Optimization of Multistage Coilgun Based on Neural Network and Intelligent Algorithm

The parameter optimization of a multistage synchronous induction coilgun (SICG) is a time-consuming task. Traditional machine learning methods can accelerate the process by building predictive models, but they require separate modeling for an SICG with different stages, which requires numerous datas...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 13; p. 7374
Main Authors He, Yi, Yang, Xiaoqing, Tian, Haojie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2023
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app13137374

Cover

Abstract The parameter optimization of a multistage synchronous induction coilgun (SICG) is a time-consuming task. Traditional machine learning methods can accelerate the process by building predictive models, but they require separate modeling for an SICG with different stages, which requires numerous datasets and is a cumbersome process. This paper proposes a method for building a predictive model for an SICG with different stages based on a recurrent neural network (RNN). In this method, the feed time of a 2- to 10-stage SICG is selected from the standard orthogonal design table as the training and test datasets, and the current filament method (CFM) is used to calculate the dataset label. The gate recurrent unit (GRU) neural network is used to study the training dataset, and the predictive model has good accuracy with respect to the test dataset, with an average error of 0.022. The predictive model and a particle swarm optimization (PSO) algorithm are applied to optimize the feed time of the SICG with different stages. The results show that the three-stage SICG can achieve a muzzle velocity of 50 m/s for a projectile, while the maximum muzzle velocity of the three-stage SICG in all datasets is 46.87 m/s.
AbstractList The parameter optimization of a multistage synchronous induction coilgun (SICG) is a time-consuming task. Traditional machine learning methods can accelerate the process by building predictive models, but they require separate modeling for an SICG with different stages, which requires numerous datasets and is a cumbersome process. This paper proposes a method for building a predictive model for an SICG with different stages based on a recurrent neural network (RNN). In this method, the feed time of a 2- to 10-stage SICG is selected from the standard orthogonal design table as the training and test datasets, and the current filament method (CFM) is used to calculate the dataset label. The gate recurrent unit (GRU) neural network is used to study the training dataset, and the predictive model has good accuracy with respect to the test dataset, with an average error of 0.022. The predictive model and a particle swarm optimization (PSO) algorithm are applied to optimize the feed time of the SICG with different stages. The results show that the three-stage SICG can achieve a muzzle velocity of 50 m/s for a projectile, while the maximum muzzle velocity of the three-stage SICG in all datasets is 46.87 m/s.
Audience Academic
Author Tian, Haojie
He, Yi
Yang, Xiaoqing
Author_xml – sequence: 1
  givenname: Yi
  surname: He
  fullname: He, Yi
– sequence: 2
  givenname: Xiaoqing
  surname: Yang
  fullname: Yang, Xiaoqing
– sequence: 3
  givenname: Haojie
  surname: Tian
  fullname: Tian, Haojie
BookMark eNqFkU1vEzEQhi1UJErpiT-wEkdI8Vfs9TFE0EYq9FLO1sQfi4NjL16vqvLrcbsIVQgJ-zDW-Hlfj2deopOUk0PoNcEXjCn8HsaRMMIkk_wZOqVYihXjRJ48Ob9A59N0wG0pwnqCT9HtzVjDMfyEGnLqsu8-z7GGqcLgum0OcZhT9wEmZ7t2_cXNBWIL9S6X7x0k2-1SdTGGwaXabeKQS6jfjq_Qcw9xcue_4xn6-unj7fZqdX1zudturleGY1ZXXnq7XxsljGB-DVhxay0Vku-d5SA5ttwL4Tlp5ffOW-o9lYwCEO6VWxt2hnaLr81w0GMJRyj3OkPQj4lcBg2lBhOdxj1xjhneM-k4BamIVFQoJ-wehDAPXu8WrzmNcH8HMf4xJFg_NFg_aXDD3yz4WPKP2U1VH_JcUvutpj0TjEpJZKMuFmqAVkNIPtcCpm3rjsG08fnQ8hu5bjQnSjXB20VgSp6m4vx_iiB_0SbUx0m2Z0L8p-YXXJqqkA
CitedBy_id crossref_primary_10_1080_15325008_2024_2325537
crossref_primary_10_1109_TPS_2024_3516143
Cites_doi 10.1109/TPS.2010.2047276
10.1109/20.560087
10.1109/20.738395
10.1109/TPS.2021.3061299
10.1109/TPS.2019.2918157
10.1109/TPS.2015.2406778
10.1109/PPPS.2007.4652542
10.1109/TMAG.2008.2008551
10.1109/TPS.2021.3050045
10.1007/BF02551274
10.1109/MWSCAS.2017.8053243
10.1109/TPS.2018.2847401
10.1109/PPC.2005.300494
10.1109/TPS.2010.2076315
10.1109/4235.585893
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app13137374
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_081ee3c4837e42a79179269e6dba66cc
10.3390/app13137374
A757714199
10_3390_app13137374
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c403t-f7fdb5c96c63f5a094ddd2674bed4a740d4f66f410768efd2ff2732aa14f9e5c3
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Fri Oct 03 12:53:31 EDT 2025
Sun Oct 26 03:29:05 EDT 2025
Mon Jun 30 07:32:51 EDT 2025
Mon Oct 20 16:39:46 EDT 2025
Thu Oct 16 04:30:57 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-f7fdb5c96c63f5a094ddd2674bed4a740d4f66f410768efd2ff2732aa14f9e5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2836327717?pq-origsite=%requestingapplication%&accountid=15518
PQID 2836327717
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_081ee3c4837e42a79179269e6dba66cc
unpaywall_primary_10_3390_app13137374
proquest_journals_2836327717
gale_infotracacademiconefile_A757714199
crossref_primary_10_3390_app13137374
crossref_citationtrail_10_3390_app13137374
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cybenko (ref_18) 1989; 2
Wang (ref_6) 1999; 35
ref_13
Skurdal (ref_1) 2009; 45
Liu (ref_12) 2011; 39
ref_20
ref_3
Niu (ref_7) 2021; 49
Shoubao (ref_17) 2011; 39
ref_16
Wolpert (ref_19) 1997; 1
ref_15
ref_8
Zielinski (ref_2) 1997; 33
Le (ref_10) 2018; 46
Niu (ref_14) 2019; 47
ref_5
Hassannia (ref_9) 2021; 49
ref_4
Tao (ref_11) 2015; 43
References_xml – volume: 39
  start-page: 382
  year: 2011
  ident: ref_17
  article-title: Improvement of Current Filament Method and Its Application in Performance Analysis of Induction Coil Gun
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2010.2047276
– volume: 33
  start-page: 630
  year: 1997
  ident: ref_2
  article-title: Cannon-caliber electromagnetic launcher
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.560087
– volume: 35
  start-page: 160
  year: 1999
  ident: ref_6
  article-title: The design and structural analysis of a coilgun for low acceleration of heavy loads
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.738395
– ident: ref_8
– ident: ref_5
– volume: 49
  start-page: 1241
  year: 2021
  ident: ref_9
  article-title: Optimal Switching Scheme for Multistage Reluctance Coilgun
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2021.3061299
– volume: 47
  start-page: 3246
  year: 2019
  ident: ref_14
  article-title: Nonparametric Modeling and Parameter Optimization of Multistage Synchronous Induction Coilgun
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2019.2918157
– volume: 43
  start-page: 1208
  year: 2015
  ident: ref_11
  article-title: Geometry and Power Optimization of Coilgun Based on Adaptive Genetic Algorithms
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2015.2406778
– ident: ref_4
  doi: 10.1109/PPPS.2007.4652542
– volume: 45
  start-page: 458
  year: 2009
  ident: ref_1
  article-title: Multimission Electromagnetic Launcher
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2008.2008551
– ident: ref_15
– volume: 49
  start-page: 928
  year: 2021
  ident: ref_7
  article-title: Exploration on Matching Characteristics of Slip and Turns of Multistage Synchronous Induction Coilgun
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2021.3050045
– volume: 2
  start-page: 303
  year: 1989
  ident: ref_18
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signal Syst.
  doi: 10.1007/BF02551274
– ident: ref_13
– ident: ref_16
  doi: 10.1109/MWSCAS.2017.8053243
– volume: 46
  start-page: 3612
  year: 2018
  ident: ref_10
  article-title: Design of an Electromagnetic Induction Coilgun Using the Taguchi Method
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2018.2847401
– ident: ref_3
  doi: 10.1109/PPC.2005.300494
– volume: 39
  start-page: 100
  year: 2011
  ident: ref_12
  article-title: Parameters Optimization of Synchronous Induction Coilgun Based on Ant Colony Algorithm
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2010.2076315
– ident: ref_20
– volume: 1
  start-page: 67
  year: 1997
  ident: ref_19
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
SSID ssj0000913810
Score 2.2694542
Snippet The parameter optimization of a multistage synchronous induction coilgun (SICG) is a time-consuming task. Traditional machine learning methods can accelerate...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7374
SubjectTerms Accuracy
Algorithms
Analysis
current filament method (CFM)
Experimental methods
Finite element analysis
finite element method (FEM)
Machine learning
Mathematical optimization
neural network
Neural networks
Optimization
Partial differential equations
particle swarm optimization (PSO)
Research methodology
Simulation
synchronous induction coilgun (SICG)
Variance analysis
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLpRDxaNVAxT5AOpDirqOHTs-LggESKUXkLhZjh9bpJBFkFXVf9-ZxLtK1YpeuCYjZTL-PA_Z8w0hh45hN6RieR2VygX3Ore1ZbnH6kNVk1g6bBT-diXPb8TlbXk7GvWFd8IGeuDBcF8hZIXAHRKfB1FYBeWFLqQO0tdWSufQ-04qPSqmeh-sGVJXDQ15HOp6PA9mnHHFlfgjBPVM_X_74w2yvmgf7K-ftmlGAedsk7xJmSKdDhpukVeh3SYbI_7AbbKVduYT_ZTooz_vkOvv4AXuU3slnUfa99hCEjgL9GR-18wWLT2G2OUpvEZuDvjI1XAZnNrW04sVSWdHp81s_njX_bh_S27OTq9PzvM0OyF3YsK7PKro69Jp6SSPpYUizntfSCXq4IVVYuJFlDIKhidxIfoiRkhkCmuZiDqUjr8ja-28De8JtXUQNYPEqPJecKcrFUNlla0iuIPgbUa-LM1pXCIWx_kWjYECA21vRrbPAB5L4YeBT-PfYse4LisRJMHuHwA0TIKG-R80MvIRV9XgVgWFnE0dB_BbSHplpqoElAqmdUb2lwtv0h5-MpB4SV6AhMrI0QoMz2m9-xJa75HXONJ-uBK8T9a6x0X4AIlPVx_0GP8NoRH_5w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA9FFqoCBTkA4iHlHYdO3ZyQtuKqiCxcOhK5RQ5fiwr0mS1zRbBr2e8cVbLQwgJKadkkjjy-PM38cxngKea-mpISePSSRlzZvJYlYrGxkcfMhu6VPtC4fdjcTbh7y7Si40qfp9WiaH4bAXSCQbZMcKsPKLMH5JJfjQ37vV1-JdERSYZUvwsuwlbIkU2PoCtyfjj6JPfU66_uyvLYxjd-1VhyijzD_ppIlrp9f-Oyttwa1nP1bevqqo2pp3TO6D6BnfZJl8Ol215qL__ouX4P190F3YCJyWjzol24Yat92B7Q6lwD3YDBlyRF0Go-uU9OP-AeHMZCjlJ48iqmhfp5tSSk2ZWTZc1OcZZ0hC87FVA8CXjLu2cqNqQt2s50JaMqmmzmLWfL-_D5PTN-clZHHZpiDUfsjZ20pky1bnQgrlUYbhojEmE5KU1XEk-NNwJ4Tj1a37WmcQ5pEyJUpS73Kaa7cOgbmr7AIgqLS8pUrDMGM50nklnMyVV5hB4rFERvOq7rNBBwtzvpFEVGMr4_i02-jdCR-yN551yx5_Njn3fr0283PbqRLOYFmH0FsibrGXaq-9bniiJMW6eiNwKUyohtI7gufecwoMCNkirUNuAn-XltYqRTHE8cJrnERz0zlUEtLgqkOIJlqCFjODZ2uH-1uqH_2j3CG4nyMq6_OIDGLSLpX2MLKotn4SB8gNnTxYp
  priority: 102
  providerName: Unpaywall
Title Optimization of Multistage Coilgun Based on Neural Network and Intelligent Algorithm
URI https://www.proquest.com/docview/2836327717
https://www.mdpi.com/2076-3417/13/13/7374/pdf?version=1687349588
https://doaj.org/article/081ee3c4837e42a79179269e6dba66cc
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QPsAbEBWmFUfgDxIUU0sWMnDwi108pAokxolcZT5PijIHVJ2VIh_nvuUqcUgfaYxHKS-z7b9zuAZyamakgVR6VXKhLc5pEudRxZyj5UNvSpoULhT1N5NhMfL9PLHZh2tTB0rLKzia2htrWhNfI36AYlT3BW9W75I6KuUbS72rXQ0KG1gn3bQoztwl5CyFg92BufTs-_bFZdCAUzi4frQj2O-T7tE8c85oor8ZdrahH8_7XT-3BnVS31r596sdhyRJP7cC9EkGy0ZvkB7LjqEPa3cAUP4SBo7A17GWClXz2Ai89oHa5C2SWrPWtrbzE4nDt2Un9fzFcVG6NPswwfE2YHvmS6PiTOdGXZhw14Z8NGiznSpvl29RBmk9OLk7Mo9FSIjBjyJvLK2zI1uTSS-1RjcmetTaQSpbNCKzG0wkvpRUw7dM7bxHsMcBKtY-Fzlxr-CHpVXbkjYLp0oowxYMqsFdzkmfIu00pnHs2Es7oPrztyFiYAjlPfi0WBiQfRvtiifR_Fphu8XONs_H_YmPiyGULg2O2N-npeBF0rMMpxjhvCynci0Qoz0jyRuZO21FIa04cXxNWCVBg_yOhQiYC_RWBYxUilKGcizvM-HHeML4Ju3xR_JLEPzzfCcNtXP759midwl5rYrw8BH0OvuV65pxjqNOUAdrPJ-0GQ4kG7YIBXs-n56OtvkagBtA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a28PYA2IDRGGAH5i4SBFx7NjJw4TasallW0Gok_aWOb4UpC4ta6tpf47fxnHjlCLQ3vaaWI7jc3wutr_vALzW1KMhJY1KJ2XEmckjVSoaGZ99yCx2qfZA4dO-6J7xz-fp-Rr8arAw_lplYxMXhtqMtd8j_4BuULAEe5UfJz8jXzXKn642JTRUKK1g9hcUYwHYcWxvrjGFm-73PqG895Lk6HBw0I1ClYFI85jNIiedKVOdCy2YSxWmO8aYREheWsOV5LHhTgjHqT-zss4kzqHLT5Si3OU21Qz7vQcbnPEck7-NzmH_67flLo9n3cxoXAMDGctjfy5NGWWSSf6XK1xUDPjXL2zB5ryaqJtrNRqtOL6jh_AgRKykXavYNqzZage2VngMd2A7WIgpeRtorN89gsEXtEaXAeZJxo4ssL4YjA4tORj_GA3nFemgDzUEX3uOEPxIv76UTlRlSG9JFjoj7dEQZTH7fvkYzu5kdp_AejWu7FMgqrS8pBigZcZwpvNMOpspqTKHZska1YL3zXQWOhCc-zobowITHT_3xcrct1BNm8aTmtfj_806Xi7LJp6Me_FgfDUswtouMKqylmnPzW95oiRmwHkicitMqYTQugVvvFQLbzJwQFoF5AP-liffKtoyRb3mNM9bsNsIvgi2ZFr80fwW7C2V4bZRP7u9m1ew2R2cnhQnvf7xc7ifYNhWX0DehfXZ1dy-wDBrVr4Mukzg4q6Xz2_xIjyB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IFpALBTwgYqHFDWJHTs5ILRtWboUFg6t1Ftw_FiQtsnSzarqX-PXMbNJlkWg3npNLMeZGc_DnvkG4IWJqBpSRUHhlQoEt1mgCx0FlqIPlYY-MVQo_HkkD0_Ex9PkdA1-dbUwlFbZ6cSForaVoTPyXTSDksc4q9r1bVrE14PBu-nPgDpI0U1r106jEZEjd3mB4dvs7fAAeb0Tx4P3x_uHQdthIDAi5HXglbdFYjJpJPeJxlDHWhtLJQpnhVYitMJL6UVE91XO29h7NPex1pHwmUsMx3lvwE1FKO5UpT74sDzfIbzNNAqbkkDOs5BupCMeccWV-MsILnoF_GsRNuD2vJzqyws9mayYvME9uNv6qqzfCNcmrLlyCzZWEAy3YLPVDTP2qgWwfn0fjr-gHjprCzxZ5dmiyhfd0LFj-9WPyXhesj20npbha0IHwY-MmnR0pkvLhkuY0Jr1J2OkfP397AGcXAttH8J6WZXuETBdOFFE6Jql1gpuslR5l2qlU48KyVndgzcdOXPTQptTh41JjiEO0T5foX0PBbQbPG0QPf4_bI_4shxCMNyLB9X5OG93dY7-lHPcECq_E7FWGPtmscyctIWW0pgevCSu5qQscEFGtzUP-FsEu5X3VYISLaIs68F2x_i81SKz_I_M92BnKQxXrfrx1dM8h1u4afJPw9HRE7gTo7_WZB5vw3p9PndP0b-qi2cLQWbw7bp3zm9UVTob
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA9FFqoCBTkA4iHlHYdO3ZyQtuKqiCxcOhK5RQ5fiwr0mS1zRbBr2e8cVbLQwgJKadkkjjy-PM38cxngKea-mpISePSSRlzZvJYlYrGxkcfMhu6VPtC4fdjcTbh7y7Si40qfp9WiaH4bAXSCQbZMcKsPKLMH5JJfjQ37vV1-JdERSYZUvwsuwlbIkU2PoCtyfjj6JPfU66_uyvLYxjd-1VhyijzD_ppIlrp9f-Oyttwa1nP1bevqqo2pp3TO6D6BnfZJl8Ol215qL__ouX4P190F3YCJyWjzol24Yat92B7Q6lwD3YDBlyRF0Go-uU9OP-AeHMZCjlJ48iqmhfp5tSSk2ZWTZc1OcZZ0hC87FVA8CXjLu2cqNqQt2s50JaMqmmzmLWfL-_D5PTN-clZHHZpiDUfsjZ20pky1bnQgrlUYbhojEmE5KU1XEk-NNwJ4Tj1a37WmcQ5pEyJUpS73Kaa7cOgbmr7AIgqLS8pUrDMGM50nklnMyVV5hB4rFERvOq7rNBBwtzvpFEVGMr4_i02-jdCR-yN551yx5_Njn3fr0283PbqRLOYFmH0FsibrGXaq-9bniiJMW6eiNwKUyohtI7gufecwoMCNkirUNuAn-XltYqRTHE8cJrnERz0zlUEtLgqkOIJlqCFjODZ2uH-1uqH_2j3CG4nyMq6_OIDGLSLpX2MLKotn4SB8gNnTxYp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Multistage+Coilgun+Based+on+Neural+Network+and+Intelligent+Algorithm&rft.jtitle=Applied+sciences&rft.au=He%2C+Yi&rft.au=Yang%2C+Xiaoqing&rft.au=Tian%2C+Haojie&rft.date=2023-07-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=13&rft.spage=7374&rft_id=info:doi/10.3390%2Fapp13137374&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13137374
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon