Auto‐White Balance Algorithm of Skin Color Based on Asymmetric Generative Adversarial Network
ABSTRACT Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A more high‐quality skin color reproduction method has broad application prospects in camera photography, face recognition, and other fields. Th...
        Saved in:
      
    
          | Published in | Color research and application Vol. 50; no. 3; pp. 266 - 275 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        01.05.2025
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0361-2317 1520-6378 1520-6378  | 
| DOI | 10.1002/col.22970 | 
Cover
| Abstract | ABSTRACT
Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A more high‐quality skin color reproduction method has broad application prospects in camera photography, face recognition, and other fields. The processing process from the 14bit or 16bit RAW pictures taken by the camera to the final output of 8bit JPG pictures is called the image processing pipeline, in which the steps of the auto‐white balance algorithm have a decisive impact on the skin color reproduction result. The traditional automatic white balance algorithm is based on hypothetical statistics. Moreover, the estimated illuminant color is obtained through illuminant estimation. However, the traditional grayscale world, perfect reflector, and other auto‐white balance algorithms perform unsatisfactorily under non‐uniform or complex light sources. The method based on sample statistics proposes a new solution to this problem from another aspect. The deep learning algorithm, especially the generative adversarial network (GAN) algorithm, is very suitable for establishing the mapping between pictures and has an excellent performance in the fields of image reconstruction, image translation, defogging, and coloring. This paper proposes a new solution to this problem. The asymmetric UNet3+ shape generator integrates better global and local information to obtain a more refined correction matrix incorporating details of the whole image. The discriminator is Patch‐discriminator, which focuses more on image details by changing the attention field. The dataset used in this article is the Liverpool‐Leeds Skin‐color Database (LLSD) and some supplementary images, including the skin color of more than 960 subjects under D65 and different light sources. Finally, we calculate the CIEDE2000 color difference and some other image quality index between the test skin color JPEG picture corrected by the auto‐white balance algorithm and the skin color under the corresponding D65 to evaluate the effect of white balance correction. The results show that the asymmetric GAN algorithm proposed in this paper can bring higher quality skin color reproduction results than the traditional auto‐white balance algorithm and existing deep learning WB algorithm. | 
    
|---|---|
| AbstractList | ABSTRACT
Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A more high‐quality skin color reproduction method has broad application prospects in camera photography, face recognition, and other fields. The processing process from the 14bit or 16bit RAW pictures taken by the camera to the final output of 8bit JPG pictures is called the image processing pipeline, in which the steps of the auto‐white balance algorithm have a decisive impact on the skin color reproduction result. The traditional automatic white balance algorithm is based on hypothetical statistics. Moreover, the estimated illuminant color is obtained through illuminant estimation. However, the traditional grayscale world, perfect reflector, and other auto‐white balance algorithms perform unsatisfactorily under non‐uniform or complex light sources. The method based on sample statistics proposes a new solution to this problem from another aspect. The deep learning algorithm, especially the generative adversarial network (GAN) algorithm, is very suitable for establishing the mapping between pictures and has an excellent performance in the fields of image reconstruction, image translation, defogging, and coloring. This paper proposes a new solution to this problem. The asymmetric UNet3+ shape generator integrates better global and local information to obtain a more refined correction matrix incorporating details of the whole image. The discriminator is Patch‐discriminator, which focuses more on image details by changing the attention field. The dataset used in this article is the Liverpool‐Leeds Skin‐color Database (LLSD) and some supplementary images, including the skin color of more than 960 subjects under D65 and different light sources. Finally, we calculate the CIEDE2000 color difference and some other image quality index between the test skin color JPEG picture corrected by the auto‐white balance algorithm and the skin color under the corresponding D65 to evaluate the effect of white balance correction. The results show that the asymmetric GAN algorithm proposed in this paper can bring higher quality skin color reproduction results than the traditional auto‐white balance algorithm and existing deep learning WB algorithm. Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A more high‐quality skin color reproduction method has broad application prospects in camera photography, face recognition, and other fields. The processing process from the 14bit or 16bit RAW pictures taken by the camera to the final output of 8bit JPG pictures is called the image processing pipeline, in which the steps of the auto‐white balance algorithm have a decisive impact on the skin color reproduction result. The traditional automatic white balance algorithm is based on hypothetical statistics. Moreover, the estimated illuminant color is obtained through illuminant estimation. However, the traditional grayscale world, perfect reflector, and other auto‐white balance algorithms perform unsatisfactorily under non‐uniform or complex light sources. The method based on sample statistics proposes a new solution to this problem from another aspect. The deep learning algorithm, especially the generative adversarial network (GAN) algorithm, is very suitable for establishing the mapping between pictures and has an excellent performance in the fields of image reconstruction, image translation, defogging, and coloring. This paper proposes a new solution to this problem. The asymmetric UNet3+ shape generator integrates better global and local information to obtain a more refined correction matrix incorporating details of the whole image. The discriminator is Patch‐discriminator, which focuses more on image details by changing the attention field. The dataset used in this article is the Liverpool‐Leeds Skin‐color Database (LLSD) and some supplementary images, including the skin color of more than 960 subjects under D65 and different light sources. Finally, we calculate the CIEDE2000 color difference and some other image quality index between the test skin color JPEG picture corrected by the auto‐white balance algorithm and the skin color under the corresponding D65 to evaluate the effect of white balance correction. The results show that the asymmetric GAN algorithm proposed in this paper can bring higher quality skin color reproduction results than the traditional auto‐white balance algorithm and existing deep learning WB algorithm.  | 
    
| Author | Sun, Wenjun Xiao, Kaida Zhou, Sicong Zhou, Fanyi Li, Hesong  | 
    
| Author_xml | – sequence: 1 givenname: Sicong orcidid: 0000-0002-2637-4831 surname: Zhou fullname: Zhou, Sicong organization: University of Leeds – sequence: 2 givenname: Hesong surname: Li fullname: Li, Hesong organization: Shenzhen Transsion Holdings Co. Ltd – sequence: 3 givenname: Wenjun surname: Sun fullname: Sun, Wenjun organization: Shenzhen Transsion Holdings Co. Ltd – sequence: 4 givenname: Fanyi surname: Zhou fullname: Zhou, Fanyi organization: Shenzhen Transsion Holdings Co. Ltd – sequence: 5 givenname: Kaida orcidid: 0000-0001-7197-7159 surname: Xiao fullname: Xiao, Kaida email: k.xiao1@leeds.ac.uk organization: University of Leeds  | 
    
| BookMark | eNp9kM1OAjEUhRuDiYAufIMmrjQZaDs_HZZIFE2ILNS4bEqnI4VOi22BsPMRfEafxCquTGR1c3O_c-7J6YCWsUYCcI5RDyNE-sLqHiEDio5AG-cEJUVKyxZoo7TACUkxPQEd7xcIoTwtaRuw4TrYz_ePl7kKEl5zzY2QcKhfrVNh3kBbw8elMnBktXXx7mUFrYFDv2saGZwScCyNdDyoTZRVG-k8d4pr-CDD1rrlKTiuufby7Hd2wfPtzdPoLplMx_ej4SQRGcpiyrrkVFQzmmW0KrjkWVaQinKMc5wikuVEyLpIsyLnglBEZVXGvaD5rCSzARmkXXC1912bFd9tudZs5VTD3Y5hxL6rYbEa9lNNhC_28MrZt7X0gS3s2pmYj6V4EH9GYxKpyz0lnPXeyfqgY_8PK1SIpVgTHFf6kGKrtNz9b81G08le8QX4iZHd | 
    
| CitedBy_id | crossref_primary_10_1016_j_jvcir_2025_104412 | 
    
| Cites_doi | 10.1109/ICPR.2010.579 10.1109/34.969113 10.1016/S0167-8655(02)00323-9 10.2352/J.ImagingSci.Technol.(2006)50:4(341) 10.1109/ICIVC55077.2022.9887040 10.3390/s24020391 10.1109/CVPR.2012.6247659 10.1109/TIP.2002.802529 10.1109/AFGR.2000.840613 10.1109/ISCAS.2005.1465458 10.1002/col.22131 10.1109/CVPR46437.2021.00796 10.1109/TIP.2007.901808 10.1109/TMI.2019.2959609 10.1016/j.bbi.2016.11.008 10.1109/TIP.2017.2713044 10.1002/col.22822 10.1007/978-3-319-46493-0_23 10.1111/j.1468-3083.2007.02512.x 10.2352/CIC.2004.12.1.art00008 10.1068/p6307 10.1109/CVPR.2017.632 10.1109/LSP.2013.2285960 10.1109/CVPR.2008.4587765 10.1111/srt.12295 10.1002/col.22737 10.1109/ICASSP40776.2020.9053405  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 The Author(s). published by Wiley Periodicals LLC. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2024 The Author(s). published by Wiley Periodicals LLC. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION 7U5 8FD L7M ADTOC UNPAY  | 
    
| DOI | 10.1002/col.22970 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts  | 
    
| DatabaseTitleList | CrossRef Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Visual Arts Engineering Physics  | 
    
| EISSN | 1520-6378 | 
    
| EndPage | 275 | 
    
| ExternalDocumentID | 10.1002/col.22970 10_1002_col_22970 COL22970  | 
    
| Genre | researchArticle | 
    
| GroupedDBID | .-4 .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3O- 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HW~ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ UB1 V2E VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGXDD AIDQK AIDYY AIQQE CITATION 7U5 8FD L7M ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4040-6f8a7cdb7447d6aea4462d7a1151302452cef63465ac2707ed8ef6675b82b9293 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0361-2317 1520-6378  | 
    
| IngestDate | Sun Sep 07 10:46:25 EDT 2025 Fri Jul 25 20:43:33 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Wed Oct 01 08:30:32 EDT 2025 Fri Apr 18 09:30:42 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | Attribution cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4040-6f8a7cdb7447d6aea4462d7a1151302452cef63465ac2707ed8ef6675b82b9293 | 
    
| Notes | The authors received no specific funding for this work. Funding ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-7197-7159 0000-0002-2637-4831  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/col.22970 | 
    
| PQID | 3191156752 | 
    
| PQPubID | 2045175 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_col_22970 proquest_journals_3191156752 crossref_primary_10_1002_col_22970 crossref_citationtrail_10_1002_col_22970 wiley_primary_10_1002_col_22970_COL22970  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | May/June 2025 2025-05-00 20250501  | 
    
| PublicationDateYYYYMMDD | 2025-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2025 text: May/June 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken  | 
    
| PublicationTitle | Color research and application | 
    
| PublicationYear | 2025 | 
    
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc  | 
    
| References | 2017; 42 2017; 60 2006; 50 2023; 4 2017; 26 2012 2010 2013; 20 2002; 11 2017; 23 2019; 39 2008 2022; 47 2005 2001; 23 2007; 16 2023 2000 2022 2021 2023; 48 2020 2003; 24 2019 2017 2016 2008; 22 2015 2024; 24 2004; 2004 2009; 38 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 Funt B. (e_1_2_9_9_1) 2010 Afifi M. (e_1_2_9_32_1) 2019 Kınlı F. (e_1_2_9_20_1) 2023 Afifi M. (e_1_2_9_27_1) 2020 Afifi M. (e_1_2_9_15_1) 2022 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 Hu Y. (e_1_2_9_19_1) 2017 Bianco S. (e_1_2_9_25_1) 2019 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_6_1 Barron J. T. (e_1_2_9_26_1) 2015 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 He R. (e_1_2_9_7_1) 2023 e_1_2_9_28_1 e_1_2_9_29_1  | 
    
| References_xml | – start-page: 1055 year: 2020 end-page: 1059 – volume: 39 start-page: 1856 issue: 6 year: 2019 end-page: 1867 article-title: Unet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation publication-title: IEEE Transactions on Medical Imaging – start-page: 1210 year: 2022 end-page: 1219 – start-page: 507 year: 2022 end-page: 512 – volume: 20 start-page: 1240 issue: 12 year: 2013 end-page: 1243 article-title: Light Random Sprays Retinex: Exploiting the Noisy Illumination Estimation publication-title: IEEE Signal Processing Letters – volume: 47 start-page: 288 issue: 2 year: 2022 end-page: 300 article-title: Development of an Image‐Based Measurement System for Human Facial Skin Colour publication-title: Colour Research and Application – start-page: 8053 year: 2021 end-page: 8063 – start-page: 379 year: 2015 end-page: 387 – start-page: 4085 year: 2017 end-page: 4094 – volume: 16 start-page: 2207 issue: 9 year: 2007 end-page: 2214 article-title: Edge‐Based Colour Constancy publication-title: IEEE Transactions on Image Processing – volume: 42 start-page: 703 issue: 6 year: 2017 end-page: 718 article-title: Comprehensive Colour Solutions: CAM16, CAT16, and CAM16‐UCS publication-title: Colour Research and Application – volume: 26 start-page: 4347 issue: 9 year: 2017 end-page: 4362 article-title: Single and Multiple Illuminant Estimation Using Convolutional Neural Networks publication-title: IEEE Transactions on Image Processing – start-page: 2366 year: 2010 end-page: 2369 – volume: 2004 start-page: 37 year: 2004 end-page: 41 – volume: 50 start-page: 341 issue: 4 year: 2006 end-page: 348 article-title: Estimating Illumination Chromaticity via Support Vector Regression publication-title: Journal of Imaging Science and Technology – volume: 4 start-page: 71 year: 2023 end-page: 75 – year: 2010 – start-page: 1139 year: 2023 end-page: 1147 – volume: 60 start-page: 312 year: 2017 end-page: 318 article-title: Skin Colour Changes During Experimentally‐Induced Sickness publication-title: Brain, Behavior, and Immunity – volume: 24 start-page: 1663 issue: 11 year: 2003 end-page: 1677 article-title: A New Algorithm for Unsupervised Global and Local Colour Correction publication-title: Pattern Recognition Letters – start-page: 3801 year: 2005 end-page: 3804 – start-page: 1 year: 2008 end-page: 8 – start-page: 371 year: 2016 end-page: 387 – start-page: 1535 year: 2019 end-page: 1544 – start-page: 12212 year: 2019 end-page: 12221 – volume: 24 start-page: 391 issue: 2 year: 2024 article-title: Predicting Facial Attractiveness From Colour Cues: A New Analytic Framework publication-title: Sensors – volume: 48 start-page: 40 issue: 1 year: 2023 end-page: 62 article-title: Analysis of Biases in Automatic White Balance Datasets and Methods publication-title: Colour Research and Application – volume: 23 start-page: 1209 issue: 11 year: 2001 end-page: 1221 article-title: Colour by Correlation: A Simple, Unifying Framework for Colour Constancy publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 38 start-page: 145 issue: 1 year: 2009 end-page: 148 article-title: The Role of Skin Colour in Face Recognition publication-title: Perception – volume: 11 start-page: 985 issue: 9 year: 2002 end-page: 996 article-title: A Comparison of Computational Colour Constancy Algorithms. ii. Experiments With Image Data publication-title: IEEE Transactions on Image Processing – start-page: 1397 year: 2020 end-page: 1406 – volume: 22 start-page: 493 issue: 4 year: 2008 end-page: 498 article-title: The Effects of Skin Colour Distribution and Topography Cues on the Perception of Female Facial Age and Health publication-title: Journal of the European Academy of Dermatology and Venereology – start-page: 1125 year: 2017 end-page: 1134 – start-page: 65 year: 2012 end-page: 72 – start-page: 64 year: 2000 end-page: 69 – volume: 23 start-page: 21 issue: 1 year: 2017 end-page: 29 article-title: Characterising the Variations in Ethnic Skin Colours: A New Calibrated Data Base for Human Skin publication-title: Skin Research and Technology – ident: e_1_2_9_37_1 doi: 10.1109/ICPR.2010.579 – ident: e_1_2_9_16_1 doi: 10.1109/34.969113 – ident: e_1_2_9_8_1 doi: 10.1016/S0167-8655(02)00323-9 – ident: e_1_2_9_17_1 doi: 10.2352/J.ImagingSci.Technol.(2006)50:4(341) – start-page: 71 volume-title: London Imaging Meeting year: 2023 ident: e_1_2_9_7_1 – ident: e_1_2_9_33_1 doi: 10.1109/ICIVC55077.2022.9887040 – ident: e_1_2_9_6_1 doi: 10.3390/s24020391 – ident: e_1_2_9_29_1 doi: 10.1109/CVPR.2012.6247659 – start-page: 1210 volume-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision year: 2022 ident: e_1_2_9_15_1 – ident: e_1_2_9_12_1 doi: 10.1109/TIP.2002.802529 – ident: e_1_2_9_5_1 doi: 10.1109/AFGR.2000.840613 – ident: e_1_2_9_13_1 doi: 10.1109/ISCAS.2005.1465458 – ident: e_1_2_9_38_1 doi: 10.1002/col.22131 – ident: e_1_2_9_21_1 doi: 10.1109/CVPR46437.2021.00796 – ident: e_1_2_9_11_1 doi: 10.1109/TIP.2007.901808 – ident: e_1_2_9_24_1 – start-page: 1535 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2019 ident: e_1_2_9_32_1 – ident: e_1_2_9_34_1 doi: 10.1109/TMI.2019.2959609 – ident: e_1_2_9_3_1 doi: 10.1016/j.bbi.2016.11.008 – start-page: 1139 volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision year: 2023 ident: e_1_2_9_20_1 – ident: e_1_2_9_22_1 doi: 10.1109/TIP.2017.2713044 – ident: e_1_2_9_28_1 doi: 10.1002/col.22822 – ident: e_1_2_9_23_1 doi: 10.1007/978-3-319-46493-0_23 – ident: e_1_2_9_4_1 doi: 10.1111/j.1468-3083.2007.02512.x – ident: e_1_2_9_10_1 doi: 10.2352/CIC.2004.12.1.art00008 – start-page: 379 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2015 ident: e_1_2_9_26_1 – ident: e_1_2_9_2_1 doi: 10.1068/p6307 – ident: e_1_2_9_36_1 doi: 10.1109/CVPR.2017.632 – volume-title: Proceedings of the Eighteenth Colour Imaging Conference year: 2010 ident: e_1_2_9_9_1 – ident: e_1_2_9_14_1 doi: 10.1109/LSP.2013.2285960 – start-page: 4085 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2017 ident: e_1_2_9_19_1 – ident: e_1_2_9_18_1 doi: 10.1109/CVPR.2008.4587765 – start-page: 12212 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2019 ident: e_1_2_9_25_1 – start-page: 1397 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2020 ident: e_1_2_9_27_1 – ident: e_1_2_9_30_1 doi: 10.1111/srt.12295 – ident: e_1_2_9_31_1 doi: 10.1002/col.22737 – ident: e_1_2_9_35_1 doi: 10.1109/ICASSP40776.2020.9053405  | 
    
| SSID | ssj0005387 | 
    
| Score | 2.4069448 | 
    
| Snippet | ABSTRACT
Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A... Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A more...  | 
    
| SourceID | unpaywall proquest crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 266 | 
    
| SubjectTerms | Algorithms Asymmetry auto‐white balance Cameras color reproduction Color temperature Deep learning Discriminators Face recognition generative adversarial network Generative adversarial networks Image compression Image processing Image quality Image reconstruction Light sources Machine learning Pictures Samples (statistical) skin color White balancing  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB2KIupCtCrWF4O6cBObTiaZBFexKEWkulBxF-YVFdpEmhZx5yf4jX6JdyZpa0HFXR43YZg7c-fcyc05CB2lvoBVXXCHecp3aOhrR3iaOIEvI1e6JKLaVvl2g84dvXzwH2rodPwvTMkPMdlwMzPDxmszwbkomlPSUOinE0IiBvn6fAtwjBnehN5M6zs8q44HEbrlAIhhY1ohlzQnj84uRlOEuTjKXvjbK-_1ZjGrXXQuVtFKhRZxXLp3DdV0VkfL3zgE62jB1nDKAq7fPxej0rpYR0k8Guaf7x9WAQ-fmQpGqXHce8wHz8OnPs5TbIS3cBui3wDuF1rhPMNx8dbvG5UtiUtGahMOsZVtLrgZrLhbFo5voLuL89t2x6nUFBxJTdlgkIacSSUYpUwFXHNIBIliHCCh-XhJfSJ1Gng08LkkzGVahXAO-YQIiQAQ5W2iuSzP9BbCylM0lFzoSClIsAhnRKeecoWbch0FtIGOx92ayIpq3Che9JKSJJkk4IHEeqCBDiamLyW_xk9Gu2PfJNUUKxKIHdB0aB9poMOJv_56ybH15O8WSfv6yh5s_990By0RowhsSyB30dxwMNJ7AFOGYt8Oxy9NwOJc priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Auto‐White Balance Algorithm of Skin Color Based on Asymmetric Generative Adversarial Network | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcol.22970 https://www.proquest.com/docview/3191156752 https://doi.org/10.1002/col.22970  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 50 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0361-2317 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1520-6378 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005387 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrRDqgUIBdVGpzMehlyzBsePkGLZUFUJLhVhUTpG_Uip2k2qTCJUTP4Hf2F_SsZNtuwgqLlHiTCzLnthv5PF7AK8KrnBVVzIQkeEBS7gNVGRpEHOdhjqkKbM-y3cSH07Z-2N-vAbPl2dhVvfv6WvsjRGlqcCofD3mCLcHsD6dHGVfuz3INwHiEy-gwl0YFIlkyR5089vVNecaSN5ryzN5_kPOZqvQ1K8tB5vXJ3S6lJLvo7ZRI_3zD8LGW5v9AO73yJJknSs8hDVbbsHGDb7BLbjr8z11jeVfTuu2s64fQZ61TXXx67dXyyNvXbajtiSbnVSL0-bbnFQFcSJdZIwz5QLf19aQqiRZfT6fO0UuTTr2ajd1Ei_xXEvn2GTSJZk_hunBu8_jw6BXXgg0cymGcZFIoY0SjAkTSysxaKRGSISPbqOTcaptEUcs5lJTEQprEnzG2EMlVCHgip7AoKxKuw3ERIYlWiqbGoPBGJWC2iIyoQoLadOYDWFvOTa57mnJnTrGLO8IlWmOfZn7vhzCiyvTs46L429GO8sBzvvfsc5xnsGmY_voEF5eDfptlex5d_i3RT7--MHfPP2vCndg0Cxa-wwBTKN24Q5lR3jd_0R3e3e-BLLW7pQ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hUEU5IKCtujyttgcuKcFx7ETisqxA23a77QEqbpZfKUi7CdrsCnHjJ_Q39pcwdvYBUlv1lscksjz2eMb58n0AH4pU46quVSQSm0YsS12kE0cjnpo8NjHNmQso3z7vXrLPV-nVEpzM_oVp-CHmG25-ZoR47Se435A-WrCGYkd9pDQXWLCvMH7MfelF2fcFwCMJ8ngYoo8jzGLEjFcopkfzR5-vRosUc3VS3qr7OzUYPE9aw6pzvgHr03SRtBv_bsKSK7dg7QmJ4Ba8CCBOU-P1Hzf1pLGuX4FsT8bV74dfQQKPnHoIo3GkPfhZjW7G10NSFcQrb5EOhr8R3q-dJVVJ2vX9cOhltgxpKKl9PCRBt7lWfrSSfoMcfw2X52cXnW40lVOIDPO4QV5kShirBWPCcuUUVoLUCoU5of96yVJqXMETxlNlqIiFsxmeY0GhM6oxi0rewHJZle4tEJtYlhmlXW4tVlhUCeqKxMY6LpTLOWvB4axbpZlyjXvJi4FsWJKpRA_I4IEWvJub3jYEG38y2p35Rk7nWC0xeGDTsX20Be_n_vrXSw6DJ_9uITvfeuFg-_9ND2C1e_G1J3uf-l924CX18sABD7kLy-PRxO1hzjLW-2FoPgKNPeXI | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrXj0UKCAWChgAYdesg2OEycSl2XLqkC1IERRL5XlV6BiN1ltEqFy6k_gN_JLGDubXYoAIW55TCLH9oxnki_fB_AkjxWu6koGPDJxwNLYBiqyNEhinYU6pBmzHuU7Tg6O2Kvj-HgNnnX_wrT8EMsXbs4zfLx2Dm5nJt9bsYZiR_UpzTgW7BsszlIH6Nt_tyKPQlfm7ZfKpwFmMbzjFQrp3vLSi6vRKsW80hQzefZFTiYXk1a_6oyuwUnX3hZs8rnf1Kqvv_5C5fi_D3QdthbpKBm08-cGrNliGzZ_IinchkseJKorPP7htGpa6-omiEFTl9_Pv3mJPfLcQSS1JYPJx3J-Wn-akjInTtmLDDG8zvF8ZQ0pCzKozqZTJ-OlSUt57eIt8brQlXTeQMYtMv0WHI1evB8eBAu5hkAzh0tM8lRybRRnjJtEWomVJjVcYs7pvo6ymGqbJxFLYqkpD7k1Ke5jwaJSqjBLi27DelEW9g4QExmWaqlsZgxWcFRyavPIhCrMpc0S1oPdbtiEXnCZO0mNiWhZmKnAvhS-L3vwaGk6awk8fme00429WPhwJTA4YdOxfbQHj5fz4W832fXD-2cLMXxz6Dfu_rvpQ7j8dn8kDl-OX9-Dq9SpD3u45Q6s1_PG3seUqFYP_Mz_AXblBhE | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTtwwFLXQIFR1wautGATItF2wyTQ4dpwswwiEEJp20anoKvIrMGImQZNECFZ8At_Il3DtZICpKGKXx411Zd_Y58rX5yD0PWMSVnUpPB5o5tGIGU8GhnghU7GvfBJT46p8B-HxkJ6csbMFtDs7CzO_f09-QG_0CIk5ZOWLIQO43UGLw8Gv5G-zB7nvAT5xAirMpkEBj2bsQS-_nV9znoHkhzq_EjfXYjyeh6ZubTlaeT6h05SUXPbqSvbU7T-EjW-6vYqWW2SJkyYU1tCCydfRxxd8g-toydV7qhKe_xmVdWNdfkJpUlfFw929U8vDB7baURmcjM-L6ai6mOAiw1akC_dhppzC-9JoXOQ4KW8mE6vIpXDDXm2nTuwknkthAxsPmiLzz2h4dPi7f-y1ygueorbEMMwiwZWWnFKuQ2EEJI1EcwHw0W50UkaUycKAhkwown1udAT3kHvIiEgAXMEX1MmL3GwgrANNIyWkibWGZIwITkwWaF_6mTBxSLtobzY2qWppya06xjhtCJVJCn2Zur7soq9PplcNF8drRluzAU7b37FMYZ4B18E_0kXfngb9rUb2XDj83yLt_zx1F5vvanALdappbbYBwFRypw3hR5UH7NQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto%E2%80%90White+Balance+Algorithm+of+Skin+Color+Based+on+Asymmetric+Generative+Adversarial+Network&rft.jtitle=Color+research+and+application&rft.au=Zhou%2C+Sicong&rft.au=Li%2C+Hesong&rft.au=Sun%2C+Wenjun&rft.au=Zhou%2C+Fanyi&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0361-2317&rft.eissn=1520-6378&rft.volume=50&rft.issue=3&rft.spage=266&rft.epage=275&rft_id=info:doi/10.1002%2Fcol.22970&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-2317&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-2317&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-2317&client=summon |