:2024.02.21.581460. doi: 10.1101/2024.02.21.581460.
References_xml – volume: 33
  start-page: 9
  issue: 1
  year: 2012
  end-page: 20
  article-title: Fractional Anisotropy of Water Diffusion in Cerebral White Matter Across the Lifespan
  publication-title: Neurobiology of Aging
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  end-page: 980
  article-title: An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans Into Gyral Based Regions of Interest
  publication-title: NeuroImage
– year: 2009
– volume: 36
  start-page: 19
  issue: 1
  year: 1980
  article-title: The Estimation of Intraclass Correlation in the Analysis of Family Data
  publication-title: Biometrics
– volume: 101
  start-page: 8174
  issue: 21
  year: 2004
  end-page: 8179
  article-title: Dynamic Mapping of Human Cortical Development During Childhood Through Early Adulthood
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 31
  start-page: 1554
  issue: 9
  year: 2010
  end-page: 1562
  article-title: Lifespan Trajectory of Myelin Integrity and Maximum Motor Speed
  publication-title: Neurobiology of Aging
– volume: 7
  start-page: 81
  issue: 2
  year: 2005
  end-page: 82
  article-title: The Neurodevelopmental Model of Schizophrenia: What Can Very Early Onset Cases Tell Us?
  publication-title: Current Psychiatry Reports
– volume: 24
  start-page: 1188
  issue: 5
  year: 2006
  end-page: 1193
  article-title: Correction of Eddy‐Current Distortions in Diffusion Tensor Images Using the Known Directions and Strengths of Diffusion Gradients
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 5
  start-page: 1
  issue: 120
  year: 2011
  end-page: 15
  article-title: Genetic Analysis of Cortical Thickness and Fractional Anisotropy of Water Diffusion in the Brain
  publication-title: Frontiers in Neuroscience
– year: 1979
– year: 2018
– volume: 72
  start-page: 603
  issue: 3
  year: 2013
  end-page: 609
  article-title: Reproducibility of Phase Rotation STEAM at 3T: Focus on Glutathione
  publication-title: Magnetic Resonance in Medicine
– volume: 1
  start-page: 35
  issue: 1
  year: 1996
  end-page: 51
  article-title: Multi‐Modal Volume Registration by Maximization of Mutual Information
  publication-title: Medical Image Analysis
– volume: 46
  start-page: 131
  issue: 1
  year: 2021
  end-page: 142
  article-title: The ABCD Study: Understanding the Development of Risk for Mental and Physical Health Outcomes
  publication-title: Neuropsychopharmacology
– volume: 45
  start-page: 100
  year: 2014
  end-page: 118
  article-title: Test‐Retest Reliabilities of Resting‐State FMRI Measurements in Human Brain Functional Connectomics: A Systems Neuroscience Perspective
  publication-title: Neuroscience & Biobehavioral Reviews
– volume: 7
  issue: 1
  year: 2017
  article-title: Test‐Retest Reliability of High Spatial Resolution Diffusion Tensor and Diffusion Kurtosis Imaging
  publication-title: Scientific Reports
– volume: 17
  start-page: 529
  issue: 4
  year: 2007
  end-page: 569
  article-title: An Overview on Assessing Agreement With Continuous Measurements
  publication-title: Journal of Biopharmaceutical Statistics
– volume: 202
  year: 2019
  article-title: Image Processing and Analysis Methods for the Adolescent Brain Cognitive Development Study
  publication-title: NeuroImage
– volume: 32
  start-page: 16
  year: 2018
  end-page: 22
  article-title: Recruiting the ABCD Sample: Design Considerations and Procedures
  publication-title: Developmental Cognitive Neuroscience
– volume: 72
  start-page: 6
  issue: 1
  year: 2009
  end-page: 15
  article-title: Mapping Gray Matter Development: Implications for Typical Development and Vulnerability to Psychopathology
  publication-title: Brain and Cognition
– volume: 63
  start-page: 1144
  issue: 5
  year: 2010
  end-page: 1153
  article-title: Multiband Multislice GE‐EPI at 7 Tesla, With 16‐Fold Acceleration Using Partial Parallel Imaging With Application to High Spatial and Temporal Whole‐Brain fMRI
  publication-title: Magnetic Resonance in Medicine
– volume: 7
  issue: 2
  year: 2017
  article-title: Reproducibility of Tract‐Based White Matter Microstructural Measures Using the ENIGMA‐DTI Protocol
  publication-title: Genes, Brain, and Behavior
– volume: 41
  start-page: 601
  issue: 6
  year: 1994
  end-page: 606
  article-title: Focal Magnetic Stimulation of an Axon
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 34
  start-page: 476
  issue: 3
  year: 1995
  end-page: 480
  article-title: Correction of Motional Artifacts in Diffusion‐Weighted Images Using a Reference Phase Map
  publication-title: Magnetic Resonance in Medicine
– volume: 32
  start-page: 43
  year: 2018
  end-page: 54
  article-title: The Adolescent Brain Cognitive Development (ABCD) Study: Imaging Acquisition Across 21 Sites
  publication-title: Developmental Cognitive Neuroscience
– volume: 296
  start-page: 99
  year: 2018
  end-page: 108
  article-title: Miniature Pig Magnetic Resonance Spectroscopy Model of Normal Adolescent Brain Development
  publication-title: Journal of Neuroscience Methods
– volume: 167
  start-page: 104
  year: 2018
  end-page: 120
  article-title: Harmonization of Cortical Thickness Measurements Across Scanners and Sites
  publication-title: NeuroImage
– volume: 35
  start-page: 399
  issue: 3
  year: 1996
  end-page: 412
  article-title: Encoding of Anisotropic Diffusion With Tetrahedral Gradients: A General Mathematical Diffusion Formalism and Experimental Results
  publication-title: Magnetic Resonance in Medicine
– volume: 26
  start-page: 132
  issue: 1
  year: 2005
  end-page: 140
  article-title: Demyelination Increases Radial Diffusivity in Corpus Callosum of Mouse Brain
  publication-title: NeuroImage
– volume: 30
  start-page: 1535
  issue: 5
  year: 2008
  end-page: 1547
  article-title: Automated White‐Matter Tractography Using a Probabilistic Diffusion Tensor Atlas: Application to Temporal Lobe Epilepsy
  publication-title: Human Brain Mapping
– volume: 11
  start-page: 4431
  issue: 10
  year: 2021
  end-page: 4460
  article-title: Radiomics Feature Reliability Assessed by Intraclass Correlation Coefficient: A Systematic Review
  publication-title: Quantitative Imaging in Medicine and Surgery
– year: 2000
– volume: 58
  start-page: 41
  issue: 1
  year: 2011
  end-page: 49
  article-title: Fractional Anisotropy of Cerebral White Matter and Thickness of Cortical Gray Matter Across the Lifespan
  publication-title: NeuroImage
– volume: 57
  start-page: 688
  issue: 4
  year: 2007
  end-page: 695
  article-title: Toward Accurate Diagnosis of White Matter Pathology Using Diffusion Tensor Imaging
  publication-title: Magnetic Resonance in Medicine
– volume: 28
  start-page: 515
  issue: 5
  year: 2018
  end-page: 523
  article-title: Cortical Thickness Estimations of FreeSurfer and the CAT12 Toolbox in Patients With Alzheimer's Disease and Healthy Controls
  publication-title: Journal of Neuroimaging
– volume: 15
  start-page: 435
  issue: 7–8
  year: 2002
  end-page: 455
  article-title: The Basis of Anisotropic Water Diffusion in the Nervous System—A Technical Review
  publication-title: NMR in Biomedicine
– volume: 364
  start-page: 2091
  issue: 22
  year: 2011
  end-page: 2100
  article-title: Detection of Blast‐Related Traumatic Brain Injury in U.S. Military Personnel
  publication-title: New England Journal of Medicine
– volume: 20
  start-page: 1714
  issue: 3
  year: 2003
  end-page: 1722
  article-title: Diffusion Tensor Imaging Detects and Differentiates Axon and Myelin Degeneration in Mouse Optic Nerve After Retinal Ischemia
  publication-title: NeuroImage
– volume: 15
  start-page: 1848
  issue: 12
  year: 2005
  end-page: 1854
  article-title: White Matter Development During Childhood and Adolescence: A Cross‐Sectional Diffusion Tensor Imaging Study
  publication-title: Cerebral Cortex
– volume: 110
  start-page: 425
  issue: 25
  year: 2013
  end-page: 431
  article-title: Brain Development During Adolescence
  publication-title: Deutsches Ärzteblatt International
– volume: 86
  start-page: 420
  issue: 2
  year: 1979
  end-page: 428
  article-title: Intraclass Correlations: Uses in Assessing Rater Reliability
  publication-title: Psychological Bulletin
– volume: 4
  start-page: 316
  issue: 3
  year: 2007
  end-page: 329
  article-title: Diffusion Tensor Imaging of the Brain
  publication-title: Neurotherapeutics
– volume: 26
  start-page: 756
  issue: 3
  year: 2007
  end-page: 767
  article-title: Effects of Signal‐to‐Noise Ratio on the Accuracy and Reproducibility of Diffusion Tensor Imaging–Derived Fractional Anisotropy, Mean Diffusivity, and Principal Eigenvector Measurements at 1.5T
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 17
  start-page: 87
  issue: 1
  year: 1998
  end-page: 97
  article-title: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data
  publication-title: IEEE Transactions on Medical Imaging
– volume: 125
  start-page: 189
  year: 2015
  end-page: 197
  article-title: The Common Genetic Influence Over Processing Speed and White Matter Microstructure: Evidence From the Old Order Amish and Human Connectome Projects
  publication-title: NeuroImage
– volume: 20
  start-page: 119
  issue: 2
  year: 2007
  end-page: 124
  article-title: New Potential Leads in the Biology and Treatment of Attention Deficit‐Hyperactivity Disorder
  publication-title: Current Opinion in Neurology
– volume: 26
  start-page: 874
  issue: 7
  year: 2008
  end-page: 888
  article-title: Is Diffusion Anisotropy an Accurate Monitor of Myelination? Correlation of Multicomponent T2 Relaxation and Diffusion Tensor Anisotropy in Human Brain
  publication-title: Magnetic Resonance Imaging
– volume: 36
  start-page: 893
  issue: 6
  year: 1996
  end-page: 906
  article-title: Toward a Quantitative Assessment of Diffusion Anisotropy
  publication-title: Magnetic Resonance in Medicine
– volume: 11
  start-page: 805
  issue: 6 Pt 1
  year: 2000
  end-page: 821
  article-title: Voxel‐Based Morphometry—The Methods
  publication-title: NeuroImage
– year: 2023
– volume: 6
  start-page: 50
  issue: 13
  year: 2001
  article-title: Systematic Spatial Distortion in MRI due to Gradient Non‐Linearities
  publication-title: NeuroImage
– volume: 100
  start-page: 358
  year: 2014
  end-page: 369
  article-title: Methodological Considerations on Tract‐Based Spatial Statistics (TBSS)
  publication-title: NeuroImage
– volume: 8
  start-page: 118
  issue: 1
  year: 2007
  end-page: 127
  article-title: Adjusting Batch Effects in Microarray Expression Data Using Empirical Bayes Methods
  publication-title: Biostatistics
– volume: 57
  start-page: S2
  year: 2008
  end-page: S5
  article-title: Brain Development: Anatomy, Connectivity, Adaptive Plasticity, and Toxicity
  publication-title: Metabolism
– volume: 296
  start-page: 99
  year: 2017
  end-page: 108
  article-title: Miniature Pig Model of Human Adolescent Brain White Matter Development
  publication-title: Journal of Neuroscience Methods
– volume: 1124
  start-page: 111
  year: 2008
  end-page: 126
  article-title: The Adolescent Brain
  publication-title: Annals of the New York Academy of Sciences
– volume: 30
  start-page: 436
  issue: 2
  year: 2006
  end-page: 443
  article-title: Reliability in Multi‐Site Structural MRI Studies: Effects of Gradient Non‐Linearity Correction on Phantom and Human Data
  publication-title: NeuroImage
– volume: 335
  start-page: 1634
  issue: 6076
  year: 2012
  end-page: 1636
  article-title: Hierarchical Genetic Organization of Human Cortical Surface Area
  publication-title: Science (New York, N.Y.)
– volume: 158
  start-page: 1027
  year: 1901
  end-page: 1030
  article-title: Developmental (Myelogenetic) Localisation of the Cerebral Cortex in the Human
  publication-title: Lancet
– ident: e_1_2_7_54_1
  doi: 10.1016/j.neuroimage.2003.07.005
– ident: e_1_2_7_7_1
  doi: 10.1080/10543400701376480
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neurobiolaging.2008.08.015
– ident: e_1_2_7_13_1
  doi: 10.1196/annals.1440.010
– ident: e_1_2_7_43_1
  doi: 10.1002/mrm.1910360612
– ident: e_1_2_7_55_1
  doi: 10.1002/mrm.1910340327
– ident: e_1_2_7_12_1
  doi: 10.1097/WCO.0b013e3280a02f78
– ident: e_1_2_7_4_1
  doi: 10.1006/nimg.2000.0582
– ident: e_1_2_7_48_1
  doi: 10.1111/jon.12521
– ident: e_1_2_7_50_1
  doi: 10.1037/0033-2909.86.2.420
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2005.09.046
– ident: e_1_2_7_29_1
  doi: 10.1093/biostatistics/kxj037
– ident: e_1_2_7_34_1
  doi: 10.1016/j.neuroimage.2011.05.050
– ident: e_1_2_7_59_1
  doi: 10.21037/qims-21-86
– ident: e_1_2_7_37_1
  doi: 10.1016/j.neuroimage.2015.10.050
– ident: e_1_2_7_35_1
  doi: 10.1016/j.neurobiolaging.2010.01.014
– ident: e_1_2_7_44_1
  doi: 10.1007/978-1-4419-0318-1
– ident: e_1_2_7_28_1
  doi: 10.1016/j.neuroimage.2019.116091
– ident: e_1_2_7_9_1
  doi: 10.1109/10.293248
– ident: e_1_2_7_19_1
  doi: 10.1101/2023.02.28.530498
– ident: e_1_2_7_21_1
  doi: 10.1016/S0140-6736(01)01429-5
– ident: e_1_2_7_6_1
  doi: 10.1093/cercor/bhi062
– ident: e_1_2_7_20_1
  doi: 10.1002/jmri.21053
– ident: e_1_2_7_24_1
  doi: 10.1016/j.dcn.2018.04.004
– ident: e_1_2_7_32_1
  doi: 10.1038/s41386-020-0736-6
– ident: e_1_2_7_56_1
  doi: 10.1016/S1053-8119(01)91393-X
– ident: e_1_2_7_61_1
  doi: 10.1016/j.neubiorev.2014.05.009
– ident: e_1_2_7_53_1
  doi: 10.1016/j.neuroimage.2005.01.028
– ident: e_1_2_7_27_1
  doi: 10.1002/hbm.20619
– volume-title: Measurement Error Models
  year: 2009
  ident: e_1_2_7_23_1
– ident: e_1_2_7_60_1
  doi: 10.1002/jmri.20727
– ident: e_1_2_7_45_1
  doi: 10.1007/s11920-005-0001-z
– ident: e_1_2_7_25_1
  doi: 10.1016/j.bandc.2009.08.009
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.21200
– ident: e_1_2_7_5_1
  doi: 10.1016/j.neuroimage.2014.06.021
– ident: e_1_2_7_2_1
  doi: 10.1002/brb1003.1615
– ident: e_1_2_7_18_1
  doi: 10.2307/2530491
– volume: 5
  start-page: 1
  issue: 120
  year: 2011
  ident: e_1_2_7_36_1
  article-title: Genetic Analysis of Cortical Thickness and Fractional Anisotropy of Water Diffusion in the Brain
  publication-title: Frontiers in Neuroscience
– ident: e_1_2_7_57_1
  doi: 10.1016/S1361-8415(01)80004-9
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.0402680101
– ident: e_1_2_7_49_1
  doi: 10.1038/s41598-017-11747-3
– ident: e_1_2_7_51_1
  doi: 10.1101/2023.07.17.548591
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.1910350319
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jneumeth.2017.12.017
– ident: e_1_2_7_41_1
  doi: 10.1002/mrm.22361
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jneumeth.2017.12.017
– ident: e_1_2_7_15_1
  doi: 10.1126/science.1215330
– volume: 110
  start-page: 425
  issue: 25
  year: 2013
  ident: e_1_2_7_38_1
  article-title: Brain Development During Adolescence
  publication-title: Deutsches Ärzteblatt International
– volume-title: Correlation and Causality
  year: 1979
  ident: e_1_2_7_33_1
– ident: e_1_2_7_3_1
  doi: 10.1016/j.nurt.2007.05.011
– ident: e_1_2_7_10_1
  doi: 10.1002/nbm.782
– ident: e_1_2_7_14_1
  doi: 10.1016/j.dcn.2018.03.001
– ident: e_1_2_7_52_1
  doi: 10.1109/42.668698
– ident: e_1_2_7_17_1
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_2_7_31_1
  doi: 10.1016/j.metabol.2008.07.009
– ident: e_1_2_7_42_1
  doi: 10.1101/309260
– ident: e_1_2_7_58_1
  doi: 10.1002/mrm.24959
– ident: e_1_2_7_40_1
  doi: 10.1016/j.mri.2008.01.047
– ident: e_1_2_7_22_1
  doi: 10.1016/j.neuroimage.2017.11.024
– ident: e_1_2_7_39_1
  doi: 10.1056/NEJMoa1008069
– reference: 38915669 - bioRxiv. 2024 Jun 14:2024.02.21.581460. doi: 10.1101/2024.02.21.581460.
SSID ssj0011501
Score 2.4640284
Snippet ABSTRACT The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868...
The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868...
ABSTRACT The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e70070
SubjectTerms Adolescent
Adolescents
Age
Anisotropy
Brain
Brain Cortical Thickness
brain development
Cerebral Cortex - anatomy & histology
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - growth & development
Child
Child development
Computed tomography
Correlation coefficient
Correlation coefficients
Data analysis
Data collection
diffusion tensor imaging
Diffusion Tensor Imaging - methods
Diffusion Tensor Imaging - standards
Female
Humans
Impact analysis
Intellectual development
longitudinal
Longitudinal Studies
Magnetic resonance imaging
Male
Medical imaging
Neuroimaging
Phenotypes
quality control
Regional development
Reliability analysis
Reproducibility
Reproducibility of Results
Scanners
structural MRI
Substantia alba
Tensors
test–retest reliability
Thickness measurement
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgkYALgl0egQWZhxCXsE2cOAkX1O1SFaQipN0VvUV2bKsRXaekrVBviF_Ab-SXMOM8ULVib5FsxYnm4W_GM58JeRXHZiCZGPiBDAs_Ap3wMzUwfiJ4EBRGZaHAbuTpZz45jz7N4lmbcFu1ZZWdT3SOWlUF5siPGDpSCGc4f7_87uOtUXi62l6hcZ3cCACqoFYnsz7gQrDjAi7YZv0MvHDHLDQIj-by4m2CXDe7-9ElkHm5VvLWxi7F9odYLHbxrNuQxnfJnRZJ0mEj-nvkmrb75GBoIYq-2NLX1NV2uqT5Prk5bY_QD8ivIT2FX_rz8_fXcqUpliQ3VN1b2hGU0MpQwIV0eDw6oSelMRtMqdFx3TRB4KK2XFXrulpuqbCKjqrapcTp2bwsvqHzfEc_uvZLfNUpSM_qmn5ZiDVC5NV9cj7-cDaa-O1FDH4RYcWhTrVOIsAuqUwKCGHAy4WhEcyERsUJeHuGtHSKpynPWBobaZRWXEaMcaODomAPyJ6trH5EaGaMjCPk6JFBpAKTcZHFYPqSMxUVYeyRF5048mXDt5E3zMphDjLLncw8ctgJKm9NbpX_UxCPPO-HwVjwBERYXW2aOQlAHJ545GEj134VlsUADoPMI-mOxPsJSMS9O2LLuSPkDhB3gufzyMteOa76-jdObf4_I58cT93D46t_9Am5HQLGalojD8neut7op4CR1vKZM4S_oW0QzA
  priority: 102
  providerName: ProQuest
Title A Site‐Wise Reliability Analysis of the ABCD Diffusion Fractional Anisotropy and Cortical Thickness: Impact of Scanner Platforms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.70070
https://www.ncbi.nlm.nih.gov/pubmed/39526419
https://www.proquest.com/docview/3128482566
https://www.proquest.com/docview/3128751267
https://pubmed.ncbi.nlm.nih.gov/PMC11551787
https://doi.org/10.1002/hbm.70070
UnpaywallVersion publishedVersion
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: BENPR
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 7X7
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQwJeBmxcMkZlLkK8pGvixEngqe1WFaRO1S6iD5MiO7HVaF1S9SJUnhC_gN_IL-HYaYLKBEK8RJHsXOycy-fjc74AvPZ91RKUt2xHuIntoUzYUdpSdsCZ4yQqjVyuq5EHJ6x_4X0c-aMteF_VwpT8EHXATWuGsddawbmYH_4iDR2L62ag2WrQ_jrUN1u0pzV1lAY6ZrGFLtaO0AJXrEIt97C-ctMX3QCYN_Mk7y7zKV995pPJJpY1zqh3Hy6rYZQ5KFfN5UI0ky-_MTz-5zgfwM4apJJ2KVUPYUvmu7DXznGBfr0ib4hJGzXx-F24M1jvzu_BtzY5QwT74-v3T9lcEp3tXLKAr0jFfUIKRRByknane0SOMqWWOlpHerOyvkI_NM_mxWJWTFeE5ynpFjMTbSfn4yy50nb5HflgKjv1rc5QMHI5I8MJX2j0PX8EF73j827fXv_jwU48ncwoQykDD2FRKIIEV0doQF1XcapclfoBOhKqGe9SFoYsoqGvhEplyoRHKVPSSRL6GLbzIpdPgURKCd_T9D_C8VJHRYxHPloVwWjqJa5vwcvqa8fTksojLkmb3RgnOTaTbMFBJQfxWpvnMdVOHJfSjFnwom5GPdSbKzyXxbLsEyB6YoEFT0qxqZ9CIx9xpxNZEG4IVN1Bc3xvtuTZ2HB9OxrSolG14FUte397-7dGlP7cI-53BuZk_9-7PoN7LkK5sgLzALYXs6V8jlBsIRpwy_WGeAxGQQNud45PhqcNE9ZoGG38CfOuNPI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ2K8INiABQaYq3jJ1tiJkyAh1LVULVsnpHWibyEXW63oktKLpr4hfgG_hB_FL-EcpymqJva2t0i27CTn4u_Y53wGeOV5upaIuGY7CU9tF3XCDrOatv1YOk6qs5DHVI3cPZHtM_dT3-tvwO-qFobSKiufaBx1VqS0R34gyJFiOCPlh_F3m26NotPV6gqNUi2O1OICQ7bp-04T5fua89bHXqNtL28VsFOX0udUoJTv4kIcJH6KeBxNlnMdC8115vnougRxrGUyCGQoAk8nOlOZTFwhpFZOmgoc9wbcdEXNJa5-v78K8AhcmQAPl3U7RK9fMRnV-MEgOd_3iVtnff27BGov52ZuzfNxvLiIR6N1_GwWwNZduLNErqxeqto92FD5NuzUc4zazxfsDTO5pGaTfhtudZdH9jvws85O8Rf--fHry3CqGKVAl9TgC1YRorBCM8ShrH7YaLLmUOs5beGx1qQsuqBJ8-G0mE2K8YLFecYaxcRswbPeYJh-I2f9jnVMuScNdYrakqsJ-zyKZwTJp_fh7FpE9AA28yJXu8BCrRPPJU6gxHEzR4cyDj10NYkUmZtyz4IXlTiiccnvEZVMzjxCmUVGZhbsVYKKliY-jf4ppAXPV81onHTiEueqmJd9fIRU0rfgYSnX1Swi9BCMOqEFwZrEVx2I-Hu9JR8ODAG4QzgXPa0FL1fKcdXbvzVq8_8eUfuwax4eXf2hz2Cr3eseR8edk6PHcJsjvivLMvdgczaZqyeIz2bJU2MUDL5etxX-BaI1TRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQxq8INiABQaYq3jJ2tiJkyAh1LVULaPTpG2ibyEXW43okpK0mvqG-AX8Hn4Ov4RjJymqJva2t0ixnMu5fcc-5zPAK8eR7YiFbdOKaGzaqBOmn7Sl6YbcsmKZ-DRU3cijIz44sz-NnfEG_G56YVRZZeMTtaNO8litkbeYcqSYznDeknVZxHGv_2H23VQnSKmd1uY4jUpFDsXyAtO38v2wh7J-TWn_42l3YNYnDJixrUrphCeEa2NQ9iI3RmyO5kupDJmkMnFcdGNM8a0l3PO4zzxHRjIRCY9sxrgUVhwznPcG3HQZzoC25I5XyZ4CWjrZwxBv-hgBGlajNm1NovN9V_HsrMfCSwD3cp3mrUU2C5cX4XS6jqV1MOzfhTs1iiWdSu3uwYbItmGnk2EGf74kb4iuK9UL9tuwNaq373fgZ4ec4C_88-PXl7QURJVDVzThS9KQo5BcEsSkpHPQ7ZFeKuVCLeeRflE1YKiHZmmZz4t8tiRhlpBuXujleHI6SeNvynG_I0Pd-qmmOkHNyURBjqfhXMHz8j6cXYuIHsBmlmdiF4gvZeTYih8osuzEkj4PfQfdTsRZYsfUMeBFI45gVnF9BBWrMw1QZoGWmQF7jaCC2tzL4J9yGvB8dRsNVe2-hJnIF9UYF-EVdw14WMl19RTmOwhMLd8Ab03iqwGKBHz9TpZONBm4pTAvel0DXq6U46q3f6vV5v8jgsHBSF88uvpDn8EW2l_weXh0-BhuU4R6VYfmHmzOi4V4glBtHj3VNkHg63Ub4V8x9lFL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Site-Wise+Reliability+Analysis+of+the+ABCD+Diffusion+Fractional+Anisotropy+and+Cortical+Thickness%3A+Impact+of+Scanner+Platforms&rft.jtitle=Human+brain+mapping&rft.au=Pan%2C+Yezhi&rft.au=Hong%2C+L+Elliot&rft.au=Acheson%2C+Ashley&rft.au=Thompson%2C+Paul+M&rft.date=2024-11-01&rft.eissn=1097-0193&rft.volume=45&rft.issue=16&rft.spage=e70070&rft_id=info:doi/10.1002%2Fhbm.70070&rft_id=info%3Apmid%2F39526419&rft.externalDocID=39526419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon