A Metaheuristic Harris Hawks Optimization Algorithm for Weed Detection Using Drone Images

There are several major threats to crop production. As herbicide use has become overly reliant on weed control, herbicide-resistant weeds have evolved and pose an increasing threat to the environment, food safety, and human health. Convolutional neural networks (CNNs) have demonstrated exceptional r...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 12; p. 7083
Main Authors P.P., Fathimathul Rajeena, Ismail, Walaa N., Ali, Mona A. S.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2023
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app13127083

Cover

Abstract There are several major threats to crop production. As herbicide use has become overly reliant on weed control, herbicide-resistant weeds have evolved and pose an increasing threat to the environment, food safety, and human health. Convolutional neural networks (CNNs) have demonstrated exceptional results in the analysis of images for the identification of weeds from crop images that are captured by drones. Manually designing such neural architectures is, however, an error-prone and time-consuming process. Natural-inspired optimization algorithms have been widely used to design and optimize neural networks, since they can perform a blackbox optimization process without explicitly formulating mathematical formulations or providing gradient information to develop appropriate representations and search paradigms for solutions. Harris Hawk Optimization algorithms (HHO) have been developed in recent years to identify optimal or near-optimal solutions to difficult problems automatically, thus overcoming the limitations of human judgment. A new automated architecture based on DenseNet-121 and DenseNet-201 models is presented in this study, which is called “DenseHHO”. A novel CNN architecture design is devised to classify weed images captured by sprayer drones using the Harris Hawk Optimization algorithm (HHO) by selecting the most appropriate parameters. Based on the results of this study, the proposed method is capable of detecting weeds in unstructured field environments with an average accuracy of 98.44% using DenseNet-121 and 97.91% using DenseNet-201, the highest accuracy among optimization-based weed-detection strategies.
AbstractList There are several major threats to crop production. As herbicide use has become overly reliant on weed control, herbicide-resistant weeds have evolved and pose an increasing threat to the environment, food safety, and human health. Convolutional neural networks (CNNs) have demonstrated exceptional results in the analysis of images for the identification of weeds from crop images that are captured by drones. Manually designing such neural architectures is, however, an error-prone and time-consuming process. Natural-inspired optimization algorithms have been widely used to design and optimize neural networks, since they can perform a blackbox optimization process without explicitly formulating mathematical formulations or providing gradient information to develop appropriate representations and search paradigms for solutions. Harris Hawk Optimization algorithms (HHO) have been developed in recent years to identify optimal or near-optimal solutions to difficult problems automatically, thus overcoming the limitations of human judgment. A new automated architecture based on DenseNet-121 and DenseNet-201 models is presented in this study, which is called “DenseHHO”. A novel CNN architecture design is devised to classify weed images captured by sprayer drones using the Harris Hawk Optimization algorithm (HHO) by selecting the most appropriate parameters. Based on the results of this study, the proposed method is capable of detecting weeds in unstructured field environments with an average accuracy of 98.44% using DenseNet-121 and 97.91% using DenseNet-201, the highest accuracy among optimization-based weed-detection strategies.
Audience Academic
Author P.P., Fathimathul Rajeena
Ali, Mona A. S.
Ismail, Walaa N.
Author_xml – sequence: 1
  givenname: Fathimathul Rajeena
  orcidid: 0000-0002-5152-8409
  surname: P.P.
  fullname: P.P., Fathimathul Rajeena
– sequence: 2
  givenname: Walaa N.
  orcidid: 0000-0002-1499-438X
  surname: Ismail
  fullname: Ismail, Walaa N.
– sequence: 3
  givenname: Mona A. S.
  orcidid: 0000-0002-2192-3504
  surname: Ali
  fullname: Ali, Mona A. S.
BookMark eNp9UU1r3DAQNSWFpmlO_QOGHttN9WXLPi75aBZSckkIPYmxNHK0tS1X0hKSX19lXUIotBrQDKP3Hm9G74uDyU9YFB8pOeG8JV9hnimnTJKGvykOGZH1igsqD17V74rjGLckn5byhpLD4se6_I4J7nEXXExOl5cQcpXTw89YXs_Jje4JkvNTuR56H1y6H0vrQ3mHaMozTKj3j7fRTX15FrKlcjNCj_FD8dbCEPH4Tz4qbi_Ob04vV1fX3zan66uVFoSnla0bUdGOMWyhbpisKkZb1JzQRgJQ25oarWVdZbq6FihIR0HWrJaWNCCM5UfFZtE1HrZqDm6E8Kg8OLVv-NArCHmyAZUxNdUCGdBOCmF02wokhiOjnQDTQdb6smjtphkeH2AYXgQpUc9bVq-2nOGfFvgc_K8dxqS2fhemPK1iDWslkfnKqJMF1UP24CbrUwCdw-DodF6Ydbm_lpXI4EpWmUAXgg4-xoBWaZf2f5CJbviHlc9_cf5n_DfknKu8
CitedBy_id crossref_primary_10_3390_app14052154
crossref_primary_10_3390_agriculture14040568
crossref_primary_10_3390_math11163601
crossref_primary_10_1007_s00477_024_02884_z
crossref_primary_10_1109_ACCESS_2023_3322376
crossref_primary_10_3390_su151813302
crossref_primary_10_3390_agriengineering6010034
crossref_primary_10_3390_en18010018
crossref_primary_10_1109_ACCESS_2024_3418454
Cites_doi 10.3390/rs13030513
10.1111/wbm.12041
10.1007/s11119-019-09659-5
10.1080/1343943X.2020.1829490
10.3390/math10234421
10.1007/s11263-019-01247-4
10.1016/j.compag.2017.10.027
10.1017/S0021859605005708
10.3390/s18082674
10.3390/plants9050559
10.1109/ICEEE49618.2020.9102505
10.3390/agriengineering3020020
10.1146/annurev-publhealth-031816-044356
10.1186/s40648-019-0141-2
10.3390/s22197693
10.1016/j.compag.2020.105766
10.1007/s11831-022-09780-1
10.1109/CVPR.2017.243
10.3390/rs12233877
10.3389/fpls.2019.01422
10.1109/ELECOM49001.2020.9296994
10.1186/s13007-021-00722-9
10.1109/JETCAS.2021.3101740
10.13031/aim.202100742
10.1002/agj2.20841
10.1016/j.compag.2020.105750
10.1016/j.future.2019.02.028
10.3390/rs12010096
10.1016/j.compind.2018.03.001
10.3390/app122412828
10.1016/j.biosystemseng.2016.08.024
10.1109/LAGIRS48042.2020.9165562
10.1016/j.compag.2021.106081
10.3389/fcomp.2019.00004
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app13127083
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Agriculture
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_dd61c4e2a1b744dc994e0d3e21b4adba
10.3390/app13127083
A754973575
10_3390_app13127083
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c403t-f68451b22e9a682755219ec30187aa1f9d6eff2b5db664e40b1a76267f08a4df3
IEDL.DBID UNPAY
ISSN 2076-3417
IngestDate Tue Oct 14 19:04:43 EDT 2025
Sun Oct 26 04:03:23 EDT 2025
Mon Jun 30 07:32:55 EDT 2025
Mon Oct 20 16:19:21 EDT 2025
Thu Apr 24 22:56:26 EDT 2025
Thu Oct 16 04:41:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-f68451b22e9a682755219ec30187aa1f9d6eff2b5db664e40b1a76267f08a4df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5152-8409
0000-0002-2192-3504
0000-0002-1499-438X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2076-3417/13/12/7083/pdf?version=1687573010
PQID 2829707297
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_dd61c4e2a1b744dc994e0d3e21b4adba
unpaywall_primary_10_3390_app13127083
proquest_journals_2829707297
gale_infotracacademiconefile_A754973575
crossref_citationtrail_10_3390_app13127083
crossref_primary_10_3390_app13127083
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liakos (ref_9) 2018; 18
Khodadadi (ref_37) 2022; 10
Sabzi (ref_35) 2018; 98
Urmashev (ref_20) 2021; 6
Yu (ref_31) 2019; 10
Heidari (ref_39) 2019; 97
ref_34
Shehab (ref_40) 2022; 29
Daponte (ref_1) 2019; Volume 275
Pang (ref_13) 2020; 178
Ghanizadeh (ref_4) 2014; 14
ref_10
Pavelka (ref_3) 2022; 22
Aharon (ref_7) 2020; 12
Ronay (ref_23) 2021; 13
Kawamura (ref_26) 2020; 24
Herrmann (ref_8) 2020; 21
Myers (ref_6) 2017; 38
ref_15
Dyrmann (ref_11) 2016; 151
Albanese (ref_12) 2021; 11
Albraikan (ref_38) 2022; 12
Butte (ref_16) 2021; 113
Liu (ref_19) 2021; 17
Ahmad (ref_33) 2021; 184
Oerke (ref_5) 2006; 144
ref_25
Zhang (ref_28) 2019; 1
ref_21
You (ref_30) 2020; 178
ref_41
Onishi (ref_18) 2019; 6
Ismail (ref_17) 2022; 9
Tian (ref_24) 2020; 7
ref_2
Freitas (ref_32) 2017; 143
Dadashzadeh (ref_36) 2020; 9
Liu (ref_22) 2020; 128
ref_29
Chowdhury (ref_14) 2021; 3
Brinkhoff (ref_27) 2020; 12
References_xml – volume: 13
  start-page: 513
  year: 2021
  ident: ref_23
  article-title: Hyperspectral Reflectance and Indices for Characterizing the Dynamics of Crop–Weed Competition for Water
  publication-title: Remote Sens.
  doi: 10.3390/rs13030513
– volume: 14
  start-page: 133
  year: 2014
  ident: ref_4
  article-title: Effect of weed interference on Zea mays: Growth analysis
  publication-title: Weed Biol. Manag.
  doi: 10.1111/wbm.12041
– volume: 21
  start-page: 51
  year: 2020
  ident: ref_8
  article-title: Assessment of maize yield and phenology by drone-mounted superspectral camera
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09659-5
– volume: Volume 275
  start-page: 012022
  year: 2019
  ident: ref_1
  article-title: A review on the use of drones for precision agriculture
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 24
  start-page: 198
  year: 2020
  ident: ref_26
  article-title: Discriminating crops/weeds in an upland rice field from UAV images with the SLIC-RF algorithm
  publication-title: Plant Prod. Sci.
  doi: 10.1080/1343943X.2020.1829490
– volume: 10
  start-page: 4421
  year: 2022
  ident: ref_37
  article-title: Metaheuristic Optimization for Improving Weed Detection in Wheat Images Captured by Drones
  publication-title: Mathematics
  doi: 10.3390/math10234421
– volume: 128
  start-page: 261
  year: 2020
  ident: ref_22
  article-title: Deep learning for generic object detection: A survey
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01247-4
– volume: 143
  start-page: 314
  year: 2017
  ident: ref_32
  article-title: Weed detection in soybean crops using ConvNets
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.10.027
– volume: 144
  start-page: 31
  year: 2006
  ident: ref_5
  article-title: Crop losses to pests
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859605005708
– volume: 18
  start-page: 2674
  year: 2018
  ident: ref_9
  article-title: Machine learning in agriculture: A review
  publication-title: Sensors
  doi: 10.3390/s18082674
– volume: 9
  start-page: 559
  year: 2020
  ident: ref_36
  article-title: Weed Classification for Site-Specific Weed Management Using an Automated Stereo Computer-Vision Machine-Learning System in Rice Fields
  publication-title: Plants
  doi: 10.3390/plants9050559
– ident: ref_25
  doi: 10.1109/ICEEE49618.2020.9102505
– volume: 3
  start-page: 294
  year: 2021
  ident: ref_14
  article-title: Automatic and reliable leaf disease detection using deep learning techniques
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering3020020
– volume: 38
  start-page: 259
  year: 2017
  ident: ref_6
  article-title: Climate change and global food systems: Potential impacts on food security and undernutrition
  publication-title: Annu. Rev. Public Health
  doi: 10.1146/annurev-publhealth-031816-044356
– volume: 6
  start-page: 13
  year: 2019
  ident: ref_18
  article-title: An automated fruit harvesting robot by using deep learning
  publication-title: Robomech J.
  doi: 10.1186/s40648-019-0141-2
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_24
  article-title: Computer vision technology in agricultural automation—A review
  publication-title: Inf. Process. Agric.
– ident: ref_21
– volume: 22
  start-page: 7693
  year: 2022
  ident: ref_3
  article-title: Evaluating the Performance of Airborne and Ground Sensors for Applications in Precision Agriculture: Enhancing the Postprocessing State-of-the-Art Algorithm
  publication-title: Sensors
  doi: 10.3390/s22197693
– volume: 178
  start-page: 105766
  year: 2020
  ident: ref_13
  article-title: Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105766
– volume: 29
  start-page: 5579
  year: 2022
  ident: ref_40
  article-title: Harris hawks optimization algorithm: Variants and applications
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-022-09780-1
– ident: ref_41
  doi: 10.1109/CVPR.2017.243
– volume: 12
  start-page: 3877
  year: 2020
  ident: ref_7
  article-title: Image-based high-throughput phenotyping of cereals early vigor and weed-competitiveness traits
  publication-title: Remote Sens.
  doi: 10.3390/rs12233877
– volume: 10
  start-page: 1422
  year: 2019
  ident: ref_31
  article-title: Weed detection in perennial ryegrass with deep learning convolutional neural network
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01422
– ident: ref_34
  doi: 10.1109/ELECOM49001.2020.9296994
– volume: 17
  start-page: 22
  year: 2021
  ident: ref_19
  article-title: Plant diseases and pests detection based on deep learning: A review
  publication-title: Plant Methods
  doi: 10.1186/s13007-021-00722-9
– ident: ref_2
– volume: 11
  start-page: 458
  year: 2021
  ident: ref_12
  article-title: Automated pest detection with DNN on the edge for precision agriculture
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2021.3101740
– ident: ref_10
– ident: ref_15
  doi: 10.13031/aim.202100742
– volume: 113
  start-page: 3991
  year: 2021
  ident: ref_16
  article-title: Potato crop stress identification in aerial images using deep learning-based object detection
  publication-title: Agron. J.
  doi: 10.1002/agj2.20841
– volume: 178
  start-page: 105750
  year: 2020
  ident: ref_30
  article-title: A DNN-based semantic segmentation for detecting weed and crop
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105750
– volume: 9
  start-page: 24
  year: 2022
  ident: ref_17
  article-title: Real-time visual inspection system for grading fruits using computer vision and deep learning techniques
  publication-title: Inf. Process. Agric.
– volume: 97
  start-page: 849
  year: 2019
  ident: ref_39
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 12
  start-page: 96
  year: 2020
  ident: ref_27
  article-title: Land Cover Classification of Nine Perennial Crops Using Sentinel-1 and-2 Data
  publication-title: Remote Sens.
  doi: 10.3390/rs12010096
– volume: 98
  start-page: 80
  year: 2018
  ident: ref_35
  article-title: A fast and accurate expert system for weed identifcation in potato crops using metaheuristic algorithms
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.03.001
– volume: 6
  start-page: 114
  year: 2021
  ident: ref_20
  article-title: Development of a weed detection system using machine learning and neural network algorithms
  publication-title: East.-Eur. J. Enterp. Technol.
– volume: 12
  start-page: 12828
  year: 2022
  ident: ref_38
  article-title: Modified Barnacles Mating Optimization with Deep Learning Based Weed Detection Model for Smart Agriculture
  publication-title: Appl. Sci.
  doi: 10.3390/app122412828
– volume: 151
  start-page: 72
  year: 2016
  ident: ref_11
  article-title: Plant species classification using deep convolutional neural network
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.08.024
– ident: ref_29
  doi: 10.1109/LAGIRS48042.2020.9165562
– volume: 184
  start-page: 106081
  year: 2021
  ident: ref_33
  article-title: Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106081
– volume: 1
  start-page: 4
  year: 2019
  ident: ref_28
  article-title: Combing K-means Clustering and Local Weighted Maximum Discriminant Projections for Weed Species Recognition
  publication-title: Front. Comput. Sci.
  doi: 10.3389/fcomp.2019.00004
SSID ssj0000913810
Score 2.3329413
Snippet There are several major threats to crop production. As herbicide use has become overly reliant on weed control, herbicide-resistant weeds have evolved and pose...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7083
SubjectTerms Agricultural production
Agriculture
Algorithms
Analysis
Classification
Dense-Net201
DenseHHO
DenseNet-121
Harris Hawk optimization
Herbicide resistance
Mathematical optimization
Neural networks
Safety and security measures
Unmanned aerial vehicles
weed detection
Weeds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL9ADogXEQql8KOIhRcTxxI6PS0u1IAEXKsrJsmO7Reym1W5WFf-eseOugkDl0lOiZKTYmbc88w0hBzW6PRdbtzgqUgGgRNEEGQrhbI0vSgCbqnw_i9kJfDytT0ejvmJN2AAPPPy4t84J1oKvDLMSwLVKgS8d9xWzYJxNoVHZqFEylWywYhG6amjI45jXx_NgxuMxa8P_cEEJqf9ve7xN7q67S_PrysznI4dz_IDcz5EinQ4r3CF3fLdLtkf4gbtkJ2vmir7K8NGvH5LvU_rJ9-bcrwcQZjozS7zDy9XPFf2CJmKRey_pdH52sfzRny8ohq70GzoyeuT7VJzV0VRMQI-WF52nHxZodlaPyMnx-6-HsyIPUChaKHlfBNFAzWxVeWVEU8kafbXyLY-D-IxhQTnhQ6hs7awQ4KG0zKBxFDKUjQEX-GOy1eFXnhCaaIG1zgYHUDem8SpIWSJrgq-dnJA31_9UtxldPA65mGvMMiID9IgBE3KwIb4cQDX-TfYuMmdDEpGw0wOUD53lQ_9PPibkZWStjvqKC2pNbjvAbUXkKz2VmCFLjlHrhOxdc19nRV7peNAsI7o67vDFRiJuWvXT21j1M3IvzrUfatL2yFa_XPvnGP30dj8J-m_zCAJV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QLSAGijIhyIeUkQeTpwcEEppqwWJBSEqyimyY3srsZtdsllV_HtmEmdZBOopLytxPJ6HPTPfABwnqPY0pW7FyEg-53nqZ1ZYP9UqwQcB56qL8p2k4wv-4TK53IHJkAtDYZWDTOwEtV5UtEf-mjx-gmCuxdvlT5-qRpF3dSihIV1pBf2mgxi7BbsRIWONYPfkbPL5y2bXhVAwszDoE_ViXO-TnziMyf2axX-ppg7B_185vQe31_VS_rqWs9mWIjq_B3edBcmKnuT7sGPqA9grpo1D0TB4tYUyeAD7jn9X7IUDmX55H74X7KNp5ZVZ91DNbCwbPMPD9Y8V-4SCZO4yNFkxm-JAtFdzhgYu-4bqjp2atgvhqlkXcsBOm0Vt2Ps5CqfVA7g4P_v6buy7Mgt-xYO49W2a8SRUUWRymWaRSFCj56aKqVyflKHNdWqsjVSiVZpywwMVShShqbBBJrm28UMY1fiVQ2BdWx5WWlnNeZLJzORWiKDixppECw9eDSNcVg6DnEphzEpcixA5yi1yeHC8abzsoTf-3-yESLVpQnjZ3Y1FMy0d-5VapyF2IpKhEpzrKs-5CXRsolBxqZX04DkRuiSuxg5V0iUn4G8RPlZZCFxHixhtWw-OhrlQOnZflX8mpwfPNvPjpl4_uvk1j-EO1bXvY9KOYNQ2a_MErZ9WPXVT-jcfxwOf
  priority: 102
  providerName: ProQuest
Title A Metaheuristic Harris Hawks Optimization Algorithm for Weed Detection Using Drone Images
URI https://www.proquest.com/docview/2829707297
https://www.mdpi.com/2076-3417/13/12/7083/pdf?version=1687573010
https://doaj.org/article/dd61c4e2a1b744dc994e0d3e21b4adba
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegfYA9ABsgykblhyE-pKxx7NjJE8rYSkGiTIiK7SmyY3ub1i-l6Sb46zknblU-hJB4SpRclLN8_vnOvvsZof0Ypj3tSrcoDKSAsZQHiRU24FrF8CJkTNVZvkM-GLEPp_HpRhW_S6uEUPyyBukIguwAYFb0CO2RqCfAX-jNtX1z7deSCHd87LSusWrzGLzxFmqPhifZmTtTbvV1U5ZHIbp3u8KEus3WhP40EdV8_b-j8ha6s5zO5bcbOR5vTDv9-0iuFG6yTa4OlpU6KL7_wuX4Py16gO55nxRnjRFto1tmuoO2NpgKd9C2x4AFfumJql89RGcZ_mgqeWGWDd0zHsgS7uByc7XAnwCMJr7KE2fj81l5WV1MMDjJ-CtMmfjIVHUa2BTXaQv4qJxNDX4_AYBbPEKj_vGXt4PAH9UQFCykVWB5wmKiosikkieRiMErSE1B3ZF_UhKbam6sjVSsFefMsFARCTDMhQ0TybSlj1FrCn95gnAty0ihldWMxYlMTGqFCAtmrIm16KDXq37LC89j7o7TGOcQz7hOzjc6uYP218Lzhr7jz2KHzgDWIo5zu34wK89zP4RzrTkBJSJJlGBMF2nKTKipiYhiUivZQS-c-eQOGUChQvoCB2iW49jKMwGxuKDgH3fQ3srCcg8Zi9xtaQvH4w4tfL62ur9p_fQf5XbR3QhcsybBbQ-1qnJpnoErVakuup3033VR-_B4ePK5Wy9IdP0I-gGt-Bor
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QLSAWCjgQyseUkQSO3FyqFDKttql7YJQK9pTsGN7K7EvkqxW_XP8NsZZ77II1FtPeVmJ47Hn4Zn5BmAvQrGnbOoWxYXkMZbGXmK48WIlI3zgMyabKN9e3Llgny6jyzX4tciFsWGVC57YMGo1Luwe-Xvr8eMW5pp_mPz0bNUo611dlNAQrrSCOmggxlxix4m-maEJVx1020jv_TA8Pjr_2PFclQGvYD6tPRMnLApkGOpUxEnIIxRoqS6orVYnRGBSFWtjQhkpGcdMM18GAjlIzI2fCKYMxffegw1GWYrG38bhUe_L1-Uuj0XdTAJ_nhhIaepbv3RArbs3oX-JwqZiwL9yYQs2p6OJuJmJwWBF8B0_hAdOYyXZfIptw5oe7cBW1i8daofGqxVUwx3YdvyiIm8cqPXbR3CVkTNdi2s9nUNDk44o8QwPsx8V-YyMa-gyQkk26OPA19dDggo1-YbilbR13YSMjUgT4kDa5XikSXeIzLB6DBd3MuBPYH2EX3kKpGnLgkJJoxiLEpHo1HDuF0wbHSnegneLEc4Lh3luS28McrR9LDnyFXK0YG_ZeDKH-vh_s0NLqmUTi8_d3BiX_dwt91ypOMBOhCKQnDFVpCnTvqI6DCQTSooWvLaEzi0XwQ4VwiVD4G9ZPK4842i3c4q6dAt2F3Mhd-ylyv8shhbsL-fHbb1-dvtrXsFm5_zsND_t9k6ew_0QNbl5PNwurNflVL9AzauWL930JvD9rlfUb0qaQAM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ4LtAbEBIjDAD5u4SNFyceLkAaFAKS2DwQPTxlOwY7uT1qalSVXtr_HrOE6cUgTa255ysxLH52r7nO8A7Edo9qRJ3QpRkFxK09hNNNNuLEWEDzxKRRPlexwPTujHs-hsA351uTAmrLLTiY2iltPCrJEfmh0_ZmCu2aG2YRFfe_03s5-uqSBldlq7chotixypyyVO36rXwx7S-iAI-u-_vRu4tsKAW1AvrF0dJzTyRRColMdJwCI0ZqkqQlOpjnNfpzJWWgcikiKOqaKe8Dlqj5hpL-FU6hDfewNuMoPibrLU-x9W6zsGbzPxvTYlMAxTz-xI-6HZ6E3Cv4xgUyvgX4uwDbcX5YxfLvl4vGby-nfhjvVVSdYy1w5sqHIXtrPR3OJ1KLxawzPchR2rKSrywsJZv7wH3zPyWdX8XC1aUGgy4HM8w8PyoiJfUGVNbC4oycYjHOb6fELQlSanaFhJT9VNsFhJmuAG0ptPS0WGE1SD1X04uZbhfgCbJX7lIZCmLfULKbSkNEp4olLNmFdQpVUkmQOvuhHOC4t2bopujHOc9Rhy5GvkcGB_1XjWgnz8v9lbQ6pVE4PM3dyYzke5FfRcytjHTgTcF4xSWaQpVZ4MVeALyqXgDjw3hM6N_sAOFdymQeBvGSSuPGM4Y2chetEO7HW8kFvFUuV_xMCBgxV_XNXrR1e_5hncQjnKPw2Pjx7DVoAuXBsItweb9XyhnqDLVYunDW8T-HHdwvQbjMU9nQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h7gH2AGyAVhjID0N8SFnj2LGTJxQYU0Fi8EDF9hTZsb1Na9OqTZngr-ecuFX5EELiqVFzUc7y-ee7-O53AAcpbnvGl24xXEgR57mIMiddJIxO8UbMuW6zfE_EcMTfn6anG1X8Pq0SQ_HLFqQTDLIjhFk5oGxAk4FEf2EwM-7V1_AtiQrPx87aGqstkaI33oOt0cmn4sz3lFs93ZXlMYzu_akwZf6wNWM_bUQtX__vqLwNN5f1TH27VuPxxrZzfAfUSuEu2-TqcNnow-r7L1yO_zOiu3A7-KSk6IxoB27Yehe2N5gKd2EnYMCCPA9E1S_uwVlBPthGXdhlR_dMhmqOV_hzfbUgHxGMJqHKkxTj8-n8srmYEHSSyRfcMsmRbdo0sJq0aQvkaD6tLXk3QYBb3IfR8dvPb4ZRaNUQVTxmTeRExlOqk8TmSmSJTNEryG3FfMs_pajLjbDOJTo1WghueaypQhgW0sWZ4saxB9Cr8S17QFpZTiujneE8zVRmcydlXHHrbGpkH16u5q2sAo-5b6cxLjGe8ZNcbkxyHw7WwrOOvuPPYq-9AaxFPOd2-8d0fl6GJVwaIygqkSiqJeemynNuY8NsQjVXRqs-PPPmU3pkQIUqFQoccFieY6ssJMbikqF_3If9lYWVATIWpT_Slp7HHUf4dG11f9P64T_KPYJbCbpmXYLbPvSa-dI-Rleq0U_CavkBzZwWtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Metaheuristic+Harris+Hawks+Optimization+Algorithm+for+Weed+Detection+Using+Drone+Images&rft.jtitle=Applied+sciences&rft.au=Fathimathul+Rajeena+P.P.&rft.au=Walaa+N.+Ismail&rft.au=Mona+A.+S.+Ali&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=12&rft.spage=7083&rft_id=info:doi/10.3390%2Fapp13127083&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dd61c4e2a1b744dc994e0d3e21b4adba
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon