Auto‐White Balance Algorithm of Skin Color Based on Asymmetric Generative Adversarial Network

ABSTRACT Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A more high‐quality skin color reproduction method has broad application prospects in camera photography, face recognition, and other fields. Th...

Full description

Saved in:
Bibliographic Details
Published inColor research and application Vol. 50; no. 3; pp. 266 - 275
Main Authors Zhou, Sicong, Li, Hesong, Sun, Wenjun, Zhou, Fanyi, Xiao, Kaida
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0361-2317
1520-6378
1520-6378
DOI10.1002/col.22970

Cover

Abstract ABSTRACT Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A more high‐quality skin color reproduction method has broad application prospects in camera photography, face recognition, and other fields. The processing process from the 14bit or 16bit RAW pictures taken by the camera to the final output of 8bit JPG pictures is called the image processing pipeline, in which the steps of the auto‐white balance algorithm have a decisive impact on the skin color reproduction result. The traditional automatic white balance algorithm is based on hypothetical statistics. Moreover, the estimated illuminant color is obtained through illuminant estimation. However, the traditional grayscale world, perfect reflector, and other auto‐white balance algorithms perform unsatisfactorily under non‐uniform or complex light sources. The method based on sample statistics proposes a new solution to this problem from another aspect. The deep learning algorithm, especially the generative adversarial network (GAN) algorithm, is very suitable for establishing the mapping between pictures and has an excellent performance in the fields of image reconstruction, image translation, defogging, and coloring. This paper proposes a new solution to this problem. The asymmetric UNet3+ shape generator integrates better global and local information to obtain a more refined correction matrix incorporating details of the whole image. The discriminator is Patch‐discriminator, which focuses more on image details by changing the attention field. The dataset used in this article is the Liverpool‐Leeds Skin‐color Database (LLSD) and some supplementary images, including the skin color of more than 960 subjects under D65 and different light sources. Finally, we calculate the CIEDE2000 color difference and some other image quality index between the test skin color JPEG picture corrected by the auto‐white balance algorithm and the skin color under the corresponding D65 to evaluate the effect of white balance correction. The results show that the asymmetric GAN algorithm proposed in this paper can bring higher quality skin color reproduction results than the traditional auto‐white balance algorithm and existing deep learning WB algorithm.
AbstractList ABSTRACT Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A more high‐quality skin color reproduction method has broad application prospects in camera photography, face recognition, and other fields. The processing process from the 14bit or 16bit RAW pictures taken by the camera to the final output of 8bit JPG pictures is called the image processing pipeline, in which the steps of the auto‐white balance algorithm have a decisive impact on the skin color reproduction result. The traditional automatic white balance algorithm is based on hypothetical statistics. Moreover, the estimated illuminant color is obtained through illuminant estimation. However, the traditional grayscale world, perfect reflector, and other auto‐white balance algorithms perform unsatisfactorily under non‐uniform or complex light sources. The method based on sample statistics proposes a new solution to this problem from another aspect. The deep learning algorithm, especially the generative adversarial network (GAN) algorithm, is very suitable for establishing the mapping between pictures and has an excellent performance in the fields of image reconstruction, image translation, defogging, and coloring. This paper proposes a new solution to this problem. The asymmetric UNet3+ shape generator integrates better global and local information to obtain a more refined correction matrix incorporating details of the whole image. The discriminator is Patch‐discriminator, which focuses more on image details by changing the attention field. The dataset used in this article is the Liverpool‐Leeds Skin‐color Database (LLSD) and some supplementary images, including the skin color of more than 960 subjects under D65 and different light sources. Finally, we calculate the CIEDE2000 color difference and some other image quality index between the test skin color JPEG picture corrected by the auto‐white balance algorithm and the skin color under the corresponding D65 to evaluate the effect of white balance correction. The results show that the asymmetric GAN algorithm proposed in this paper can bring higher quality skin color reproduction results than the traditional auto‐white balance algorithm and existing deep learning WB algorithm.
Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A more high‐quality skin color reproduction method has broad application prospects in camera photography, face recognition, and other fields. The processing process from the 14bit or 16bit RAW pictures taken by the camera to the final output of 8bit JPG pictures is called the image processing pipeline, in which the steps of the auto‐white balance algorithm have a decisive impact on the skin color reproduction result. The traditional automatic white balance algorithm is based on hypothetical statistics. Moreover, the estimated illuminant color is obtained through illuminant estimation. However, the traditional grayscale world, perfect reflector, and other auto‐white balance algorithms perform unsatisfactorily under non‐uniform or complex light sources. The method based on sample statistics proposes a new solution to this problem from another aspect. The deep learning algorithm, especially the generative adversarial network (GAN) algorithm, is very suitable for establishing the mapping between pictures and has an excellent performance in the fields of image reconstruction, image translation, defogging, and coloring. This paper proposes a new solution to this problem. The asymmetric UNet3+ shape generator integrates better global and local information to obtain a more refined correction matrix incorporating details of the whole image. The discriminator is Patch‐discriminator, which focuses more on image details by changing the attention field. The dataset used in this article is the Liverpool‐Leeds Skin‐color Database (LLSD) and some supplementary images, including the skin color of more than 960 subjects under D65 and different light sources. Finally, we calculate the CIEDE2000 color difference and some other image quality index between the test skin color JPEG picture corrected by the auto‐white balance algorithm and the skin color under the corresponding D65 to evaluate the effect of white balance correction. The results show that the asymmetric GAN algorithm proposed in this paper can bring higher quality skin color reproduction results than the traditional auto‐white balance algorithm and existing deep learning WB algorithm.
Author Sun, Wenjun
Xiao, Kaida
Zhou, Sicong
Zhou, Fanyi
Li, Hesong
Author_xml – sequence: 1
  givenname: Sicong
  orcidid: 0000-0002-2637-4831
  surname: Zhou
  fullname: Zhou, Sicong
  organization: University of Leeds
– sequence: 2
  givenname: Hesong
  surname: Li
  fullname: Li, Hesong
  organization: Shenzhen Transsion Holdings Co. Ltd
– sequence: 3
  givenname: Wenjun
  surname: Sun
  fullname: Sun, Wenjun
  organization: Shenzhen Transsion Holdings Co. Ltd
– sequence: 4
  givenname: Fanyi
  surname: Zhou
  fullname: Zhou, Fanyi
  organization: Shenzhen Transsion Holdings Co. Ltd
– sequence: 5
  givenname: Kaida
  orcidid: 0000-0001-7197-7159
  surname: Xiao
  fullname: Xiao, Kaida
  email: k.xiao1@leeds.ac.uk
  organization: University of Leeds
BookMark eNp9kM1OAjEUhRuDiYAufIMmrjQZaDs_HZZIFE2ILNS4bEqnI4VOi22BsPMRfEafxCquTGR1c3O_c-7J6YCWsUYCcI5RDyNE-sLqHiEDio5AG-cEJUVKyxZoo7TACUkxPQEd7xcIoTwtaRuw4TrYz_ePl7kKEl5zzY2QcKhfrVNh3kBbw8elMnBktXXx7mUFrYFDv2saGZwScCyNdDyoTZRVG-k8d4pr-CDD1rrlKTiuufby7Hd2wfPtzdPoLplMx_ej4SQRGcpiyrrkVFQzmmW0KrjkWVaQinKMc5wikuVEyLpIsyLnglBEZVXGvaD5rCSzARmkXXC1912bFd9tudZs5VTD3Y5hxL6rYbEa9lNNhC_28MrZt7X0gS3s2pmYj6V4EH9GYxKpyz0lnPXeyfqgY_8PK1SIpVgTHFf6kGKrtNz9b81G08le8QX4iZHd
