A Metaheuristic Harris Hawks Optimization Algorithm for Weed Detection Using Drone Images
There are several major threats to crop production. As herbicide use has become overly reliant on weed control, herbicide-resistant weeds have evolved and pose an increasing threat to the environment, food safety, and human health. Convolutional neural networks (CNNs) have demonstrated exceptional r...
        Saved in:
      
    
          | Published in | Applied sciences Vol. 13; no. 12; p. 7083 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.06.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2076-3417 2076-3417  | 
| DOI | 10.3390/app13127083 | 
Cover
| Abstract | There are several major threats to crop production. As herbicide use has become overly reliant on weed control, herbicide-resistant weeds have evolved and pose an increasing threat to the environment, food safety, and human health. Convolutional neural networks (CNNs) have demonstrated exceptional results in the analysis of images for the identification of weeds from crop images that are captured by drones. Manually designing such neural architectures is, however, an error-prone and time-consuming process. Natural-inspired optimization algorithms have been widely used to design and optimize neural networks, since they can perform a blackbox optimization process without explicitly formulating mathematical formulations or providing gradient information to develop appropriate representations and search paradigms for solutions. Harris Hawk Optimization algorithms (HHO) have been developed in recent years to identify optimal or near-optimal solutions to difficult problems automatically, thus overcoming the limitations of human judgment. A new automated architecture based on DenseNet-121 and DenseNet-201 models is presented in this study, which is called “DenseHHO”. A novel CNN architecture design is devised to classify weed images captured by sprayer drones using the Harris Hawk Optimization algorithm (HHO) by selecting the most appropriate parameters. Based on the results of this study, the proposed method is capable of detecting weeds in unstructured field environments with an average accuracy of 98.44% using DenseNet-121 and 97.91% using DenseNet-201, the highest accuracy among optimization-based weed-detection strategies. | 
    
|---|---|
| AbstractList | There are several major threats to crop production. As herbicide use has become overly reliant on weed control, herbicide-resistant weeds have evolved and pose an increasing threat to the environment, food safety, and human health. Convolutional neural networks (CNNs) have demonstrated exceptional results in the analysis of images for the identification of weeds from crop images that are captured by drones. Manually designing such neural architectures is, however, an error-prone and time-consuming process. Natural-inspired optimization algorithms have been widely used to design and optimize neural networks, since they can perform a blackbox optimization process without explicitly formulating mathematical formulations or providing gradient information to develop appropriate representations and search paradigms for solutions. Harris Hawk Optimization algorithms (HHO) have been developed in recent years to identify optimal or near-optimal solutions to difficult problems automatically, thus overcoming the limitations of human judgment. A new automated architecture based on DenseNet-121 and DenseNet-201 models is presented in this study, which is called “DenseHHO”. A novel CNN architecture design is devised to classify weed images captured by sprayer drones using the Harris Hawk Optimization algorithm (HHO) by selecting the most appropriate parameters. Based on the results of this study, the proposed method is capable of detecting weeds in unstructured field environments with an average accuracy of 98.44% using DenseNet-121 and 97.91% using DenseNet-201, the highest accuracy among optimization-based weed-detection strategies. | 
    
| Audience | Academic | 
    
| Author | P.P., Fathimathul Rajeena Ali, Mona A. S. Ismail, Walaa N.  | 
    
| Author_xml | – sequence: 1 givenname: Fathimathul Rajeena orcidid: 0000-0002-5152-8409 surname: P.P. fullname: P.P., Fathimathul Rajeena – sequence: 2 givenname: Walaa N. orcidid: 0000-0002-1499-438X surname: Ismail fullname: Ismail, Walaa N. – sequence: 3 givenname: Mona A. S. orcidid: 0000-0002-2192-3504 surname: Ali fullname: Ali, Mona A. S.  | 
    
| BookMark | eNp9UU1r3DAQNSWFpmlO_QOGHttN9WXLPi75aBZSckkIPYmxNHK0tS1X0hKSX19lXUIotBrQDKP3Hm9G74uDyU9YFB8pOeG8JV9hnimnTJKGvykOGZH1igsqD17V74rjGLckn5byhpLD4se6_I4J7nEXXExOl5cQcpXTw89YXs_Jje4JkvNTuR56H1y6H0vrQ3mHaMozTKj3j7fRTX15FrKlcjNCj_FD8dbCEPH4Tz4qbi_Ob04vV1fX3zan66uVFoSnla0bUdGOMWyhbpisKkZb1JzQRgJQ25oarWVdZbq6FihIR0HWrJaWNCCM5UfFZtE1HrZqDm6E8Kg8OLVv-NArCHmyAZUxNdUCGdBOCmF02wokhiOjnQDTQdb6smjtphkeH2AYXgQpUc9bVq-2nOGfFvgc_K8dxqS2fhemPK1iDWslkfnKqJMF1UP24CbrUwCdw-DodF6Ydbm_lpXI4EpWmUAXgg4-xoBWaZf2f5CJbviHlc9_cf5n_DfknKu8 | 
    
| CitedBy_id | crossref_primary_10_3390_app14052154 crossref_primary_10_3390_agriculture14040568 crossref_primary_10_3390_math11163601 crossref_primary_10_1007_s00477_024_02884_z crossref_primary_10_1109_ACCESS_2023_3322376 crossref_primary_10_3390_su151813302 crossref_primary_10_3390_agriengineering6010034 crossref_primary_10_3390_en18010018 crossref_primary_10_1109_ACCESS_2024_3418454  | 
    
| Cites_doi | 10.3390/rs13030513 10.1111/wbm.12041 10.1007/s11119-019-09659-5 10.1080/1343943X.2020.1829490 10.3390/math10234421 10.1007/s11263-019-01247-4 10.1016/j.compag.2017.10.027 10.1017/S0021859605005708 10.3390/s18082674 10.3390/plants9050559 10.1109/ICEEE49618.2020.9102505 10.3390/agriengineering3020020 10.1146/annurev-publhealth-031816-044356 10.1186/s40648-019-0141-2 10.3390/s22197693 10.1016/j.compag.2020.105766 10.1007/s11831-022-09780-1 10.1109/CVPR.2017.243 10.3390/rs12233877 10.3389/fpls.2019.01422 10.1109/ELECOM49001.2020.9296994 10.1186/s13007-021-00722-9 10.1109/JETCAS.2021.3101740 10.13031/aim.202100742 10.1002/agj2.20841 10.1016/j.compag.2020.105750 10.1016/j.future.2019.02.028 10.3390/rs12010096 10.1016/j.compind.2018.03.001 10.3390/app122412828 10.1016/j.biosystemseng.2016.08.024 10.1109/LAGIRS48042.2020.9165562 10.1016/j.compag.2021.106081 10.3389/fcomp.2019.00004  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/app13127083 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General) Agriculture  | 
    
| EISSN | 2076-3417 | 
    
| ExternalDocumentID | oai_doaj_org_article_dd61c4e2a1b744dc994e0d3e21b4adba 10.3390/app13127083 A754973575 10_3390_app13127083  | 
    
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c403t-f68451b22e9a682755219ec30187aa1f9d6eff2b5db664e40b1a76267f08a4df3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2076-3417 | 
    
| IngestDate | Tue Oct 14 19:04:43 EDT 2025 Sun Oct 26 04:03:23 EDT 2025 Mon Jun 30 07:32:55 EDT 2025 Mon Oct 20 16:19:21 EDT 2025 Thu Apr 24 22:56:26 EDT 2025 Thu Oct 16 04:41:17 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c403t-f68451b22e9a682755219ec30187aa1f9d6eff2b5db664e40b1a76267f08a4df3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-5152-8409 0000-0002-2192-3504 0000-0002-1499-438X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2076-3417/13/12/7083/pdf?version=1687573010 | 
    
| PQID | 2829707297 | 
    
| PQPubID | 2032433 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dd61c4e2a1b744dc994e0d3e21b4adba unpaywall_primary_10_3390_app13127083 proquest_journals_2829707297 gale_infotracacademiconefile_A754973575 crossref_citationtrail_10_3390_app13127083 crossref_primary_10_3390_app13127083  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-06-01 | 
    
| PublicationDateYYYYMMDD | 2023-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Applied sciences | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Liakos (ref_9) 2018; 18 Khodadadi (ref_37) 2022; 10 Sabzi (ref_35) 2018; 98 Urmashev (ref_20) 2021; 6 Yu (ref_31) 2019; 10 Heidari (ref_39) 2019; 97 ref_34 Shehab (ref_40) 2022; 29 Daponte (ref_1) 2019; Volume 275 Pang (ref_13) 2020; 178 Ghanizadeh (ref_4) 2014; 14 ref_10 Pavelka (ref_3) 2022; 22 Aharon (ref_7) 2020; 12 Ronay (ref_23) 2021; 13 Kawamura (ref_26) 2020; 24 Herrmann (ref_8) 2020; 21 Myers (ref_6) 2017; 38 ref_15 Dyrmann (ref_11) 2016; 151 Albanese (ref_12) 2021; 11 Albraikan (ref_38) 2022; 12 Butte (ref_16) 2021; 113 Liu (ref_19) 2021; 17 Ahmad (ref_33) 2021; 184 Oerke (ref_5) 2006; 144 ref_25 Zhang (ref_28) 2019; 1 ref_21 You (ref_30) 2020; 178 ref_41 Onishi (ref_18) 2019; 6 Ismail (ref_17) 2022; 9 Tian (ref_24) 2020; 7 ref_2 Freitas (ref_32) 2017; 143 Dadashzadeh (ref_36) 2020; 9 Liu (ref_22) 2020; 128 ref_29 Chowdhury (ref_14) 2021; 3 Brinkhoff (ref_27) 2020; 12  | 
    
| References_xml | – volume: 13 start-page: 513 year: 2021 ident: ref_23 article-title: Hyperspectral Reflectance and Indices for Characterizing the Dynamics of Crop–Weed Competition for Water publication-title: Remote Sens. doi: 10.3390/rs13030513 – volume: 14 start-page: 133 year: 2014 ident: ref_4 article-title: Effect of weed interference on Zea mays: Growth analysis publication-title: Weed Biol. Manag. doi: 10.1111/wbm.12041 – volume: 21 start-page: 51 year: 2020 ident: ref_8 article-title: Assessment of maize yield and phenology by drone-mounted superspectral camera publication-title: Precis. Agric. doi: 10.1007/s11119-019-09659-5 – volume: Volume 275 start-page: 012022 year: 2019 ident: ref_1 article-title: A review on the use of drones for precision agriculture publication-title: IOP Conference Series: Earth and Environmental Science – volume: 24 start-page: 198 year: 2020 ident: ref_26 article-title: Discriminating crops/weeds in an upland rice field from UAV images with the SLIC-RF algorithm publication-title: Plant Prod. Sci. doi: 10.1080/1343943X.2020.1829490 – volume: 10 start-page: 4421 year: 2022 ident: ref_37 article-title: Metaheuristic Optimization for Improving Weed Detection in Wheat Images Captured by Drones publication-title: Mathematics doi: 10.3390/math10234421 – volume: 128 start-page: 261 year: 2020 ident: ref_22 article-title: Deep learning for generic object detection: A survey publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01247-4 – volume: 143 start-page: 314 year: 2017 ident: ref_32 article-title: Weed detection in soybean crops using ConvNets publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.10.027 – volume: 144 start-page: 31 year: 2006 ident: ref_5 article-title: Crop losses to pests publication-title: J. Agric. Sci. doi: 10.1017/S0021859605005708 – volume: 18 start-page: 2674 year: 2018 ident: ref_9 article-title: Machine learning in agriculture: A review publication-title: Sensors doi: 10.3390/s18082674 – volume: 9 start-page: 559 year: 2020 ident: ref_36 article-title: Weed Classification for Site-Specific Weed Management Using an Automated Stereo Computer-Vision Machine-Learning System in Rice Fields publication-title: Plants doi: 10.3390/plants9050559 – ident: ref_25 doi: 10.1109/ICEEE49618.2020.9102505 – volume: 3 start-page: 294 year: 2021 ident: ref_14 article-title: Automatic and reliable leaf disease detection using deep learning techniques publication-title: AgriEngineering doi: 10.3390/agriengineering3020020 – volume: 38 start-page: 259 year: 2017 ident: ref_6 article-title: Climate change and global food systems: Potential impacts on food security and undernutrition publication-title: Annu. Rev. Public Health doi: 10.1146/annurev-publhealth-031816-044356 – volume: 6 start-page: 13 year: 2019 ident: ref_18 article-title: An automated fruit harvesting robot by using deep learning publication-title: Robomech J. doi: 10.1186/s40648-019-0141-2 – volume: 7 start-page: 1 year: 2020 ident: ref_24 article-title: Computer vision technology in agricultural automation—A review publication-title: Inf. Process. Agric. – ident: ref_21 – volume: 22 start-page: 7693 year: 2022 ident: ref_3 article-title: Evaluating the Performance of Airborne and Ground Sensors for Applications in Precision Agriculture: Enhancing the Postprocessing State-of-the-Art Algorithm publication-title: Sensors doi: 10.3390/s22197693 – volume: 178 start-page: 105766 year: 2020 ident: ref_13 article-title: Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105766 – volume: 29 start-page: 5579 year: 2022 ident: ref_40 article-title: Harris hawks optimization algorithm: Variants and applications publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-022-09780-1 – ident: ref_41 doi: 10.1109/CVPR.2017.243 – volume: 12 start-page: 3877 year: 2020 ident: ref_7 article-title: Image-based high-throughput phenotyping of cereals early vigor and weed-competitiveness traits publication-title: Remote Sens. doi: 10.3390/rs12233877 – volume: 10 start-page: 1422 year: 2019 ident: ref_31 article-title: Weed detection in perennial ryegrass with deep learning convolutional neural network publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01422 – ident: ref_34 doi: 10.1109/ELECOM49001.2020.9296994 – volume: 17 start-page: 22 year: 2021 ident: ref_19 article-title: Plant diseases and pests detection based on deep learning: A review publication-title: Plant Methods doi: 10.1186/s13007-021-00722-9 – ident: ref_2 – volume: 11 start-page: 458 year: 2021 ident: ref_12 article-title: Automated pest detection with DNN on the edge for precision agriculture publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2021.3101740 – ident: ref_10 – ident: ref_15 doi: 10.13031/aim.202100742 – volume: 113 start-page: 3991 year: 2021 ident: ref_16 article-title: Potato crop stress identification in aerial images using deep learning-based object detection publication-title: Agron. J. doi: 10.1002/agj2.20841 – volume: 178 start-page: 105750 year: 2020 ident: ref_30 article-title: A DNN-based semantic segmentation for detecting weed and crop publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105750 – volume: 9 start-page: 24 year: 2022 ident: ref_17 article-title: Real-time visual inspection system for grading fruits using computer vision and deep learning techniques publication-title: Inf. Process. Agric. – volume: 97 start-page: 849 year: 2019 ident: ref_39 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 12 start-page: 96 year: 2020 ident: ref_27 article-title: Land Cover Classification of Nine Perennial Crops Using Sentinel-1 and-2 Data publication-title: Remote Sens. doi: 10.3390/rs12010096 – volume: 98 start-page: 80 year: 2018 ident: ref_35 article-title: A fast and accurate expert system for weed identifcation in potato crops using metaheuristic algorithms publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.03.001 – volume: 6 start-page: 114 year: 2021 ident: ref_20 article-title: Development of a weed detection system using machine learning and neural network algorithms publication-title: East.-Eur. J. Enterp. Technol. – volume: 12 start-page: 12828 year: 2022 ident: ref_38 article-title: Modified Barnacles Mating Optimization with Deep Learning Based Weed Detection Model for Smart Agriculture publication-title: Appl. Sci. doi: 10.3390/app122412828 – volume: 151 start-page: 72 year: 2016 ident: ref_11 article-title: Plant species classification using deep convolutional neural network publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.08.024 – ident: ref_29 doi: 10.1109/LAGIRS48042.2020.9165562 – volume: 184 start-page: 106081 year: 2021 ident: ref_33 article-title: Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106081 – volume: 1 start-page: 4 year: 2019 ident: ref_28 article-title: Combing K-means Clustering and Local Weighted Maximum Discriminant Projections for Weed Species Recognition publication-title: Front. Comput. Sci. doi: 10.3389/fcomp.2019.00004  | 
    
| SSID | ssj0000913810 | 
    
| Score | 2.3329413 | 
    
| Snippet | There are several major threats to crop production. As herbicide use has become overly reliant on weed control, herbicide-resistant weeds have evolved and pose... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 7083 | 
    
| SubjectTerms | Agricultural production Agriculture Algorithms Analysis Classification Dense-Net201 DenseHHO DenseNet-121 Harris Hawk optimization Herbicide resistance Mathematical optimization Neural networks Safety and security measures Unmanned aerial vehicles weed detection Weeds  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL9ADogXEQql8KOIhRcTxxI6PS0u1IAEXKsrJsmO7Reym1W5WFf-eseOugkDl0lOiZKTYmbc88w0hBzW6PRdbtzgqUgGgRNEEGQrhbI0vSgCbqnw_i9kJfDytT0ejvmJN2AAPPPy4t84J1oKvDLMSwLVKgS8d9xWzYJxNoVHZqFEylWywYhG6amjI45jXx_NgxuMxa8P_cEEJqf9ve7xN7q67S_PrysznI4dz_IDcz5EinQ4r3CF3fLdLtkf4gbtkJ2vmir7K8NGvH5LvU_rJ9-bcrwcQZjozS7zDy9XPFf2CJmKRey_pdH52sfzRny8ohq70GzoyeuT7VJzV0VRMQI-WF52nHxZodlaPyMnx-6-HsyIPUChaKHlfBNFAzWxVeWVEU8kafbXyLY-D-IxhQTnhQ6hs7awQ4KG0zKBxFDKUjQEX-GOy1eFXnhCaaIG1zgYHUDem8SpIWSJrgq-dnJA31_9UtxldPA65mGvMMiID9IgBE3KwIb4cQDX-TfYuMmdDEpGw0wOUD53lQ_9PPibkZWStjvqKC2pNbjvAbUXkKz2VmCFLjlHrhOxdc19nRV7peNAsI7o67vDFRiJuWvXT21j1M3IvzrUfatL2yFa_XPvnGP30dj8J-m_zCAJV priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QLSAGijIhyIeUkQeTpwcEEppqwWJBSEqyimyY3srsZtdsllV_HtmEmdZBOopLytxPJ6HPTPfABwnqPY0pW7FyEg-53nqZ1ZYP9UqwQcB56qL8p2k4wv-4TK53IHJkAtDYZWDTOwEtV5UtEf-mjx-gmCuxdvlT5-qRpF3dSihIV1pBf2mgxi7BbsRIWONYPfkbPL5y2bXhVAwszDoE_ViXO-TnziMyf2axX-ppg7B_185vQe31_VS_rqWs9mWIjq_B3edBcmKnuT7sGPqA9grpo1D0TB4tYUyeAD7jn9X7IUDmX55H74X7KNp5ZVZ91DNbCwbPMPD9Y8V-4SCZO4yNFkxm-JAtFdzhgYu-4bqjp2atgvhqlkXcsBOm0Vt2Ps5CqfVA7g4P_v6buy7Mgt-xYO49W2a8SRUUWRymWaRSFCj56aKqVyflKHNdWqsjVSiVZpywwMVShShqbBBJrm28UMY1fiVQ2BdWx5WWlnNeZLJzORWiKDixppECw9eDSNcVg6DnEphzEpcixA5yi1yeHC8abzsoTf-3-yESLVpQnjZ3Y1FMy0d-5VapyF2IpKhEpzrKs-5CXRsolBxqZX04DkRuiSuxg5V0iUn4G8RPlZZCFxHixhtWw-OhrlQOnZflX8mpwfPNvPjpl4_uvk1j-EO1bXvY9KOYNQ2a_MErZ9WPXVT-jcfxwOf priority: 102 providerName: ProQuest  | 
    
| Title | A Metaheuristic Harris Hawks Optimization Algorithm for Weed Detection Using Drone Images | 
    
| URI | https://www.proquest.com/docview/2829707297 https://www.mdpi.com/2076-3417/13/12/7083/pdf?version=1687573010 https://doaj.org/article/dd61c4e2a1b744dc994e0d3e21b4adba  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegfYA9ABsgykblhyE-pKxx7NjJE8rYSkGiTIiK7SmyY3ub1i-l6Sb46zknblU-hJB4SpRclLN8_vnOvvsZof0Ypj3tSrcoDKSAsZQHiRU24FrF8CJkTNVZvkM-GLEPp_HpRhW_S6uEUPyyBukIguwAYFb0CO2RqCfAX-jNtX1z7deSCHd87LSusWrzGLzxFmqPhifZmTtTbvV1U5ZHIbp3u8KEus3WhP40EdV8_b-j8ha6s5zO5bcbOR5vTDv9-0iuFG6yTa4OlpU6KL7_wuX4Py16gO55nxRnjRFto1tmuoO2NpgKd9C2x4AFfumJql89RGcZ_mgqeWGWDd0zHsgS7uByc7XAnwCMJr7KE2fj81l5WV1MMDjJ-CtMmfjIVHUa2BTXaQv4qJxNDX4_AYBbPEKj_vGXt4PAH9UQFCykVWB5wmKiosikkieRiMErSE1B3ZF_UhKbam6sjVSsFefMsFARCTDMhQ0TybSlj1FrCn95gnAty0ihldWMxYlMTGqFCAtmrIm16KDXq37LC89j7o7TGOcQz7hOzjc6uYP218Lzhr7jz2KHzgDWIo5zu34wK89zP4RzrTkBJSJJlGBMF2nKTKipiYhiUivZQS-c-eQOGUChQvoCB2iW49jKMwGxuKDgH3fQ3srCcg8Zi9xtaQvH4w4tfL62ur9p_fQf5XbR3QhcsybBbQ-1qnJpnoErVakuup3033VR-_B4ePK5Wy9IdP0I-gGt-Bor | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QLSAWCjgQyseUkQSO3FyqFDKttql7YJQK9pTsGN7K7EvkqxW_XP8NsZZ77II1FtPeVmJ47Hn4Zn5BmAvQrGnbOoWxYXkMZbGXmK48WIlI3zgMyabKN9e3Llgny6jyzX4tciFsWGVC57YMGo1Luwe-Xvr8eMW5pp_mPz0bNUo611dlNAQrrSCOmggxlxix4m-maEJVx1020jv_TA8Pjr_2PFclQGvYD6tPRMnLApkGOpUxEnIIxRoqS6orVYnRGBSFWtjQhkpGcdMM18GAjlIzI2fCKYMxffegw1GWYrG38bhUe_L1-Uuj0XdTAJ_nhhIaepbv3RArbs3oX-JwqZiwL9yYQs2p6OJuJmJwWBF8B0_hAdOYyXZfIptw5oe7cBW1i8daofGqxVUwx3YdvyiIm8cqPXbR3CVkTNdi2s9nUNDk44o8QwPsx8V-YyMa-gyQkk26OPA19dDggo1-YbilbR13YSMjUgT4kDa5XikSXeIzLB6DBd3MuBPYH2EX3kKpGnLgkJJoxiLEpHo1HDuF0wbHSnegneLEc4Lh3luS28McrR9LDnyFXK0YG_ZeDKH-vh_s0NLqmUTi8_d3BiX_dwt91ypOMBOhCKQnDFVpCnTvqI6DCQTSooWvLaEzi0XwQ4VwiVD4G9ZPK4842i3c4q6dAt2F3Mhd-ylyv8shhbsL-fHbb1-dvtrXsFm5_zsND_t9k6ew_0QNbl5PNwurNflVL9AzauWL930JvD9rlfUb0qaQAM | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ4LtAbEBIjDAD5u4SNFyceLkAaFAKS2DwQPTxlOwY7uT1qalSVXtr_HrOE6cUgTa255ysxLH52r7nO8A7Edo9qRJ3QpRkFxK09hNNNNuLEWEDzxKRRPlexwPTujHs-hsA351uTAmrLLTiY2iltPCrJEfmh0_ZmCu2aG2YRFfe_03s5-uqSBldlq7chotixypyyVO36rXwx7S-iAI-u-_vRu4tsKAW1AvrF0dJzTyRRColMdJwCI0ZqkqQlOpjnNfpzJWWgcikiKOqaKe8Dlqj5hpL-FU6hDfewNuMoPibrLU-x9W6zsGbzPxvTYlMAxTz-xI-6HZ6E3Cv4xgUyvgX4uwDbcX5YxfLvl4vGby-nfhjvVVSdYy1w5sqHIXtrPR3OJ1KLxawzPchR2rKSrywsJZv7wH3zPyWdX8XC1aUGgy4HM8w8PyoiJfUGVNbC4oycYjHOb6fELQlSanaFhJT9VNsFhJmuAG0ptPS0WGE1SD1X04uZbhfgCbJX7lIZCmLfULKbSkNEp4olLNmFdQpVUkmQOvuhHOC4t2bopujHOc9Rhy5GvkcGB_1XjWgnz8v9lbQ6pVE4PM3dyYzke5FfRcytjHTgTcF4xSWaQpVZ4MVeALyqXgDjw3hM6N_sAOFdymQeBvGSSuPGM4Y2chetEO7HW8kFvFUuV_xMCBgxV_XNXrR1e_5hncQjnKPw2Pjx7DVoAuXBsItweb9XyhnqDLVYunDW8T-HHdwvQbjMU9nQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h7gH2AGyAVhjID0N8SFnj2LGTJxQYU0Fi8EDF9hTZsb1Na9OqTZngr-ecuFX5EELiqVFzUc7y-ee7-O53AAcpbnvGl24xXEgR57mIMiddJIxO8UbMuW6zfE_EcMTfn6anG1X8Pq0SQ_HLFqQTDLIjhFk5oGxAk4FEf2EwM-7V1_AtiQrPx87aGqstkaI33oOt0cmn4sz3lFs93ZXlMYzu_akwZf6wNWM_bUQtX__vqLwNN5f1TH27VuPxxrZzfAfUSuEu2-TqcNnow-r7L1yO_zOiu3A7-KSk6IxoB27Yehe2N5gKd2EnYMCCPA9E1S_uwVlBPthGXdhlR_dMhmqOV_hzfbUgHxGMJqHKkxTj8-n8srmYEHSSyRfcMsmRbdo0sJq0aQvkaD6tLXk3QYBb3IfR8dvPb4ZRaNUQVTxmTeRExlOqk8TmSmSJTNEryG3FfMs_pajLjbDOJTo1WghueaypQhgW0sWZ4saxB9Cr8S17QFpZTiujneE8zVRmcydlXHHrbGpkH16u5q2sAo-5b6cxLjGe8ZNcbkxyHw7WwrOOvuPPYq-9AaxFPOd2-8d0fl6GJVwaIygqkSiqJeemynNuY8NsQjVXRqs-PPPmU3pkQIUqFQoccFieY6ssJMbikqF_3If9lYWVATIWpT_Slp7HHUf4dG11f9P64T_KPYJbCbpmXYLbPvSa-dI-Rleq0U_CavkBzZwWtg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Metaheuristic+Harris+Hawks+Optimization+Algorithm+for+Weed+Detection+Using+Drone+Images&rft.jtitle=Applied+sciences&rft.au=Fathimathul+Rajeena+P.P.&rft.au=Walaa+N.+Ismail&rft.au=Mona+A.+S.+Ali&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=12&rft.spage=7083&rft_id=info:doi/10.3390%2Fapp13127083&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dd61c4e2a1b744dc994e0d3e21b4adba | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |