Optimization of Multistage Coilgun Based on Neural Network and Intelligent Algorithm
The parameter optimization of a multistage synchronous induction coilgun (SICG) is a time-consuming task. Traditional machine learning methods can accelerate the process by building predictive models, but they require separate modeling for an SICG with different stages, which requires numerous datas...
Saved in:
| Published in | Applied sciences Vol. 13; no. 13; p. 7374 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app13137374 |
Cover
| Abstract | The parameter optimization of a multistage synchronous induction coilgun (SICG) is a time-consuming task. Traditional machine learning methods can accelerate the process by building predictive models, but they require separate modeling for an SICG with different stages, which requires numerous datasets and is a cumbersome process. This paper proposes a method for building a predictive model for an SICG with different stages based on a recurrent neural network (RNN). In this method, the feed time of a 2- to 10-stage SICG is selected from the standard orthogonal design table as the training and test datasets, and the current filament method (CFM) is used to calculate the dataset label. The gate recurrent unit (GRU) neural network is used to study the training dataset, and the predictive model has good accuracy with respect to the test dataset, with an average error of 0.022. The predictive model and a particle swarm optimization (PSO) algorithm are applied to optimize the feed time of the SICG with different stages. The results show that the three-stage SICG can achieve a muzzle velocity of 50 m/s for a projectile, while the maximum muzzle velocity of the three-stage SICG in all datasets is 46.87 m/s. |
|---|---|
| AbstractList | The parameter optimization of a multistage synchronous induction coilgun (SICG) is a time-consuming task. Traditional machine learning methods can accelerate the process by building predictive models, but they require separate modeling for an SICG with different stages, which requires numerous datasets and is a cumbersome process. This paper proposes a method for building a predictive model for an SICG with different stages based on a recurrent neural network (RNN). In this method, the feed time of a 2- to 10-stage SICG is selected from the standard orthogonal design table as the training and test datasets, and the current filament method (CFM) is used to calculate the dataset label. The gate recurrent unit (GRU) neural network is used to study the training dataset, and the predictive model has good accuracy with respect to the test dataset, with an average error of 0.022. The predictive model and a particle swarm optimization (PSO) algorithm are applied to optimize the feed time of the SICG with different stages. The results show that the three-stage SICG can achieve a muzzle velocity of 50 m/s for a projectile, while the maximum muzzle velocity of the three-stage SICG in all datasets is 46.87 m/s. |
| Audience | Academic |
| Author | Tian, Haojie He, Yi Yang, Xiaoqing |
| Author_xml | – sequence: 1 givenname: Yi surname: He fullname: He, Yi – sequence: 2 givenname: Xiaoqing surname: Yang fullname: Yang, Xiaoqing – sequence: 3 givenname: Haojie surname: Tian fullname: Tian, Haojie |
| BookMark | eNqFkU1vEzEQhi1UJErpiT-wEkdI8Vfs9TFE0EYq9FLO1sQfi4NjL16vqvLrcbsIVQgJ-zDW-Hlfj2deopOUk0PoNcEXjCn8HsaRMMIkk_wZOqVYihXjRJ48Ob9A59N0wG0pwnqCT9HtzVjDMfyEGnLqsu8-z7GGqcLgum0OcZhT9wEmZ7t2_cXNBWIL9S6X7x0k2-1SdTGGwaXabeKQS6jfjq_Qcw9xcue_4xn6-unj7fZqdX1zudturleGY1ZXXnq7XxsljGB-DVhxay0Vku-d5SA5ttwL4Tlp5ffOW-o9lYwCEO6VWxt2hnaLr81w0GMJRyj3OkPQj4lcBg2lBhOdxj1xjhneM-k4BamIVFQoJ-wehDAPXu8WrzmNcH8HMf4xJFg_NFg_aXDD3yz4WPKP2U1VH_JcUvutpj0TjEpJZKMuFmqAVkNIPtcCpm3rjsG08fnQ8hu5bjQnSjXB20VgSp6m4vx_iiB_0SbUx0m2Z0L8p-YXXJqqkA |
| CitedBy_id | crossref_primary_10_1080_15325008_2024_2325537 crossref_primary_10_1109_TPS_2024_3516143 |
| Cites_doi | 10.1109/TPS.2010.2047276 10.1109/20.560087 10.1109/20.738395 10.1109/TPS.2021.3061299 10.1109/TPS.2019.2918157 10.1109/TPS.2015.2406778 10.1109/PPPS.2007.4652542 10.1109/TMAG.2008.2008551 10.1109/TPS.2021.3050045 10.1007/BF02551274 10.1109/MWSCAS.2017.8053243 10.1109/TPS.2018.2847401 10.1109/PPC.2005.300494 10.1109/TPS.2010.2076315 10.1109/4235.585893 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/app13137374 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_081ee3c4837e42a79179269e6dba66cc 10.3390/app13137374 A757714199 10_3390_app13137374 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c403t-f7fdb5c96c63f5a094ddd2674bed4a740d4f66f410768efd2ff2732aa14f9e5c3 |
| IEDL.DBID | BENPR |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:53:31 EDT 2025 Sun Oct 26 03:29:05 EDT 2025 Mon Jun 30 07:32:51 EDT 2025 Mon Oct 20 16:39:46 EDT 2025 Thu Oct 16 04:30:57 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-f7fdb5c96c63f5a094ddd2674bed4a740d4f66f410768efd2ff2732aa14f9e5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2836327717?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2836327717 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_081ee3c4837e42a79179269e6dba66cc unpaywall_primary_10_3390_app13137374 proquest_journals_2836327717 gale_infotracacademiconefile_A757714199 crossref_primary_10_3390_app13137374 crossref_citationtrail_10_3390_app13137374 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Cybenko (ref_18) 1989; 2 Wang (ref_6) 1999; 35 ref_13 Skurdal (ref_1) 2009; 45 Liu (ref_12) 2011; 39 ref_20 ref_3 Niu (ref_7) 2021; 49 Shoubao (ref_17) 2011; 39 ref_16 Wolpert (ref_19) 1997; 1 ref_15 ref_8 Zielinski (ref_2) 1997; 33 Le (ref_10) 2018; 46 Niu (ref_14) 2019; 47 ref_5 Hassannia (ref_9) 2021; 49 ref_4 Tao (ref_11) 2015; 43 |
| References_xml | – volume: 39 start-page: 382 year: 2011 ident: ref_17 article-title: Improvement of Current Filament Method and Its Application in Performance Analysis of Induction Coil Gun publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2010.2047276 – volume: 33 start-page: 630 year: 1997 ident: ref_2 article-title: Cannon-caliber electromagnetic launcher publication-title: IEEE Trans. Magn. doi: 10.1109/20.560087 – volume: 35 start-page: 160 year: 1999 ident: ref_6 article-title: The design and structural analysis of a coilgun for low acceleration of heavy loads publication-title: IEEE Trans. Magn. doi: 10.1109/20.738395 – ident: ref_8 – ident: ref_5 – volume: 49 start-page: 1241 year: 2021 ident: ref_9 article-title: Optimal Switching Scheme for Multistage Reluctance Coilgun publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2021.3061299 – volume: 47 start-page: 3246 year: 2019 ident: ref_14 article-title: Nonparametric Modeling and Parameter Optimization of Multistage Synchronous Induction Coilgun publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2019.2918157 – volume: 43 start-page: 1208 year: 2015 ident: ref_11 article-title: Geometry and Power Optimization of Coilgun Based on Adaptive Genetic Algorithms publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2015.2406778 – ident: ref_4 doi: 10.1109/PPPS.2007.4652542 – volume: 45 start-page: 458 year: 2009 ident: ref_1 article-title: Multimission Electromagnetic Launcher publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2008.2008551 – ident: ref_15 – volume: 49 start-page: 928 year: 2021 ident: ref_7 article-title: Exploration on Matching Characteristics of Slip and Turns of Multistage Synchronous Induction Coilgun publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2021.3050045 – volume: 2 start-page: 303 year: 1989 ident: ref_18 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signal Syst. doi: 10.1007/BF02551274 – ident: ref_13 – ident: ref_16 doi: 10.1109/MWSCAS.2017.8053243 – volume: 46 start-page: 3612 year: 2018 ident: ref_10 article-title: Design of an Electromagnetic Induction Coilgun Using the Taguchi Method publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2018.2847401 – ident: ref_3 doi: 10.1109/PPC.2005.300494 – volume: 39 start-page: 100 year: 2011 ident: ref_12 article-title: Parameters Optimization of Synchronous Induction Coilgun Based on Ant Colony Algorithm publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2010.2076315 – ident: ref_20 – volume: 1 start-page: 67 year: 1997 ident: ref_19 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 |
| SSID | ssj0000913810 |
| Score | 2.2694542 |
| Snippet | The parameter optimization of a multistage synchronous induction coilgun (SICG) is a time-consuming task. Traditional machine learning methods can accelerate... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 7374 |
| SubjectTerms | Accuracy Algorithms Analysis current filament method (CFM) Experimental methods Finite element analysis finite element method (FEM) Machine learning Mathematical optimization neural network Neural networks Optimization Partial differential equations particle swarm optimization (PSO) Research methodology Simulation synchronous induction coilgun (SICG) Variance analysis Velocity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLpRDxaNVAxT5AOpDirqOHTs-LggESKUXkLhZjh9bpJBFkFXVf9-ZxLtK1YpeuCYjZTL-PA_Z8w0hh45hN6RieR2VygX3Ore1ZbnH6kNVk1g6bBT-diXPb8TlbXk7GvWFd8IGeuDBcF8hZIXAHRKfB1FYBeWFLqQO0tdWSufQ-04qPSqmeh-sGVJXDQ15HOp6PA9mnHHFlfgjBPVM_X_74w2yvmgf7K-ftmlGAedsk7xJmSKdDhpukVeh3SYbI_7AbbKVduYT_ZTooz_vkOvv4AXuU3slnUfa99hCEjgL9GR-18wWLT2G2OUpvEZuDvjI1XAZnNrW04sVSWdHp81s_njX_bh_S27OTq9PzvM0OyF3YsK7PKro69Jp6SSPpYUizntfSCXq4IVVYuJFlDIKhidxIfoiRkhkCmuZiDqUjr8ja-28De8JtXUQNYPEqPJecKcrFUNlla0iuIPgbUa-LM1pXCIWx_kWjYECA21vRrbPAB5L4YeBT-PfYse4LisRJMHuHwA0TIKG-R80MvIRV9XgVgWFnE0dB_BbSHplpqoElAqmdUb2lwtv0h5-MpB4SV6AhMrI0QoMz2m9-xJa75HXONJ-uBK8T9a6x0X4AIlPVx_0GP8NoRH_5w priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA9FFqoCBTkA4iHlHYdO3ZyQtuKqiCxcOhK5RQ5fiwr0mS1zRbBr2e8cVbLQwgJKadkkjjy-PM38cxngKea-mpISePSSRlzZvJYlYrGxkcfMhu6VPtC4fdjcTbh7y7Si40qfp9WiaH4bAXSCQbZMcKsPKLMH5JJfjQ37vV1-JdERSYZUvwsuwlbIkU2PoCtyfjj6JPfU66_uyvLYxjd-1VhyijzD_ppIlrp9f-Oyttwa1nP1bevqqo2pp3TO6D6BnfZJl8Ol215qL__ouX4P190F3YCJyWjzol24Yat92B7Q6lwD3YDBlyRF0Go-uU9OP-AeHMZCjlJ48iqmhfp5tSSk2ZWTZc1OcZZ0hC87FVA8CXjLu2cqNqQt2s50JaMqmmzmLWfL-_D5PTN-clZHHZpiDUfsjZ20pky1bnQgrlUYbhojEmE5KU1XEk-NNwJ4Tj1a37WmcQ5pEyJUpS73Kaa7cOgbmr7AIgqLS8pUrDMGM50nklnMyVV5hB4rFERvOq7rNBBwtzvpFEVGMr4_i02-jdCR-yN551yx5_Njn3fr0283PbqRLOYFmH0FsibrGXaq-9bniiJMW6eiNwKUyohtI7gufecwoMCNkirUNuAn-XltYqRTHE8cJrnERz0zlUEtLgqkOIJlqCFjODZ2uH-1uqH_2j3CG4nyMq6_OIDGLSLpX2MLKotn4SB8gNnTxYp priority: 102 providerName: Unpaywall |
| Title | Optimization of Multistage Coilgun Based on Neural Network and Intelligent Algorithm |
| URI | https://www.proquest.com/docview/2836327717 https://www.mdpi.com/2076-3417/13/13/7374/pdf?version=1687349588 https://doaj.org/article/081ee3c4837e42a79179269e6dba66cc |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QPsAbEBWmFUfgDxIUU0sWMnDwi108pAokxolcZT5PijIHVJ2VIh_nvuUqcUgfaYxHKS-z7b9zuAZyamakgVR6VXKhLc5pEudRxZyj5UNvSpoULhT1N5NhMfL9PLHZh2tTB0rLKzia2htrWhNfI36AYlT3BW9W75I6KuUbS72rXQ0KG1gn3bQoztwl5CyFg92BufTs-_bFZdCAUzi4frQj2O-T7tE8c85oor8ZdrahH8_7XT-3BnVS31r596sdhyRJP7cC9EkGy0ZvkB7LjqEPa3cAUP4SBo7A17GWClXz2Ai89oHa5C2SWrPWtrbzE4nDt2Un9fzFcVG6NPswwfE2YHvmS6PiTOdGXZhw14Z8NGiznSpvl29RBmk9OLk7Mo9FSIjBjyJvLK2zI1uTSS-1RjcmetTaQSpbNCKzG0wkvpRUw7dM7bxHsMcBKtY-Fzlxr-CHpVXbkjYLp0oowxYMqsFdzkmfIu00pnHs2Es7oPrztyFiYAjlPfi0WBiQfRvtiifR_Fphu8XONs_H_YmPiyGULg2O2N-npeBF0rMMpxjhvCynci0Qoz0jyRuZO21FIa04cXxNWCVBg_yOhQiYC_RWBYxUilKGcizvM-HHeML4Ju3xR_JLEPzzfCcNtXP759midwl5rYrw8BH0OvuV65pxjqNOUAdrPJ-0GQ4kG7YIBXs-n56OtvkagBtA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a28PYA2IDRGGAH5i4SBFx7NjJw4TasallW0Gok_aWOb4UpC4ta6tpf47fxnHjlCLQ3vaaWI7jc3wutr_vALzW1KMhJY1KJ2XEmckjVSoaGZ99yCx2qfZA4dO-6J7xz-fp-Rr8arAw_lplYxMXhtqMtd8j_4BuULAEe5UfJz8jXzXKn642JTRUKK1g9hcUYwHYcWxvrjGFm-73PqG895Lk6HBw0I1ClYFI85jNIiedKVOdCy2YSxWmO8aYREheWsOV5LHhTgjHqT-zss4kzqHLT5Si3OU21Qz7vQcbnPEck7-NzmH_67flLo9n3cxoXAMDGctjfy5NGWWSSf6XK1xUDPjXL2zB5ryaqJtrNRqtOL6jh_AgRKykXavYNqzZage2VngMd2A7WIgpeRtorN89gsEXtEaXAeZJxo4ssL4YjA4tORj_GA3nFemgDzUEX3uOEPxIv76UTlRlSG9JFjoj7dEQZTH7fvkYzu5kdp_AejWu7FMgqrS8pBigZcZwpvNMOpspqTKHZska1YL3zXQWOhCc-zobowITHT_3xcrct1BNm8aTmtfj_806Xi7LJp6Me_FgfDUswtouMKqylmnPzW95oiRmwHkicitMqYTQugVvvFQLbzJwQFoF5AP-liffKtoyRb3mNM9bsNsIvgi2ZFr80fwW7C2V4bZRP7u9m1ew2R2cnhQnvf7xc7ifYNhWX0DehfXZ1dy-wDBrVr4Mukzg4q6Xz2_xIjyB |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IFpALBTwgYqHFDWJHTs5ILRtWboUFg6t1Ftw_FiQtsnSzarqX-PXMbNJlkWg3npNLMeZGc_DnvkG4IWJqBpSRUHhlQoEt1mgCx0FlqIPlYY-MVQo_HkkD0_Ex9PkdA1-dbUwlFbZ6cSForaVoTPyXTSDksc4q9r1bVrE14PBu-nPgDpI0U1r106jEZEjd3mB4dvs7fAAeb0Tx4P3x_uHQdthIDAi5HXglbdFYjJpJPeJxlDHWhtLJQpnhVYitMJL6UVE91XO29h7NPex1pHwmUsMx3lvwE1FKO5UpT74sDzfIbzNNAqbkkDOs5BupCMeccWV-MsILnoF_GsRNuD2vJzqyws9mayYvME9uNv6qqzfCNcmrLlyCzZWEAy3YLPVDTP2qgWwfn0fjr-gHjprCzxZ5dmiyhfd0LFj-9WPyXhesj20npbha0IHwY-MmnR0pkvLhkuY0Jr1J2OkfP397AGcXAttH8J6WZXuETBdOFFE6Jql1gpuslR5l2qlU48KyVndgzcdOXPTQptTh41JjiEO0T5foX0PBbQbPG0QPf4_bI_4shxCMNyLB9X5OG93dY7-lHPcECq_E7FWGPtmscyctIWW0pgevCSu5qQscEFGtzUP-FsEu5X3VYISLaIs68F2x_i81SKz_I_M92BnKQxXrfrx1dM8h1u4afJPw9HRE7gTo7_WZB5vw3p9PndP0b-qi2cLQWbw7bp3zm9UVTob |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA9FFqoCBTkA4iHlHYdO3ZyQtuKqiCxcOhK5RQ5fiwr0mS1zRbBr2e8cVbLQwgJKadkkjjy-PM38cxngKea-mpISePSSRlzZvJYlYrGxkcfMhu6VPtC4fdjcTbh7y7Si40qfp9WiaH4bAXSCQbZMcKsPKLMH5JJfjQ37vV1-JdERSYZUvwsuwlbIkU2PoCtyfjj6JPfU66_uyvLYxjd-1VhyijzD_ppIlrp9f-Oyttwa1nP1bevqqo2pp3TO6D6BnfZJl8Ol215qL__ouX4P190F3YCJyWjzol24Yat92B7Q6lwD3YDBlyRF0Go-uU9OP-AeHMZCjlJ48iqmhfp5tSSk2ZWTZc1OcZZ0hC87FVA8CXjLu2cqNqQt2s50JaMqmmzmLWfL-_D5PTN-clZHHZpiDUfsjZ20pky1bnQgrlUYbhojEmE5KU1XEk-NNwJ4Tj1a37WmcQ5pEyJUpS73Kaa7cOgbmr7AIgqLS8pUrDMGM50nklnMyVV5hB4rFERvOq7rNBBwtzvpFEVGMr4_i02-jdCR-yN551yx5_Njn3fr0283PbqRLOYFmH0FsibrGXaq-9bniiJMW6eiNwKUyohtI7gufecwoMCNkirUNuAn-XltYqRTHE8cJrnERz0zlUEtLgqkOIJlqCFjODZ2uH-1uqH_2j3CG4nyMq6_OIDGLSLpX2MLKotn4SB8gNnTxYp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Multistage+Coilgun+Based+on+Neural+Network+and+Intelligent+Algorithm&rft.jtitle=Applied+sciences&rft.au=He%2C+Yi&rft.au=Yang%2C+Xiaoqing&rft.au=Tian%2C+Haojie&rft.date=2023-07-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=13&rft.spage=7374&rft_id=info:doi/10.3390%2Fapp13137374&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13137374 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |