A Site‐Wise Reliability Analysis of the ABCD Diffusion Fractional Anisotropy and Cortical Thickness: Impact of Scanner Platforms
ABSTRACT The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site...
Saved in:
Published in | Human brain mapping Vol. 45; no. 16; pp. e70070 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.70070 |
Cover
Abstract | ABSTRACT
The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site and multi‐scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner‐related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test–retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site‐wise adaptive ICC (AICC) to evaluate the reliability of imaging‐derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population‐level age‐related brain development trajectory using a weighted mixed model and updates age‐corrected site‐wise reliability until convergence. We evaluated the test–retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site‐and‐scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses.
The test–retest reliability of structural neuroimaging data in the Adolescent Brain and Cognitive Development (ABCD) study varies by scanner manufacturers. A novel adaptive interclass correlation coefficient was introduced to assess the reliability of longitudinal imaging data of developing brains. |
---|---|
AbstractList | The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9-10 years from 21 sites using standardized protocols for multi-site MRI data collection and analysis. While the multi-site and multi-scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner-related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test-retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site-wise adaptive ICC (AICC) to evaluate the reliability of imaging-derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population-level age-related brain development trajectory using a weighted mixed model and updates age-corrected site-wise reliability until convergence. We evaluated the test-retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site-and-scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses.The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9-10 years from 21 sites using standardized protocols for multi-site MRI data collection and analysis. While the multi-site and multi-scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner-related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test-retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site-wise adaptive ICC (AICC) to evaluate the reliability of imaging-derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population-level age-related brain development trajectory using a weighted mixed model and updates age-corrected site-wise reliability until convergence. We evaluated the test-retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site-and-scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses. The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site and multi‐scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner‐related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test–retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site‐wise adaptive ICC (AICC) to evaluate the reliability of imaging‐derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population‐level age‐related brain development trajectory using a weighted mixed model and updates age‐corrected site‐wise reliability until convergence. We evaluated the test–retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site‐and‐scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses. The test–retest reliability of structural neuroimaging data in the Adolescent Brain and Cognitive Development (ABCD) study varies by scanner manufacturers. A novel adaptive interclass correlation coefficient was introduced to assess the reliability of longitudinal imaging data of developing brains. ABSTRACT The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site and multi‐scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner‐related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test–retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site‐wise adaptive ICC (AICC) to evaluate the reliability of imaging‐derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population‐level age‐related brain development trajectory using a weighted mixed model and updates age‐corrected site‐wise reliability until convergence. We evaluated the test–retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site‐and‐scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses. The test–retest reliability of structural neuroimaging data in the Adolescent Brain and Cognitive Development (ABCD) study varies by scanner manufacturers. A novel adaptive interclass correlation coefficient was introduced to assess the reliability of longitudinal imaging data of developing brains. The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9-10 years from 21 sites using standardized protocols for multi-site MRI data collection and analysis. While the multi-site and multi-scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner-related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test-retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site-wise adaptive ICC (AICC) to evaluate the reliability of imaging-derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population-level age-related brain development trajectory using a weighted mixed model and updates age-corrected site-wise reliability until convergence. We evaluated the test-retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site-and-scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses. ABSTRACT The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site and multi‐scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner‐related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test–retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site‐wise adaptive ICC (AICC) to evaluate the reliability of imaging‐derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population‐level age‐related brain development trajectory using a weighted mixed model and updates age‐corrected site‐wise reliability until convergence. We evaluated the test–retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site‐and‐scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses. The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9–10 years from 21 sites using standardized protocols for multi‐site MRI data collection and analysis. While the multi‐site and multi‐scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner‐related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test–retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site‐wise adaptive ICC (AICC) to evaluate the reliability of imaging‐derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population‐level age‐related brain development trajectory using a weighted mixed model and updates age‐corrected site‐wise reliability until convergence. We evaluated the test–retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site‐and‐scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses. |
Author | Acheson, Ashley Yu, Jiaao Hong, L. Elliot Zhu, Alyssa H. Veraart, Jelle Fieremans, Els Karcher, Nicole R. Jahanshad, Neda Liu, Ho‐Ling Kochunov, Peter Chen, Shuo Chen, Chixiang Pan, Yezhi Ma, Tianzhou Thompson, Paul M. |
AuthorAffiliation | 6 Department of Mathematics University of Maryland College Park Maryland USA 4 Department of Psychiatry University of Arkansas for Medical Sciences Little Rock Arkansas USA 2 Institute for Health Computing University of Maryland North Bethesda Maryland USA 3 Department of Psychiatry and Behavioral Science University of Texas Health Science Center Houston Texas USA 1 Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine University of Maryland Baltimore Maryland USA 8 Department of Epidemiology and Biostatistics, School of Public Health University of Maryland College Park Maryland USA 7 Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine University of Maryland Baltimore Maryland USA 5 Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine University of Southern California Los Angeles California USA 11 Department of Psychiatry Washington University School |
AuthorAffiliation_xml | – name: 4 Department of Psychiatry University of Arkansas for Medical Sciences Little Rock Arkansas USA – name: 10 Center for Biomedical Imaging, Department of Radiology New York University School of Medicine New York New York USA – name: 1 Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine University of Maryland Baltimore Maryland USA – name: 7 Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine University of Maryland Baltimore Maryland USA – name: 9 Department of Imaging Physics, Division of Diagnostic Imaging The University of Texas MD Anderson Cancer Center Houston Texas USA – name: 6 Department of Mathematics University of Maryland College Park Maryland USA – name: 3 Department of Psychiatry and Behavioral Science University of Texas Health Science Center Houston Texas USA – name: 8 Department of Epidemiology and Biostatistics, School of Public Health University of Maryland College Park Maryland USA – name: 2 Institute for Health Computing University of Maryland North Bethesda Maryland USA – name: 5 Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine University of Southern California Los Angeles California USA – name: 11 Department of Psychiatry Washington University School of Medicine St. Louis Missouri USA |
Author_xml | – sequence: 1 givenname: Yezhi orcidid: 0009-0001-4014-0302 surname: Pan fullname: Pan, Yezhi organization: University of Maryland – sequence: 2 givenname: L. Elliot surname: Hong fullname: Hong, L. Elliot organization: University of Texas Health Science Center – sequence: 3 givenname: Ashley surname: Acheson fullname: Acheson, Ashley organization: University of Arkansas for Medical Sciences – sequence: 4 givenname: Paul M. surname: Thompson fullname: Thompson, Paul M. organization: University of Southern California – sequence: 5 givenname: Neda surname: Jahanshad fullname: Jahanshad, Neda organization: University of Southern California – sequence: 6 givenname: Alyssa H. surname: Zhu fullname: Zhu, Alyssa H. organization: University of Southern California – sequence: 7 givenname: Jiaao surname: Yu fullname: Yu, Jiaao organization: University of Maryland – sequence: 8 givenname: Chixiang surname: Chen fullname: Chen, Chixiang organization: University of Maryland – sequence: 9 givenname: Tianzhou surname: Ma fullname: Ma, Tianzhou organization: University of Maryland – sequence: 10 givenname: Ho‐Ling surname: Liu fullname: Liu, Ho‐Ling organization: The University of Texas MD Anderson Cancer Center – sequence: 11 givenname: Jelle surname: Veraart fullname: Veraart, Jelle organization: New York University School of Medicine – sequence: 12 givenname: Els surname: Fieremans fullname: Fieremans, Els organization: New York University School of Medicine – sequence: 13 givenname: Nicole R. surname: Karcher fullname: Karcher, Nicole R. organization: Washington University School of Medicine – sequence: 14 givenname: Peter surname: Kochunov fullname: Kochunov, Peter organization: University of Texas Health Science Center – sequence: 15 givenname: Shuo orcidid: 0000-0002-7990-4947 surname: Chen fullname: Chen, Shuo email: shuochen@som.umaryland.edu organization: University of Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39526419$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1TAQhiNURC-w4AWQJTaAlNZ2EjvpBp2eUlqpCESLWFqOM-a4OPbBTqiyQzwBz8iT4EPKVYKVR_Y3v2Y-72ZbzjvIsvsE7xOM6cGq7fc5xhzfynYIbniOSVNsbWpW5U3JyXa2G-MVxoRUmNzJtoumoqwkzU72eYEuzABfP315ayKg12CNbI01w4QWTtopmoi8RsMK0OJoeYyOjdZjNN6hkyDVkAppE2miH4JfT0i6Di19GIxK95cro947iPEQnfXrhG-iLpR0DgJ6ZeWgfejj3ey2ljbCvZtzL3tz8uxyeZqfv3x-tlyc56rEJc6hBuAlK4u65YrwkpKGUi0LTXVXcWhJQWnJOlbXrCnqSre6g461ZVEwDUSpYi97MueObi2na2mtWAfTyzAJgsVGpEgixXeRCX46w-ux7aFT4IYgfzV4acSfL86sxDv_USTFFeE1TwmPbhKC_zBCHERvogJrpQM_RlEQWvOKULZBH_6FXvkxJLMzVda0YixRD34f6ecsPz4zAY9nQAUfYwD93_0OZvbaWJj-DYrToxdzxzfg1L8Z |
Cites_doi | 10.1016/j.neuroimage.2003.07.005 10.1080/10543400701376480 10.1016/j.neurobiolaging.2008.08.015 10.1196/annals.1440.010 10.1002/mrm.1910360612 10.1002/mrm.1910340327 10.1097/WCO.0b013e3280a02f78 10.1006/nimg.2000.0582 10.1111/jon.12521 10.1037/0033-2909.86.2.420 10.1016/j.neuroimage.2005.09.046 10.1093/biostatistics/kxj037 10.1016/j.neuroimage.2011.05.050 10.21037/qims-21-86 10.1016/j.neuroimage.2015.10.050 10.1016/j.neurobiolaging.2010.01.014 10.1007/978-1-4419-0318-1 10.1016/j.neuroimage.2019.116091 10.1109/10.293248 10.1101/2023.02.28.530498 10.1016/S0140-6736(01)01429-5 10.1093/cercor/bhi062 10.1002/jmri.21053 10.1016/j.dcn.2018.04.004 10.1038/s41386-020-0736-6 10.1016/S1053-8119(01)91393-X 10.1016/j.neubiorev.2014.05.009 10.1016/j.neuroimage.2005.01.028 10.1002/hbm.20619 10.1002/jmri.20727 10.1007/s11920-005-0001-z 10.1016/j.bandc.2009.08.009 10.1002/mrm.21200 10.1016/j.neuroimage.2014.06.021 10.1002/brb1003.1615 10.2307/2530491 10.1016/S1361-8415(01)80004-9 10.1073/pnas.0402680101 10.1038/s41598-017-11747-3 10.1101/2023.07.17.548591 10.1002/mrm.1910350319 10.1016/j.jneumeth.2017.12.017 10.1002/mrm.22361 10.1126/science.1215330 10.1016/j.nurt.2007.05.011 10.1002/nbm.782 10.1016/j.dcn.2018.03.001 10.1109/42.668698 10.1016/j.neuroimage.2006.01.021 10.1016/j.metabol.2008.07.009 10.1101/309260 10.1002/mrm.24959 10.1016/j.mri.2008.01.047 10.1016/j.neuroimage.2017.11.024 10.1056/NEJMoa1008069 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by Wiley Periodicals LLC. 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC. 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). published by Wiley Periodicals LLC. – notice: 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7X7 7XB 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH K9. M0S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
DOI | 10.1002/hbm.70070 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Chemoreception Abstracts ProQuest Central (New) Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1097-0193 |
EndPage | n/a |
ExternalDocumentID | 10.1002/hbm.70070 PMC11551787 39526419 10_1002_hbm_70070 HBM70070 |
Genre | researchArticle Multicenter Study Journal Article |
GrantInformation_xml | – fundername: National Institute on Drug Abuse funderid: 1DP1DA048968‐01 – fundername: National Institutes of Health funderid: P50 MH103222; R01 AA012207; R01 EB015611; R01 MH094520; R01 MH096263 – fundername: NINDS NIH HHS grantid: R01 NS114628 – fundername: NIH HHS grantid: R01 MH096263 – fundername: NIMH NIH HHS grantid: R01 MH116948 – fundername: NIMH NIH HHS grantid: R01 MH134004 – fundername: NIMH NIH HHS grantid: R01 MH096263 – fundername: NIAAA NIH HHS grantid: R01 AA012207 – fundername: NIDA NIH HHS grantid: K01 DA059603 – fundername: NIDA NIH HHS grantid: 1DP1DA048968-01 – fundername: NIH HHS grantid: R01 AA012207 – fundername: NIMH NIH HHS grantid: RF1 MH123163 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAMMB AAYXX AEFGJ AFPKN AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM PHGZT PUEGO CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c4040-e8ee746438b7c17421922fa3f2fd57eb132246d68869385fbfded6b4336fe1cc3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Sun Sep 07 11:17:22 EDT 2025 Tue Sep 30 17:06:52 EDT 2025 Fri Sep 05 08:51:38 EDT 2025 Sat Jul 26 00:08:00 EDT 2025 Thu Aug 28 04:42:52 EDT 2025 Wed Oct 01 01:55:57 EDT 2025 Wed Jan 22 17:14:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | brain development diffusion tensor imaging structural MRI test–retest reliability quality control longitudinal |
Language | English |
License | Attribution-NonCommercial 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4040-e8ee746438b7c17421922fa3f2fd57eb132246d68869385fbfded6b4336fe1cc3 |
Notes | Peter Kochunov and Shuo Chen share the senior authorship. Funding The project was funded by the National Institute on Drug Abuse of the National Institutes of Health, Award Number 1DP1DA048968‐01, and by the following NIH grants: R01 EB015611, R01 MH094520, R01 MH096263, R01 AA012207, and P50 MH103222. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding: The project was funded by the National Institute on Drug Abuse of the National Institutes of Health, Award Number 1DP1DA048968‐01, and by the following NIH grants: R01 EB015611, R01 MH094520, R01 MH096263, R01 AA012207, and P50 MH103222. |
ORCID | 0009-0001-4014-0302 0000-0002-7990-4947 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.70070 |
PMID | 39526419 |
PQID | 3128482566 |
PQPubID | 996345 |
PageCount | 11 |
ParticipantIDs | unpaywall_primary_10_1002_hbm_70070 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11551787 proquest_miscellaneous_3128751267 proquest_journals_3128482566 pubmed_primary_39526419 crossref_primary_10_1002_hbm_70070 wiley_primary_10_1002_hbm_70070_HBM70070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 7 2002; 15 2006; 30 2006; 31 2018; 167 1995; 34 2019; 202 2008; 30 2011; 58 1996; 36 2005; 26 1996; 35 2010; 63 1979 2018; 296 1980; 36 1998; 17 2008; 1124 2000 2006; 24 2000; 11 2007; 8 2008; 26 2007; 4 1996; 1 2013; 110 2007; 20 2012; 335 2018; 32 2011; 364 2007; 26 2007; 17 2004; 101 2021; 46 2010; 31 2018; 28 2015; 125 2009 2008; 57 2017; 296 2012; 33 2011; 5 1994; 41 2007; 57 2014; 45 2021; 11 2023 2001; 6 2009; 72 2013; 72 2018 2005; 7 1901; 158 2005; 15 1979; 86 2014; 100 2003; 20 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 Kenny D. A. (e_1_2_7_33_1) 1979 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Fuller W. A. (e_1_2_7_23_1) 2009 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 Kochunov P. (e_1_2_7_36_1) 2011; 5 e_1_2_7_14_1 Konrad K. (e_1_2_7_38_1) 2013; 110 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_59_1 38915669 - bioRxiv. 2024 Jun 14:2024.02.21.581460. doi: 10.1101/2024.02.21.581460. |
References_xml | – volume: 33 start-page: 9 issue: 1 year: 2012 end-page: 20 article-title: Fractional Anisotropy of Water Diffusion in Cerebral White Matter Across the Lifespan publication-title: Neurobiology of Aging – volume: 31 start-page: 968 issue: 3 year: 2006 end-page: 980 article-title: An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans Into Gyral Based Regions of Interest publication-title: NeuroImage – year: 2009 – volume: 36 start-page: 19 issue: 1 year: 1980 article-title: The Estimation of Intraclass Correlation in the Analysis of Family Data publication-title: Biometrics – volume: 101 start-page: 8174 issue: 21 year: 2004 end-page: 8179 article-title: Dynamic Mapping of Human Cortical Development During Childhood Through Early Adulthood publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 31 start-page: 1554 issue: 9 year: 2010 end-page: 1562 article-title: Lifespan Trajectory of Myelin Integrity and Maximum Motor Speed publication-title: Neurobiology of Aging – volume: 7 start-page: 81 issue: 2 year: 2005 end-page: 82 article-title: The Neurodevelopmental Model of Schizophrenia: What Can Very Early Onset Cases Tell Us? publication-title: Current Psychiatry Reports – volume: 24 start-page: 1188 issue: 5 year: 2006 end-page: 1193 article-title: Correction of Eddy‐Current Distortions in Diffusion Tensor Images Using the Known Directions and Strengths of Diffusion Gradients publication-title: Journal of Magnetic Resonance Imaging – volume: 5 start-page: 1 issue: 120 year: 2011 end-page: 15 article-title: Genetic Analysis of Cortical Thickness and Fractional Anisotropy of Water Diffusion in the Brain publication-title: Frontiers in Neuroscience – year: 1979 – year: 2018 – volume: 72 start-page: 603 issue: 3 year: 2013 end-page: 609 article-title: Reproducibility of Phase Rotation STEAM at 3T: Focus on Glutathione publication-title: Magnetic Resonance in Medicine – volume: 1 start-page: 35 issue: 1 year: 1996 end-page: 51 article-title: Multi‐Modal Volume Registration by Maximization of Mutual Information publication-title: Medical Image Analysis – volume: 46 start-page: 131 issue: 1 year: 2021 end-page: 142 article-title: The ABCD Study: Understanding the Development of Risk for Mental and Physical Health Outcomes publication-title: Neuropsychopharmacology – volume: 45 start-page: 100 year: 2014 end-page: 118 article-title: Test‐Retest Reliabilities of Resting‐State FMRI Measurements in Human Brain Functional Connectomics: A Systems Neuroscience Perspective publication-title: Neuroscience & Biobehavioral Reviews – volume: 7 issue: 1 year: 2017 article-title: Test‐Retest Reliability of High Spatial Resolution Diffusion Tensor and Diffusion Kurtosis Imaging publication-title: Scientific Reports – volume: 17 start-page: 529 issue: 4 year: 2007 end-page: 569 article-title: An Overview on Assessing Agreement With Continuous Measurements publication-title: Journal of Biopharmaceutical Statistics – volume: 202 year: 2019 article-title: Image Processing and Analysis Methods for the Adolescent Brain Cognitive Development Study publication-title: NeuroImage – volume: 32 start-page: 16 year: 2018 end-page: 22 article-title: Recruiting the ABCD Sample: Design Considerations and Procedures publication-title: Developmental Cognitive Neuroscience – volume: 72 start-page: 6 issue: 1 year: 2009 end-page: 15 article-title: Mapping Gray Matter Development: Implications for Typical Development and Vulnerability to Psychopathology publication-title: Brain and Cognition – volume: 63 start-page: 1144 issue: 5 year: 2010 end-page: 1153 article-title: Multiband Multislice GE‐EPI at 7 Tesla, With 16‐Fold Acceleration Using Partial Parallel Imaging With Application to High Spatial and Temporal Whole‐Brain fMRI publication-title: Magnetic Resonance in Medicine – volume: 7 issue: 2 year: 2017 article-title: Reproducibility of Tract‐Based White Matter Microstructural Measures Using the ENIGMA‐DTI Protocol publication-title: Genes, Brain, and Behavior – volume: 41 start-page: 601 issue: 6 year: 1994 end-page: 606 article-title: Focal Magnetic Stimulation of an Axon publication-title: IEEE Transactions on Biomedical Engineering – volume: 34 start-page: 476 issue: 3 year: 1995 end-page: 480 article-title: Correction of Motional Artifacts in Diffusion‐Weighted Images Using a Reference Phase Map publication-title: Magnetic Resonance in Medicine – volume: 32 start-page: 43 year: 2018 end-page: 54 article-title: The Adolescent Brain Cognitive Development (ABCD) Study: Imaging Acquisition Across 21 Sites publication-title: Developmental Cognitive Neuroscience – volume: 296 start-page: 99 year: 2018 end-page: 108 article-title: Miniature Pig Magnetic Resonance Spectroscopy Model of Normal Adolescent Brain Development publication-title: Journal of Neuroscience Methods – volume: 167 start-page: 104 year: 2018 end-page: 120 article-title: Harmonization of Cortical Thickness Measurements Across Scanners and Sites publication-title: NeuroImage – volume: 35 start-page: 399 issue: 3 year: 1996 end-page: 412 article-title: Encoding of Anisotropic Diffusion With Tetrahedral Gradients: A General Mathematical Diffusion Formalism and Experimental Results publication-title: Magnetic Resonance in Medicine – volume: 26 start-page: 132 issue: 1 year: 2005 end-page: 140 article-title: Demyelination Increases Radial Diffusivity in Corpus Callosum of Mouse Brain publication-title: NeuroImage – volume: 30 start-page: 1535 issue: 5 year: 2008 end-page: 1547 article-title: Automated White‐Matter Tractography Using a Probabilistic Diffusion Tensor Atlas: Application to Temporal Lobe Epilepsy publication-title: Human Brain Mapping – volume: 11 start-page: 4431 issue: 10 year: 2021 end-page: 4460 article-title: Radiomics Feature Reliability Assessed by Intraclass Correlation Coefficient: A Systematic Review publication-title: Quantitative Imaging in Medicine and Surgery – year: 2000 – volume: 58 start-page: 41 issue: 1 year: 2011 end-page: 49 article-title: Fractional Anisotropy of Cerebral White Matter and Thickness of Cortical Gray Matter Across the Lifespan publication-title: NeuroImage – volume: 57 start-page: 688 issue: 4 year: 2007 end-page: 695 article-title: Toward Accurate Diagnosis of White Matter Pathology Using Diffusion Tensor Imaging publication-title: Magnetic Resonance in Medicine – volume: 28 start-page: 515 issue: 5 year: 2018 end-page: 523 article-title: Cortical Thickness Estimations of FreeSurfer and the CAT12 Toolbox in Patients With Alzheimer's Disease and Healthy Controls publication-title: Journal of Neuroimaging – volume: 15 start-page: 435 issue: 7–8 year: 2002 end-page: 455 article-title: The Basis of Anisotropic Water Diffusion in the Nervous System—A Technical Review publication-title: NMR in Biomedicine – volume: 364 start-page: 2091 issue: 22 year: 2011 end-page: 2100 article-title: Detection of Blast‐Related Traumatic Brain Injury in U.S. Military Personnel publication-title: New England Journal of Medicine – volume: 20 start-page: 1714 issue: 3 year: 2003 end-page: 1722 article-title: Diffusion Tensor Imaging Detects and Differentiates Axon and Myelin Degeneration in Mouse Optic Nerve After Retinal Ischemia publication-title: NeuroImage – volume: 15 start-page: 1848 issue: 12 year: 2005 end-page: 1854 article-title: White Matter Development During Childhood and Adolescence: A Cross‐Sectional Diffusion Tensor Imaging Study publication-title: Cerebral Cortex – volume: 110 start-page: 425 issue: 25 year: 2013 end-page: 431 article-title: Brain Development During Adolescence publication-title: Deutsches Ärzteblatt International – volume: 86 start-page: 420 issue: 2 year: 1979 end-page: 428 article-title: Intraclass Correlations: Uses in Assessing Rater Reliability publication-title: Psychological Bulletin – volume: 4 start-page: 316 issue: 3 year: 2007 end-page: 329 article-title: Diffusion Tensor Imaging of the Brain publication-title: Neurotherapeutics – volume: 26 start-page: 756 issue: 3 year: 2007 end-page: 767 article-title: Effects of Signal‐to‐Noise Ratio on the Accuracy and Reproducibility of Diffusion Tensor Imaging–Derived Fractional Anisotropy, Mean Diffusivity, and Principal Eigenvector Measurements at 1.5T publication-title: Journal of Magnetic Resonance Imaging – volume: 17 start-page: 87 issue: 1 year: 1998 end-page: 97 article-title: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data publication-title: IEEE Transactions on Medical Imaging – volume: 125 start-page: 189 year: 2015 end-page: 197 article-title: The Common Genetic Influence Over Processing Speed and White Matter Microstructure: Evidence From the Old Order Amish and Human Connectome Projects publication-title: NeuroImage – volume: 20 start-page: 119 issue: 2 year: 2007 end-page: 124 article-title: New Potential Leads in the Biology and Treatment of Attention Deficit‐Hyperactivity Disorder publication-title: Current Opinion in Neurology – volume: 26 start-page: 874 issue: 7 year: 2008 end-page: 888 article-title: Is Diffusion Anisotropy an Accurate Monitor of Myelination? Correlation of Multicomponent T2 Relaxation and Diffusion Tensor Anisotropy in Human Brain publication-title: Magnetic Resonance Imaging – volume: 36 start-page: 893 issue: 6 year: 1996 end-page: 906 article-title: Toward a Quantitative Assessment of Diffusion Anisotropy publication-title: Magnetic Resonance in Medicine – volume: 11 start-page: 805 issue: 6 Pt 1 year: 2000 end-page: 821 article-title: Voxel‐Based Morphometry—The Methods publication-title: NeuroImage – year: 2023 – volume: 6 start-page: 50 issue: 13 year: 2001 article-title: Systematic Spatial Distortion in MRI due to Gradient Non‐Linearities publication-title: NeuroImage – volume: 100 start-page: 358 year: 2014 end-page: 369 article-title: Methodological Considerations on Tract‐Based Spatial Statistics (TBSS) publication-title: NeuroImage – volume: 8 start-page: 118 issue: 1 year: 2007 end-page: 127 article-title: Adjusting Batch Effects in Microarray Expression Data Using Empirical Bayes Methods publication-title: Biostatistics – volume: 57 start-page: S2 year: 2008 end-page: S5 article-title: Brain Development: Anatomy, Connectivity, Adaptive Plasticity, and Toxicity publication-title: Metabolism – volume: 296 start-page: 99 year: 2017 end-page: 108 article-title: Miniature Pig Model of Human Adolescent Brain White Matter Development publication-title: Journal of Neuroscience Methods – volume: 1124 start-page: 111 year: 2008 end-page: 126 article-title: The Adolescent Brain publication-title: Annals of the New York Academy of Sciences – volume: 30 start-page: 436 issue: 2 year: 2006 end-page: 443 article-title: Reliability in Multi‐Site Structural MRI Studies: Effects of Gradient Non‐Linearity Correction on Phantom and Human Data publication-title: NeuroImage – volume: 335 start-page: 1634 issue: 6076 year: 2012 end-page: 1636 article-title: Hierarchical Genetic Organization of Human Cortical Surface Area publication-title: Science (New York, N.Y.) – volume: 158 start-page: 1027 year: 1901 end-page: 1030 article-title: Developmental (Myelogenetic) Localisation of the Cerebral Cortex in the Human publication-title: Lancet – ident: e_1_2_7_54_1 doi: 10.1016/j.neuroimage.2003.07.005 – ident: e_1_2_7_7_1 doi: 10.1080/10543400701376480 – ident: e_1_2_7_8_1 doi: 10.1016/j.neurobiolaging.2008.08.015 – ident: e_1_2_7_13_1 doi: 10.1196/annals.1440.010 – ident: e_1_2_7_43_1 doi: 10.1002/mrm.1910360612 – ident: e_1_2_7_55_1 doi: 10.1002/mrm.1910340327 – ident: e_1_2_7_12_1 doi: 10.1097/WCO.0b013e3280a02f78 – ident: e_1_2_7_4_1 doi: 10.1006/nimg.2000.0582 – ident: e_1_2_7_48_1 doi: 10.1111/jon.12521 – ident: e_1_2_7_50_1 doi: 10.1037/0033-2909.86.2.420 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroimage.2005.09.046 – ident: e_1_2_7_29_1 doi: 10.1093/biostatistics/kxj037 – ident: e_1_2_7_34_1 doi: 10.1016/j.neuroimage.2011.05.050 – ident: e_1_2_7_59_1 doi: 10.21037/qims-21-86 – ident: e_1_2_7_37_1 doi: 10.1016/j.neuroimage.2015.10.050 – ident: e_1_2_7_35_1 doi: 10.1016/j.neurobiolaging.2010.01.014 – ident: e_1_2_7_44_1 doi: 10.1007/978-1-4419-0318-1 – ident: e_1_2_7_28_1 doi: 10.1016/j.neuroimage.2019.116091 – ident: e_1_2_7_9_1 doi: 10.1109/10.293248 – ident: e_1_2_7_19_1 doi: 10.1101/2023.02.28.530498 – ident: e_1_2_7_21_1 doi: 10.1016/S0140-6736(01)01429-5 – ident: e_1_2_7_6_1 doi: 10.1093/cercor/bhi062 – ident: e_1_2_7_20_1 doi: 10.1002/jmri.21053 – ident: e_1_2_7_24_1 doi: 10.1016/j.dcn.2018.04.004 – ident: e_1_2_7_32_1 doi: 10.1038/s41386-020-0736-6 – ident: e_1_2_7_56_1 doi: 10.1016/S1053-8119(01)91393-X – ident: e_1_2_7_61_1 doi: 10.1016/j.neubiorev.2014.05.009 – ident: e_1_2_7_53_1 doi: 10.1016/j.neuroimage.2005.01.028 – ident: e_1_2_7_27_1 doi: 10.1002/hbm.20619 – volume-title: Measurement Error Models year: 2009 ident: e_1_2_7_23_1 – ident: e_1_2_7_60_1 doi: 10.1002/jmri.20727 – ident: e_1_2_7_45_1 doi: 10.1007/s11920-005-0001-z – ident: e_1_2_7_25_1 doi: 10.1016/j.bandc.2009.08.009 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.21200 – ident: e_1_2_7_5_1 doi: 10.1016/j.neuroimage.2014.06.021 – ident: e_1_2_7_2_1 doi: 10.1002/brb1003.1615 – ident: e_1_2_7_18_1 doi: 10.2307/2530491 – volume: 5 start-page: 1 issue: 120 year: 2011 ident: e_1_2_7_36_1 article-title: Genetic Analysis of Cortical Thickness and Fractional Anisotropy of Water Diffusion in the Brain publication-title: Frontiers in Neuroscience – ident: e_1_2_7_57_1 doi: 10.1016/S1361-8415(01)80004-9 – ident: e_1_2_7_26_1 doi: 10.1073/pnas.0402680101 – ident: e_1_2_7_49_1 doi: 10.1038/s41598-017-11747-3 – ident: e_1_2_7_51_1 doi: 10.1101/2023.07.17.548591 – ident: e_1_2_7_16_1 doi: 10.1002/mrm.1910350319 – ident: e_1_2_7_47_1 doi: 10.1016/j.jneumeth.2017.12.017 – ident: e_1_2_7_41_1 doi: 10.1002/mrm.22361 – ident: e_1_2_7_46_1 doi: 10.1016/j.jneumeth.2017.12.017 – ident: e_1_2_7_15_1 doi: 10.1126/science.1215330 – volume: 110 start-page: 425 issue: 25 year: 2013 ident: e_1_2_7_38_1 article-title: Brain Development During Adolescence publication-title: Deutsches Ärzteblatt International – volume-title: Correlation and Causality year: 1979 ident: e_1_2_7_33_1 – ident: e_1_2_7_3_1 doi: 10.1016/j.nurt.2007.05.011 – ident: e_1_2_7_10_1 doi: 10.1002/nbm.782 – ident: e_1_2_7_14_1 doi: 10.1016/j.dcn.2018.03.001 – ident: e_1_2_7_52_1 doi: 10.1109/42.668698 – ident: e_1_2_7_17_1 doi: 10.1016/j.neuroimage.2006.01.021 – ident: e_1_2_7_31_1 doi: 10.1016/j.metabol.2008.07.009 – ident: e_1_2_7_42_1 doi: 10.1101/309260 – ident: e_1_2_7_58_1 doi: 10.1002/mrm.24959 – ident: e_1_2_7_40_1 doi: 10.1016/j.mri.2008.01.047 – ident: e_1_2_7_22_1 doi: 10.1016/j.neuroimage.2017.11.024 – ident: e_1_2_7_39_1 doi: 10.1056/NEJMoa1008069 – reference: 38915669 - bioRxiv. 2024 Jun 14:2024.02.21.581460. doi: 10.1101/2024.02.21.581460. |
SSID | ssj0011501 |
Score | 2.4640284 |
Snippet | ABSTRACT
The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868... The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868... ABSTRACT The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e70070 |
SubjectTerms | Adolescent Adolescents Age Anisotropy Brain Brain Cortical Thickness brain development Cerebral Cortex - anatomy & histology Cerebral Cortex - diagnostic imaging Cerebral Cortex - growth & development Child Child development Computed tomography Correlation coefficient Correlation coefficients Data analysis Data collection diffusion tensor imaging Diffusion Tensor Imaging - methods Diffusion Tensor Imaging - standards Female Humans Impact analysis Intellectual development longitudinal Longitudinal Studies Magnetic resonance imaging Male Medical imaging Neuroimaging Phenotypes quality control Regional development Reliability analysis Reproducibility Reproducibility of Results Scanners structural MRI Substantia alba Tensors test–retest reliability Thickness measurement |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgkYALgl0egQWZhxCXsE2cOAkX1O1SFaQipN0VvUV2bKsRXaekrVBviF_Ab-SXMOM8ULVib5FsxYnm4W_GM58JeRXHZiCZGPiBDAs_Ap3wMzUwfiJ4EBRGZaHAbuTpZz45jz7N4lmbcFu1ZZWdT3SOWlUF5siPGDpSCGc4f7_87uOtUXi62l6hcZ3cCACqoFYnsz7gQrDjAi7YZv0MvHDHLDQIj-by4m2CXDe7-9ElkHm5VvLWxi7F9odYLHbxrNuQxnfJnRZJ0mEj-nvkmrb75GBoIYq-2NLX1NV2uqT5Prk5bY_QD8ivIT2FX_rz8_fXcqUpliQ3VN1b2hGU0MpQwIV0eDw6oSelMRtMqdFx3TRB4KK2XFXrulpuqbCKjqrapcTp2bwsvqHzfEc_uvZLfNUpSM_qmn5ZiDVC5NV9cj7-cDaa-O1FDH4RYcWhTrVOIsAuqUwKCGHAy4WhEcyERsUJeHuGtHSKpynPWBobaZRWXEaMcaODomAPyJ6trH5EaGaMjCPk6JFBpAKTcZHFYPqSMxUVYeyRF5048mXDt5E3zMphDjLLncw8ctgJKm9NbpX_UxCPPO-HwVjwBERYXW2aOQlAHJ545GEj134VlsUADoPMI-mOxPsJSMS9O2LLuSPkDhB3gufzyMteOa76-jdObf4_I58cT93D46t_9Am5HQLGalojD8neut7op4CR1vKZM4S_oW0QzA priority: 102 providerName: ProQuest |
Title | A Site‐Wise Reliability Analysis of the ABCD Diffusion Fractional Anisotropy and Cortical Thickness: Impact of Scanner Platforms |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.70070 https://www.ncbi.nlm.nih.gov/pubmed/39526419 https://www.proquest.com/docview/3128482566 https://www.proquest.com/docview/3128751267 https://pubmed.ncbi.nlm.nih.gov/PMC11551787 https://doi.org/10.1002/hbm.70070 |
UnpaywallVersion | publishedVersion |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: BENPR dateStart: 20210801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 7X7 dateStart: 20210801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQwJeBmxcMkZlLkK8pGvixEngqe1WFaRO1S6iD5MiO7HVaF1S9SJUnhC_gN_IL-HYaYLKBEK8RJHsXOycy-fjc74AvPZ91RKUt2xHuIntoUzYUdpSdsCZ4yQqjVyuq5EHJ6x_4X0c-aMteF_VwpT8EHXATWuGsddawbmYH_4iDR2L62ag2WrQ_jrUN1u0pzV1lAY6ZrGFLtaO0AJXrEIt97C-ctMX3QCYN_Mk7y7zKV995pPJJpY1zqh3Hy6rYZQ5KFfN5UI0ky-_MTz-5zgfwM4apJJ2KVUPYUvmu7DXznGBfr0ib4hJGzXx-F24M1jvzu_BtzY5QwT74-v3T9lcEp3tXLKAr0jFfUIKRRByknane0SOMqWWOlpHerOyvkI_NM_mxWJWTFeE5ynpFjMTbSfn4yy50nb5HflgKjv1rc5QMHI5I8MJX2j0PX8EF73j827fXv_jwU48ncwoQykDD2FRKIIEV0doQF1XcapclfoBOhKqGe9SFoYsoqGvhEplyoRHKVPSSRL6GLbzIpdPgURKCd_T9D_C8VJHRYxHPloVwWjqJa5vwcvqa8fTksojLkmb3RgnOTaTbMFBJQfxWpvnMdVOHJfSjFnwom5GPdSbKzyXxbLsEyB6YoEFT0qxqZ9CIx9xpxNZEG4IVN1Bc3xvtuTZ2HB9OxrSolG14FUte397-7dGlP7cI-53BuZk_9-7PoN7LkK5sgLzALYXs6V8jlBsIRpwy_WGeAxGQQNud45PhqcNE9ZoGG38CfOuNPI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ2K8INiABQaYq3jJ1tiJkyAh1LVULVsnpHWibyEXW63oktKLpr4hfgG_hB_FL-EcpymqJva2t0i27CTn4u_Y53wGeOV5upaIuGY7CU9tF3XCDrOatv1YOk6qs5DHVI3cPZHtM_dT3-tvwO-qFobSKiufaBx1VqS0R34gyJFiOCPlh_F3m26NotPV6gqNUi2O1OICQ7bp-04T5fua89bHXqNtL28VsFOX0udUoJTv4kIcJH6KeBxNlnMdC8115vnougRxrGUyCGQoAk8nOlOZTFwhpFZOmgoc9wbcdEXNJa5-v78K8AhcmQAPl3U7RK9fMRnV-MEgOd_3iVtnff27BGov52ZuzfNxvLiIR6N1_GwWwNZduLNErqxeqto92FD5NuzUc4zazxfsDTO5pGaTfhtudZdH9jvws85O8Rf--fHry3CqGKVAl9TgC1YRorBCM8ShrH7YaLLmUOs5beGx1qQsuqBJ8-G0mE2K8YLFecYaxcRswbPeYJh-I2f9jnVMuScNdYrakqsJ-zyKZwTJp_fh7FpE9AA28yJXu8BCrRPPJU6gxHEzR4cyDj10NYkUmZtyz4IXlTiiccnvEZVMzjxCmUVGZhbsVYKKliY-jf4ppAXPV81onHTiEueqmJd9fIRU0rfgYSnX1Swi9BCMOqEFwZrEVx2I-Hu9JR8ODAG4QzgXPa0FL1fKcdXbvzVq8_8eUfuwax4eXf2hz2Cr3eseR8edk6PHcJsjvivLMvdgczaZqyeIz2bJU2MUDL5etxX-BaI1TRA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQxq8INiABQaYq3jJ2tiJkyAh1LVULaPTpG2ibyEXW43okpK0mvqG-AX8Hn4Ov4RjJymqJva2t0ixnMu5fcc-5zPAK8eR7YiFbdOKaGzaqBOmn7Sl6YbcsmKZ-DRU3cijIz44sz-NnfEG_G56YVRZZeMTtaNO8litkbeYcqSYznDeknVZxHGv_2H23VQnSKmd1uY4jUpFDsXyAtO38v2wh7J-TWn_42l3YNYnDJixrUrphCeEa2NQ9iI3RmyO5kupDJmkMnFcdGNM8a0l3PO4zzxHRjIRCY9sxrgUVhwznPcG3HQZzoC25I5XyZ4CWjrZwxBv-hgBGlajNm1NovN9V_HsrMfCSwD3cp3mrUU2C5cX4XS6jqV1MOzfhTs1iiWdSu3uwYbItmGnk2EGf74kb4iuK9UL9tuwNaq373fgZ4ec4C_88-PXl7QURJVDVzThS9KQo5BcEsSkpHPQ7ZFeKuVCLeeRflE1YKiHZmmZz4t8tiRhlpBuXujleHI6SeNvynG_I0Pd-qmmOkHNyURBjqfhXMHz8j6cXYuIHsBmlmdiF4gvZeTYih8osuzEkj4PfQfdTsRZYsfUMeBFI45gVnF9BBWrMw1QZoGWmQF7jaCC2tzL4J9yGvB8dRsNVe2-hJnIF9UYF-EVdw14WMl19RTmOwhMLd8Ab03iqwGKBHz9TpZONBm4pTAvel0DXq6U46q3f6vV5v8jgsHBSF88uvpDn8EW2l_weXh0-BhuU4R6VYfmHmzOi4V4glBtHj3VNkHg63Ub4V8x9lFL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Site-Wise+Reliability+Analysis+of+the+ABCD+Diffusion+Fractional+Anisotropy+and+Cortical+Thickness%3A+Impact+of+Scanner+Platforms&rft.jtitle=Human+brain+mapping&rft.au=Pan%2C+Yezhi&rft.au=Hong%2C+L+Elliot&rft.au=Acheson%2C+Ashley&rft.au=Thompson%2C+Paul+M&rft.date=2024-11-01&rft.eissn=1097-0193&rft.volume=45&rft.issue=16&rft.spage=e70070&rft_id=info:doi/10.1002%2Fhbm.70070&rft_id=info%3Apmid%2F39526419&rft.externalDocID=39526419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |