Physical Workload Tracking Using Human Activity Recognition with Wearable Devices

In this work, authors address workload computation combining human activity recognition and heart rate measurements to establish a scalable framework for health at work and fitness-related applications. The proposed architecture consists of two wearable sensors: one for motion, and another for heart...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 1; p. 39
Main Authors Manjarres, Jose, Narvaez, Pedro, Gasser, Kelly, Percybrooks, Winston, Pardo, Mauricio
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.12.2019
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s20010039

Cover

More Information
Summary:In this work, authors address workload computation combining human activity recognition and heart rate measurements to establish a scalable framework for health at work and fitness-related applications. The proposed architecture consists of two wearable sensors: one for motion, and another for heart rate. The system employs machine learning algorithms to determine the activity performed by a user, and takes a concept from ergonomics, the Frimat’s score, to compute the corresponding physical workload from measured heart rate values providing in addition a qualitative description of the workload. A random forest activity classifier is trained and validated with data from nine subjects, achieving an accuracy of 97.5%. Then, tests with 20 subjects show the reliability of the activity classifier, which keeps an accuracy up to 92% during real-time testing. Additionally, a single-subject twenty-day physical workload tracking case study evinces the system capabilities to detect body adaptation to a custom exercise routine. The proposed system enables remote and multi-user workload monitoring, which facilitates the job for experts in ergonomics and workplace health.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s20010039