CitedBy_id crossref_primary_10_1016_j_jvcir_2025_104412
Cites_doi 10.1109/ICPR.2010.579
10.1109/34.969113
10.1016/S0167-8655(02)00323-9
10.2352/J.ImagingSci.Technol.(2006)50:4(341)
10.1109/ICIVC55077.2022.9887040
10.3390/s24020391
10.1109/CVPR.2012.6247659
10.1109/TIP.2002.802529
10.1109/AFGR.2000.840613
10.1109/ISCAS.2005.1465458
10.1002/col.22131
10.1109/CVPR46437.2021.00796
10.1109/TIP.2007.901808
10.1109/TMI.2019.2959609
10.1016/j.bbi.2016.11.008
10.1109/TIP.2017.2713044
10.1002/col.22822
10.1007/978-3-319-46493-0_23
10.1111/j.1468-3083.2007.02512.x
10.2352/CIC.2004.12.1.art00008
10.1068/p6307
10.1109/CVPR.2017.632
10.1109/LSP.2013.2285960
10.1109/CVPR.2008.4587765
10.1111/srt.12295
10.1002/col.22737
10.1109/ICASSP40776.2020.9053405
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7U5
8FD
L7M
ADTOC
UNPAY
DOI 10.1002/col.22970
DatabaseName Wiley Online Library Open Access
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Physics
EISSN 1520-6378
EndPage 275
ExternalDocumentID 10.1002/col.22970
10_1002_col_22970
COL22970
Genre researchArticle
GroupedDBID .-4
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3O-
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HW~
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
7U5
8FD
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c4040-6f8a7cdb7447d6aea4462d7a1151302452cef63465ac2707ed8ef6675b82b9293
IEDL.DBID UNPAY
ISSN 0361-2317
1520-6378
IngestDate Sun Sep 07 10:46:25 EDT 2025
Fri Jul 25 20:43:33 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Wed Oct 01 08:30:32 EDT 2025
Fri Apr 18 09:30:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4040-6f8a7cdb7447d6aea4462d7a1151302452cef63465ac2707ed8ef6675b82b9293
Notes The authors received no specific funding for this work.
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7197-7159
0000-0002-2637-4831
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/col.22970
PQID 3191156752
PQPubID 2045175
PageCount 10
ParticipantIDs unpaywall_primary_10_1002_col_22970
proquest_journals_3191156752
crossref_primary_10_1002_col_22970
crossref_citationtrail_10_1002_col_22970
wiley_primary_10_1002_col_22970_COL22970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2025
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Color research and application
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 42
2017; 60
2006; 50
2023; 4
2017; 26
2012
2010
2013; 20
2002; 11
2017; 23
2019; 39
2008
2022; 47
2005
2001; 23
2007; 16
2023
2000
2022
2021
2023; 48
2020
2003; 24
2019
2017
2016
2008; 22
2015
2024; 24
2004; 2004
2009; 38
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
Funt B. (e_1_2_9_9_1) 2010
Afifi M. (e_1_2_9_32_1) 2019
Kınlı F. (e_1_2_9_20_1) 2023
Afifi M. (e_1_2_9_27_1) 2020
Afifi M. (e_1_2_9_15_1) 2022
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
Hu Y. (e_1_2_9_19_1) 2017
Bianco S. (e_1_2_9_25_1) 2019
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
Barron J. T. (e_1_2_9_26_1) 2015
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
He R. (e_1_2_9_7_1) 2023
e_1_2_9_28_1
e_1_2_9_29_1
References_xml – start-page: 1055
  year: 2020
  end-page: 1059
– volume: 39
  start-page: 1856
  issue: 6
  year: 2019
  end-page: 1867
  article-title: Unet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 1210
  year: 2022
  end-page: 1219
– start-page: 507
  year: 2022
  end-page: 512
– volume: 20
  start-page: 1240
  issue: 12
  year: 2013
  end-page: 1243
  article-title: Light Random Sprays Retinex: Exploiting the Noisy Illumination Estimation
  publication-title: IEEE Signal Processing Letters
– volume: 47
  start-page: 288
  issue: 2
  year: 2022
  end-page: 300
  article-title: Development of an Image‐Based Measurement System for Human Facial Skin Colour
  publication-title: Colour Research and Application
– start-page: 8053
  year: 2021
  end-page: 8063
– start-page: 379
  year: 2015
  end-page: 387
– start-page: 4085
  year: 2017
  end-page: 4094
– volume: 16
  start-page: 2207
  issue: 9
  year: 2007
  end-page: 2214
  article-title: Edge‐Based Colour Constancy
  publication-title: IEEE Transactions on Image Processing
– volume: 42
  start-page: 703
  issue: 6
  year: 2017
  end-page: 718
  article-title: Comprehensive Colour Solutions: CAM16, CAT16, and CAM16‐UCS
  publication-title: Colour Research and Application
– volume: 26
  start-page: 4347
  issue: 9
  year: 2017
  end-page: 4362
  article-title: Single and Multiple Illuminant Estimation Using Convolutional Neural Networks
  publication-title: IEEE Transactions on Image Processing
– start-page: 2366
  year: 2010
  end-page: 2369
– volume: 2004
  start-page: 37
  year: 2004
  end-page: 41
– volume: 50
  start-page: 341
  issue: 4
  year: 2006
  end-page: 348
  article-title: Estimating Illumination Chromaticity via Support Vector Regression
  publication-title: Journal of Imaging Science and Technology
– volume: 4
  start-page: 71
  year: 2023
  end-page: 75
– year: 2010
– start-page: 1139
  year: 2023
  end-page: 1147
– volume: 60
  start-page: 312
  year: 2017
  end-page: 318
  article-title: Skin Colour Changes During Experimentally‐Induced Sickness
  publication-title: Brain, Behavior, and Immunity
– volume: 24
  start-page: 1663
  issue: 11
  year: 2003
  end-page: 1677
  article-title: A New Algorithm for Unsupervised Global and Local Colour Correction
  publication-title: Pattern Recognition Letters
– start-page: 3801
  year: 2005
  end-page: 3804
– start-page: 1
  year: 2008
  end-page: 8
– start-page: 371
  year: 2016
  end-page: 387
– start-page: 1535
  year: 2019
  end-page: 1544
– start-page: 12212
  year: 2019
  end-page: 12221
– volume: 24
  start-page: 391
  issue: 2
  year: 2024
  article-title: Predicting Facial Attractiveness From Colour Cues: A New Analytic Framework
  publication-title: Sensors
– volume: 48
  start-page: 40
  issue: 1
  year: 2023
  end-page: 62
  article-title: Analysis of Biases in Automatic White Balance Datasets and Methods
  publication-title: Colour Research and Application
– volume: 23
  start-page: 1209
  issue: 11
  year: 2001
  end-page: 1221
  article-title: Colour by Correlation: A Simple, Unifying Framework for Colour Constancy
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 38
  start-page: 145
  issue: 1
  year: 2009
  end-page: 148
  article-title: The Role of Skin Colour in Face Recognition
  publication-title: Perception
– volume: 11
  start-page: 985
  issue: 9
  year: 2002
  end-page: 996
  article-title: A Comparison of Computational Colour Constancy Algorithms. ii. Experiments With Image Data
  publication-title: IEEE Transactions on Image Processing
– start-page: 1397
  year: 2020
  end-page: 1406
– volume: 22
  start-page: 493
  issue: 4
  year: 2008
  end-page: 498
  article-title: The Effects of Skin Colour Distribution and Topography Cues on the Perception of Female Facial Age and Health
  publication-title: Journal of the European Academy of Dermatology and Venereology
– start-page: 1125
  year: 2017
  end-page: 1134
– start-page: 65
  year: 2012
  end-page: 72
– start-page: 64
  year: 2000
  end-page: 69
– volume: 23
  start-page: 21
  issue: 1
  year: 2017
  end-page: 29
  article-title: Characterising the Variations in Ethnic Skin Colours: A New Calibrated Data Base for Human Skin
  publication-title: Skin Research and Technology
– ident: e_1_2_9_37_1
  doi: 10.1109/ICPR.2010.579
– ident: e_1_2_9_16_1
  doi: 10.1109/34.969113
– ident: e_1_2_9_8_1
  doi: 10.1016/S0167-8655(02)00323-9
– ident: e_1_2_9_17_1
  doi: 10.2352/J.ImagingSci.Technol.(2006)50:4(341)
– start-page: 71
  volume-title: London Imaging Meeting
  year: 2023
  ident: e_1_2_9_7_1
– ident: e_1_2_9_33_1
  doi: 10.1109/ICIVC55077.2022.9887040
– ident: e_1_2_9_6_1
  doi: 10.3390/s24020391
– ident: e_1_2_9_29_1
  doi: 10.1109/CVPR.2012.6247659
– start-page: 1210
  volume-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
  year: 2022
  ident: e_1_2_9_15_1
– ident: e_1_2_9_12_1
  doi: 10.1109/TIP.2002.802529
– ident: e_1_2_9_5_1
  doi: 10.1109/AFGR.2000.840613
– ident: e_1_2_9_13_1
  doi: 10.1109/ISCAS.2005.1465458
– ident: e_1_2_9_38_1
  doi: 10.1002/col.22131
– ident: e_1_2_9_21_1
  doi: 10.1109/CVPR46437.2021.00796
– ident: e_1_2_9_11_1
  doi: 10.1109/TIP.2007.901808
– ident: e_1_2_9_24_1
– start-page: 1535
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2019
  ident: e_1_2_9_32_1
– ident: e_1_2_9_34_1
  doi: 10.1109/TMI.2019.2959609
– ident: e_1_2_9_3_1
  doi: 10.1016/j.bbi.2016.11.008
– start-page: 1139
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2023
  ident: e_1_2_9_20_1
– ident: e_1_2_9_22_1
  doi: 10.1109/TIP.2017.2713044
– ident: e_1_2_9_28_1
  doi: 10.1002/col.22822
– ident: e_1_2_9_23_1
  doi: 10.1007/978-3-319-46493-0_23
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1468-3083.2007.02512.x
– ident: e_1_2_9_10_1
  doi: 10.2352/CIC.2004.12.1.art00008
– start-page: 379
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2015
  ident: e_1_2_9_26_1
– ident: e_1_2_9_2_1
  doi: 10.1068/p6307
– ident: e_1_2_9_36_1
  doi: 10.1109/CVPR.2017.632
– volume-title: Proceedings of the Eighteenth Colour Imaging Conference
  year: 2010
  ident: e_1_2_9_9_1
– ident: e_1_2_9_14_1
  doi: 10.1109/LSP.2013.2285960
– start-page: 4085
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: e_1_2_9_19_1
– ident: e_1_2_9_18_1
  doi: 10.1109/CVPR.2008.4587765
– start-page: 12212
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2019
  ident: e_1_2_9_25_1
– start-page: 1397
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2020
  ident: e_1_2_9_27_1
– ident: e_1_2_9_30_1
  doi: 10.1111/srt.12295
– ident: e_1_2_9_31_1
  doi: 10.1002/col.22737
– ident: e_1_2_9_35_1
  doi: 10.1109/ICASSP40776.2020.9053405
SSID ssj0005387
Score 2.4069448
Snippet ABSTRACT Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A...
Skin color constancy under nonuniform correlated color temperatures (CCT) and multiple light sources has always been a hot issue in color science. A more...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 266
SubjectTerms Algorithms
Asymmetry
auto‐white balance
Cameras
color reproduction
Color temperature
Deep learning
Discriminators
Face recognition
generative adversarial network
Generative adversarial networks
Image compression
Image processing
Image quality
Image reconstruction
Light sources
Machine learning
Pictures
Samples (statistical)
skin color
White balancing
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB2KIupCtCrWF4O6cBObTiaZBFexKEWkulBxF-YVFdpEmhZx5yf4jX6JdyZpa0HFXR43YZg7c-fcyc05CB2lvoBVXXCHecp3aOhrR3iaOIEvI1e6JKLaVvl2g84dvXzwH2rodPwvTMkPMdlwMzPDxmszwbkomlPSUOinE0IiBvn6fAtwjBnehN5M6zs8q44HEbrlAIhhY1ohlzQnj84uRlOEuTjKXvjbK-_1ZjGrXXQuVtFKhRZxXLp3DdV0VkfL3zgE62jB1nDKAq7fPxej0rpYR0k8Guaf7x9WAQ-fmQpGqXHce8wHz8OnPs5TbIS3cBui3wDuF1rhPMNx8dbvG5UtiUtGahMOsZVtLrgZrLhbFo5voLuL89t2x6nUFBxJTdlgkIacSSUYpUwFXHNIBIliHCCh-XhJfSJ1Gng08LkkzGVahXAO-YQIiQAQ5W2iuSzP9BbCylM0lFzoSClIsAhnRKeecoWbch0FtIGOx92ayIpq3Che9JKSJJkk4IHEeqCBDiamLyW_xk9Gu2PfJNUUKxKIHdB0aB9poMOJv_56ybH15O8WSfv6yh5s_990By0RowhsSyB30dxwMNJ7AFOGYt8Oxy9NwOJc
  priority: 102
  providerName: Wiley-Blackwell
Title Auto‐White Balance Algorithm of Skin Color Based on Asymmetric Generative Adversarial Network
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcol.22970
https://www.proquest.com/docview/3191156752
https://doi.org/10.1002/col.22970
UnpaywallVersion publishedVersion
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0361-2317
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1520-6378
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005387
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrRDqgUIBdVGpzMehlyzBsePkGLZUFUJLhVhUTpG_Uip2k2qTCJUTP4Hf2F_SsZNtuwgqLlHiTCzLnthv5PF7AK8KrnBVVzIQkeEBS7gNVGRpEHOdhjqkKbM-y3cSH07Z-2N-vAbPl2dhVvfv6WvsjRGlqcCofD3mCLcHsD6dHGVfuz3INwHiEy-gwl0YFIlkyR5089vVNecaSN5ryzN5_kPOZqvQ1K8tB5vXJ3S6lJLvo7ZRI_3zD8LGW5v9AO73yJJknSs8hDVbbsHGDb7BLbjr8z11jeVfTuu2s64fQZ61TXXx67dXyyNvXbajtiSbnVSL0-bbnFQFcSJdZIwz5QLf19aQqiRZfT6fO0UuTTr2ajd1Ei_xXEvn2GTSJZk_hunBu8_jw6BXXgg0cymGcZFIoY0SjAkTSysxaKRGSISPbqOTcaptEUcs5lJTEQprEnzG2EMlVCHgip7AoKxKuw3ERIYlWiqbGoPBGJWC2iIyoQoLadOYDWFvOTa57mnJnTrGLO8IlWmOfZn7vhzCiyvTs46L429GO8sBzvvfsc5xnsGmY_voEF5eDfptlex5d_i3RT7--MHfPP2vCndg0Cxa-wwBTKN24Q5lR3jd_0R3e3e-BLLW7pQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hUEU5IKCtujyttgcuKcFx7ETisqxA23a77QEqbpZfKUi7CdrsCnHjJ_Q39pcwdvYBUlv1lscksjz2eMb58n0AH4pU46quVSQSm0YsS12kE0cjnpo8NjHNmQso3z7vXrLPV-nVEpzM_oVp-CHmG25-ZoR47Se435A-WrCGYkd9pDQXWLCvMH7MfelF2fcFwCMJ8ngYoo8jzGLEjFcopkfzR5-vRosUc3VS3qr7OzUYPE9aw6pzvgHr03SRtBv_bsKSK7dg7QmJ4Ba8CCBOU-P1Hzf1pLGuX4FsT8bV74dfQQKPnHoIo3GkPfhZjW7G10NSFcQrb5EOhr8R3q-dJVVJ2vX9cOhltgxpKKl9PCRBt7lWfrSSfoMcfw2X52cXnW40lVOIDPO4QV5kShirBWPCcuUUVoLUCoU5of96yVJqXMETxlNlqIiFsxmeY0GhM6oxi0rewHJZle4tEJtYlhmlXW4tVlhUCeqKxMY6LpTLOWvB4axbpZlyjXvJi4FsWJKpRA_I4IEWvJub3jYEG38y2p35Rk7nWC0xeGDTsX20Be_n_vrXSw6DJ_9uITvfeuFg-_9ND2C1e_G1J3uf-l924CX18sABD7kLy-PRxO1hzjLW-2FoPgKNPeXI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrXj0UKCAWChgAYdesg2OEycSl2XLqkC1IERRL5XlV6BiN1ltEqFy6k_gN_JLGDubXYoAIW55TCLH9oxnki_fB_AkjxWu6koGPDJxwNLYBiqyNEhinYU6pBmzHuU7Tg6O2Kvj-HgNnnX_wrT8EMsXbs4zfLx2Dm5nJt9bsYZiR_UpzTgW7BsszlIH6Nt_tyKPQlfm7ZfKpwFmMbzjFQrp3vLSi6vRKsW80hQzefZFTiYXk1a_6oyuwUnX3hZs8rnf1Kqvv_5C5fi_D3QdthbpKBm08-cGrNliGzZ_IinchkseJKorPP7htGpa6-omiEFTl9_Pv3mJPfLcQSS1JYPJx3J-Wn-akjInTtmLDDG8zvF8ZQ0pCzKozqZTJ-OlSUt57eIt8brQlXTeQMYtMv0WHI1evB8eBAu5hkAzh0tM8lRybRRnjJtEWomVJjVcYs7pvo6ymGqbJxFLYqkpD7k1Ke5jwaJSqjBLi27DelEW9g4QExmWaqlsZgxWcFRyavPIhCrMpc0S1oPdbtiEXnCZO0mNiWhZmKnAvhS-L3vwaGk6awk8fme00429WPhwJTA4YdOxfbQHj5fz4W832fXD-2cLMXxz6Dfu_rvpQ7j8dn8kDl-OX9-Dq9SpD3u45Q6s1_PG3seUqFYP_Mz_AXblBhE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTtwwFLXQIFR1wautGATItF2wyTQ4dpwswwiEEJp20anoKvIrMGImQZNECFZ8At_Il3DtZICpKGKXx411Zd_Y58rX5yD0PWMSVnUpPB5o5tGIGU8GhnghU7GvfBJT46p8B-HxkJ6csbMFtDs7CzO_f09-QG_0CIk5ZOWLIQO43UGLw8Gv5G-zB7nvAT5xAirMpkEBj2bsQS-_nV9znoHkhzq_EjfXYjyeh6ZubTlaeT6h05SUXPbqSvbU7T-EjW-6vYqWW2SJkyYU1tCCydfRxxd8g-toydV7qhKe_xmVdWNdfkJpUlfFw929U8vDB7baURmcjM-L6ai6mOAiw1akC_dhppzC-9JoXOQ4KW8mE6vIpXDDXm2nTuwknkthAxsPmiLzz2h4dPi7f-y1ygueorbEMMwiwZWWnFKuQ2EEJI1EcwHw0W50UkaUycKAhkwown1udAT3kHvIiEgAXMEX1MmL3GwgrANNIyWkibWGZIwITkwWaF_6mTBxSLtobzY2qWppya06xjhtCJVJCn2Zur7soq9PplcNF8drRluzAU7b37FMYZ4B18E_0kXfngb9rUb2XDj83yLt_zx1F5vvanALdappbbYBwFRypw3hR5UH7NQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto%E2%80%90White+Balance+Algorithm+of+Skin+Color+Based+on+Asymmetric+Generative+Adversarial+Network&rft.jtitle=Color+research+and+application&rft.au=Zhou%2C+Sicong&rft.au=Li%2C+Hesong&rft.au=Sun%2C+Wenjun&rft.au=Zhou%2C+Fanyi&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0361-2317&rft.eissn=1520-6378&rft.volume=50&rft.issue=3&rft.spage=266&rft.epage=275&rft_id=info:doi/10.1002%2Fcol.22970&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-2317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-2317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-2317&client=summon